CINXE.COM
Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites - Natural Product Reports (RSC Publishing) DOI:10.1039/C6NP00019C
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml" xmlns:epub="http://www.idpf.org/2007/ops" xmlns:rsc="urn:rsc.org" xmlns:art="http://www.rsc.org/schema/rscart38" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:content="http://purl.org/rss/1.0/modules/content/" xml:lang="en" lang="en"><head><!--Google Tag Manager--><script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-5HVSFVCN');</script><!--End Google Tag Manager--><!--OneTrust--><script type="text/javascript" src="https://cdn-ukwest.onetrust.com/consent/4858ece2-d985-4da2-982d-42219fead606/OtAutoBlock.js"><!----></script><script src="https://cdn-ukwest.onetrust.com/scripttemplates/otSDKStub.js" type="text/javascript" charset="UTF-8" data-domain-script="4858ece2-d985-4da2-982d-42219fead606"><!----></script><script type="text/javascript"> function OptanonWrapper() { } </script><!--End OneTrust--><title>Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites - Natural Product Reports (RSC Publishing) DOI:10.1039/C6NP00019C</title><link rel="canonical" href="https://pubs.rsc.org/en/content/articlehtml/2016/np/c6np00019c"/><meta http-equiv="content-type" content="application/xhtml+xml; charset=utf-8"/><script type="text/javascript">window.NREUM||(NREUM={});NREUM.info = {"beacon":"bam.nr-data.net","errorBeacon":"bam.nr-data.net","licenseKey":"NRJS-aaa897feae8feeca979","applicationID":"1313546638","transactionName":"M1wANxQFCEcDVU0PWgoWLzUlSyVbDEJcCEEnVgwXFAsKWAdEFgdHEFABDwMMElkO","queueTime":0,"applicationTime":50,"agent":"","atts":""}</script><script type="text/javascript">(window.NREUM||(NREUM={})).init={privacy:{cookies_enabled:true},ajax:{deny_list:["bam.nr-data.net"]},distributed_tracing:{enabled:true}};(window.NREUM||(NREUM={})).loader_config={agentID:"1386013924",accountID:"2851366",trustKey:"1029994",xpid:"Vg4CUFVVDhABV1BRAgUBUFcJ",licenseKey:"NRJS-aaa897feae8feeca979",applicationID:"1313546638"};;/*! For license information please see nr-loader-spa-1.274.0.min.js.LICENSE.txt */ (()=>{var e,t,r={8122:(e,t,r)=>{"use strict";r.d(t,{a:()=>i});var n=r(944);function i(e,t){try{if(!e||"object"!=typeof e)return(0,n.R)(3);if(!t||"object"!=typeof t)return(0,n.R)(4);const r=Object.create(Object.getPrototypeOf(t),Object.getOwnPropertyDescriptors(t)),o=0===Object.keys(r).length?e:r;for(let a in o)if(void 0!==e[a])try{if(null===e[a]){r[a]=null;continue}Array.isArray(e[a])&&Array.isArray(t[a])?r[a]=Array.from(new Set([...e[a],...t[a]])):"object"==typeof e[a]&&"object"==typeof t[a]?r[a]=i(e[a],t[a]):r[a]=e[a]}catch(e){(0,n.R)(1,e)}return r}catch(e){(0,n.R)(2,e)}}},2555:(e,t,r)=>{"use strict";r.d(t,{Vp:()=>c,fn:()=>s,x1:()=>u});var n=r(384),i=r(8122);const o={beacon:n.NT.beacon,errorBeacon:n.NT.errorBeacon,licenseKey:void 0,applicationID:void 0,sa:void 0,queueTime:void 0,applicationTime:void 0,ttGuid:void 0,user:void 0,account:void 0,product:void 0,extra:void 0,jsAttributes:{},userAttributes:void 0,atts:void 0,transactionName:void 0,tNamePlain:void 0},a={};function s(e){try{const t=c(e);return!!t.licenseKey&&!!t.errorBeacon&&!!t.applicationID}catch(e){return!1}}function c(e){if(!e)throw new Error("All info objects require an agent identifier!");if(!a[e])throw new Error("Info for ".concat(e," was never set"));return a[e]}function u(e,t){if(!e)throw new Error("All info objects require an agent identifier!");a[e]=(0,i.a)(t,o);const r=(0,n.nY)(e);r&&(r.info=a[e])}},9417:(e,t,r)=>{"use strict";r.d(t,{D0:()=>h,gD:()=>g,xN:()=>p});var n=r(993);const i=e=>{if(!e||"string"!=typeof e)return!1;try{document.createDocumentFragment().querySelector(e)}catch{return!1}return!0};var o=r(2614),a=r(944),s=r(384),c=r(8122);const u="[data-nr-mask]",d=()=>{const e={mask_selector:"*",block_selector:"[data-nr-block]",mask_input_options:{color:!1,date:!1,"datetime-local":!1,email:!1,month:!1,number:!1,range:!1,search:!1,tel:!1,text:!1,time:!1,url:!1,week:!1,textarea:!1,select:!1,password:!0}};return{ajax:{deny_list:void 0,block_internal:!0,enabled:!0,harvestTimeSeconds:10,autoStart:!0},distributed_tracing:{enabled:void 0,exclude_newrelic_header:void 0,cors_use_newrelic_header:void 0,cors_use_tracecontext_headers:void 0,allowed_origins:void 0},feature_flags:[],generic_events:{enabled:!0,harvestTimeSeconds:30,autoStart:!0},harvest:{tooManyRequestsDelay:60},jserrors:{enabled:!0,harvestTimeSeconds:10,autoStart:!0},logging:{enabled:!0,harvestTimeSeconds:10,autoStart:!0,level:n.p_.INFO},metrics:{enabled:!0,autoStart:!0},obfuscate:void 0,page_action:{enabled:!0},page_view_event:{enabled:!0,autoStart:!0},page_view_timing:{enabled:!0,harvestTimeSeconds:30,autoStart:!0},performance:{capture_marks:!1,capture_measures:!1},privacy:{cookies_enabled:!0},proxy:{assets:void 0,beacon:void 0},session:{expiresMs:o.wk,inactiveMs:o.BB},session_replay:{autoStart:!0,enabled:!1,harvestTimeSeconds:60,preload:!1,sampling_rate:10,error_sampling_rate:100,collect_fonts:!1,inline_images:!1,fix_stylesheets:!0,mask_all_inputs:!0,get mask_text_selector(){return e.mask_selector},set mask_text_selector(t){i(t)?e.mask_selector="".concat(t,",").concat(u):""===t||null===t?e.mask_selector=u:(0,a.R)(5,t)},get block_class(){return"nr-block"},get ignore_class(){return"nr-ignore"},get mask_text_class(){return"nr-mask"},get block_selector(){return e.block_selector},set block_selector(t){i(t)?e.block_selector+=",".concat(t):""!