CINXE.COM

Search results for: building skin

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: building skin</title> <meta name="description" content="Search results for: building skin"> <meta name="keywords" content="building skin"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="building skin" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="building skin"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5064</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: building skin</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5064</span> Analysis of Tactile Perception of Textiles by Fingertip Skin Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Izabela%20L.%20Ciesielska-Wr%CF%8Cbel">Izabela L. Ciesielska-Wrόbel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents finite element models of the fingertip skin which have been created to simulate the contact of textile objects with the skin to gain a better understanding of the perception of textiles through the skin, so-called Hand of Textiles (HoT). Many objective and subjective techniques have been developed to analyze HoT, however none of them provide exact overall information concerning the sensation of textiles through the skin. As the human skin is a complex heterogeneous hyperelastic body composed of many particles, some simplifications had to be made at the stage of building the models. The same concerns models of woven structures, however their utilitarian value was maintained. The models reflect only friction between skin and woven textiles, deformation of the skin and fabrics when “touching” textiles and heat transfer from the surface of the skin into direction of textiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fingertip%20skin%20models" title="fingertip skin models">fingertip skin models</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20models" title=" finite element models"> finite element models</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20of%20textiles" title=" modelling of textiles"> modelling of textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=sensation%20of%20textiles%20through%20the%20skin" title=" sensation of textiles through the skin"> sensation of textiles through the skin</a> </p> <a href="https://publications.waset.org/abstracts/26064/analysis-of-tactile-perception-of-textiles-by-fingertip-skin-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5063</span> Optimization Aluminium Design for the Facade Second Skin toward Visual Comfort: Case Studies &amp; Dialux Daylighting Simulation Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaseri%20Dahlia%20Apritasari">Yaseri Dahlia Apritasari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visual comfort is important for the building occupants to need. Visual comfort can be fulfilled through natural lighting (daylighting) and artificial lighting. One strategy to optimize natural lighting can be achieved through the facade second skin design. This strategy can reduce glare, and fulfill visual comfort need. However, the design strategy cannot achieve light intensity for visual comfort. Because the materials, design and opening percentage of the facade of second skin blocked sunlight. This paper discusses aluminum material for the facade second skin design that can fulfill the optimal visual comfort with the case studies Multi Media Tower building. The methodology of the research is combination quantitative and qualitative through field study observed, lighting measurement and visual comfort questionnaire. Then it used too simulation modeling (DIALUX 4.13, 2016) for three facades second skin design model. Through following steps; (1) Measuring visual comfort factor: light intensity indoor and outdoor; (2) Taking visual comfort data from building occupants; (3) Making models with different facade second skin design; (3) Simulating and analyzing the light intensity value for each models that meet occupants visual comfort standard: 350 lux (Indonesia National Standard, 2010). The result shows that optimization of aluminum material for the facade second skin design can meet optimal visual comfort for building occupants. The result can give recommendation aluminum opening percentage of the facade second skin can meet optimal visual comfort for building occupants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20material" title="aluminium material">aluminium material</a>, <a href="https://publications.waset.org/abstracts/search?q=Facade" title=" Facade"> Facade</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20skin" title=" second skin"> second skin</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20comfort" title=" visual comfort "> visual comfort </a> </p> <a href="https://publications.waset.org/abstracts/93095/optimization-aluminium-design-for-the-facade-second-skin-toward-visual-comfort-case-studies-dialux-daylighting-simulation-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5062</span> Applying ASHRAE Standards on the Hospital Buildings of UAE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20M.%20Taleb">Hanan M. Taleb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy consumption associated with buildings has a significant impact on the environment. To that end, and as a transaction between the inside and outside and between the building and urban space, the building skin plays an especially important role. It provides protection from the elements; demarcates private property and creates privacy. More importantly, it controls the admission of solar radiation. Therefore, designing the building skin sustainably will help to achieve optimal performance in terms of both energy consumption and thermal comfort. Unfortunately, with accelerating construction expansion, many recent buildings do not pay attention to the importance of the envelope design. This piece of research will highlight the importance of this part of the creation of buildings by providing evidence of a significant reduction in energy consumption if the envelopes are redesigned. Consequently, the aim of this paper is to enhance the performance of the hospital envelope in order to achieve sustainable performance. A hospital building sited in Abu Dhabi, in the UAE, has been chosen to act as a case study. A detailed analysis of the annual energy performance of the case study will be performed with the use of a computerised simulation; this is in order to explore their energy performance shortcomings. The energy consumption of the base case will then be compared with that resulting from the new proposed building skin. The results will inform architects and designers of the savings potential from various strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASHREA" title="ASHREA">ASHREA</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20skin" title=" building skin"> building skin</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20envelopes" title=" building envelopes"> building envelopes</a>, <a href="https://publications.waset.org/abstracts/search?q=hospitals" title=" hospitals"> hospitals</a>, <a href="https://publications.waset.org/abstracts/search?q=Abu%20Dhabi" title=" Abu Dhabi"> Abu Dhabi</a>, <a href="https://publications.waset.org/abstracts/search?q=UAE" title=" UAE"> UAE</a>, <a href="https://publications.waset.org/abstracts/search?q=IES%20software" title=" IES software"> IES software</a> </p> <a href="https://publications.waset.org/abstracts/5386/applying-ashrae-standards-on-the-hospital-buildings-of-uae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5061</span> A Study on the Wind Energy Produced in the Building Skin Using Piezoelectricity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Mota%20Carmo">Sara Mota Carmo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, there is an increasing demand for buildings to be energetically autonomous through energy generation systems from renewable sources, according to the concept of a net zero energy building (NZEB). In this sense, the present study aims to study the integration of wind energy through piezoelectricity applied to the building skin. As a methodology, a reduced-scale prototype of a building was developed and tested in a wind tunnel, with the four façades monitored by recording the energy produced by each. The applied wind intensities varied between 2m/s and 8m/s and the four façades were compared with each other regarding the energy produced according to the intensity of wind and position in the wind. The results obtained concluded