CINXE.COM

Search results for: optical tissue phantom

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: optical tissue phantom</title> <meta name="description" content="Search results for: optical tissue phantom"> <meta name="keywords" content="optical tissue phantom"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="optical tissue phantom" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="optical tissue phantom"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3318</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: optical tissue phantom</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3318</span> Fabrication of Optical Tissue Phantoms Simulating Human Skin and Their Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihoon%20Park">Jihoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungkon%20Yu"> Sungkon Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungjo%20Jung"> Byungjo Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although various optical tissue phantoms (OTPs) simulating human skin have been actively studied, their completeness is unclear because skin tissue has the intricate optical property and complicated structure disturbing the optical simulation. In this study, we designed multilayer OTP mimicking skin structure, and fabricated OTP models simulating skin-blood vessel and skin pigmentation in the skin, which are useful in Biomedical optics filed. The OTPs were characterized with the optical property and the cross-sectional structure, and analyzed by using various optical tools such as a laser speckle imaging system, OCT and a digital microscope to show the practicality. The measured optical property was within 5% error, and the thickness of each layer was uniform within 10% error in micrometer scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blood%20vessel" title="blood vessel">blood vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom" title=" optical tissue phantom"> optical tissue phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20property" title=" optical property"> optical property</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20tissue" title=" skin tissue"> skin tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=pigmentation" title=" pigmentation"> pigmentation</a> </p> <a href="https://publications.waset.org/abstracts/68389/fabrication-of-optical-tissue-phantoms-simulating-human-skin-and-their-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3317</span> Durable Phantom Production Identical to Breast Tissue for Use in Breast Cancer Detection Research Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayrettin%20Eroglu">Hayrettin Eroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Adem%20Kara"> Adem Kara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently there has been significant attention given to imaging of the biological tissues via microwave imaging techniques. In this study, a phantom for the test and calibration of Microwave imaging used in detecting unhealthy breast structure or tumors was produced by using sol gel method. The liquid and gel phantoms being used nowadays are not durable due to evaporation and their organic ingredients, hence a new design was proposed. This phantom was fabricated from materials that were widely available (water, salt, gelatin, and glycerol) and was easy to make. This phantom was aimed to be better from the ones already proposed in the literature in terms of its durability and stability. S Parameters of phantom was measured with 1-18 GHz Probe Kit and permittivity was calculated via Debye method in “85070” commercial software. One, three, and five-week measurements were taken for this phantom. Finally, it was verified that measurement results were very close to the real biological tissue measurement results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phantom" title="phantom">phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20tissue" title=" breast tissue"> breast tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20imaging" title=" microwave imaging"> microwave imaging</a> </p> <a href="https://publications.waset.org/abstracts/12850/durable-phantom-production-identical-to-breast-tissue-for-use-in-breast-cancer-detection-research-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3316</span> Low Cost Technique for Measuring Luminance in Biological Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Chetty">N. Chetty</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Singh"> K. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the relationship between the melanin content in a tissue and subsequent absorption of light through that tissue was determined using a digital camera. This technique proved to be simple, cost effective, efficient and reliable. Tissue phantom samples were created using milk and soy sauce to simulate the optical properties of melanin content in human tissue. Increasing the concentration of soy sauce in the milk correlated to an increase in melanin content of an individual. Two methods were employed to measure the light transmitted through the sample. The first was direct measurement of the transmitted intensity using a conventional lux meter. The second method involved correctly calibrating an ordinary digital camera and using image analysis software to calculate the transmitted intensity through the phantom. The results from these methods were then graphically compared to the theoretical relationship between the intensity of transmitted light and the concentration of absorbers in the sample. Conclusions were then drawn about the effectiveness and efficiency of these low cost methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tissue%20phantoms" title="tissue phantoms">tissue phantoms</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20coefficient" title=" scattering coefficient"> scattering coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=albedo" title=" albedo"> albedo</a>, <a href="https://publications.waset.org/abstracts/search?q=low-cost%20method" title=" low-cost method"> low-cost method</a> </p> <a href="https://publications.waset.org/abstracts/51186/low-cost-technique-for-measuring-luminance-in-biological-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3315</span> Preparing a Library of Abnormal Masses for Designing a Long-Lasting Anatomical Breast Phantom for Ultrasonography Training</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasibullina%20A.">Nasibullina A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonov%20D."> Leonov D.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ultrasonography method is actively used for the early diagnosis of various le-sions in the human body, including the mammary gland. The incidence of breast cancer has increased by more than 20%, and mortality by 14% since 2008. The correctness of the diagnosis often directly depends on the qualifications and expe-rience of a diagnostic medical sonographer. That is why special attention should be paid to the practical training of future specialists. Anatomical phantoms are ex-cellent teaching tools because they accurately imitate the characteristics of real hu-man tissues and organs. The purpose of this work is to create a breast phantom for practicing ultrasound diagnostic skills in grayscale and elastography imaging, as well as ultrasound-guided biopsy sampling. We used silicone-like compounds ranging from 3 to 17 on the Shore scale hardness units to simulate soft tissue and lesions. Impurities with experimentally selected concentrations were added to give the phantom the necessary attenuation and reflection parameters. We used 3D modeling programs and 3D printing with PLA plastic to create the casting mold. We developed a breast phantom with inclusions of varying shape, elasticity and echogenicity. After testing the created phantom in B-mode and elastography mode, we performed a survey asking 19 participants how realistic the sonograms of the phantom were. The results showed that the closest to real was the model of the cyst with 9.5 on the 0-10 similarity scale. Thus, the developed breast phantom can be used for ultrasonography, elastography, and ultrasound-guided biopsy training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20ultrasound" title="breast ultrasound">breast ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=mammary%20gland" title=" mammary gland"> mammary gland</a>, <a href="https://publications.waset.org/abstracts/search?q=mammography" title=" mammography"> mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=training%20phantom" title=" training phantom"> training phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue-mimicking%20materials" title=" tissue-mimicking materials"> tissue-mimicking materials</a> </p> <a href="https://publications.waset.org/abstracts/174839/preparing-a-library-of-abnormal-masses-for-designing-a-long-lasting-anatomical-breast-phantom-for-ultrasonography-training" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3314</span> Electro-Thermal Imaging of Breast Phantom: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Feza%20Carlak">H. Feza Carlak</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20Gencer"> N. G. Gencer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To increase the temperature contrast in thermal images, the characteristics of the electrical conductivity and thermal imaging modalities can be combined. In this experimental study, it is objected to observe whether the temperature contrast created by the tumor tissue can be improved just due to the current application within medical safety limits. Various thermal breast phantoms are developed to simulate the female breast tissue. In vitro experiments are implemented using a thermal infrared camera in a controlled manner. Since experiments are implemented in vitro, there is no metabolic heat generation and blood perfusion. Only the effects and results of the electrical stimulation are investigated. Experimental study is implemented with two-dimensional models. Temperature contrasts due to the tumor tissues are obtained. Cancerous tissue is determined using the difference and ratio of healthy and tumor images. 