==t&&(0,a.R)(6,t)},get mask_input_options(){return e.mask_input_options},set mask_input_options(t){t&&"object"==typeof t?e.mask_input_options={...t,password:!0}:(0,a.R)(7,t)}},session_trace:{enabled:!0,harvestTimeSeconds:10,autoStart:!0},soft_navigations:{enabled:!0,harvestTimeSeconds:10,autoStart:!0},spa:{enabled:!0,harvestTimeSeconds:10,autoStart:!0},ssl:void 0,user_actions:{enabled:!0}}},l={},f="All configuration objects require an agent identifier!";function h(e){if(!e)throw new Error(f);if(!l[e])throw new Error("Configuration for ".concat(e," was never set"));return l[e]}function p(e,t){if(!e)throw new Error(f);l[e]=(0,c.a)(t,d());const r=(0,s.nY)(e);r&&(r.init=l[e])}function g(e,t){if(!e)throw new Error(f);var r=h(e);if(r){for(var n=t.split("."),i=0;i<n.length-1;i++)if("object"!=typeof(r=r[n[i]]))return;r=r[n[n.length-1]]}return r}},5603:(e,t,r)=>{"use strict";r.d(t,{a:()=>c,o:()=>s});var n=r(384),i=r(8122);const o={accountID:void 0,trustKey:void 0,agentID:void 0,licenseKey:void 0,applicationID:void 0,xpid:void 0},a={};function s(e){if(!e)throw new Error("All loader-config objects require an agent identifier!");if(!a[e])throw new Error("LoaderConfig for ".concat(e," was never set"));return a[e]}function c(e,t){if(!e)throw new Error("All loader-config objects require an agent identifier!");a[e]=(0,i.a)(t,o);const r=(0,n.nY)(e);r&&(r.loader_config=a[e])}},3371:(e,t,r)=>{"use strict";r.d(t,{V:()=>f,f:()=>l});var n=r(8122),i=r(384),o=r(6154),a=r(9324);let s=0;const c={buildEnv:a.F3,distMethod:a.Xs,version:a.xv,originTime:o.WN},u={customTransaction:void 0,disabled:!1,isolatedBacklog:!1,loaderType:void 0,maxBytes:3e4,onerror:void 0,ptid:void 0,releaseIds:{},appMetadata:{},session:void 0,denyList:void 0,timeKeeper:void 0,obfuscator:void 0},d={};function l(e){if(!e)throw new Error("All runtime objects require an agent identifier!");if(!d[e])throw new Error("Runtime for ".concat(e," was never set"));return d[e]}function f(e,t){if(!e)throw new Error("All runtime objects require an agent identifier!");d[e]={...(0,n.a)(t,u),...c},Object.hasOwnProperty.call(d[e],"harvestCount")||Object.defineProperty(d[e],"harvestCount",{get:()=>++s});const r=(0,i.nY)(e);r&&(r.runtime=d[e])}},9324:(e,t,r)=>{"use strict";r.d(t,{F3:()=>i,Xs:()=>o,Yq:()=>a,xv:()=>n});const n="1.274.0",i="PROD",o="CDN",a="^2.0.0-alpha.17"},6154:(e,t,r)=>{"use strict";r.d(t,{A4:()=>s,OF:()=>d,RI:()=>i,WN:()=>h,bv:()=>o,gm:()=>a,lR:()=>f,m:()=>u,mw:()=>c,sb:()=>l});var n=r(1863);const i="undefined"!=typeof window&&!!window.document,o="undefined"!=typeof WorkerGlobalScope&&("undefined"!=typeof self&&self instanceof WorkerGlobalScope&&self.navigator instanceof WorkerNavigator||"undefined"!=typeof globalThis&&globalThis instanceof WorkerGlobalScope&&globalThis.navigator instanceof WorkerNavigator),a=i?window:"undefined"!=typeof WorkerGlobalScope&&("undefined"!=typeof self&&self instanceof WorkerGlobalScope&&self||"undefined"!=typeof globalThis&&globalThis instanceof WorkerGlobalScope&&globalThis),s="complete"===a?.document?.readyState,c=Boolean("hidden"===a?.document?.visibilityState),u=""+a?.location,d=/iPad|iPhone|iPod/.test(a.navigator?.userAgent),l=d&&"undefined"==typeof SharedWorker,f=(()=>{const e=a.navigator?.userAgent?.match(/Firefox[/\s](\d+\.\d+)/);return Array.isArray(e)&&e.length>=2?+e[1]:0})(),h=Date.now()-(0,n.t)()},7295:(e,t,r)=>{"use strict";r.d(t,{Xv:()=>a,gX:()=>i,iW:()=>o});var n=[];function i(e){if(!e||o(e))return!1;if(0===n.length)return!0;for(var t=0;t<n.length;t++){var r=n[t];if("*"===r.hostname)return!1;if(s(r.hostname,e.hostname)&&c(r.pathname,e.pathname))return!1}return!0}function o(e){return void 0===e.hostname}function a(e){if(n=[],e&&e.length)for(var t=0;t<e.length;t++){let r=e[t];if(!r)continue;0===r.indexOf("http://")?r=r.substring(7):0===r.indexOf("https://")&&(r=r.substring(8));const i=r.indexOf("/");let o,a;i>0?(o=r.substring(0,i),a=r.substring(i)):(o=r,a="");let[s]=o.split(":");n.push({hostname:s,pathname:a})}}function s(e,t){return!(e.length>t.length)&&t.indexOf(e)===t.length-e.length}function c(e,t){return 0===e.indexOf("/")&&(e=e.substring(1)),0===t.indexOf("/")&&(t=t.substring(1)),""===e||e===t}},1687:(e,t,r)=>{"use strict";r.d(t,{Ak:()=>c,Ze:()=>l,x3:()=>u});var n=r(7836),i=r(3606),o=r(860),a=r(2646);const s={};function c(e,t){const r={staged:!1,priority:o.P3[t]||0};d(e),s[e].get(t)||s[e].set(t,r)}function u(e,t){e&&s[e]&&(s[e].get(t)&&s[e].delete(t),h(e,t,!1),s[e].size&&f(e))}function d(e){if(!e)throw new Error("agentIdentifier required");s[e]||(s[e]=new Map)}function l(e="",t="feature",r=!1){if(d(e),!e||!s[e].get(t)||r)return h(e,t);s[e].get(t).staged=!0,f(e)}function f(e){const t=Array.from(s[e]);t.every((([e,t])=>t.staged))&&(t.sort(((e,t)=>e[1].priority-t[1].priority)),t.forEach((([t])=>{s[e].delete(t),h(e,t)})))}function h(e,t,r=!0){const o=e?n.ee.get(e):n.ee,s=i.i.handlers;if(!o.aborted&&o.backlog&&s){if(r){const e=o.backlog[t],r=s[t];if(r){for(let t=0;e&&t<e.length;++t)p(e[t],r);Object.entries(r).forEach((([e,t])=>{Object.values(t||{}).forEach((t=>{t[0]?.on&&t[0]?.context()instanceof a.y&&t[0].on(e,t[1])}))}))}}o.isolatedBacklog||delete s[t],o.backlog[t]=null,o.emit("drain-"+t,[])}}function p(e,t){var r=e[1];Object.values(t[r]||{}).forEach((t=>{var r=e[0];if(t[0]===r){var n=t[1],i=e[3],o=e[2];n.apply(i,o)}}))}},7836:(e,t,r)=>{"use strict";r.d(t,{P:()=>c,ee:()=>u});var n=r(384),i=r(8990),o=r(3371),a=r(2646),s=r(5607);const c="nr@context:".concat(s.W),u=function e(t,r){var n={},s={},d={},l=!1;try{l=16===r.length&&(0,o.f)(r).isolatedBacklog}catch(e){}var f={on:p,addEventListener:p,removeEventListener:function(e,t){var r=n[e];if(!r)return;for(var i=0;i<r.length;i++)r[i]===t&&r.splice(i,1)},emit:function(e,r,n,i,o){!1!