that it was not a sufficient system to generate sources to cover family residential buildings' energy needs. However, piezoelectricity is expanding and can be a promising path for a wind energy system in architecture as a complement to other renewable energy sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptative%20building%20skin" title="adaptative building skin">adaptative building skin</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20fa%C3%A7ade" title=" kinetic façade"> kinetic façade</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy%20in%20architecture" title=" wind energy in architecture"> wind energy in architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=NZEB" title=" NZEB"> NZEB</a> </p> <a href="https://publications.waset.org/abstracts/171725/a-study-on-the-wind-energy-produced-in-the-building-skin-using-piezoelectricity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5060</span> Improved Skin Detection Using Colour Space and Texture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medjram%20Sofiane">Medjram Sofiane</a>, <a href="https://publications.waset.org/abstracts/search?q=Babahenini%20Mohamed%20Chaouki"> Babahenini Mohamed Chaouki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benali%20Yamina"> Mohamed Benali Yamina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin detection is an important task for computer vision systems. A good method for skin detection means a good and successful result of the system. The colour is a good descriptor that allows us to detect skin colour in the images, but because of lightings effects and objects that have a similar colour skin, skin detection becomes difficult. In this paper, we proposed a method using the YCbCr colour space for skin detection and lighting effects elimination, then we use the information of texture to eliminate the false regions detected by the YCbCr colour skin model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skin%20detection" title="skin detection">skin detection</a>, <a href="https://publications.waset.org/abstracts/search?q=YCbCr" title=" YCbCr"> YCbCr</a>, <a href="https://publications.waset.org/abstracts/search?q=GLCM" title=" GLCM"> GLCM</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20skin" title=" human skin"> human skin</a> </p> <a href="https://publications.waset.org/abstracts/19039/improved-skin-detection-using-colour-space-and-texture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5059</span> Penetration Depth Study of Linear Siloxanes through Human Skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Szymkowska">K. Szymkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mojsiewicz-%20Pie%C5%84kowska"> K. Mojsiewicz- Pieńkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Siloxanes are a common ingredients in medicinal products used on the skin, as well as cosmetics. It is widely believed that the silicones are not capable of overcoming the skin barrier. The aim of the study was to verify the possibility of penetration and permeation of linear siloxanes through human skin and determine depth penetration limit of these compounds. Based on the results it was found that human skin is not a barrier for linear siloxanes. PDMS 50 cSt was not identified in the dermis suggests that this molecular size of silicones (3780Da) is safe when it is used in the skin formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20siloxanes" title="linear siloxanes">linear siloxanes</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20siloxanes" title=" methyl siloxanes"> methyl siloxanes</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20penetration" title=" skin penetration"> skin penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20permeation" title=" skin permeation"> skin permeation</a> </p> <a href="https://publications.waset.org/abstracts/47996/penetration-depth-study-of-linear-siloxanes-through-human-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5058</span> Enhancement of Visual Comfort Using Parametric Double Skin Façade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Khamis">Ahmed A. Khamis</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20A.%20Ibrahim"> Sherif A. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20El%20Khatieb"> Mahmoud El Khatieb</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Barakat"> Mohamed A. Barakat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parametric design is an icon of the modern architectural that facilitate taking complex design decisions counting on altering various design parameters. Double skin facades are one of the parametric applications for using parametric designs. This paper opts to enhance different daylight parameters of a selected case study office building in Cairo using parametric double skin facade. First, the design and optimization process executed utilizing Grasshopper parametric design software which is a plugin in rhino. The daylighting performance of the base case building model was compared with the one used the double façade showing an enhancement in daylighting performance indicators like glare and task illuminance in the modified model, execution drawings are made for the optimized design to be executed through Revit, followed by computerized digital fabrication stages of the designed model with various scales to reach the final design decisions using Simplify 3D for mock-up digital fabrication <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parametric%20design" title="parametric design">parametric design</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20skin%20facades" title=" double skin facades"> double skin facades</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20fabrication" title=" digital fabrication"> digital fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=grasshopper" title=" grasshopper"> grasshopper</a>, <a href="https://publications.waset.org/abstracts/search?q=simplify%203D" title=" simplify 3D"> simplify 3D</a> </p> <a href="https://publications.waset.org/abstracts/156634/enhancement-of-visual-comfort-using-parametric-double-skin-facade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5057</span> Skin Care through Ayurveda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20L.%20Virupaksha%20Gupta">K. L. Virupaksha Gupta </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ayurveda offers a holistic outlook regarding skin care. Most Initial step in Ayurveda is to identify the skin type and care accordingly which is highly personalized. Though dermatologically there are various skin type classifications such Baumann skin types (based on 4 parameters i) Oily Vs Dry ii) Sensitive Vs Resistant iii) Pigmented Vs Non-Pigmented iv) Wrinkled Vs Tight (Unwrinkled) etc but Skin typing in Ayurveda is mainly determined by the prakriti (constitution) of the individual as well as the status of Doshas (Humors) which are basically of 3 types – i.e Vata Pitta and Kapha,. Difference between them is mainly attributed to the qualities of each dosha (humor). All the above said skin types can be incorporated under these three types. The skin care modalities in each of the constitution vary greatly. Skin of an individual of Vata constitution would be lustreless, having rough texture and cracks due to dryness and thus should be given warm and unctuous therapies and oil massage for lubrication and natural moisturizers for hydration. Skin of an individual of Pitta constitution would look more vascular (pinkish), delicate and sensitive with a fair complexion, unctuous and tendency for wrinkles and greying of hair at an early age and hence should be given cooling and nurturing therapies and should avoid tanning treatments. Skin of an individual of kapha constitution will have oily skin, they are delicate and look beautiful and radiant and hence these individuals would require therapies to mainly combat oily skin. Hence, the skin typing and skin care in Ayurveda is highly rational and scientific. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayurveda" title="Ayurveda">Ayurveda</a>, <a href="https://publications.waset.org/abstracts/search?q=dermatology" title=" dermatology"> dermatology</a>, <a href="https://publications.waset.org/abstracts/search?q=Dosha" title=" Dosha"> Dosha</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20types" title=" skin types"> skin types</a> </p> <a href="https://publications.waset.org/abstracts/19790/skin-care-through-ayurveda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5056</span> Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Duarte">Fernando Duarte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the aquisition of the sample images ended being very unreliable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=segmentation" title="segmentation">segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20space" title=" color space"> color space</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20tone" title=" skin tone"> skin tone</a>, <a href="https://publications.waset.org/abstracts/search?q=Fitzpatrick" title=" Fitzpatrick"> Fitzpatrick</a> </p> <a href="https://publications.waset.org/abstracts/188975/use-of-segmentation-and-color-adjustment-for-skin-tone-classification-in-dermatological-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5055</span> Towards Integrating Statistical Color Features for Human Skin Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zamri%20Osman">Mohd Zamri Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Aizaini%20Maarof"> Mohd Aizaini Maarof</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Foad%20Rohani"> Mohd Foad Rohani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20space" title="color space">color space</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20detection" title=" skin detection"> skin detection</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20feature" title=" statistical feature"> statistical feature</a> </p> <a href="https://publications.waset.org/abstracts/43485/towards-integrating-statistical-color-features-for-human-skin-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5054</span> Fabrication of Optical Tissue Phantoms Simulating Human Skin and Their Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihoon%20Park">Jihoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungkon%20Yu"> Sungkon Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungjo%20Jung"> Byungjo Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although various optical tissue phantoms (OTPs) simulating human skin have been actively studied, their completeness is unclear because skin tissue has the intricate optical property and complicated structure disturbing the optical simulation. In this study, we designed multilayer OTP mimicking skin structure, and fabricated OTP models simulating skin-blood vessel and skin pigmentation in the skin, which are useful in Biomedical optics filed. The OTPs were characterized with the optical property and the cross-sectional structure, and analyzed by using various optical tools such as a laser speckle imaging system, OCT and a digital microscope to show the practicality. The measured optical property was within 5% error, and the thickness of each layer was uniform within 10% error in micrometer scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20vessel" title="blood vessel">blood vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom" title=" optical tissue phantom"> optical tissue phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20property" title=" optical property"> optical property</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20tissue" title=" skin tissue"> skin tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=pigmentation" title=" pigmentation"> pigmentation</a> </p> <a href="https://publications.waset.org/abstracts/68389/fabrication-of-optical-tissue-phantoms-simulating-human-skin-and-their-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5053</span> Classification of Red, Green and Blue Values from Face Images Using k-NN Classifier to Predict the Skin or Non-Skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Polat">Kemal Polat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, it has been estimated whether there is skin by using RBG values obtained from the camera and k-nearest neighbor (k-NN) classifier. The dataset used in this study has an unbalanced distribution and a linearly non-separable structure. This problem can also be called a big data problem. The Skin dataset was taken from UCI machine learning repository. As the classifier, we have used the k-NN method to handle this big data problem. For k value of k-NN classifier, we have used as 1. To train and test the k-NN classifier, 50-50% training-testing partition has been used. As the performance metrics, TP rate, FP Rate, Precision, recall, f-measure and AUC values have been used to evaluate the performance of k-NN classifier. These obtained results are as follows: 0.999, 0.001, 0.999, 0.999, 0.999, and 1,00. As can be seen from the obtained results, this proposed method could be used to predict whether the image is skin or not. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=k-NN%20classifier" title="k-NN classifier">k-NN classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20or%20non-skin%20classification" title=" skin or non-skin classification"> skin or non-skin classification</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB%20values" title=" RGB values"> RGB values</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/86538/classification-of-red-green-and-blue-values-from-face-images-using-k-nn-classifier-to-predict-the-skin-or-non-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5052</span> The Effect of Skin to Skin Contact Immediately to Maternal Breastfeeding Self-Efficacy after Cesarean Section</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Triana">D. Triana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20N.%20Rachmawati"> I. N. Rachmawati</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Sabri"> L. Sabri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maternal breastfeeding self-efficacy is positively associated with increased duration of breastfeeding in different cultures and age groups. This study aims to determine the effect of skin-to-skin contact immediately after the cesarean section on maternal breastfeeding self-efficacy. The research design is Posttest quasi-experimental research design only with control groups involving 52 women with consecutive sampling in Langsa-Aceh. The data collected through breastfeeding Self-Efficacy Scale-Short Form. The results of Independent t-test showed a significant difference in the mean values of maternal breastfeeding self-efficacy in the intervention group and the control group (59.00 ± 6.54; 49.62 ± 7.78; p= 0.001). Skin to skin contact is proven to affect the maternal breastfeeding self-efficacy after cesarean section significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breastfeeding%20self-efficacy" title="breastfeeding self-efficacy">breastfeeding self-efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=cesarean%20section" title=" cesarean section"> cesarean section</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20to%20skin%20contact" title=" skin to skin contact"> skin to skin contact</a>, <a href="https://publications.waset.org/abstracts/search?q=immediately" title=" immediately"> immediately</a> </p> <a href="https://publications.waset.org/abstracts/32533/the-effect-of-skin-to-skin-contact-immediately-to-maternal-breastfeeding-self-efficacy-after-cesarean-section" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5051</span> Effect of Double-Skin Facade Configuration on the Energy Performance of Office Building in Maritime Desert Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Umaru%20Mohammed">B. Umaru Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Faris%20A.%20Al-Maziad"> Faris A. Al-Maziad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Y.