1 cm diameter single tumor tissue causes almost 40 &deg;mC temperature contrast on the thermal-breast phantom. Electrode artifacts are reduced by taking the difference and ratio of background (healthy) and tumor images. Ratio of healthy and tumor images show that temperature contrast is increased by the current application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20diagnostic%20imaging" title="medical diagnostic imaging">medical diagnostic imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20phantom" title=" breast phantom"> breast phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20thermography" title=" active thermography"> active thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20detection" title=" breast cancer detection"> breast cancer detection</a> </p> <a href="https://publications.waset.org/abstracts/7912/electro-thermal-imaging-of-breast-phantom-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3313</span> Estimation of Normalized Glandular Doses Using a Three-Layer Mammographic Phantom </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuan-Jen%20Lai">Kuan-Jen Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang-Yi%20Lin"> Fang-Yi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shang-Rong%20Huang"> Shang-Rong Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Zheng%20Zeng"> Yun-Zheng Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Chieh%20Hsu"> Po-Chieh Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Wu"> Jay Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The normalized glandular dose (DgN) estimates the energy deposition of mammography in clinical practice. The Monte Carlo simulations frequently use uniformly mixed phantom for calculating the conversion factor. However, breast tissues are not uniformly distributed, leading to errors of conversion factor estimation. This study constructed a three-layer phantom to estimated more accurate of normalized glandular dose. In this study, MCNP code (Monte Carlo N-Particles code) was used to create the geometric structure. We simulated three types of target/filter combinations (Mo/Mo, Mo/Rh, Rh/Rh), six voltages (25 ~ 35 kVp), six HVL parameters and nine breast phantom thicknesses (2 ~ 10 cm) for the three-layer mammographic phantom. The conversion factor for 25%, 50% and 75% glandularity was calculated. The error of conversion factors compared with the results of the American College of Radiology (ACR) was within 6%. For Rh/Rh, the difference was within 9%. The difference between the 50% average glandularity and the uniform phantom was 7.1% ~ -6.7% for the Mo/Mo combination, voltage of 27 kVp, half value layer of 0.34 mmAl, and breast thickness of 4 cm. According to the simulation results, the regression analysis found that the three-layer mammographic phantom at 0% ~ 100% glandularity can be used to accurately calculate the conversion factors. The difference in glandular tissue distribution leads to errors of conversion factor calculation. The three-layer mammographic phantom can provide accurate estimates of glandular dose in clinical practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title="Monte Carlo simulation">Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=mammography" title=" mammography"> mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20glandular%20dose" title=" normalized glandular dose"> normalized glandular dose</a>, <a href="https://publications.waset.org/abstracts/search?q=glandularity" title=" glandularity"> glandularity</a> </p> <a href="https://publications.waset.org/abstracts/97111/estimation-of-normalized-glandular-doses-using-a-three-layer-mammographic-phantom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3312</span> Simulation Of A Renal Phantom Using the MAG 3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ati%20Moncef">Ati Moncef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We describe in this paper the results of a phantom of dynamics renal with MAG3. Our phantom consisted of (tow shaped of kidneys, 1 liver). These phantoms were scanned with static and dynamic protocols and compared with clinical data. in a normal conditions we use our phantoms it's possible to acquire a renal images when we can be compared with clinical scintigraphy. In conclusion, Renal phantom also can use in the quality control of a renal scintigraphy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renal%20scintigraphy" title="Renal scintigraphy">Renal scintigraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=MAG3" title=" MAG3"> MAG3</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuclear%20medicine" title=" Nuclear medicine"> Nuclear medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamma%20Camera." title=" Gamma Camera."> Gamma Camera.</a> </p> <a href="https://publications.waset.org/abstracts/21031/simulation-of-a-renal-phantom-using-the-mag-3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3311</span> 3D Printed Multi-Modal Phantom Using Computed Tomography and 3D X-Ray Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Suk%20Oh">Sung-Suk Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong-Keun%20Kang"> Bong-Keun Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Wook%20Park"> Sang-Wook Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Jin%20Joo"> Hui-Jin Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Ryul%20Choi"> Jong-Ryul Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Jun%20Lee"> Seong-Jun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Woo%20Sohn"> Jeong-Woo Sohn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The imaging phantom is utilized for the verification, evaluation and tuning of the medical imaging device and system. Although it could be costly, 3D printing is an ideal technique for a rapid, customized, multi-modal phantom making. In this article, we propose the multi-modal phantom using 3D printing. First of all, the Dicom images for were measured by CT (Computed Tomography) and 3D X-ray systems (PET/CT and Angio X-ray system of Siemens) and then were analyzed. Finally, the 3D modeling was processed using Dicom images. The 3D printed phantom was scanned by PET/CT and MRI systems and then evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imaging%20phantom" title="imaging phantom">imaging phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI%20%28Magnetic%20Resonance%20Imaging%29" title=" MRI (Magnetic Resonance Imaging)"> MRI (Magnetic Resonance Imaging)</a>, <a href="https://publications.waset.org/abstracts/search?q=PET%20%2F%20CT%20%28Positron%20Emission%20Tomography%20%2F%20Computed%20Tomography%29" title=" PET / CT (Positron Emission Tomography / Computed Tomography)"> PET / CT (Positron Emission Tomography / Computed Tomography)</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing "> 3D printing </a> </p> <a href="https://publications.waset.org/abstracts/62972/3d-printed-multi-modal-phantom-using-computed-tomography-and-3d-x-ray-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3310</span> Pre-Implementation of Total Body Irradiation Using Volumetric Modulated Arc Therapy: Full Body Anthropomorphic Phantom Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Susana%20Gon%C3%A7alves">Susana Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Joana%20Lencart"> Joana Lencart</a>, <a href="https://publications.waset.org/abstracts/search?q=Anabela%20Greg%C3%B3rio%20Dias"> Anabela Gregório Dias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In combination with chemotherapy, Total Body Irradiation (TBI) is most used as part of the conditioning regimen prior to allogeneic hematopoietic stem cell transplantation. Conventional TBI techniques have a long application time but non-conformality of beam-application with the inability to individually spare organs at risk. Our institution’s intention is to start using Volumetric Modulated Arc Therapy (VMAT) techniques to increase homogeneity of delivered radiation. As a first approach, a dosimetric plan was performed on a computed tomography (CT) scan of a Rando Alderson antropomorfic phantom (head and torso), using a set of six arcs distributed along the phantom. However, a full body anthropomorphic phantom is essential to carry out technique validation and implementation. Our aim is to define the physical and chemical characteristics and the ideal manufacturing procedure of upper and lower limbs to our anthropomorphic phantom, for later validate TBI using VMAT. Materials and Methods: To study the better fit between our phantom and limbs, a CT scan of Rando Alderson anthropomorphic phantom was acquired. CT was performed on GE Healthcare equipment (model Optima CT580 W), with slice thickness of 2.5 mm. This CT was also used to access the electronic density of soft tissue and bone through Hounsfield units (HU) analysis. Results: CT images were analyzed