==o&&(o=!0);if(u.aborted&&!i)return;t&&o&&t.emit(e,r,n);for(var a=h(n),c=g(e),d=c.length,l=0;l<d;l++)c[l].apply(a,r);var p=v()[s[e]];p&&p.push([f,e,r,a]);return a},get:m,listeners:g,context:h,buffer:function(e,t){const r=v();if(t=t||"feature",f.aborted)return;Object.entries(e||{}).forEach((([e,n])=>{s[n]=t,t in r||(r[t]=[])}))},abort:function(){f._aborted=!0,Object.keys(f.backlog).forEach((e=>{delete f.backlog[e]}))},isBuffering:function(e){return!!v()[s[e]]},debugId:r,backlog:l?{}:t&&"object"==typeof t.backlog?t.backlog:{},isolatedBacklog:l};return Object.defineProperty(f,"aborted",{get:()=>{let e=f._aborted||!1;return e||(t&&(e=t.aborted),e)}}),f;function h(e){return e&&e instanceof a.y?e:e?(0,i.I)(e,c,(()=>new a.y(c))):new a.y(c)}function p(e,t){n[e]=g(e).concat(t)}function g(e){return n[e]||[]}function m(t){return d[t]=d[t]||e(f,t)}function v(){return f.backlog}}(void 0,"globalEE"),d=(0,n.Zm)();d.ee||(d.ee=u)},2646:(e,t,r)=>{"use strict";r.d(t,{y:()=>n});class n{constructor(e){this.contextId=e}}},9908:(e,t,r)=>{"use strict";r.d(t,{d:()=>n,p:()=>i});var n=r(7836).ee.get("handle");function i(e,t,r,i,o){o?(o.buffer([e],i),o.emit(e,t,r)):(n.buffer([e],i),n.emit(e,t,r))}},3606:(e,t,r)=>{"use strict";r.d(t,{i:()=>o});var n=r(9908);o.on=a;var i=o.handlers={};function o(e,t,r,o){a(o||n.d,i,e,t,r)}function a(e,t,r,i,o){o||(o="feature"),e||(e=n.d);var a=t[o]=t[o]||{};(a[r]=a[r]||[]).push([e,i])}},3878:(e,t,r)=>{"use strict";function n(e,t){return{capture:e,passive:!1,signal:t}}function i(e,t,r=!1,i){window.addEventListener(e,t,n(r,i))}function o(e,t,r=!1,i){document.addEventListener(e,t,n(r,i))}r.d(t,{DD:()=>o,jT:()=>n,sp:()=>i})},5607:(e,t,r)=>{"use strict";r.d(t,{W:()=>n});const n=(0,r(9566).bz)()},9566:(e,t,r)=>{"use strict";r.d(t,{LA:()=>s,ZF:()=>c,bz:()=>a,el:()=>u});var n=r(6154);const i="xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx";function o(e,t){return e?15&e[t]:16*Math.random()|0}function a(){const e=n.gm?.crypto||n.gm?.msCrypto;let t,r=0;return e&&e.getRandomValues&&(t=e.getRandomValues(new Uint8Array(30))),i.split("").map((e=>"x"===e?o(t,r++).toString(16):"y"===e?(3&o()|8).toString(16):e)).join("")}function s(e){const t=n.gm?.crypto||n.gm?.msCrypto;let r,i=0;t&&t.getRandomValues&&(r=t.getRandomValues(new Uint8Array(e)));const a=[];for(var s=0;s<e;s++)a.push(o(r,i++).toString(16));return a.join("")}function c(){return s(16)}function u(){return s(32)}},2614:(e,t,r)=>{"use strict";r.d(t,{BB:()=>a,H3:()=>n,g:()=>u,iL:()=>c,tS:()=>s,uh:()=>i,wk:()=>o});const n="NRBA",i="SESSION",o=144e5,a=18e5,s={STARTED:"session-started",PAUSE:"session-pause",RESET:"session-reset",RESUME:"session-resume",UPDATE:"session-update"},c={SAME_TAB:"same-tab",CROSS_TAB:"cross-tab"},u={OFF:0,FULL:1,ERROR:2}},1863:(e,t,r)=>{"use strict";function n(){return Math.floor(performance.now())}r.d(t,{t:()=>n})},7485:(e,t,r)=>{"use strict";r.d(t,{D:()=>i});var n=r(6154);function i(e){if(0===(e||"").indexOf("data:"))return{protocol:"data"};try{const t=new URL(e,location.href),r={port:t.port,hostname:t.hostname,pathname:t.pathname,search:t.search,protocol:t.protocol.slice(0,t.protocol.indexOf(":")),sameOrigin:t.protocol===n.gm?.location?.protocol&&t.host===n.gm?.location?.host};return r.port&&""!==r.port||("http:"===t.protocol&&(r.port="80"),"https:"===t.protocol&&(r.port="443")),r.pathname&&""!==r.pathname?r.pathname.startsWith("/")||(r.pathname="/".concat(r.pathname)):r.pathname="/",r}catch(e){return{}}}},944:(e,t,r)=>{"use strict";function n(e,t){"function"==typeof console.debug&&console.debug("New Relic Warning: https://github.com/newrelic/newrelic-browser-agent/blob/main/docs/warning-codes.md#".concat(e),t)}r.d(t,{R:()=>n})},5284:(e,t,r)=>{"use strict";r.d(t,{t:()=>c,B:()=>s});var n=r(7836),i=r(6154);const o="newrelic";const a=new Set,s={};function c(e,t){const r=n.ee.get(t);s[t]??={},e&&"object"==typeof e&&(a.has(t)||(r.emit("rumresp",[e]),s[t]=e,a.add(t),function(e={}){try{i.gm.dispatchEvent(new CustomEvent(o,{detail:e}))}catch(e){}}({loaded:!0})))}},8990:(e,t,r)=>{"use strict";r.d(t,{I:()=>i});var n=Object.prototype.hasOwnProperty;function i(e,t,r){if(n.call(e,t))return e[t];var i=r();if(Object.defineProperty&&Object.keys)try{return Object.defineProperty(e,t,{value:i,writable:!0,enumerable:!1}),i}catch(e){}return e[t]=i,i}},6389:(e,t,r)=>{"use strict";function n(e,t=500,r={}){const n=r?.leading||!1;let i;return(...r)=>{n&&void 0===i&&(e.apply(this,r),i=setTimeout((()=>{i=clearTimeout(i)}),t)),n||(clearTimeout(i),i=setTimeout((()=>{e.apply(this,r)}),t))}}function i(e){let t=!1;return(...r)=>{t||(t=!0,e.apply(this,r))}}r.d(t,{J:()=>i,s:()=>n})},3304:(e,t,r)=>{"use strict";r.d(t,{A:()=>o});var n=r(7836);const i=()=>{const e=new WeakSet;return(t,r)=>{if("object"==typeof r&&null!==r){if(e.has(r))return;e.add(r)}return r}};function o(e){try{return JSON.stringify(e,i())??""}catch(e){try{n.ee.emit("internal-error",[e])}catch(e){}return""}}},5289:(e,t,r)=>{"use strict";r.d(t,{GG:()=>o,sB:()=>a});var n=r(3878);function i(){return"undefined"==typeof document||"complete"===document.readyState}function o(e,t){if(i())return e();(0,n.sp)("load",e,t)}function a(e){if(i())return e();(0,n.DD)("DOMContentLoaded",e)}},384:(e,t,r)=>{"use strict";r.d(t,{NT:()=>o,US:()=>d,Zm:()=>a,bQ:()=>c,dV:()=>s,nY:()=>u,pV:()=>l});var n=r(6154),i=r(1863);const o={beacon:"bam.nr-data.net",errorBeacon:"bam.nr-data.net"};function a(){return n.gm.NREUM||(n.gm.NREUM={}),void 0===n.gm.newrelic&&(n.gm.newrelic=n.gm.NREUM),n.gm.NREUM}function s(){let e=a();return e.o||(e.o={ST:n.gm.setTimeout,SI:n.gm.setImmediate,CT:n.gm.clearTimeout,XHR:n.gm.XMLHttpRequest,REQ:n.gm.Request,EV:n.gm.Event,PR:n.gm.Promise,MO:n.gm.MutationObserver,FETCH:n.gm.fetch,WS:n.gm.WebSocket}),e}function c(e,t){let r=a();r.initializedAgents??