%20Numan"> Mohammad Y. Numan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important factors affecting the energy performance within a building is a carefully and efficiently designed facade. The primary aim of this research was to identify and present the potentiality of utilising Double-Skin Facade (DSF) construction and critically examine its effect on the energy consumption of an office building located within a maritime desert climate as to the conventional single-skin curtain wall system. A comparative analysis of the effect on the overall energy consumption within an office building was investigated in which a combination of various Double-Skin Facade configurations, systems, and cavity depths, glazing types and orientations were utilised. A computer dynamic modelling was utilised in order to ensure accurate calculations and efficient simulations of the various DSF systems due to the complex nature of the various functions within the Facade cavity. Through the use of the dynamic thermal modelling simulations, the best cavity size glazed type and orientation were determined to lead to a detailed analysis of the efficiency of each respective combination of Double-Skin Facade construction. As such the optimal facade combination for use within an office building located in a maritime desert climate was identified. Results demonstrated that a multi-story Facade, depending on its configuration, save up to 5% on annual cooling loads respect to a Corridor Facade and while vented can save unto 12% when compared to the single skin façade, on annual cooling load in the maritime desert climate. The selected configuration of the DSF from SSF saves an overall annual cooling load of 32%.A comparative analysis of the effect on the overall energy consumption within an office building was investigated in which a combination of various Double-Skin Facade configurations, systems, and cavity depths, glazing types and orientations were utilized. A computer dynamic modelling was utilized in order to ensure accurate calculations and efficient simulations of the various DSF systems due to the complex nature of the various functions within the Facade cavity. Through the use of the dynamic thermal modelling simulations, the best cavity size glazed type and orientation were determined to lead to a detailed analysis of the efficiency of each respective combination of Double-Skin Facade construction. As such the optimal facade combination for use within an office building located in a maritime desert climate was identified. Results demonstrated that a multi-story Facade, depending on its configuration, save up to 5% on annual cooling loads respect to a Corridor Facade and while vented can save unto 12% when compared to the single skin facade, on annual cooling load in the maritime desert climate. The selected configuration of the DSF from SSF saves an overall annual cooling load of 32%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20dynamics%20modelling" title="computer dynamics modelling">computer dynamics modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20computation" title=" energy computation"> energy computation</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20skin%20facade" title=" double skin facade"> double skin facade</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20skin%20curtain%20wall" title=" single skin curtain wall"> single skin curtain wall</a>, <a href="https://publications.waset.org/abstracts/search?q=maritime%20desert%20climate" title=" maritime desert climate"> maritime desert climate</a> </p> <a href="https://publications.waset.org/abstracts/66975/effect-of-double-skin-facade-configuration-on-the-energy-performance-of-office-building-in-maritime-desert-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5050</span> Effect of Porous Multi-Layer Envelope System on Effective Wind Pressure of Building Ventilation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying-Chang%20Yu">Ying-Chang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Lung%20Lo"> Yuan-Lung Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building ventilation performance is an important indicator of indoor comfort. However, in addition to the geometry of the building or the proportion of the opening, the ventilation performance is also very much related to the actual wind pressure of the building. There are more and more contemporary building designs built with multi-layer exterior envelope. Due to ventilation and view observatory requirement, the porous outer layer of the building is commonly adopted and has a significant wind damping effect, causing the phenomenon of actual wind pressure loss. However, the relationship between the wind damping effect and the actual wind pressure is not linear. This effect can make the indoor ventilation of the building rationalized to reasonable range under the condition of high wind pressure, and also maintain a good amount of ventilation performance under the condition of low wind pressure. In this study, wind tunnel experiments were carried out to simulate the different wind pressures flow through the porous outer layer, and observe the actual wind pressure strength engage with the window layer to find the decreasing relationship between the damping effect of the porous shell and the wind pressure. Experiment specimen scale was designed to be 1:50 for testing real-world building conditions; the study found that the porous enclosure has protective shielding without affecting low-pressure ventilation. Current study observed the porous skin may damp more wind energy to ease the wind pressure under high-speed wind. Differential wind speed may drop the pressure into similar pressure level by using porous skin. The actual mechanism and value of this phenomenon will need further study in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20facade" title="multi-layer facade">multi-layer facade</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20damping" title=" wind damping"> wind damping</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20ventilation" title=" building ventilation "> building ventilation </a> </p> <a href="https://publications.waset.org/abstracts/111397/effect-of-porous-multi-layer-envelope-system-on-effective-wind-pressure-of-building-ventilation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5049</span> A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Firas%20Gerges">Firas Gerges</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Y.%20Shih"> Frank Y. Shih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20cancer" title=" skin cancer"> skin cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=melanoma" title=" melanoma"> melanoma</a> </p> <a href="https://publications.waset.org/abstracts/134720/a-convolutional-deep-neural-network-approach-for-skin-cancer-detection-using-skin-lesion-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5048</span> Pixel Façade: An Idea for Programmable Building Skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Jamili">H. Jamili</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shakiba"> S. Shakiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, one of the main concerns of human beings is facing the unpleasant changes of the environment. Buildings are responsible for a significant amount of natural resources consumption and carbon emissions production. In such a situation, this thought comes to mind that changing each building into a phenomenon of benefit to the environment. A change in a way that each building functions as an element that supports the environment, and construction, in addition to answering the need of humans, is encouraged, the way planting a tree is, and it is no longer seen as a threat to alive beings and the planet. Prospect: Today, different ideas of developing materials that can smartly function are realizing. For instance, Programmable Materials, which in different conditions, can respond appropriately to the situation and have features of modification in shape, size, physical properties and restoration, and repair quality. Studies are to progress having this purpose to plan for these materials in a way that they are easily available, and to meet this aim, there is no need to use expensive materials and high technologies. In these cases, physical attributes of materials undertake the role of sensors, wires and actuators then materials will become into robots itself. In fact, we experience robotics without robots. In recent decades, AI and technology advances have dramatically improving the performance of materials. These achievements are a combination of software optimizations and physical productions such as multi-materials 3D printing. These capabilities enable us to program materials in order to change shape, appearance, and physical properties to interact with different situations. nIt is expected that further achievements like Memory Materials and Self-learning Materials are also added to the Smart Materials family, which are affordable, available, and of use for a variety of applications and industries. From the architectural standpoint, the building skin is significantly considered in this research, concerning the noticeable surface area the buildings skin have in urban space. The purpose of this research would be finding a way that the programmable materials be used in building skin with the aim of having an effective and positive interaction. A Pixel Façade would be a solution for programming a building skin. The Pixel Facadeincludes