and measures were made for the ideal upper and lower limbs. Upper limbs should be build under the following measures: 43cm length and 7cm diameter (next to the shoulder section). Lower limbs should be build under the following measures: 79cm length and 16.5cm diameter (next to the thigh section). As expected, soft tissue and bone have very different electronic density. This is important to choose and analyze different materials to better represent soft tissue and bone characteristics. The approximate HU values of the soft tissue and for bone shall be 35HU and 250HU, respectively. Conclusion: At the moment, several compounds are being developed based on different types of resins and additives in order to be able to control and mimic the various constituent densities of the tissues. Concurrently, several manufacturing techniques are being explored to make it possible to produce the upper and lower limbs in a simple and non-expensive way, in order to finally carry out a systematic and appropriate study of the total body irradiation. This preliminary study was a good starting point to demonstrate the feasibility of TBI with VMAT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TBI" title="TBI">TBI</a>, <a href="https://publications.waset.org/abstracts/search?q=VMAT" title=" VMAT"> VMAT</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropomorphic%20phantom" title=" anthropomorphic phantom"> anthropomorphic phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20equivalent%20materials" title=" tissue equivalent materials"> tissue equivalent materials</a> </p> <a href="https://publications.waset.org/abstracts/160191/pre-implementation-of-total-body-irradiation-using-volumetric-modulated-arc-therapy-full-body-anthropomorphic-phantom-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3309</span> Absorbed Dose Measurements for Teletherapy Prediction of Superficial Dose Using Halcyon Linear Accelerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Limen%20Njinga">Raymond Limen Njinga</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeneye%20Samuel%20Olaolu"> Adeneye Samuel Olaolu</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinyode%20Ojumoola%20Ajimo"> Akinyode Ojumoola Ajimo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Measurement of entrance dose and dose at different depths is essential to avoid overdose and underdose of patients. The aim of this study is to verify the variation in the absorbed dose using a water-equivalent material. Materials and Methods: The plastic phantom was arranged on the couch of the halcyon linear accelerator by Varian, with the farmer ionization chamber inserted and connected to the electrometer. The image of the setup was taken using the High-Quality Single 1280x1280x16 higher on the service mode to check the alignment with the isocenter. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was done to check the beam quality of the machine at a field size of 10 cm x 10 cm. The calibration was done using SAD type set-up at a depth of 5 cm. This process was repeated for ten consecutive weeks, and the values were recorded. Results: The results of the beam output for the teletherapy machine were satisfactory and accepted in comparison with the commissioned measurement of 0.62. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was reasonable with respect to the beam quality of the machine at a field size of 10 cm x 10 cm. Conclusion: The results of the beam quality and the absorbed dose rate showed a good consistency over the period of ten weeks with the commissioned measurement value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20accelerator" title="linear accelerator">linear accelerator</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose%20rate" title=" absorbed dose rate"> absorbed dose rate</a>, <a href="https://publications.waset.org/abstracts/search?q=isocenter" title=" isocenter"> isocenter</a>, <a href="https://publications.waset.org/abstracts/search?q=phantom" title=" phantom"> phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=ionization%20chamber" title=" ionization chamber"> ionization chamber</a> </p> <a href="https://publications.waset.org/abstracts/183165/absorbed-dose-measurements-for-teletherapy-prediction-of-superficial-dose-using-halcyon-linear-accelerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3308</span> Developing Motorized Spectroscopy System for Tissue Scanning </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tuba%20Denkceken">Tuba Denkceken</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Nur%20Sar%C4%B1"> Ayse Nur Sarı</a>, <a href="https://publications.waset.org/abstracts/search?q=Volkan%20Ihsan%20Tore"> Volkan Ihsan Tore</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmut%20Denkceken"> Mahmut Denkceken</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the presented study was to develop a newly motorized spectroscopy system. Our system is composed of probe and motor parts. The probe part consists of bioimpedance and fiber optic components that include two platinum wires (each 25 micrometer in diameter) and two fiber cables (each 50 micrometers in diameter) respectively. Probe was examined on tissue phantom (polystyrene microspheres with different diameters). In the bioimpedance part of the probe current was transferred to the phantom and conductivity information was obtained. Adjacent two fiber cables were used in the fiber optic part of the system. Light was transferred to the phantom by fiber that was connected to the light source and backscattered light was collected with the other adjacent fiber for analysis. It is known that the nucleus expands and the nucleus-cytoplasm ratio increases during the cancer progression in the cell and this situation is one of the most important criteria for evaluating the tissue for pathologists. The sensitivity of the probe to particle (nucleus) size in phantom was tested during the study. Spectroscopic data obtained from our system on phantom was evaluated by multivariate statistical analysis. Thus the information about the particle size in the phantom was obtained. Bioimpedance and fiber optic experiments results which were obtained from polystyrene microspheres showed that the impedance value and the oscillation amplitude were increasing while the size of particle was enlarging. These results were compatible with the previous studies. In order to motorize the system within the motor part, three driver electronic circuits were designed primarily. In this part, supply capacitors were placed symmetrically near to the supply inputs which were used for balancing the oscillation. Female capacitors were connected to the control pin. Optic and mechanic switches were made. Drivers were structurally designed as they could command highly calibrated motors. It was considered important to keep the drivers’ dimension as small as we could (4.4x4.4x1.4 cm). Then three miniature step motors were connected to each other along with three drivers. Since spectroscopic techniques are quantitative methods, they yield more objective results than traditional ones. In the future part of this study, it is planning to get spectroscopic data that have optic and impedance information from the cell culture which is normal, low metastatic and high metastatic breast cancer. In case of getting high sensitivity in differentiated cells, it might be possible to scan large surface tissue areas in a short time with small steps. By means of motorize feature of the system, any region of the tissue will not be missed, in this manner we are going to be able to diagnose cancerous parts of the tissue meticulously. This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) through 3001 project (115E662). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motorized%20spectroscopy" title="motorized spectroscopy">motorized spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=phantom" title=" phantom"> phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20system" title=" scanning system"> scanning system</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20scanning" title=" tissue scanning"> tissue scanning</a> </p> <a href="https://publications.waset.org/abstracts/74692/developing-motorized-spectroscopy-system-for-tissue-scanning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3307</span> Non-Invasive Imaging of Human Tissue Using NIR Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwani%20Kumar">Ashwani Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NIR%20light" title="NIR light">NIR light</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue" title=" tissue"> tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=blurring" title=" blurring"> blurring</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/33453/non-invasive-imaging-of-human-tissue-using-nir-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3306</span> Phantom Phenomena in Subjects after Limb Amutation Who Regularly Practice High Intensity Sports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jolanta%20Uszko">Jolanta Uszko</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Wloch"> Tomasz Wloch</a>, <a href="https://publications.waset.org/abstracts/search?q=Aneta%20Pirowska"> Aneta Pirowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Nowobilski"> Roman Nowobilski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Phantom phenomena are often reported by subjects who have undergone limb amputation. Mostly, patients feel the amputated part of the limb as