={},t.initializedAt={ms:(0,i.t)(),date:new Date},r.initializedAgents[e]=t}function u(e){let t=a();return t.initializedAgents?.[e]}function d(e,t){a()[e]=t}function l(){return function(){let e=a();const t=e.info||{};e.info={beacon:o.beacon,errorBeacon:o.errorBeacon,...t}}(),function(){let e=a();const t=e.init||{};e.init={...t}}(),s(),function(){let e=a();const t=e.loader_config||{};e.loader_config={...t}}(),a()}},2843:(e,t,r)=>{"use strict";r.d(t,{u:()=>i});var n=r(3878);function i(e,t=!1,r,i){(0,n.DD)("visibilitychange",(function(){if(t)return void("hidden"===document.visibilityState&&e());e(document.visibilityState)}),r,i)}},8139:(e,t,r)=>{"use strict";r.d(t,{u:()=>f});var n=r(7836),i=r(3434),o=r(8990),a=r(6154);const s={},c=a.gm.XMLHttpRequest,u="addEventListener",d="removeEventListener",l="nr@wrapped:".concat(n.P);function f(e){var t=function(e){return(e||n.ee).get("events")}(e);if(s[t.debugId]++)return t;s[t.debugId]=1;var r=(0,i.YM)(t,!0);function f(e){r.inPlace(e,[u,d],"-",p)}function p(e,t){return e[1]}return"getPrototypeOf"in Object&&(a.RI&&h(document,f),h(a.gm,f),h(c.prototype,f)),t.on(u+"-start",(function(e,t){var n=e[1];if(null!==n&&("function"==typeof n||"object"==typeof n)){var i=(0,o.I)(n,l,(function(){var e={object:function(){if("function"!=typeof n.handleEvent)return;return n.handleEvent.apply(n,arguments)},function:n}[typeof n];return e?r(e,"fn-",null,e.name||"anonymous"):n}));this.wrapped=e[1]=i}})),t.on(d+"-start",(function(e){e[1]=this.wrapped||e[1]})),t}function h(e,t,...r){let n=e;for(;"object"==typeof n&&!Object.prototype.hasOwnProperty.call(n,u);)n=Object.getPrototypeOf(n);n&&t(n,...r)}},3434:(e,t,r)=>{"use strict";r.d(t,{Jt:()=>o,YM:()=>c});var n=r(7836),i=r(5607);const o="nr@original:".concat(i.W);var a=Object.prototype.hasOwnProperty,s=!1;function c(e,t){return e||(e=n.ee),r.inPlace=function(e,t,n,i,o){n||(n="");const a="-"===n.charAt(0);for(let s=0;s<t.length;s++){const c=t[s],u=e[c];d(u)||(e[c]=r(u,a?c+n:n,i,c,o))}},r.flag=o,r;function r(t,r,n,s,c){return d(t)?t:(r||(r=""),nrWrapper[o]=t,function(e,t,r){if(Object.defineProperty&&Object.keys)try{return Object.keys(e).forEach((function(r){Object.defineProperty(t,r,{get:function(){return e[r]},set:function(t){return e[r]=t,t}})})),t}catch(e){u([e],r)}for(var n in e)a.call(e,n)&&(t[n]=e[n])}(t,nrWrapper,e),nrWrapper);function nrWrapper(){var o,a,d,l;try{a=this,o=[...arguments],d="function"==typeof n?n(o,a):n||{}}catch(t){u([t,"",[o,a,s],d],e)}i(r+"start",[o,a,s],d,c);try{return l=t.apply(a,o)}catch(e){throw i(r+"err",[o,a,e],d,c),e}finally{i(r+"end",[o,a,l],d,c)}}}function i(r,n,i,o){if(!s||t){var a=s;s=!0;try{e.emit(r,n,i,t,o)}catch(t){u([t,r,n,i],e)}s=a}}}function u(e,t){t||(t=n.ee);try{t.emit("internal-error",e)}catch(e){}}function d(e){return!(e&&"function"==typeof e&&e.apply&&!e[o])}},9300:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.ajax},3333:(e,t,r)=>{"use strict";r.d(t,{TZ:()=>n,Zp:()=>i,mq:()=>s,nf:()=>a,qN:()=>o});const n=r(860).K7.genericEvents,i=["auxclick","click","copy","keydown","paste","scrollend"],o=["focus","blur"],a=4,s=1e3},6774:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.jserrors},993:(e,t,r)=>{"use strict";r.d(t,{ET:()=>o,TZ:()=>a,p_:()=>i});var n=r(860);const i={ERROR:"ERROR",WARN:"WARN",INFO:"INFO",DEBUG:"DEBUG",TRACE:"TRACE"},o="log",a=n.K7.logging},3785:(e,t,r)=>{"use strict";r.d(t,{R:()=>c,b:()=>u});var n=r(9908),i=r(1863),o=r(860),a=r(3969),s=r(993);function c(e,t,r={},c=s.p_.INFO){(0,n.p)(a.xV,["API/logging/".concat(c.toLowerCase(),"/called")],void 0,o.K7.metrics,e),(0,n.p)(s.ET,[(0,i.t)(),t,r,c],void 0,o.K7.logging,e)}function u(e){return"string"==typeof e&&Object.values(s.p_).some((t=>t===e.toUpperCase().trim()))}},3969:(e,t,r)=>{"use strict";r.d(t,{TZ:()=>n,XG:()=>s,rs:()=>i,xV:()=>a,z_:()=>o});const n=r(860).K7.metrics,i="sm",o="cm",a="storeSupportabilityMetrics",s="storeEventMetrics"},6630:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.pageViewEvent},782:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.pageViewTiming},6344:(e,t,r)=>{"use strict";r.d(t,{BB:()=>d,G4:()=>o,Qb:()=>l,TZ:()=>i,Ug:()=>a,_s:()=>s,bc:()=>u,yP:()=>c});var n=r(2614);const i=r(860).K7.sessionReplay,o={RECORD:"recordReplay",PAUSE:"pauseReplay",REPLAY_RUNNING:"replayRunning",ERROR_DURING_REPLAY:"errorDuringReplay"},a=.12,s={DomContentLoaded:0,Load:1,FullSnapshot:2,IncrementalSnapshot:3,Meta:4,Custom:5},c={[n.g.ERROR]:15e3,[n.g.FULL]:3e5,[n.g.OFF]:0},u={RESET:{message:"Session was reset",sm:"Reset"},IMPORT:{message:"Recorder failed to import",sm:"Import"},TOO_MANY:{message:"429: Too Many Requests",sm:"Too-Many"},TOO_BIG:{message:"Payload was too large",sm:"Too-Big"},CROSS_TAB:{message:"Session Entity was set to OFF on another tab",sm:"Cross-Tab"},ENTITLEMENTS:{message:"Session Replay is not allowed and will not be started",sm:"Entitlement"}},d=5e3,l={API:"api"}},5270:(e,t,r)=>{"use strict";r.d(t,{Aw:()=>c,CT:()=>u,SR:()=>s});var n=r(384),i=r(9417),o=r(7767),a=r(6154);function s(e){return!!