components that contain a series of attributes that help buildings for their needs upon their environmental criteria. A PIXEL contains series of smart materials and digital controllers together. It not only benefits its physical properties, such as control the amount of sunlight and heat, but it enhances building performance by providing a list of features, depending on situation criteria. The features will vary depending on locations and have a different function during the daytime and different seasons. The primary role of a PIXEL FAÇADE can be defined as filtering pollutions (for inside and outside of the buildings) and providing clean energy as well as interacting with other PIXEL FACADES to estimate better reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20skin" title="building skin">building skin</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20crisis" title=" environmental crisis"> environmental crisis</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel%20facade" title=" pixel facade"> pixel facade</a>, <a href="https://publications.waset.org/abstracts/search?q=programmable%20materials" title=" programmable materials"> programmable materials</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20materials" title=" smart materials"> smart materials</a> </p> <a href="https://publications.waset.org/abstracts/152927/pixel-facade-an-idea-for-programmable-building-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5047</span> Quality Rabbit Skin Gelatin with Acetic Acid Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wehandaka%20Pancapalaga">Wehandaka Pancapalaga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to analyze the water content, yield, fat content, protein content, viscosity, gel strength, pH, melting and organoleptic rabbit skin gelatin with acetic acid extraction levels are different. The materials used in this study were Rex rabbit skin male. Treatments that P1 = the extraction of acetic acid 2% (v / v); P2 = the extraction of acetic acid 3% (v / v); P3 = the extraction of acetic acid 4 % (v / v). P5 = the extraction of acetic acid 5% (v / v). The results showed that the greater the concentration of acetic acid as the extraction of rabbit skin can reduce the water content and fat content of rabbit skin gelatin but increase the protein content, viscosity, pH, gel strength, yield and melting point rabbit skin gelatin. texture, color and smell of gelatin rabbits there were no differences with cow skin gelatin. The results showed that the quality of rabbit skin gelatin accordance Indonesian National Standard (SNI). Conclusion 5% acetic acid extraction produces the best quality gelatin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gelatin" title="gelatin">gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20rabbit" title=" skin rabbit"> skin rabbit</a>, <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid%20extraction" title=" acetic acid extraction"> acetic acid extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/61347/quality-rabbit-skin-gelatin-with-acetic-acid-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5046</span> Transparent Photovoltaic Skin for Artificial Thermoreceptor and Nociceptor Memory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Bhatnagar">Priyanka Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=Malkeshkumar%20Patel"> Malkeshkumar Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Joondong%20Kim"> Joondong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Joonpyo%20Hong"> Joonpyo Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial skin and sensory memory platforms are produced using a flexible, transparent photovoltaic (TPV) device. The TPV device is composed of a metal oxide heterojunction (nZnO/p-NiO) and transmits visible light (> 50%) while producing substantial electric power (0.5 V and 200 μA cm-2 ). This TPV device is a transparent energy interface that can be used to detect signals and propagate information without an external energy supply. The TPV artificial skin offers a temperature detection range (0 C75 C) that is wider than that of natural skin (5 C48 °C) due to the temperature-sensitive pyrocurrent from the ZnO layer. Moreover, the TPV thermoreceptor offers sensory memory of extreme thermal stimuli. Much like natural skin, artificial skin uses the nociceptor mechanism to protect tissue from harmful damage via signal amplification (hyperalgesia) and early adaption (allodynia). This demonstrates the many features of TPV artificial skin, which can sense and transmit signals and memorize information under self-operation mode. This transparent photovoltaic skin can provide sustainable energy for use in human electronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transparent" title="transparent">transparent</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaics" title=" photovoltaics"> photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20memory" title=" thermal memory"> thermal memory</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20skin" title=" artificial skin"> artificial skin</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoreceptor" title=" thermoreceptor"> thermoreceptor</a> </p> <a href="https://publications.waset.org/abstracts/149259/transparent-photovoltaic-skin-for-artificial-thermoreceptor-and-nociceptor-memory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5045</span> Dermatological Study on Risk Factors for Pruritic Skin: Skin Properties of Elderly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dianis%20Wulan%20Sari">Dianis Wulan Sari</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeo%20Minematsu"> Takeo Minematsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikako%20Yoshida"> Mikako Yoshida</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiromi%20Sanada"> Hiromi Sanada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Pruritus is diagnosed as itching without macroscopic abnormalities on skin. It is the most skin complaint of elderly people. In the present study, we conducted a dermatological study to examine the risk factors of pruritic skin and predicted how to prevent pruritus especially in the elderly population. Pruritus is caused several types of inflammation, including epidermal innate immunity based on keratinocyte responses and acquired immunity regulated by type 1 or 2 helper T (Th) cells. The triggers of pruritus differ among inflammation types, therefore we did separately assess the pruritus-associated factors of each inflammation type in an effort to contribute to the identification of intervention targets for preventing pruritus. Therefore, this study aimed to investigate the factors related with actual condition of pruritic skin by examine the skin properties. Method: This study was conducted in elderly population of Indonesian nursing home. Basic characteristics and behaviors were obtained by interview. The properties of pruritic skin were collected by examination of skin biomarker using skin blotting as novel method of non-invasive skin assessment method and examination of skin barrier function using stratum corneum hydration and skin pH. Result: The average age of participants was 74 years with independent status was 66.8%. Age (β = -0.130, p = 0.044), cumulative lifetime sun exposure (β = 0.145, p = 0.026), bathing duration (β = 0.151, p = 0.022), clothing change frequency (β = 0.135, p = 0.029), and clothing type (β = -0.139, p = 0.021) were risk factors of pruritic skin in multivariate analysis. Conclusion: Risk factors of pruritic skin in elderly population were caused by internal factors such as skin senescence and external factors such as sun exposure, hygiene care and skin care behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aging" title="aging">aging</a>, <a href="https://publications.waset.org/abstracts/search?q=hygiene%20care" title=" hygiene care"> hygiene care</a>, <a href="https://publications.waset.org/abstracts/search?q=pruritus" title=" pruritus"> pruritus</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20care" title=" skin care"> skin care</a>, <a href="https://publications.waset.org/abstracts/search?q=sun%20exposure" title=" sun exposure"> sun exposure</a> </p> <a href="https://publications.waset.org/abstracts/77905/dermatological-study-on-risk-factors-for-pruritic-skin-skin-properties-of-elderly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5044</span> Skin Diseases in the Rural Areas in Nepal; Impact on Quality of Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dwarika%20P.