if it was still attached to the body. Two types of phantom phenomena: painless (phantom sensation) and painful (phantom pain) were described. Triggers of phantom sensations and phantom pain, as well as fully effective treatment, have not been clearly described yet. Purpose: To assess the influence of psychosocial factors and some clinical conditions on the occurrence of phantom phenomena in amputee athletes. Subjects: 21 men (age: 31 years, SD = 7.5 years) after lower or upper extremity amputation, who regularly performed high-intensity sports (Amp Football Team Players) were included to the study. Method and equipment: In the research, the following method and tools were used: Questionnaire [Pirowska] adapted for athletes with disabilities, Numerical Rating Scale (NRS) - for phantom pain assessment, McGill Pain Assessment Questionnaire (short version), Beck's Depression Inventory (BDI), State Trait Anxiety Inventory (STAI): X-1 and X-2, shortened version of The World Health Organization Quality of Life (WHOQOLBREFF). Results: In the study group, the lower leg amputations with traumatic etiology were predominant. Phantom sensations were present in all subjects. Half of the respondents claimed to experience phantom sensations at least once a day, paroxysmally. There was a prevalence of phantom sensations characterized as incomplete, immobile limb. Phantom pain was reported by over 85% of respondents. The nature of phantom pain was frequently described as stabbing, squeezing, shooting, pulsing, tiring. There was a significant correlation between phantom pain intensity and anxiety, quality of life, depressive tendencies, perception of phantom pain as the obstacle in daily functioning and intensity of the limb pain before amputation. Conclusions: The etiology of phantom phenomena is complex. Psychological factors seem to have a significant influence on the intensity of the phantom pain. Particular attention should be paid to patients who complain about persistent limb pain before the amputation. These are patients with an increased risk of the phantom pain of relatively high intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amputation" title="amputation">amputation</a>, <a href="https://publications.waset.org/abstracts/search?q=phantom%20pain" title=" phantom pain"> phantom pain</a>, <a href="https://publications.waset.org/abstracts/search?q=phantom%20sensations" title=" phantom sensations"> phantom sensations</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20sports" title=" adaptive sports"> adaptive sports</a> </p> <a href="https://publications.waset.org/abstracts/83857/phantom-phenomena-in-subjects-after-limb-amutation-who-regularly-practice-high-intensity-sports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3305</span> Evolution of Cord Absorbed Dose during Larynx Cancer Radiotherapy, with 3D Treatment Planning and Tissue Equivalent Phantom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hassan%20Heidari">Mohammad Hassan Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Goodarzi"> Amir Hossein Goodarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Azarniush"> Majid Azarniush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiation doses to tissues and organs were measured using the anthropomorphic phantom as an equivalent to the human body. When high-energy X-rays are externally applied to treat laryngeal cancer, the absorbed dose at the laryngeal lumen is lower than given dose because of air space which it should pass through before reaching the lesion. Specially in case of high-energy X-rays, the loss of dose is considerable. Three-dimensional absorbed dose distributions have been computed for high-energy photon radiation therapy of laryngeal and hypo pharyngeal cancers, using a coaxial pair of opposing lateral beams in fixed positions. Treatment plans obtained under various conditions of irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20treatment%20planning" title="3D treatment planning">3D treatment planning</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropomorphic%20phantom" title=" anthropomorphic phantom"> anthropomorphic phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=larynx%20cancer" title=" larynx cancer"> larynx cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title=" radiotherapy "> radiotherapy </a> </p> <a href="https://publications.waset.org/abstracts/3432/evolution-of-cord-absorbed-dose-during-larynx-cancer-radiotherapy-with-3d-treatment-planning-and-tissue-equivalent-phantom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3304</span> Realistic Modeling of the Preclinical Small Animal Using Commercial Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su%20Chul%20Han">Su Chul Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungwoo%20Park"> Seungwoo Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the increasing incidence of cancer, the technology and modality of radiotherapy have advanced and the importance of preclinical model is increasing in the cancer research. Furthermore, the small animal dosimetry is an essential part of the evaluation of the relationship between the absorbed dose in preclinical small animal and biological effect in preclinical study. In this study, we carried out realistic modeling of the preclinical small animal phantom possible to verify irradiated dose using commercial software. The small animal phantom was modeling from 4D Digital Mouse whole body phantom. To manipulate Moby phantom in commercial software (Mimics, Materialise, Leuven, Belgium), we converted Moby phantom to DICOM image file of CT by Matlab and two- dimensional of CT images were converted to the three-dimensional image and it is possible to segment and crop CT image in Sagittal, Coronal and axial view). The CT images of small animals were modeling following process. Based on the profile line value, the thresholding was carried out to make a mask that was connection of all the regions of the equal threshold range. Using thresholding method, we segmented into three part (bone, body (tissue). lung), to separate neighboring pixels between lung and body (tissue), we used region growing function of Mimics software. We acquired 3D object by 3D calculation in the segmented images. The generated 3D object was smoothing by remeshing operation and smoothing operation factor was 0.4, iteration value was 5. The edge mode was selected to perform triangle reduction. The parameters were that tolerance (0.1mm), edge angle (15 degrees) and the number of iteration (5). The image processing 3D object file was converted to an STL file to output with 3D printer. We modified 3D small animal file using 3- Matic research (Materialise, Leuven, Belgium) to make space for radiation dosimetry chips. We acquired 3D object of realistic small animal phantom. The width of small animal phantom was 2.631 cm, thickness was 2.361 cm, and length was 10.817. Mimics software supported efficiency about 3D object generation and usability of conversion to STL file for user. The development of small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mimics" title="mimics">mimics</a>, <a href="https://publications.waset.org/abstracts/search?q=preclinical%20small%20animal" title=" preclinical small animal"> preclinical small animal</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printer" title=" 3D printer"> 3D printer</a> </p> <a href="https://publications.waset.org/abstracts/47930/realistic-modeling-of-the-preclinical-small-animal-using-commercial-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3303</span> Comparison of an Anthropomorphic PRESAGE® Dosimeter and Radiochromic Film with a Commercial Radiation Treatment Planning System for Breast IMRT: A Feasibility Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Iqbal">Khalid Iqbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a comparison of an anthropomorphic PRESAGE® dosimeter and radiochromic film measurements with a commercial treatment planning system to determine the feasibility of PRESAGE® for 3D dosimetry in breast IMRT. An anthropomorphic PRESAGE® phantom was created in the shape of a breast phantom. A five-field IMRT plan was generated with a commercially available treatment planning system and delivered to the PRESAGE® phantom. The anthropomorphic PRESAGE® was scanned with the Duke midsized optical CT scanner (DMOS-RPC) and the OD distribution was converted to dose. Comparisons were performed between the dose distribution calculated with the Pinnacle3 treatment planning system, PRESAGE®, and EBT2 film measurements. DVHs, gamma maps, and line profiles were used to evaluate the agreement. Gamma map comparisons showed that Pinnacle3 agreed with PRESAGE® as greater than 95% of comparison points for the PTV passed a ± 3%/± 3 mm criterion when the outer 8 mm of phantom data were discluded. Edge artifacts were observed in the optical CT reconstruction, from the surface to approximately 8 mm depth. These artifacts resulted in dose differences between Pinnacle3 and PRESAGE® of up to 5% between the surface and a depth of 8 mm and decreased with increasing depth in the phantom. Line profile comparisons between all three independent measurements yielded a maximum difference of 2% within the central 80% of the field width. For the breast IMRT plan studied, the Pinnacle3 calculations agreed with PRESAGE® measurements to within the ±3%/± 3 mm gamma criterion. This work demonstrates the feasibility of the PRESAGE® to be fashioned into anthropomorphic shape, and establishes the