(0,n.dV)().o.MO&&(0,o.V)(e)&&!0===(0,i.gD)(e,"session_trace.enabled")}function c(e){return!0===(0,i.gD)(e,"session_replay.preload")&&s(e)}function u(e,t){const r=t.correctAbsoluteTimestamp(e);return{originalTimestamp:e,correctedTimestamp:r,timestampDiff:e-r,originTime:a.WN,correctedOriginTime:t.correctedOriginTime,originTimeDiff:Math.floor(a.WN-t.correctedOriginTime)}}},3738:(e,t,r)=>{"use strict";r.d(t,{He:()=>i,Kp:()=>s,Lc:()=>u,Rz:()=>d,TZ:()=>n,bD:()=>o,d3:()=>a,jx:()=>l,uP:()=>c});const n=r(860).K7.sessionTrace,i="bstResource",o="resource",a="-start",s="-end",c="fn"+a,u="fn"+s,d="pushState",l=1e3},3962:(e,t,r)=>{"use strict";r.d(t,{AM:()=>o,O2:()=>s,Qu:()=>c,TZ:()=>a,ih:()=>u,tC:()=>i});var n=r(860);const i=["click","keydown","submit"],o="api",a=n.K7.softNav,s={INITIAL_PAGE_LOAD:"",ROUTE_CHANGE:1,UNSPECIFIED:2},c={INTERACTION:1,AJAX:2,CUSTOM_END:3,CUSTOM_TRACER:4},u={IP:"in progress",FIN:"finished",CAN:"cancelled"}},7378:(e,t,r)=>{"use strict";r.d(t,{$p:()=>x,BR:()=>b,Kp:()=>R,L3:()=>y,Lc:()=>c,NC:()=>o,SG:()=>d,TZ:()=>i,U6:()=>p,UT:()=>m,d3:()=>w,dT:()=>f,e5:()=>A,gx:()=>v,l9:()=>l,oW:()=>h,op:()=>g,rw:()=>u,tH:()=>E,uP:()=>s,wW:()=>T,xq:()=>a});var n=r(384);const i=r(860).K7.spa,o=["click","submit","keypress","keydown","keyup","change"],a=999,s="fn-start",c="fn-end",u="cb-start",d="api-ixn-",l="remaining",f="interaction",h="spaNode",p="jsonpNode",g="fetch-start",m="fetch-done",v="fetch-body-",b="jsonp-end",y=(0,n.dV)().o.ST,w="-start",R="-end",x="-body",T="cb"+R,A="jsTime",E="fetch"},4234:(e,t,r)=>{"use strict";r.d(t,{W:()=>o});var n=r(7836),i=r(1687);class o{constructor(e,t){this.agentIdentifier=e,this.ee=n.ee.get(e),this.featureName=t,this.blocked=!1}deregisterDrain(){(0,i.x3)(this.agentIdentifier,this.featureName)}}},7767:(e,t,r)=>{"use strict";r.d(t,{V:()=>o});var n=r(9417),i=r(6154);const o=e=>i.RI&&!0===(0,n.gD)(e,"privacy.cookies_enabled")},425:(e,t,r)=>{"use strict";r.d(t,{j:()=>j});var n=r(860),i=r(2555),o=r(3371),a=r(9908),s=r(7836),c=r(1687),u=r(5289),d=r(6154),l=r(944),f=r(3969),h=r(384),p=r(6344);const g=["setErrorHandler","finished","addToTrace","addRelease","addPageAction","setCurrentRouteName","setPageViewName","setCustomAttribute","interaction","noticeError","setUserId","setApplicationVersion","start",p.G4.RECORD,p.G4.PAUSE,"log","wrapLogger"],m=["setErrorHandler","finished","addToTrace","addRelease"];var v=r(1863),b=r(2614),y=r(993),w=r(3785),R=r(2646),x=r(3434);function T(e,t,r,n){if("object"!=typeof t||!t||"string"!=typeof r||!r||"function"!=typeof t[r])return(0,l.R)(29);const i=function(e){return(e||s.ee).get("logger")}(e),o=(0,x.YM)(i),a=new R.y(s.P);return a.level=n.level,a.customAttributes=n.customAttributes,o.inPlace(t,[r],"wrap-logger-",a),i}function A(){const e=(0,h.pV)();g.forEach((t=>{e[t]=(...r)=>function(t,...r){let n=[];return Object.values(e.initializedAgents).forEach((e=>{e&&e.api?e.exposed&&e.api[t]&&n.push(e.api[t](...r)):(0,l.R)(38,t)})),n.length>1?n:n[0]}(t,...r)}))}const E={};var S=r(9417),N=r(5603),O=r(5284);const _=e=>{const t=e.startsWith("http");e+="/",r.p=t?e:"https://"+e};let I=!1;function j(e,t={},g,R){let{init:x,info:j,loader_config:P,runtime:C={},exposed:k=!0}=t;C.loaderType=g;const L=(0,h.pV)();j||(x=L.init,j=L.info,P=L.loader_config),(0,S.xN)(e.agentIdentifier,x||{}),(0,N.a)(e.agentIdentifier,P||{}),j.jsAttributes??={},d.bv&&(j.jsAttributes.isWorker=!0),(0,i.x1)(e.agentIdentifier,j);const H=(0,S.D0)(e.agentIdentifier),D=[j.beacon,j.errorBeacon];I||(H.proxy.assets&&(_(H.proxy.assets),D.push(H.proxy.assets)),H.proxy.beacon&&D.push(H.proxy.beacon),A(),(0,h.US)("activatedFeatures",O.B),e.runSoftNavOverSpa&&=!0===H.soft_navigations.enabled&&H.feature_flags.includes("soft_nav")),C.denyList=[...H.ajax.deny_list||[],...H.ajax.block_internal?D:[]],C.ptid=e.agentIdentifier,(0,o.V)(e.agentIdentifier,C),e.ee=s.ee.get(e.agentIdentifier),void 0===e.api&&(e.api=function(e,t,h=!1){t||(0,c.Ak)(e,"api");const g={};var R=s.ee.get(e),x=R.get("tracer");E[e]=b.g.OFF,R.on(p.G4.REPLAY_RUNNING,(t=>{E[e]=t}));var A="api-",S=A+"ixn-";function N(t,r,n,o){const a=(0,i.Vp)(e);return null===r?delete a.jsAttributes[t]:(0,i.x1)(e,{...a,jsAttributes:{...a.jsAttributes,[t]:r}}),I(A,n,!0,o||null===r?"session":void 0)(t,r)}function O(){}g.log=function(e,{customAttributes:t={},level:r=y.p_.INFO}={}){(0,a.p)(f.xV,["API/log/called"],void 0,n.K7.metrics,R),(0,w.R)(R,e,t,r)},g.wrapLogger=(e,t,{customAttributes:r={},level:i=y.p_.INFO}={})=>{(0,a.p)(f.xV,["API/wrapLogger/called"],void 0,n.K7.metrics,R),T(R,e,t,{customAttributes:r,level:i})},m.forEach((e=>{g[e]=I(A,e,!0,"api")})),g.addPageAction=I(A,"addPageAction",!0,n.K7.genericEvents),g.setPageViewName=function(t,r){if("string"==typeof t)return"/"!==t.charAt(0)&&(t="/"+t),(0,o.f)(e).customTransaction=(r||"http://custom.transaction")+t,I(A,"setPageViewName",!0)()},g.setCustomAttribute=function(e,t,r=!1){if("string"==typeof e){if(["string","number","boolean"].includes(typeof t)||null===t)return N(e,t,"setCustomAttribute",r);(0,l.R)(40,typeof t)}else(0,l.R)(39,typeof e)},g.setUserId=function(e){if("string"==typeof e||null===e)return N("enduser.id",e,"setUserId",!0);(0,l.R)(41,typeof e)},g.setApplicationVersion=function(e){if("string"==typeof e||null===e)return N("application.version",e,"setApplicationVersion",!1);(0,l.R)(42,typeof e)},g.start=()=>{try{(0,a.p)(f.xV,["API/start/called"],void 0,n.K7.metrics,R),R.emit("manual-start-all")}catch(e){(0,l.R)(23,e)}},g[p.G4.RECORD]=function(){(0,a.p)(f.xV,["API/recordReplay/called"],void 0,n.K7.metrics,R),(0,a.p)(p.G4.RECORD,[],void 0,n.K7.sessionReplay,R)},g[p.G4.PAUSE]=function(){(0,a.p)(f.xV,["API/pauseReplay/called"],void 0,n.K7.metrics,R),(0,a.p)(p.G4.PAUSE,[],void 0,n.K7.sessionReplay,R)},g.interaction=function(e){return(new O).get("object"==typeof e?e:{})};const _=O.prototype={createTracer:function(e,t){var r={},i=this,o="function"==typeof t;return(0,a.p)(f.xV,["API/createTracer/called"],void 