CINXE.COM
Infinity-Grpd in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Infinity-Grpd in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Infinity-Grpd </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/8692/#Item_2" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id=""><a class="existingWikiWord" href="/nlab/show/categories+of+categories+-+contents">categories of categories</a></h4> <div class="hide"><div> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n+1,r+1)</annotation></semantics></math>-categories of <a class="existingWikiWord" href="/nlab/show/%28n%2Cr%29-categories">(n,r)-categories</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Pos">Pos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Set">Set</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Rel">Rel</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grpd">Grpd</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9EGrpd">∞Grpd</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cat">Cat</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Ho%28Cat%29">Ho(Cat)</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/AccCat">AccCat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/PrCat">PrCat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/LexCat">LexCat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/MonCat">MonCat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/VCat">VCat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/CatAdj">CatAdj</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Prof">Prof</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Operad">Operad</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2Cat">2Cat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ModCat">ModCat</a>, <a class="existingWikiWord" href="/nlab/show/CombModCat">CombModCat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29Cat">(∞,1)Cat</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Pr%28%E2%88%9E%2C1%29Cat">Pr(∞,1)Cat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29Operad">(∞,1)Operad</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29Cat">(∞,n)Cat</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#as_an_topos'>As an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-topos</a></li> <li><a href='#limits_and_colimits_in_'>Limits and colimits in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex">\infty Grpd</annotation></semantics></math></a></li> </ul> <li><a href='#subcategories'>Subcategories</a></li> <li><a href='#related_categories'>Related categories</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex">\infty Grpd</annotation></semantics></math></strong> is the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> of <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-groupoids">∞-groupoids</a>, i.e. of <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C0%29-categories">(∞,0)-categories</a>. This is the archetypical <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a>, the home of classical <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a>.</p> <p><a class="existingWikiWord" href="/nlab/show/equivalence+of+%28%E2%88%9E%2C1%29-categories">Equivalently</a> this means all of the following:</p> <ol> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex">\infty Grpd</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/simplicial+localization">simplicial localization</a> of the <a class="existingWikiWord" href="/nlab/show/category">category</a> <a class="existingWikiWord" href="/nlab/show/Top">Top</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mrow></mrow> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">{}_k</annotation></semantics></math> of (<a class="existingWikiWord" href="/nlab/show/weakly+Hausdorff+topological+space">weakly Hausdorff</a>) <a class="existingWikiWord" href="/nlab/show/locally+compact+topological+spaces">locally compact topological spaces</a> at the <a class="existingWikiWord" href="/nlab/show/weak+homotopy+equivalences">weak homotopy equivalences</a>. As such it is the <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-category">∞-category</a>-enhancement of the <a class="existingWikiWord" href="/nlab/show/classical+homotopy+category">classical homotopy category</a>: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>τ</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mn>∞</mn><mi>Grpd</mi><mo stretchy="false">)</mo><mo>≃</mo></mrow><annotation encoding="application/x-tex">\tau_0(\infty Grpd) \simeq</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Ho%28Top%29">Ho(Top)</a>, itself <a class="existingWikiWord" href="/nlab/show/presentable+%28%E2%88%9E%2C1%29-category">presented</a> by the <a class="existingWikiWord" href="/nlab/show/classical+model+structure+on+topological+spaces">classical model structure on topological spaces</a>: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn><mi>Grpd</mi><mo>≃</mo><msub><mi>L</mi> <mi>whe</mi></msub><msub><mi>Top</mi> <mi>k</mi></msub></mrow><annotation encoding="application/x-tex">\infty Grpd \simeq L_{whe} Top_k</annotation></semantics></math>.