accuracy of Pinnacle3 for breast IMRT. Furthermore, these data have established the groundwork for future investigations into 3D dosimetry with more complex anthropomorphic phantoms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20dosimetry" title="3D dosimetry">3D dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=PRESAGE%C2%AE" title=" PRESAGE®"> PRESAGE®</a>, <a href="https://publications.waset.org/abstracts/search?q=IMRT" title=" IMRT"> IMRT</a>, <a href="https://publications.waset.org/abstracts/search?q=QA" title=" QA"> QA</a>, <a href="https://publications.waset.org/abstracts/search?q=EBT2%20GAFCHROMIC%20film" title=" EBT2 GAFCHROMIC film"> EBT2 GAFCHROMIC film</a> </p> <a href="https://publications.waset.org/abstracts/5858/comparison-of-an-anthropomorphic-presage-dosimeter-and-radiochromic-film-with-a-commercial-radiation-treatment-planning-system-for-breast-imrt-a-feasibility-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3302</span> Tactile Sensory Digit Feedback for Cochlear Implant Electrode Insertion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Bulale">Yusuf Bulale</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Prince"> Mark Prince</a>, <a href="https://publications.waset.org/abstracts/search?q=Geoff%20Tansley"> Geoff Tansley</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Brett"> Peter Brett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cochlear Implantation (CI) which became a routine procedure for the last decades is an electronic device that provides a sense of sound for patients who are severely and profoundly deaf. Today, cochlear implantation technology uses electrode array (EA) implanted manually into the cochlea. The optimal success of this implantation depends on the electrode technology and deep insertion techniques. However, this manual insertion procedure may cause mechanical trauma which can lead to a severe destruction of the delicate intracochlear structure. Accordingly, future improvement of the cochlear electrode implant insertion needs reduction of the excessive force application during the cochlear implantation which causes tissue damage and trauma. This study is examined tool-tissue interaction of large prototype scale digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale cochlea phantom for simulating the human cochlear which could lead to small-scale digit requirements. The digit, distributive tactile sensors embedded with silicon-substrate was inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit has provided tactile information from the digit-phantom insertion interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The tests demonstrated that even devices of such a relative simple design with low cost have a potential to improve cochlear implant surgery and other lumen mapping applications by providing tactile sensory feedback information and thus controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied to other minimally invasive surgery applications as well as diagnosis and path navigation procedures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cochlear%20electrode%20insertion" title="cochlear electrode insertion">cochlear electrode insertion</a>, <a href="https://publications.waset.org/abstracts/search?q=distributive%20tactile%20sensory%20feedback%20information" title=" distributive tactile sensory feedback information"> distributive tactile sensory feedback information</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20digit" title=" flexible digit"> flexible digit</a>, <a href="https://publications.waset.org/abstracts/search?q=minimally%20invasive%20surgery" title=" minimally invasive surgery"> minimally invasive surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%2Ftissue%20interaction" title=" tool/tissue interaction"> tool/tissue interaction</a> </p> <a href="https://publications.waset.org/abstracts/36707/tactile-sensory-digit-feedback-for-cochlear-implant-electrode-insertion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3301</span> Reproducibility of Dopamine Transporter Density Measured with I-123-N-ω-Fluoropropyl-2β-Carbomethoxy-3β-(4-Iodophenyl)Nortropane SPECT in Phantom Studies and Parkinson’s Disease Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasuyuki%20Takahashi">Yasuyuki Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Genta%20Hoshi"> Genta Hoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoko%20Saito"> Kyoko Saito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: The objective of this study was to evaluate the reproducibility of I-123-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4- iodophenyl) nortropane (I-123 FP-CIT) SPECT by using specific binding ratio (SBR) in phantom studies and Parkinson’s Disease (PD) patients. Methods: We made striatum phantom originally and confirmed reproducibility. The phantom studies changed head position and accumulation of FP-CIT, each. And image processing confirms influence on SBR by 30 cases. 30 PD received a SPECT for 3 hours post injection of I-123 FP-CIT 167MBq. Results: SBR decreased in rotatory direction by the patient position by the phantom studies. And, SBR improved the influence after the attenuation and the scatter correction in the cases (y=0.99x+0.57 r2=0.83). However, Stage II recognized dispersion in SBR by low accumulation. Conclusion: Than the phantom studies that assumed the normal cases, the SPECT image after the attenuation and scatter correction had better reproducibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=123I-FP-CIT" title="123I-FP-CIT">123I-FP-CIT</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20binding%20ratio" title=" specific binding ratio"> specific binding ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Parkinson%E2%80%99s%20disease" title=" Parkinson’s disease"> Parkinson’s disease</a> </p> <a href="https://publications.waset.org/abstracts/13368/reproducibility-of-dopamine-transporter-density-measured-with-i-123-n-o-fluoropropyl-2v-carbomethoxy-3v-4-iodophenylnortropane-spect-in-phantom-studies-and-parkinsons-disease-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3300</span> The Effect of Vibration Amplitude on Tissue Temperature and Lesion Size When Using a Vibrating Cardiac Catheter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaihong%20Yu">Kaihong Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetsui%20Yamashita"> Tetsui Yamashita</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeaki%20Shingyochi"> Shigeaki Shingyochi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuo%20Matsumoto"> Kazuo Matsumoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Makoto%20Ohta"> Makoto Ohta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During cardiac ablation, high power delivery for deeper lesion formation is limited by electrode-tissue interface overheating which can cause serious complications such as thrombus. To prevent this overheating, temperature control and open irrigation are often used. In temperature control, radiofrequency generator is adjusted to deliver the maximum output power, which maintains the electrode temperature at a target temperature (commonly 55°C or 60°C). Then the electrode-tissue interface temperature is also limited. The electrode temperature is a result of heating from the contacted tissue and cooling from the surrounding blood. Because the cooling from blood is decreased under conditions of low blood flow, the generator needs to decrease the output power. Thus, temperature control cannot deliver high power under conditions of low blood flow. In open irrigation, saline in room temperature is flushed through the holes arranged in the electrode. The electrode-tissue interface is cooled by the sufficient environmental cooling. And high power delivery can also be done under conditions of low blood flow. However, a large amount of saline infusions (approximately 1500 ml) during irrigation can cause other serious complication. When open irrigation cannot be used under conditions of low blood flow, a new overheating prevention may be required. The authors have proposed a new electrode cooling method by making the catheter vibrating. The previous work has introduced that the vibration can make a cooling effect on electrode, which may result form that the vibration could increase the flow velocity around the catheter. The previous work has also proved that increasing vibration frequency can increase the cooling by vibration. However, the effect of the vibration amplitude is still unknown. Thus, the present study investigated the effect of vibration amplitude on tissue temperature and lesion size. An agar phantom model was used as a tissue-equivalent material for measuring tissue temperature. Thermocouples were inserted into the agar to measure the internal temperature. Porcine myocardium was used for lesion size measurement. A normal ablation catheter was set perpendicular to the tissue (agar or porcine myocardium) with 10 gf contact force in 37°C saline without flow. Vibration amplitude of ± 0.5, ± 0.75, and ± 1.0 mm with a constant frequency (31 Hz or 63) was used. A temperature control protocol (45°C for agar phantom, 60°C for porcine myocardium) was used for the radiofrequency applications. The larger amplitude shows the larger lesion sizes. And the higher tissue temperatures in agar phantom are also shown with the higher amplitude. With a same frequency, the larger amplitude has the higher vibrating speed. And the higher vibrating speed will increase the flow velocity around the