%20Shrestha">Dwarika P. Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipendra%20Gurung"> Dipendra Gurung</a>, <a href="https://publications.waset.org/abstracts/search?q=Rushma%20Shrestha"> Rushma Shrestha</a>, <a href="https://publications.waset.org/abstracts/search?q=Inger%20Rosdahl"> Inger Rosdahl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Skin diseases are one of the most common health problems in Nepal. The objectives of this study are to determine the prevalence of skin diseases and impact on quality of life in rural areas in Nepal. Materials and methods: A house-to-house survey was conducted, to obtain socio-demographic data and identify individuals with skin diseases, followed by health camps, where the villagers were examined. A pilot study was conducted in one village, which was then extended to 10 villages in 4 districts. To assess the impact on quality of life, the villagers were interviewed with Skin Disease Disability Index. This is a questionnaire developed and validated by the authors for use in Nepal. Results: In the pilot study, the overall prevalence of skin diseases was 20.1% (645/3207). In the additional 10 villages with 7348 (3651/3787 m/f) inhabitants, 1862 (721/1141 m/f, mean age 31.4 years) had one or more skin diseases. The overall prevalence of skin diseases was 25%. The most common skin disease categories were eczemas (13.7%, percentage among all inhabitants) pigment disorders (6.8%), fungal infections (4.9%), nevi (3.7%) and urticaria (2.9%). These five most common skin disease categories comprise 71% of all skin diseases seen in the study. The mean skin disease disability index score was 13.7, indicating very large impact on the quality of life. Conclusions: This population-based study shows that skin diseases are very common in the rural areas of Nepal and have significant impact on quality of life. Targeted intervention at the primary health care level should help to reduce the health burden due to skin diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prevalence%20and%20pattern%20of%20skin%20diseases" title="prevalence and pattern of skin diseases">prevalence and pattern of skin diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20on%20quality%20of%20life" title=" impact on quality of life"> impact on quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20Nepal" title=" rural Nepal"> rural Nepal</a>, <a href="https://publications.waset.org/abstracts/search?q=interventions" title=" interventions"> interventions</a> </p> <a href="https://publications.waset.org/abstracts/36188/skin-diseases-in-the-rural-areas-in-nepal-impact-on-quality-of-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5043</span> A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20George">Joseph George</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Kotteswara%20Roa"> Anne Kotteswara Roa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skin%20cancer" title="skin cancer">skin cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20measures" title=" performance measures"> performance measures</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=datasets" title=" datasets"> datasets</a> </p> <a href="https://publications.waset.org/abstracts/151256/a-survey-of-skin-cancer-detection-and-classification-from-skin-lesion-images-using-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5042</span> Wind Load Reduction Effect of Exterior Porous Skin on Facade Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying-Chang%20Yu">Ying-Chang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Lung%20Lo"> Yuan-Lung Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building envelope design is one of the most popular design fields of architectural profession in nowadays. The main design trend of such system is to highlight the designer's aesthetic intention from the outlook of building project. Due to the trend of current façade design, the building envelope contains more and more layers of components, such as double skin façade, photovoltaic panels, solar control system, or even ornamental components. These exterior components are designed for various functional purposes. Most researchers focus on how these exterior elements should be structurally sound secured. However, not many researchers consider these elements would help to improve the performance of façade system. When the exterior elements are deployed in large scale, it creates an additional layer outside of original façade system and acts like a porous interface which would interfere with the aerodynamic of façade surface in micro-scale. A standard façade performance consists with 'water penetration, air infiltration rate, operation force, and component deflection ratio', and these key performances are majorly driven by the 'Design Wind Load' coded in local regulation. A design wind load is usually determined by the maximum wind pressure which occurs on the surface due to the geometry or location of building in extreme conditions. This research was designed to identify the air damping phenomenon of micro turbulence caused by porous exterior layer leading to surface wind load reduction for improvement of façade system performance. A series of wind tunnel test on dynamic pressure sensor array covered by various scale of porous exterior skin was conducted to verify the effect of wind pressure reduction. The testing specimens were designed to simulate the typical building with two-meter extension offsetting from building surface. Multiple porous exterior skins were prepared to replicate various opening ratio of surface which may cause different level of damping effect. This research adopted 'Pitot static tube', 'Thermal anemometers', and 'Hot film probe' to collect the data of surface dynamic pressure behind porous skin. Turbulence and distributed resistance are the two main factors of aerodynamic which would reduce the actual wind pressure. From initiative observation, the reading of surface wind pressure was effectively reduced behind porous media. In such case, an actual building envelope system may be benefited by porous skin from the reduction of surface wind pressure, which may improve the performance of envelope system consequently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20facade" title="multi-layer facade">multi-layer facade</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=facade%20performance" title=" facade performance"> facade performance</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20and%20distributed%20resistance" title=" turbulence and distributed resistance"> turbulence and distributed resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a> </p> <a href="https://publications.waset.org/abstracts/80270/wind-load-reduction-effect-of-exterior-porous-skin-on-facade-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5041</span> Prevalence and Potential Risk Factors Associated with Skin Affection in Donkeys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Z.%20Sayed-Ahmed">Mohamed Z. Sayed-Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Ahdy"> Ahmed M. Ahdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Emad%20E.%20Younis"> Emad E. Younis</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabry%20A.