</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex">\infty Grpd</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/simplicial+localization">simplicial localization</a> of the <a class="existingWikiWord" href="/nlab/show/category">category</a> <a class="existingWikiWord" href="/nlab/show/sSet">sSet</a> of <a class="existingWikiWord" href="/nlab/show/simplicial+sets">simplicial sets</a> at the simplicial <a class="existingWikiWord" href="/nlab/show/weak+homotopy+equivalences">weak homotopy equivalences</a>. As such it is the <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-category">∞-category</a>-enhancement of the <a class="existingWikiWord" href="/nlab/show/classical+homotopy+category">classical homotopy category</a>: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>τ</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mn>∞</mn><mi>Grpd</mi><mo stretchy="false">)</mo><mo>≃</mo></mrow><annotation encoding="application/x-tex">\tau_0(\infty Grpd) \simeq</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Ho%28sSet%29">Ho(sSet)</a>, itself <a class="existingWikiWord" href="/nlab/show/presentable+%28%E2%88%9E%2C1%29-category">presented</a> by the <a class="existingWikiWord" href="/nlab/show/classical+model+structure+on+simplicial+sets">classical model structure on simplicial sets</a>: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn><mi>Grpd</mi><mo>≃</mo><msub><mi>L</mi> <mi>whe</mi></msub><mi>sSet</mi></mrow><annotation encoding="application/x-tex">\infty Grpd \simeq L_{whe} sSet</annotation></semantics></math>.</p> <p>Hence, as a <a class="existingWikiWord" href="/nlab/show/simplicially+enriched+category">Kan-complex enriched category</a> (a <a class="existingWikiWord" href="/nlab/show/fibrant+object">fibrant object</a> in the <a class="existingWikiWord" href="/nlab/show/model+structure+on+sSet-categories">model structure on sSet-categories</a>) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex">\infty Grpd</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/full+subcategory">full</a> <a class="existingWikiWord" href="/nlab/show/simplicially+enriched+category">sSet enriched</a>-<a class="existingWikiWord" href="/nlab/show/subcategory">subcategory</a> of <a class="existingWikiWord" href="/nlab/show/sSet">sSet</a> on the <a class="existingWikiWord" href="/nlab/show/Kan+complexes">Kan complexes</a>.</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex">\infty Grpd</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/full+sub-%28%E2%88%9E%2C1%29-category">full sub-(∞,1)-category</a> of <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29Cat">(∞,1)Cat</a> on those <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-categories">(∞,1)-categories</a> that are <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-groupoids">∞-groupoids</a>.</p> </li> </ol> <h2 id="properties">Properties</h2> <h3 id="as_an_topos">As an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-topos</h3> <p>As an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex">\infty Grpd</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-topos: for every other <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-sheaves">(∞,1)-sheaf</a> <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>H</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{H}</annotation></semantics></math> there is up to a <a class="existingWikiWord" href="/nlab/show/contractible">contractible</a> space of choices a unique <a class="existingWikiWord" href="/nlab/show/geometric+morphism">geometric morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>LConst</mi><mo>⊣</mo><mi>Γ</mi><mo stretchy="false">)</mo><mo>:</mo><mstyle mathvariant="bold"><mi>H</mi></mstyle><mover><mo>→</mo><mo>←</mo></mover><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex">(LConst \dashv \Gamma) : \mathbf{H}\stackrel{\leftarrow}{\to} \infty Grpd</annotation></semantics></math> – the <a class="existingWikiWord" href="/nlab/show/global+section">global section</a> geometric morphism. See there for more details.</p> <h3 id="limits_and_colimits_in_">Limits and colimits in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex">\infty Grpd</annotation></semantics></math></h3> <p><a class="existingWikiWord" href="/nlab/show/limit+in+a+quasi-category">Limits and colimits</a> over a <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-functor">(∞,1)-functor</a> with values in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex">\infty Grpd</annotation></semantics></math> may be reformulation in terms of the <a class="existingWikiWord" href="/nlab/show/universal+fibration+of+%28infinity%2C1%29-categories">universal fibration of (infinity,1)-categories</a>.</p> <p>Let the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-functor">(∞,1)-functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi><msub><mo stretchy="false">|</mo> <mi>Grpd</mi></msub><mo>→</mo><mn>∞</mn><msup><mi>Grpd</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">Z|_{Grpd} \to \infty Grpd^{op}</annotation></semantics></math> be the <a class="existingWikiWord" href="/nlab/show/universal+fibration+of+%28infinity%2C1%29-categories">universal ∞-groupoid fibration</a> whose fiber over the object denoting some <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-groupoid is that very <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-groupoid.