0,n.K7.metrics,R),h||(0,a.p)(S+"tracer",[(0,v.t)(),e,r],i,n.K7.spa,R),function(){if(x.emit((o?"":"no-")+"fn-start",[(0,v.t)(),i,o],r),o)try{return t.apply(this,arguments)}catch(e){const t="string"==typeof e?new Error(e):e;throw x.emit("fn-err",[arguments,this,t],r),t}finally{x.emit("fn-end",[(0,v.t)()],r)}}}};function I(e,t,r,i){return function(){return(0,a.p)(f.xV,["API/"+t+"/called"],void 0,n.K7.metrics,R),i&&(0,a.p)(e+t,[(0,v.t)(),...arguments],r?null:this,i,R),r?void 0:this}}function j(){r.e(478).then(r.bind(r,8778)).then((({setAPI:t})=>{t(e),(0,c.Ze)(e,"api")})).catch((e=>{(0,l.R)(27,e),R.abort()}))}return["actionText","setName","setAttribute","save","ignore","onEnd","getContext","end","get"].forEach((e=>{_[e]=I(S,e,void 0,h?n.K7.softNav:n.K7.spa)})),g.setCurrentRouteName=h?I(S,"routeName",void 0,n.K7.softNav):I(A,"routeName",!0,n.K7.spa),g.noticeError=function(t,r){"string"==typeof t&&(t=new Error(t)),(0,a.p)(f.xV,["API/noticeError/called"],void 0,n.K7.metrics,R),(0,a.p)("err",[t,(0,v.t)(),!1,r,!!E[e]],void 0,n.K7.jserrors,R)},d.RI?(0,u.GG)((()=>j()),!0):j(),g}(e.agentIdentifier,R,e.runSoftNavOverSpa)),void 0===e.exposed&&(e.exposed=k),I=!0}},8374:(e,t,r)=>{r.nc=(()=>{try{return document?.currentScript?.nonce}catch(e){}return""})()},860:(e,t,r)=>{"use strict";r.d(t,{$J:()=>o,K7:()=>n,P3:()=>i});const n={ajax:"ajax",genericEvents:"generic_events",jserrors:"jserrors",logging:"logging",metrics:"metrics",pageAction:"page_action",pageViewEvent:"page_view_event",pageViewTiming:"page_view_timing",sessionReplay:"session_replay",sessionTrace:"session_trace",softNav:"soft_navigations",spa:"spa"},i={[n.pageViewEvent]:1,[n.pageViewTiming]:2,[n.metrics]:3,[n.jserrors]:4,[n.spa]:5,[n.ajax]:6,[n.sessionTrace]:7,[n.softNav]:8,[n.sessionReplay]:9,[n.logging]:10,[n.genericEvents]:11},o={[n.pageViewTiming]:"events",[n.ajax]:"events",[n.spa]:"events",[n.softNav]:"events",[n.metrics]:"jserrors",[n.jserrors]:"jserrors",[n.sessionTrace]:"browser/blobs",[n.sessionReplay]:"browser/blobs",[n.logging]:"browser/logs",[n.genericEvents]:"ins"}}},n={};function i(e){var t=n[e];if(void 0!==t)return t.exports;var o=n[e]={exports:{}};return r[e](o,o.exports,i),o.exports}i.m=r,i.d=(e,t)=>{for(var r in t)i.o(t,r)&&!i.o(e,r)&&Object.defineProperty(e,r,{enumerable:!0,get:t[r]})},i.f={},i.e=e=>Promise.all(Object.keys(i.f).reduce(((t,r)=>(i.f[r](e,t),t)),[])),i.u=e=>({212:"nr-spa-compressor",249:"nr-spa-recorder",478:"nr-spa"}[e]+"-1.274.0.min.js"),i.o=(e,t)=>Object.prototype.hasOwnProperty.call(e,t),e={},t="NRBA-1.274.0.PROD:",i.l=(r,n,o,a)=>{if(e[r])e[r].push(n);else{var s,c;if(void 0!==o)for(var u=document.getElementsByTagName("script"),d=0;d<u.length;d++){var l=u[d];if(l.getAttribute("src")==r||l.getAttribute("data-webpack")==t+o){s=l;break}}if(!s){c=!0;var f={478:"sha512-1vUqEfJPB8Pihje9mv5CfYgkitO1FWcS+UQb84DbXqP8oYctRv4/lzl/MzNLPlRhcY1WVDBGL20I8vm6s2VV7g==",249:"sha512-Y/BeZAh6VSTmUtUNmS5XdyKxL92s30Fyyj8xVW76HSPxcKItL4+x2+kGMZc8pMJnUpZDz1L4eftZQAJh3D8NnA==",212:"sha512-Gn2tQ3qog5Yhrx/gRutkSTYPp+7nkKFt4/mIXg99LxcNpMDAYJZDBYmAACdoHNM86+iq1F3cBcQotFNzjIX8bw=="};(s=document.createElement("script")).charset="utf-8",s.timeout=120,i.nc&&s.setAttribute("nonce",i.nc),s.setAttribute("data-webpack",t+o),s.src=r,0!==s.src.indexOf(window.location.origin+"/")&&(s.crossOrigin="anonymous"),f[a]&&(s.integrity=f[a])}e[r]=[n];var h=(t,n)=>{s.onerror=s.onload=null,clearTimeout(p);var i=e[r];if(delete e[r],s.parentNode&&s.parentNode.removeChild(s),i&&i.forEach((e=>e(n))),t)return t(n)},p=setTimeout(h.bind(null,void 0,{type:"timeout",target:s}),12e4);s.onerror=h.bind(null,s.onerror),s.onload=h.bind(null,s.onload),c&&document.head.appendChild(s)}},i.r=e=>{"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},i.p="https://js-agent.newrelic.com/",(()=>{var e={38:0,788:0};i.f.j=(t,r)=>{var n=i.o(e,t)?e[t]:void 0;if(0!==n)if(n)r.push(n[2]);else{var o=new Promise(((r,i)=>n=e[t]=[r,i]));r.push(n[2]=o);var a=i.p+i.u(t),s=new Error;i.l(a,(r=>{if(i.o(e,t)&&(0!==(n=e[t])&&(e[t]=void 0),n)){var o=r&&("load"===r.type?"missing":r.type),a=r&&r.target&&r.target.src;s.message="Loading chunk "+t+" failed.\n("+o+": "+a+")",s.name="ChunkLoadError",s.type=o,s.request=a,n[1](s)}}),"chunk-"+t,t)}};var t=(t,r)=>{var n,o,[a,s,c]=r,u=0;if(a.some((t=>0!==e[t]))){for(n in s)i.o(s,n)&&(i.m[n]=s[n]);if(c)c(i)}for(t&&t(r);u<a.length;u++)o=a[u],i.o(e,o)&&e[o]&&e[o][0](),e[o]=0},r=self["webpackChunk:NRBA-1.274.0.PROD"]=self["webpackChunk:NRBA-1.274.0.PROD"]||[];r.forEach(t.bind(null,0)),r.push=t.bind(null,r.push.bind(r))})(),(()=>{"use strict";i(8374);var e=i(944),t=i(6344),r=i(9566);class n{agentIdentifier;constructor(e=(0,r.LA)(16)){this.agentIdentifier=e}#e(t,...r){if("function"==typeof this.api?.[t])return this.api[t](...r);(0,e.R)(35,t)}addPageAction(e,t){return this.#e("addPageAction",e,t)}setPageViewName(e,t){return this.#e("setPageViewName",e,t)}setCustomAttribute(e,t,r){return this.#e("setCustomAttribute",e,t,r)}noticeError(e,t){return this.#e("noticeError",e,t)}setUserId(e){return this.#e("setUserId",e)}setApplicationVersion(e){return this.#e("setApplicationVersion",e)}setErrorHandler(e){return this.#e("setErrorHandler",e)}addRelease(e,t){return this.#e("addRelease",e,t)}log(e,t){return this.#e("log",e,t)}}class o extends n{#e(t,...r){if("function"==typeof this.api?.[t])return this.api[t](...r);(0,e.R)(35,t)}start(){return this.#e("start")}finished(e){return this.#e("finished",e)}recordReplay(){return this.#e(t.G4.RECORD)}pauseReplay(){return this.#e(t.G4.PAUSE)}addToTrace(e){return this.#e("addToTrace",e)}setCurrentRouteName(e){return this.#e("setCurrentRouteName",e)}interaction(){return this.