electrode more, which leads to a larger electrode temperature decrease. To maintain the electrode at the target temperature, ablator has to increase the output power. With the higher output power in the same duration, the released energy also increases. Consequently, the tissue temperature will be increased and lead to larger lesion sizes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiac%20ablation" title="cardiac ablation">cardiac ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20cooling" title=" electrode cooling"> electrode cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=lesion%20size" title=" lesion size"> lesion size</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20temperature" title=" tissue temperature"> tissue temperature</a> </p> <a href="https://publications.waset.org/abstracts/35503/the-effect-of-vibration-amplitude-on-tissue-temperature-and-lesion-size-when-using-a-vibrating-cardiac-catheter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3299</span> Non-Invasive Imaging of Tissue Using Near Infrared Radiations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwani%20Kumar%20Aggarwal">Ashwani Kumar Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NIR Light is non-ionizing and can pass easily through living tissues such as breast without any harmful effects. Therefore, use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function. This blurred reconstructed image has been enhanced using a digital filter which is optimal in mean square sense. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=least-squares%20optimization" title="least-squares optimization">least-squares optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering" title=" filtering"> filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=tomography" title=" tomography"> tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20interaction" title=" laser interaction"> laser interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20scattering" title=" light scattering"> light scattering</a> </p> <a href="https://publications.waset.org/abstracts/33280/non-invasive-imaging-of-tissue-using-near-infrared-radiations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3298</span> Development of Ultrasounf Probe Holder for Automatic Scanning Asymmetric Reflector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabilah%20Ibrahim">Nabilah Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Mohd%20Zaini"> Hafiz Mohd Zaini</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Fatin%20Liyana%20Mutalib"> Wan Fatin Liyana Mutalib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasound equipment or machine is capable to scan in two dimensional (2D) areas. However there are some limitations occur during scanning an object. The problem will occur when scanning process that involving the asymmetric object. In this project, the ultrasound probe holder for asymmetric reflector scanning in 3D image is proposed to make easier for scanning the phantom or object that has asymmetric shape. Initially, the constructed asymmetric phantom that construct will be used in 2D scanning. Next, the asymmetric phantom will be interfaced by the movement of ultrasound probe holder using the Arduino software. After that, the performance of the ultrasound probe holder will be evaluated by using the various asymmetric reflector or phantom in constructing a 3D image <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasound%203D%20images" title="ultrasound 3D images">ultrasound 3D images</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20and%20lateral%20resolution" title=" axial and lateral resolution"> axial and lateral resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20reflector" title=" asymmetric reflector"> asymmetric reflector</a>, <a href="https://publications.waset.org/abstracts/search?q=Arduino%20software" title=" Arduino software"> Arduino software</a> </p> <a href="https://publications.waset.org/abstracts/22856/development-of-ultrasounf-probe-holder-for-automatic-scanning-asymmetric-reflector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3297</span> Assessment of the Radiation Absorbed Dose Produced by Lu-177, Ra-223, AC-225 for Metastatic Prostate Cancer in a Bone Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Tajadod">Maryam Tajadod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The treatment of cancer is one of the main challenges of nuclear medicine; while cancer begins in an organ, such as the breast or prostate, it spreads to the bone, resulting in metastatic bone. In the treatment of cancer with radiotherapy, the determination of the involved tissues’ dose is one of the important steps in the treatment protocol. Comparing absorbed doses for Lu-177 and Ra-223 and Ac-225 in the bone marrow and soft tissue of bone phantom with evaluating energetic emitted particles of these radionuclides is the important aim of this research. By the use of MCNPX computer code, a model for bone phantom was designed and the values of absorbed dose for Ra-223 and Ac-225, which are Alpha emitters & Lu-177, which is a beta emitter, were calculated. As a result of research, in comparing gamma radiation for three radionuclides, Lu-177 released the highest dose in the bone marrow and Ra-223 achieved the lowest level. On the other hand, the result showed that although the figures of absorbed dose for Ra and Ac in the bone marrow are near to each other, Ra spread more energy in cortical bone. Moreover, The alpha component of the Ra-223 and Ac-225 have very little effect on bone marrow and soft tissue than a beta component of the lu-177 and it leaves the highest absorbed dose in the bone where the source is located. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20metastases" title="bone metastases">bone metastases</a>, <a href="https://publications.waset.org/abstracts/search?q=lutetium-177" title=" lutetium-177"> lutetium-177</a>, <a href="https://publications.waset.org/abstracts/search?q=radium-223" title=" radium-223"> radium-223</a>, <a href="https://publications.waset.org/abstracts/search?q=actinium-225" title=" actinium-225"> actinium-225</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose" title=" absorbed dose"> absorbed dose</a> </p> <a href="https://publications.waset.org/abstracts/149268/assessment-of-the-radiation-absorbed-dose-produced-by-lu-177-ra-223-ac-225-for-metastatic-prostate-cancer-in-a-bone-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3296</span> Design of Smart Catheter for Vascular Applications Using Optical Fiber Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lamiek%20Abraham">Lamiek Abraham</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinli%20Du"> Xinli Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Yohan%20Noh"> Yohan Noh</a>, <a href="https://publications.waset.org/abstracts/search?q=Polin%20%20Hsu"> Polin Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tingting%20%20Wu"> Tingting Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%20Logan"> Tom Logan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ifan%20%20Yen"> Ifan Yen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of minimally invasive, smart medical instruments such as catheters and guidewires are typically used at a remote distance to gain access to the diseased artery, often negotiating tortuous, complex, and diseased vessels in the process. Three optical fiber sensors with a diameter of 1.5mm each that are 120° apart from each other is proposed to be mounted into a catheter-based pump device with a diameter of 10mm. These sensors are configured to solve the challenges surgeons face during insertion through curvy major vessels such as the aortic arch. Moreover, these sensors deal with providing information on rubbing the walls and shape sensing. This study presents an experimental and mathematical models of the optical fiber sensors with 2 degrees of freedom. There are two eight gear-shaped tubes made up of 3D printed thermoplastic Polyurethane (TPU) material that are connected. The optical fiber sensors are mounted inside the first tube for protection from external light and used TPU material as a prototype for a catheter. The second tube is used as a flat reflection for the light intensity modulation-based optical fiber sensors. The first tube is attached to the linear guide for insertion and withdrawal purposes and can manually turn it 45° by manipulating the tube gear. A 3D hard material phantom was developed that mimics the aortic arch anatomy structure in which the test was carried out. During the insertion of the sensors into the 3D phantom, datasets are obtained in terms of voltage, distance, and position of the sensors. These datasets reflect the characteristics of light intensity modulation of the optical fiber sensors with a plane project of the aortic arch structure shape. Mathematical modeling of the light intensity was carried out based on the projection plane and experiment set-up. The performance of the system was evaluated in terms of its accuracy in navigating through the curvature and information on the position of the sensors by investigating 40 single insertions of the sensors into the 3D phantom. The experiment demonstrated that the sensors were effectively steered through the 3D phantom curvature and to desired target references in all 2 degrees of freedom. The performance of the sensors echoes the reflectance of light theory, where the smaller the radius of curvature, the more of the shining LED lights are reflected and received by the photodiode. A mathematical model results are in good agreement with the experiment result and the operation principle of the light intensity modulation of the optical fiber sensors. A prototype of a catheter using TPU material with three optical fiber sensors mounted inside has been developed that is capable of navigating through the different radius of curvature with 2 degrees of freedom. The proposed system supports operators with pre-scan data to make maneuverability and bendability through curvy major vessels easier, accurate, and safe. The mathematical modelling accurately fits the experiment result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Intensity%20modulated%20optical%20fiber%20sensor" title="Intensity modulated optical fiber sensor">Intensity modulated optical fiber sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=plane%20projection" title=" plane projection"> plane projection</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20sensing." title=" shape sensing."