</p> <p>Then let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> be any <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-groupoid">∞-groupoid</a> and</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>:</mo><mi>X</mi><mo>→</mo><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex"> F : X \to \infty Grpd </annotation></semantics></math></div> <p>an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-functor">(∞,1)-functor</a>. Recall that the <a class="existingWikiWord" href="/nlab/show/Cartesian+fibration">coCartesian fibration</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mi>F</mi></msub><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">E_F \to X</annotation></semantics></math> classified by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> is the pullback of the <a class="existingWikiWord" href="/nlab/show/universal+fibration+of+%28%E2%88%9E%2C1%29-categories">universal fibration of (∞,1)-categories</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi></mrow><annotation encoding="application/x-tex">Z</annotation></semantics></math> along F:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msub><mi>E</mi> <mi>F</mi></msub></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>Z</mi><msub><mo stretchy="false">|</mo> <mi>Grpd</mi></msub></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>X</mi></mtd> <mtd><mover><mo>→</mo><mi>F</mi></mover></mtd> <mtd><mn>∞</mn><mi>Grpd</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ E_F &\to& Z|_{Grpd} \\ \downarrow && \downarrow \\ X &\stackrel{F}{\to}& \infty Grpd } </annotation></semantics></math></div> <div class="un_prop"> <h6 id="proposition">Proposition</h6> <p>Let the assumptions be as above. Then:</p> <ul> <li> <p>The colimit of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> is equivalent to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mi>F</mi></msub></mrow><annotation encoding="application/x-tex">E_F</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mi>F</mi></msub><mo>≃</mo><mi>colim</mi><mi>F</mi></mrow><annotation encoding="application/x-tex"> E_F \simeq colim F </annotation></semantics></math></div></li> <li> <p>The limit of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> is equivalent to the <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-category+of+cartesian+section">(∞,1)-groupoid of sections</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mi>F</mi></msub><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">E_F \to X</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>Γ</mi> <mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>E</mi> <mi>F</mi></msub><mo stretchy="false">)</mo><mo>≃</mo><mi>lim</mi><mi>F</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \Gamma_X(E_F) \simeq lim F \,. </annotation></semantics></math></div></li> </ul> </div> <div class="proof"> <h6 id="proof">Proof</h6> <p>The statement for the colimit is corollary 3.3.4.6 in <a class="existingWikiWord" href="/nlab/show/Higher+Topos+Theory">HTT</a>. The statement for the limit is corollary 3.3.3.4.</p> </div> <h2 id="subcategories">Subcategories</h2> <p>The <a class="existingWikiWord" href="/nlab/show/n-truncated+object+of+an+%28infinity%2C1%29-category">n-truncated objects</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex">\infty Grpd</annotation></semantics></math> are the <a class="existingWikiWord" href="/nlab/show/n-groupoids">n-groupoids</a> (including <a class="existingWikiWord" href="/nlab/show/%28-1%29-groupoid">(-1)-groupoid</a>s and the <a class="existingWikiWord" href="/nlab/show/%28-2%29-groupoid">(-2)-groupoid</a>).</p> <h2 id="related_categories">Related categories</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Set">Set</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grpd">Grpd</a>,</p> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn><mi>Grpd</mi></mrow><annotation encoding="application/x-tex">\infty Grpd</annotation></semantics></math></strong></p> <p><a class="existingWikiWord" href="/nlab/show/Top">Top</a>, <a class="existingWikiWord" href="/nlab/show/Ho%28Top%29">Ho(Top)</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cat">Cat</a>, <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29Cat">(∞,1)Cat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29Cat">(∞,n)Cat</a></p> </li> </ul> <div class="property">category: <a class="category_link" href="/nlab/all_pages/category">category</a></div></body></html> </div> <div class="revisedby"> <p> Last revised on August 3, 2020 at 06:56:58. See the <a href="/nlab/history/Infinity-Grpd" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Infinity-Grpd" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/8692/#Item_2">Discuss</a><span class="backintime"><a href="/nlab/revision/Infinity-Grpd/22" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Infinity-Grpd" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Infinity-Grpd" accesskey="S" class="navlink" id="history" rel="nofollow">History (22 revisions)</a> <a href="/nlab/show/Infinity-Grpd/cite" style="color: black">Cite</a> <a href="/nlab/print/Infinity-Grpd" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Infinity-Grpd" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>