#e("interaction")}wrapLogger(e,t,r){return this.#e("wrapLogger",e,t,r)}}var a=i(860),s=i(9417);const c=Object.values(a.K7);function u(e){const t={};return c.forEach((r=>{t[r]=function(e,t){return!0===(0,s.gD)(t,"".concat(e,".enabled"))}(r,e)})),t}var d=i(425);var l=i(1687),f=i(4234),h=i(5289),p=i(6154),g=i(5270),m=i(7767),v=i(6389);class b extends f.W{constructor(e,t,r=!0){super(e.agentIdentifier,t),this.auto=r,this.abortHandler=void 0,this.featAggregate=void 0,this.onAggregateImported=void 0,!1===e.init[this.featureName].autoStart&&(this.auto=!1),this.auto?(0,l.Ak)(e.agentIdentifier,t):this.ee.on("manual-start-all",(0,v.J)((()=>{(0,l.Ak)(e.agentIdentifier,this.featureName),this.auto=!0,this.importAggregator(e)})))}importAggregator(t,r={}){if(this.featAggregate||!this.auto)return;let n;this.onAggregateImported=new Promise((e=>{n=e}));const o=async()=>{let o;try{if((0,m.V)(this.agentIdentifier)){const{setupAgentSession:e}=await i.e(478).then(i.bind(i,6526));o=e(t)}}catch(t){(0,e.R)(20,t),this.ee.emit("internal-error",[t]),this.featureName===a.K7.sessionReplay&&this.abortHandler?.()}try{if(t.sharedAggregator)await t.sharedAggregator;else{t.sharedAggregator=i.e(478).then(i.bind(i,9337));const{EventAggregator:e}=await t.sharedAggregator;t.sharedAggregator=new e}if(!this.#t(this.featureName,o))return(0,l.Ze)(this.agentIdentifier,this.featureName),void n(!1);const{lazyFeatureLoader:e}=await i.e(478).then(i.bind(i,6103)),{Aggregate:a}=await e(this.featureName,"aggregate");this.featAggregate=new a(t,r),n(!0)}catch(t){(0,e.R)(34,t),this.abortHandler?.(),(0,l.Ze)(this.agentIdentifier,this.featureName,!0),n(!1),this.ee&&this.ee.abort()}};p.RI?(0,h.GG)((()=>o()),!0):o()}#t(e,t){switch(e){case a.K7.sessionReplay:return(0,g.SR)(this.agentIdentifier)&&!!t;case a.K7.sessionTrace:return!!t;default:return!0}}}var y=i(6630);class w extends b{static featureName=y.T;constructor(e,t=!0){super(e,y.T,t),this.importAggregator(e)}}var R=i(384);var x=i(9908),T=i(2843),A=i(3878),E=i(782),S=i(1863);class N extends b{static featureName=E.T;constructor(e,t=!0){super(e,E.T,t),p.RI&&((0,T.u)((()=>(0,x.p)("docHidden",[(0,S.t)()],void 0,E.T,this.ee)),!0),(0,A.sp)("pagehide",(()=>(0,x.p)("winPagehide",[(0,S.t)()],void 0,E.T,this.ee))),this.importAggregator(e))}}var O=i(3969);class _ extends b{static featureName=O.TZ;constructor(e,t=!0){super(e,O.TZ,t),this.importAggregator(e)}}var I=i(6774),j=i(3304);class P{constructor(e,t,r,n,i){this.name="UncaughtError",this.message="string"==typeof e?e:(0,j.A)(e),this.sourceURL=t,this.line=r,this.column=n,this.__newrelic=i}}function C(e){return H(e)?e:new P(void 0!==e?.message?e.message:e,e?.filename||e?.sourceURL,e?.lineno||e?.line,e?.colno||e?.col,e?.__newrelic)}function k(e){const t="Unhandled Promise Rejection";if(!e?.reason)return;if(H(e.reason))try{return e.reason.message=t+": "+e.reason.message,C(e.reason)}catch(t){return C(e.reason)}const r=C(e.reason);return r.message=t+": "+r?.message,r}function L(e){if(e.error instanceof SyntaxError&&!/:\d+$/.test(e.error.stack?.trim())){const t=new P(e.message,e.filename,e.lineno,e.colno,e.error.__newrelic);return t.name=SyntaxError.name,t}return H(e.error)?e.error:C(e)}function H(e){return e instanceof Error&&!!e.stack}class D extends b{static featureName=I.T;#r=!1;constructor(e,r=!0){super(e,I.T,r);try{this.removeOnAbort=new AbortController}catch(e){}this.ee.on("internal-error",(e=>{this.abortHandler&&(0,x.p)("ierr",[C(e),(0,S.t)(),!0,{},this.#r],void 0,this.featureName,this.ee)})),this.ee.on(t.G4.REPLAY_RUNNING,(e=>{this.#r=e})),p.gm.addEventListener("unhandledrejection",(e=>{this.abortHandler&&(0,x.p)("err",[k(e),(0,S.t)(),!1,{unhandledPromiseRejection:1},this.#r],void 0,this.featureName,this.ee)}),(0,A.jT)(!1,this.removeOnAbort?.signal)),p.gm.addEventListener("error",(e=>{this.abortHandler&&(0,x.p)("err",[L(e),(0,S.t)(),!1,{},this.#r],void 0,this.featureName,this.ee)}),(0,A.jT)(!1,this.removeOnAbort?.signal)),this.abortHandler=this.#n,this.importAggregator(e)}#n(){this.removeOnAbort?.abort(),this.abortHandler=void 0}}var M=i(8990);let K=1;const U="nr@id";function V(e){const t=typeof e;return!e||"object"!==t&&"function"!==t?-1:e===p.gm?0:(0,M.I)(e,U,(function(){return K++}))}function G(e){if("string"==typeof e&&e.length)return e.length;if("object"==typeof e){if("undefined"!=typeof ArrayBuffer&&e instanceof ArrayBuffer&&e.byteLength)return e.byteLength;if("undefined"!=typeof Blob&&e instanceof Blob&&e.size)return e.size;if(!("undefined"!=typeof FormData&&e instanceof FormData))try{return(0,j.A)(e).length}catch(e){return}}}var F=i(8139),B=i(7836),W=i(3434);const z={},q=["open","send"];function Z(t){var r=t||B.ee;const n=function(e){return(e||B.ee).get("xhr")}(r);if(z[n.debugId]++)return n;z[n.debugId]=1,(0,F.u)(r);var i=(0,W.YM)(n),o=p.gm.XMLHttpRequest,a=p.gm.MutationObserver,s=p.gm.Promise,c=p.gm.setInterval,u="readystatechange",d=["onload","onerror","onabort","onloadstart","onloadend","onprogress","ontimeout"],l=[],f=p.gm.XMLHttpRequest=function(t){const r=new o(t),a=n.context(r);try{n.emit("new-xhr",[r],a),r.addEventListener(u,(s=a,function(){var e=this;e.readyState>3&&!s.resolved&&(s.resolved=!0,n.emit("xhr-resolved",[],e)),i.inPlace(e,d,"fn-",y)}),(0,A.jT)(!1))}catch(t){(0,e.R)(15,t);try{n.emit("internal-error",[t])}catch(e){}}var s;return r};function h(e,t){i.inPlace(t,["onreadystatechange"],"fn-",y)}if(function(e,t){for(var r in e)t[r]=e[r]}(o,f),f.prototype=o.prototype,i.inPlace(f.prototype,q,"-xhr-",y),n.on("send-xhr-start",(function(e,t){h(e,t),function(e){l.push(e),a&&(g?g.then(b):c?c(b):(m=-m,v.data=m))}(t)})),n.on("open-xhr-start",h),a){var g=s&&s.resolve();if(!c&&!s){var m=1,v=document.createTextNode(m);new a(b).observe(v,{characterData:!0})}}else r.on("fn-end",(function(e){e[0]&&e[0].type===u||b()}));function b(){for(var e=0;e<l.length;e++)h(0,l[e]);l.length&&(l=[])}function y(e,t){return t}return n}var Y="fetch-",X=Y+"body-",J=["arrayBuffer","blob","json","text","formData"],Q=p.gm.Request,ee=p.gm.Response,te="prototype";const re={};function ne(e){const t=function(e){return(e||B.ee).get("fetch")}(e);if(!