> shape sensing.</a> </p> <a href="https://publications.waset.org/abstracts/139555/design-of-smart-catheter-for-vascular-applications-using-optical-fiber-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3295</span> Dogs Chest Homogeneous Phantom for Image Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maris%20Eug%C3%AAnia%20Dela%20Rosa">Maris Eugênia Dela Rosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Luiza%20Menegatti%20Pavan"> Ana Luiza Menegatti Pavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcela%20De%20Oliveira"> Marcela De Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Rodrigues%20De%20Pina"> Diana Rodrigues De Pina</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Carlos%20Vulcano"> Luis Carlos Vulcano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In medical veterinary as well as in human medicine, radiological study is essential for a safe diagnosis in clinical practice. Thus, the quality of radiographic image is crucial. In last year’s there has been an increasing substitution of image acquisition screen-film systems for computed radiology equipment (CR) without technical charts adequacy. Furthermore, to carry out a radiographic examination in veterinary patient is required human assistance for restraint this, which can compromise image quality by generating dose increasing to the animal, for Occupationally Exposed and also the increased cost to the institution. The image optimization procedure and construction of radiographic techniques are performed with the use of homogeneous phantoms. In this study, we sought to develop a homogeneous phantom of canine chest to be applied to the optimization of these images for the CR system. In carrying out the simulator was created a database with retrospectives chest images of computed tomography (CT) of the Veterinary Hospital of the Faculty of Veterinary Medicine and Animal Science - UNESP (FMVZ / Botucatu). Images were divided into four groups according to the animal weight employing classification by sizes proposed by Hoskins & Goldston. The thickness of biological tissues were quantified in a 80 animals, separated in groups of 20 animals according to their weights: (S) Small - equal to or less than 9.0 kg, (M) Medium - between 9.0 and 23.0 kg, (L) Large – between 23.1 and 40.0kg and (G) Giant – over 40.1 kg. Mean weight for group (S) was 6.5±2.0 kg, (M) 15.0±5.0 kg, (L) 32.0±5.5 kg and (G) 50.0 ±12.0 kg. An algorithm was developed in Matlab in order to classify and quantify biological tissues present in CT images and convert them in simulator materials. To classify tissues presents, the membership functions were created from the retrospective CT scans according to the type of tissue (adipose, muscle, bone trabecular or cortical and lung tissue). After conversion of the biologic tissue thickness in equivalent material thicknesses (acrylic simulating soft tissues, bone tissues simulated by aluminum and air to the lung) were obtained four different homogeneous phantoms, with (S) 5 cm of acrylic, 0,14 cm of aluminum and 1,8 cm of air; (M) 8,7 cm of acrylic, 0,2 cm of aluminum and 2,4 cm of air; (L) 10,6 cm of acrylic, 0,27 cm of aluminum and 3,1 cm of air and (G) 14,8 cm of acrylic, 0,33 cm of aluminum and 3,8 cm of air. The developed canine homogeneous phantom is a practical tool, which will be employed in future, works to optimize veterinary X-ray procedures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation%20protection" title="radiation protection">radiation protection</a>, <a href="https://publications.waset.org/abstracts/search?q=phantom" title=" phantom"> phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=veterinary%20radiology" title=" veterinary radiology"> veterinary radiology</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20radiography" title=" computed radiography"> computed radiography</a> </p> <a href="https://publications.waset.org/abstracts/39738/dogs-chest-homogeneous-phantom-for-image-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3294</span> Detecting Rat’s Kidney Inflammation Using Real Time Photoacoustic Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Lee">M. Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20H.%20Shin"> D. H. Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Park"> S. H. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=W.C.%20Ham"> W.C. Ham</a>, <a href="https://publications.waset.org/abstracts/search?q=S.K.%20Ko"> S.K. Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Song"> C. G. Song </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoacoustic Tomography (PAT) is a promising medical imaging modality that combines optical imaging contrast with the spatial resolution of ultrasound imaging. It can also distinguish the changes in biological features. But, real-time PAT system should be confirmed due to photoacoustic effect for tissue. Thus, we have developed a real-time PAT system using a custom-developed data acquisition board and ultrasound linear probe. To evaluate performance of our system, phantom test was performed. As a result of those experiments, the system showed satisfactory performance and its usefulness has been confirmed. We monitored the degradation of inflammation which induced on the rat&rsquo;s kidney using real-time PAT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoacoustic%20tomography" title="photoacoustic tomography">photoacoustic tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation%20detection" title=" inflammation detection"> inflammation detection</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney" title=" kidney"> kidney</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20agent" title=" contrast agent"> contrast agent</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/71172/detecting-rats-kidney-inflammation-using-real-time-photoacoustic-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3293</span> Contrast-to-Noise Ratio Comparison of Different Calcification Types in Dual Energy Breast Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaia%20N.%20Koukou">Vaia N. Koukou</a>, <a href="https://publications.waset.org/abstracts/search?q=Niki%20D.%20Martini"> Niki D. Martini</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20P.%20Fountos"> George P. Fountos</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20M.%20Michail"> Christos M. Michail</a>, <a href="https://publications.waset.org/abstracts/search?q=Athanasios%20Bakas"> Athanasios Bakas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20S.%20Kandarakis"> Ioannis S. Kandarakis</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20C.%20Nikiforidis"> George C. Nikiforidis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various substitute materials of calcifications are used in phantom measurements and simulation studies in mammography. These include calcium carbonate, calcium oxalate, hydroxyapatite and aluminum. The aim of this study is to compare the contrast-to-noise ratio (CNR) values of the different calcification types using the dual energy method. The constructed calcification phantom consisted of three different calcification types and thicknesses: hydroxyapatite, calcite and calcium oxalate of 100, 200, 300 thicknesses. The breast tissue equivalent materials were polyethylene and polymethyl methacrylate slabs simulating adipose tissue and glandular tissue, respectively. The total thickness was 4.2 cm with 50% fixed glandularity. The low- (LE) and high-energy (HE) images were obtained from a tungsten anode using 40 kV filtered with 0.1 mm cadmium and 70 kV filtered with 1 mm copper, respectively. A high resolution complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) X-ray detector was used. The total mean glandular dose (MGD) and entrance surface dose (ESD) from the LE and HE images were constrained to typical levels (MGD=1.62 mGy and ESD=1.92 mGy). On average, the CNR of hydroxyapatite calcifications was 1.4 times that of calcite calcifications and 2.5 times that of calcium oxalate calcifications. The higher CNR values of hydroxyapatite are attributed to its attenuation properties compared to the other calcification materials, leading to higher contrast in the dual energy image. This work was supported by Grant Ε.040 from the Research Committee of the University of Patras (Programme K. Karatheodori). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcification%20materials" title="calcification materials">calcification materials</a>, <a href="https://publications.waset.org/abstracts/search?q=CNR" title=" CNR"> CNR</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20energy" title=" dual energy"> dual energy</a>, <a href="https://publications.waset.org/abstracts/search?q=X-rays" title=" X-rays"> X-rays</a> </p> <a href="https://publications.waset.org/abstracts/63600/contrast-to-noise-ratio-comparison-of-different-calcification-types-in-dual-energy-breast-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3292</span> Relative Depth Dose Profile and Peak Scatter Factors Measurement for Co-60 Teletherapy Machine Using Chemical Dosimetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Moussous">O. Moussous</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Medjadj"> T. Medjadj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The suitability of a Fricke dosimeter for the measurement of a relative depth dose profile and the peak scatter factors was studied. The measurements were carried out in the secondary standard dosimetry laboratory at CRNA Algiers using a collimated 60Co gamma source teletherapy machine. The measurements were performed for different field sizes at the phantom front face, at a fixed source-to-phantom distance of 80 cm. The dose measurements were performed by first placing the dosimeters free-in-air at the distance-source-detector (DSD) of 80.5 cm from the source. Additional measurements were made with the phantom in place. The water phantom type Med-Tec 40x40x40 cm for vertical beam was used in this work as scattering martial. The phantom was placed on the irradiation bench of the cobalt unit at the SSD of 80 cm from the beam focus and the centre of the field coincided with the geometric centre of the dosimeters placed at the depth in water of 5 mm Relative depth dose profile and Peak scatter factors measurements were carried out using our Fricke system. This was intercompared with similar measurements by ionization chamber under identical conditions. There is a good agreement between the relative percentage depth–dose profiles and the PSF values measured by both systems using a water phantom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fricke%20dosimeter" title="Fricke dosimeter">Fricke dosimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=depth%E2%80%93dose%20profiles" title=" depth–dose profiles"> depth–dose profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20scatter%20factors" title=" peak scatter factors"> peak scatter factors</a>, <a href="https://publications.waset.org/abstracts/search?q=DSD" title=" DSD "> DSD </a> </p> <a href="https://publications.waset.org/abstracts/16152/relative-depth-dose-profile-and-peak-scatter-factors-measurement-for-co-60-teletherapy-machine-using-chemical-dosimetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3291</span> Deciphering Electrochemical and Optical Properties of Folic Acid for the Applications of Tissue Engineering and Biofuel Cell </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharda%20Nara">Sharda Nara</a>, <a href="https://publications.waset.org/abstracts/search?q=Bansi%20Dhar%20Malhotra"> Bansi Dhar Malhotra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation of the vitamins as an electron transfer mediator could significantly assist in merging the area of tissue engineering and electronics required for the implantable therapeutic devices. The present study report that the molecules of folic acid released by Providencia rettgeri via fermentation route under the anoxic condition of the microbial fuel cell (MFC) exhibit characteristic electrochemical and optical properties, as indicated by absorption spectroscopy, photoluminescence (PL), and cyclic voltammetry studies. The absorption spectroscopy has depicted an absorption peak at 263 nm with a small bulge around 293 nm on day two of bacterial culture, whereas an additional peak was observed at 365 nm on the twentieth day. Furthermore, the PL spectra has indicated that the maximum emission occurred at various wavelengths 420, 425, 440, and 445 nm when excited by 310, 325, 350, and 365 nm. The change of emission spectra with varying excitation wavelength might be indicating the presence of tunable optical bands in the folic acid molecules co-related with the redox activity of the molecules. The results of cyclic voltammetry studies revealed that the oxidation and reduction occurred at 0.25V and 0.12V, respectively, indicating the electrochemical behavior of the folic acid. This could be inferred that the released folic acid molecules in a MFC might undergo inter as well as intra molecular electron transfer forming different intermediate states while transferring electrons to the electrode surface. Synchronization of electrochemical and optical properties of folic acid molecules could be potentially promising for the designing of electroactive scaffold and biocompatible conductive surface for the applications of tissue engineering and biofuel cells, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuel%20cell" title="biofuel cell">biofuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=electroactivity" title=" electroactivity"> electroactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=folic%20acid" title=" folic acid"> folic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering "> tissue engineering </a> </p> <a href="https://publications.waset.org/abstracts/130686/deciphering-electrochemical-and-optical-properties-of-folic-acid-for-the-applications-of-tissue-engineering-and-biofuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3290</span> A Comparison of TLD Measurements to MIRD Estimates of the Dose to the Ovaries and Uterus from Tc-99m in Liver </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Adinehvand">Karim Adinehvand</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakhtiar%20Azadbakht"> Bakhtiar Azadbakht</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Sahebnasagh"> Amin Sahebnasagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relation to high absorption fraction of Tc SESTAMIBI by internal organs in heart scan, and these organs are near to generation organs (Ovaries and uterus). In this study, Liver is specified as source organ. Method: we have set amount of absorbed fraction radiopharmaceutical in position of Liver in RANDO-phantom in form of elliptical surfaces, then absorbed dose to ovaries and uterus measured by TLD-100 that had set at position of these organs in RANDO-phantom. Calculation had done by MIRD method. Results from direct measurement and MIRD method are too similar. The absorbed dose to uterus and ovaries for Rest are 26.05µGyMBq-1, 17.23µGyMBq-1 and for Stress are 2.04µGyMBq-1, 1.35µGyMBq-1 respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose" title="absorbed dose">absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=TLD" title=" TLD"> TLD</a>, <a href="https://publications.waset.org/abstracts/search?q=MIRD" title=" MIRD"> MIRD</a>, <a href="https://publications.waset.org/abstracts/search?q=RANDO-phantom" title=" RANDO-phantom"> RANDO-phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=Tc-99m" title=" Tc-99m"> Tc-99m</a> </p> <a href="https://publications.waset.org/abstracts/23101/a-comparison-of-tld-measurements-to-mird-estimates-of-the-dose-to-the-ovaries-and-uterus-from-tc-99m-in-liver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3289</span> Assessment of Breast, Lung and Liver Effective Doses in Heart Imaging by CT-Scan 128 Dual Sources with Use of TLD-100 in RANDO Phantom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Sepideh%20Amini">Seyedeh Sepideh Amini</a>, <a href="https://publications.waset.org/abstracts/search?q=Navideh%20Aghaei%20Amirkhizi"> Navideh Aghaei Amirkhizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Paniz%20Amini"> Seyedeh Paniz Amini</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Soheil%20Sayyahi"> Seyed Soheil Sayyahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Davar%20Panah"> Mohammad Reza Davar Panah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CT-Scan is one of the lateral and sectional imaging methods that produce 3D-images with use of rotational x-ray tube around central axis. This study is about evaluation and calculation of effective doses around heart organs such as breast, lung and liver with CT-Scan 128 dual sources with TLD_100 and RANDO Phantom by spiral, flash and conventional protocols. In results, it is showed that in spiral protocol organs have maximum effective dose and minimum in flash protocol. Thus flash protocol advised for children and risk persons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=X-ray%20computed%20tomography" title="X-ray computed tomography">X-ray computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=dosimetry" title=" dosimetry"> dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=TLD-100" title=" TLD-100"> TLD-100</a>, <a href="https://publications.waset.org/abstracts/search?q=RANDO" title=" RANDO"> RANDO</a>, <a href="https://publications.waset.org/abstracts/search?q=phantom" title=" phantom"> phantom</a> </p> <a href="https://publications.waset.org/abstracts/36861/assessment-of-breast-lung-and-liver-effective-doses-in-heart-imaging-by-ct-scan-128-dual-sources-with-use-of-tld-100-in-rando-phantom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom&amp;page=110">110</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom&amp;page=111">111</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20tissue%20phantom&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10