%20El-Khodary"> Sabry A. El-Khodary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Little research information is available on the prevalence of diseases of donkeys in Egypt. Across sectional study was undertaken between March 2009 and February 2010 to verify the prevalence of skin affection of donkeys. A total of 1134 donkeys in northern Egypt were investigated. A questionnaire was constructed to verify the number of infected contact animals as well as the associated factors. Physical examination was carried out, and the distribution of skin lesions was recorded. Skin scraping and biopsy were obtained to perform bacteriological, mycological, and histopathological examinations. Thirty-five (3.09%) out of 1134 noticed donkeys had skin affections including mange (18/35), dermatophytosis (6/35), bacterial dermatitis (6/35) urticaria (2/35) and allergic dermatitis (3/35). The present results indicate that mange and dermatophytosis are the prevalent skin diseases in donkeys. Contact with other animal species of contaminated environment may contribute to the occurrence of the diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=donkeys" title="donkeys">donkeys</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=prevalence" title=" prevalence"> prevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20affection" title=" skin affection"> skin affection</a> </p> <a href="https://publications.waset.org/abstracts/124209/prevalence-and-potential-risk-factors-associated-with-skin-affection-in-donkeys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5040</span> Pufferfish Skin Collagens and Their Role in Inflation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirti">Kirti</a>, <a href="https://publications.waset.org/abstracts/search?q=Samanta%20Sekhar%20Khora"> Samanta Sekhar Khora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inflation serves different purposes in different organisms and adds beauty to their behavioral attributes. Pufferfishes are also known as blowfish, swellfish, and globefish due to their remarkable ability to puff themselves up like a balloon when threatened. This ability to inflate can be correlated with anatomical features that are unique to pufferfishes. Pufferfish skin provides a rigid framework to support the body contents and a flexible covering to allow whatever changes are necessary for remarkable inflation mechanism. Skin, the outer covering of animals is made up of collagen fibers arranged in more or less ordered arrays. The ventral skin of pufferfish stretches more than dorsal skin during inflation. So, this study is of much of the interest in comparing the structure and mechanical properties of these two skin regions. The collagen fibers were found to be arranged in different ordered arrays for ventral and dorsal skin and concentration of fibers were also found to be different for these two skin parts. Scanning electron microscopy studies of the ventral skin showed a unidirectional arrangement of the collagen fibers, which provide more stretching capacity. Dorsal skin, on the other hand, has an orthogonal arrangement of fibers. This provides more stiffness to the ventral skin at the time of inflation. In this study, the possible role of collagen fibers was determined which significantly contributed to the remarkable inflation mechanism of pufferfishes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collagen" title="collagen">collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=histology" title=" histology"> histology</a>, <a href="https://publications.waset.org/abstracts/search?q=inflation" title=" inflation"> inflation</a>, <a href="https://publications.waset.org/abstracts/search?q=pufferfish" title=" pufferfish"> pufferfish</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=Small-Angle%20X-Ray%20Scattering%20%28SAXS%29" title=" Small-Angle X-Ray Scattering (SAXS)"> Small-Angle X-Ray Scattering (SAXS)</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20electron%20microscopy" title=" transmission electron microscopy"> transmission electron microscopy</a> </p> <a href="https://publications.waset.org/abstracts/85346/pufferfish-skin-collagens-and-their-role-in-inflation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5039</span> Climate Adaptive Building Shells for Plus-Energy-Buildings, Designed on Bionic Principles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Hammer">Andreas Hammer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Six peculiar architecture designs from the Frankfurt University will be discussed within this paper and their future potential of the adaptable and solar thin-film sheets implemented facades will be shown acting and reacting on climate/solar changes of their specific sites. The different aspects, as well as limitations with regard to technical and functional restrictions, will be named. The design process for a “multi-purpose building”, a “high-rise building refurbishment” and a “biker’s lodge” on the river Rheine valley, has been critically outlined and developed step by step from an international studentship towards an overall energy strategy, that firstly had to push the design to a plus-energy building and secondly had to incorporate bionic aspects into the building skins design. Both main parameters needed to be reviewed and refined during the whole design process. Various basic bionic approaches have been given [e.g. solar ivyᵀᴹ, flectofinᵀᴹ or hygroskinᵀᴹ, which were to experiment with, regarding the use of bendable photovoltaic thin film elements being parts of a hybrid, kinetic façade system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bionic%20and%20bioclimatic%20design" title="bionic and bioclimatic design">bionic and bioclimatic design</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20adaptive%20building%20shells%20%5BCABS%5D" title=" climate adaptive building shells [CABS]"> climate adaptive building shells [CABS]</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-strategy" title=" energy-strategy"> energy-strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=harvesting%20fa%C3%A7ade" title=" harvesting façade"> harvesting façade</a>, <a href="https://publications.waset.org/abstracts/search?q=high-efficiency%20building%20skin" title=" high-efficiency building skin"> high-efficiency building skin</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20in%20building%20skins" title=" photovoltaic in building skins"> photovoltaic in building skins</a>, <a href="https://publications.waset.org/abstracts/search?q=plus-energy-buildings" title=" plus-energy-buildings"> plus-energy-buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20gain" title=" solar gain"> solar gain</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20building%20concept" title=" sustainable building concept"> sustainable building concept</a> </p> <a href="https://publications.waset.org/abstracts/36563/climate-adaptive-building-shells-for-plus-energy-buildings-designed-on-bionic-principles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5038</span> Preparation and Characterization of Water-in-Oil Nanoemulsion of 5-Fluorouracil to Enhance Skin Permeation for Treatment of Skin Diseases.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Rajinikanth">P. S. Rajinikanth</a>, <a href="https://publications.waset.org/abstracts/search?q=Shobana%20Mariappan"> Shobana Mariappan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jestin%20Chellian"> Jestin Chellian </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the study was to prepare and characterize a water-in-oil nano emulsion of 5-Fluorouracil (5FU) to enhance the skin penetration. The present study describes a nano emulsion of 5FU using Capyrol PGMC, Transcutol HP and PEG 400 as oil, surfactant and co-surfactant, respectively. The optimized formulations were further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential in order to confirm the stability of the optimized nano emulsions. The in-vitro characterization results showed that the droplets of prepared formulation were ~100 nm with ± 15 zeta potential. In vitro skin permeation studies was conducted in albino mice skin. Significant increase in permeability parameters was also observed in nano emulsion formulations (P<0.05). The steady-state flux (Jss), enhancement ration and permeability coefficient (Kp) for optimized nano emulsion formulation (FU2, FU1, 1:1 S mix were found to be 24.21 ±2.45 μg/cm2/h, 3.28±0.87 & 19.52±1.87 cm/h, respectively), which were significant compared with conventional gel. The in vitro and in vivo skin deposition studies in rat indicated that the amount of drug deposited from the nano emulsion (292.45 µg/cm2) in skin was significant (P<0.05) an increased as compared to a conventional 5FU gel (121.42 µg/cm2). The skin irritation study using rat skin showed that the mean irritation index of the nano emulsion reduced significantly (P<0.05) as compared with conventional gel contain 1% 5FU. The results from this study suggest that a water-in-oil nano emulsion could be safely used to promote skin penetration of 5FU following topical application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20emulsion" title="nano emulsion">nano emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20release" title=" controlled release"> controlled release</a>, <a href="https://publications.waset.org/abstracts/search?q=5%20fluorouracil" title=" 5 fluorouracil"> 5 fluorouracil</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20penetration" title=" skin penetration"> skin penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20irritation" title=" skin irritation "> skin irritation </a> </p> <a href="https://publications.waset.org/abstracts/11646/preparation-and-characterization-of-water-in-oil-nanoemulsion-of-5-fluorouracil-to-enhance-skin-permeation-for-treatment-of-skin-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5037</span> CFD Modelling and Thermal Performance Analysis of Ventilated Double Skin Roof Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Idris">A. O. Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Virgone"> J. Virgone</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Ibrahim"> A. I. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20David"> D. David</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Vergnault"> E. Vergnault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In hot countries, the major challenge is the air conditioning. The increase in energy consumption by air conditioning stems from the need to live in more comfortable buildings, which is understandable. But in Djibouti, one of the countries with the most expensive electricity in the world, this need is exacerbated by an architecture that is inappropriate and unsuitable for climatic conditions. This paper discusses the design of the roof which is the surface receiving the most solar radiation. The roof determines the general behavior of the building. The study presents Computational Fluid Dynamics (CFD) modeling and analysis of the energy performance of a double skin ventilated roof. The particularity of this study is that it considers the climate of Djibouti characterized by hot and humid conditions in winter and very hot and humid in summer. Roof simulations are carried out using the Ansys Fluent software to characterize the flow and the heat transfer induced in the ventilated roof in steady state. This modeling is carried out by comparing the influence of several parameters such as the internal emissivity of the upper surface, the thickness of the insulation of the roof and the thickness of the ventilated channel on heat gain through the roof. The energy saving potential compared to the current construction in Djibouti is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building" title="building">building</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20skin%20roof" title=" double skin roof"> double skin roof</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-fluid%20analysis" title=" thermo-fluid analysis"> thermo-fluid analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a> </p> <a href="https://publications.waset.org/abstracts/76124/cfd-modelling-and-thermal-performance-analysis-of-ventilated-double-skin-roof-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5036</span> The Effects of Topically-Applied Skin Moisturizer on Striae Gravidarum in East Indian Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipanshu%20Sur">Dipanshu Sur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratnabali%20Chakravorty"> Ratnabali Chakravorty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Striae result from rapid expansion of the underlying tissue, e.g. during puberty, pregnancy or rapid weight gain. Prior data indicate that the incidence of stretch marks in Indian women is 77%.The hormonal and genetic factors are associated with their appearance. Recently that has been found skin extensibility, elasticity and rupture were strongly influenced by the water content of dermis and epidermis cells. Objective: The objectives were to assess the effects of topical treatments applied during pregnancy on the later development of stretch marks. Materials and methods: An open, prospective, randomized study was done on 120 pregnant women in whom skin elasticity and hydration as well as striae presence or apparition were measured at baseline and periodically until delivery. Patients were randomly assigned to application in wet skin cream, or in dry skin conditions. Results: The average basal hydration was 42 ±13 IU and the final was 46 ± 6 IU (P = 0.0325; 95% CI: -7.66 to -0.34), which difference was statistically significant. By measuring the moisture in the control region (forearm) a basal reading of 40 ± 9 IU and end of study of 38 ± 6; (p = 0.1547; 95% CI: -0.77 to 4.77) and this difference was considered to be not statistically significant. It was observed that at the end of the study, 55% women without ridges; mild ridges 5%; 36% moderate, and 4%, severe ridges. The proportion of women without grooves was 54% when the cream was applied studied wet skin and 45% when the cream was applied on dry skin. Conclusion: It was shown that cream under study increased hydration and elasticity of abdominal skin consequently in all subjects. This effect is more significant (54%) when the cream is applied to damp skin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=striae%20gravidarum" title="striae gravidarum">striae gravidarum</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20moisturizer" title=" skin moisturizer"> skin moisturizer</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20hydration" title=" skin hydration"> skin hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20elasticity" title=" skin elasticity"> skin elasticity</a> </p> <a href="https://publications.waset.org/abstracts/36646/the-effects-of-topically-applied-skin-moisturizer-on-striae-gravidarum-in-east-indian-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5035</span> Clinical Factors of Quality Switched Ruby Laser Therapy for Lentigo Depigmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=SunWoo%20Lee">SunWoo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=TaeBum%20Lee"> TaeBum Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=YoonHwa%20Park"> YoonHwa Park</a>, <a href="https://publications.waset.org/abstracts/search?q=YooJeong%20Kim"> YooJeong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar lentigines appear predominantly on chronically sun-exposed areas of skin, such as the face and the back of the hands. Among the several ways to lentigines treatment, quality-switched lasers are well-known effective treatment for removing solar lentigines. The present pilot study was therefore designed to assess the efficacy of quality-switched ruby laser treatment of such lentigines compare between pretreatment and posttreatment of skin brightness. Twenty-two adults with chronic sun-damaged skin (mean age 52.8 years, range 37&ndash;74 years) were treated at the Korean site. A 694 nm Q-switched ruby laser was used, with the energy density set from 1.4 to 12.5 J/cm2, to treat solar lentigines. Average brightness of skin color before ruby laser treatment was 137.3 and its skin color was brightened after ruby laser treatment by 150.5. Also, standard deviation of skin color was decreased from 17.8 to 16.4. Regarding the multivariate model, age and energy were identified as significant factors for skin color brightness change in lentigo depigmentation by ruby laser treatment. Their respective odds ratios were 1.082 (95% CI, 1.007&ndash;1.163), and 1.431 (95% CI, 1.051&ndash;1.946). Lentigo depigmentation treatment using ruby lasers resulted in a high performance in skin color brightness. Among the relative factors involve with ruby laser treatment, age and energy were the most effective factors which skin color change to brighter than pretreatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depigmentation" title="depigmentation">depigmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=lentigine" title=" lentigine"> lentigine</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20switched%20ruby%20laser" title=" quality switched ruby laser"> quality switched ruby laser</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20color" title=" skin color"> skin color</a> </p> <a href="https://publications.waset.org/abstracts/48368/clinical-factors-of-quality-switched-ruby-laser-therapy-for-lentigo-depigmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20skin&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20skin&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20skin&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20skin&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20skin&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20skin&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20skin&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20skin&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20skin&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20skin&amp;page=168">168</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20skin&amp;page=169">169</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20skin&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10