(Q&&ee&&p.gm.fetch))return t;if(re[t.debugId]++)return t;function r(e,r,n){var i=e[r];"function"==typeof i&&(e[r]=function(){var e,r=[...arguments],o={};t.emit(n+"before-start",[r],o),o[B.P]&&o[B.P].dt&&(e=o[B.P].dt);var a=i.apply(this,r);return t.emit(n+"start",[r,e],a),a.then((function(e){return t.emit(n+"end",[null,e],a),e}),(function(e){throw t.emit(n+"end",[e],a),e}))})}return re[t.debugId]=1,J.forEach((e=>{r(Q[te],e,X),r(ee[te],e,X)})),r(p.gm,"fetch",Y),t.on(Y+"end",(function(e,r){var n=this;if(r){var i=r.headers.get("content-length");null!==i&&(n.rxSize=i),t.emit(Y+"done",[null,r],n)}else t.emit(Y+"done",[e],n)})),t}var ie=i(7485),oe=i(5603);class ae{constructor(e){this.agentIdentifier=e}generateTracePayload(e){if(!this.shouldGenerateTrace(e))return null;var t=(0,oe.o)(this.agentIdentifier);if(!t)return null;var n=(t.accountID||"").toString()||null,i=(t.agentID||"").toString()||null,o=(t.trustKey||"").toString()||null;if(!n||!i)return null;var a=(0,r.ZF)(),s=(0,r.el)(),c=Date.now(),u={spanId:a,traceId:s,timestamp:c};return(e.sameOrigin||this.isAllowedOrigin(e)&&this.useTraceContextHeadersForCors())&&(u.traceContextParentHeader=this.generateTraceContextParentHeader(a,s),u.traceContextStateHeader=this.generateTraceContextStateHeader(a,c,n,i,o)),(e.sameOrigin&&!this.excludeNewrelicHeader()||!e.sameOrigin&&this.isAllowedOrigin(e)&&this.useNewrelicHeaderForCors())&&(u.newrelicHeader=this.generateTraceHeader(a,s,c,n,i,o)),u}generateTraceContextParentHeader(e,t){return"00-"+t+"-"+e+"-01"}generateTraceContextStateHeader(e,t,r,n,i){return i+"@nr=0-1-"+r+"-"+n+"-"+e+"----"+t}generateTraceHeader(e,t,r,n,i,o){if(!("function"==typeof p.gm?.btoa))return null;var a={v:[0,1],d:{ty:"Browser",ac:n,ap:i,id:e,tr:t,ti:r}};return o&&n!==o&&(a.d.tk=o),btoa((0,j.A)(a))}shouldGenerateTrace(e){return this.isDtEnabled()&&this.isAllowedOrigin(e)}isAllowedOrigin(e){var t=!1,r={};if((0,s.gD)(this.agentIdentifier,"distributed_tracing")&&(r=(0,s.D0)(this.agentIdentifier).distributed_tracing),e.sameOrigin)t=!0;else if(r.allowed_origins instanceof Array)for(var n=0;n<r.allowed_origins.length;n++){var i=(0,ie.D)(r.allowed_origins[n]);if(e.hostname===i.hostname&&e.protocol===i.protocol&&e.port===i.port){t=!0;break}}return t}isDtEnabled(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!!e.enabled}excludeNewrelicHeader(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!!e.exclude_newrelic_header}useNewrelicHeaderForCors(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!1!==e.cors_use_newrelic_header}useTraceContextHeadersForCors(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!!e.cors_use_tracecontext_headers}}var se=i(9300),ce=i(7295),ue=["load","error","abort","timeout"],de=ue.length,le=(0,R.dV)().o.REQ,fe=(0,R.dV)().o.XHR;class he extends b{static featureName=se.T;constructor(e,t=!0){super(e,se.T,t),this.dt=new ae(e.agentIdentifier),this.handler=(e,t,r,n)=>(0,x.p)(e,t,r,n,this.ee);try{const e={xmlhttprequest:"xhr",fetch:"fetch",beacon:"beacon"};p.gm?.performance?.getEntriesByType("resource").forEach((t=>{if(t.initiatorType in e&&0!==t.responseStatus){const r={status:t.responseStatus},n={rxSize:t.transferSize,duration:Math.floor(t.duration),cbTime:0};pe(r,t.name),this.handler("xhr",[r,n,t.startTime,t.responseEnd,e[t.initiatorType]],void 0,a.K7.ajax)}}))}catch(e){}ne(this.ee),Z(this.ee),function(e,t,r,n){function i(e){var t=this;t.totalCbs=0,t.called=0,t.cbTime=0,t.end=R,t.ended=!1,t.xhrGuids={},t.lastSize=null,t.loadCaptureCalled=!1,t.params=this.params||{},t.metrics=this.metrics||{},e.addEventListener("load",(function(r){T(t,e)}),(0,A.jT)(!1)),p.lR||e.addEventListener("progress",(function(e){t.lastSize=e.loaded}),(0,A.jT)(!1))}function o(e){this.params={method:e[0]},pe(this,e[1]),this.metrics={}}function s(t,r){e.loader_config.xpid&&this.sameOrigin&&r.setRequestHeader("X-NewRelic-ID",e.loader_config.xpid);var i=n.generateTracePayload(this.parsedOrigin);if(i){var o=!1;i.newrelicHeader&&(r.setRequestHeader("newrelic",i.newrelicHeader),o=!0),i.traceContextParentHeader&&(r.setRequestHeader("traceparent",i.traceContextParentHeader),i.traceContextStateHeader&&r.setRequestHeader("tracestate",i.traceContextStateHeader),o=!0),o&&(this.dt=i)}}function c(e,r){var n=this.metrics,i=e[0],o=this;if(n&&i){var a=G(i);a&&(n.txSize=a)}this.startTime=(0,S.t)(),this.body=i,this.listener=function(e){try{"abort"!==e.type||o.loadCaptureCalled||(o.params.aborted=!0),("load"!==e.type||o.called===o.totalCbs&&(o.onloadCalled||"function"!=typeof r.onload)&&"function"==typeof o.end)&&o.end(r)}catch(e){try{t.emit("internal-error",[e])}catch(e){}}};for(var s=0;s<de;s++)r.addEventListener(ue[s],this.listener,(0,A.jT)(!1))}function u(e,t,r){this.cbTime+=e,t?this.onloadCalled=!0:this.called+=1,this.called!==this.totalCbs||!this.onloadCalled&&"function"==typeof r.onload||"function"!=typeof this.end||this.end(r)}function d(e,t){var r=""+V(e)+!!t;this.xhrGuids&&!this.xhrGuids[r]&&(this.xhrGuids[r]=!0,this.totalCbs+=1)}function l(e,t){var r=""+V(e)+!!t;this.xhrGuids&&this.xhrGuids[r]&&(delete this.xhrGuids[r],this.totalCbs-=1)}function f(){this.endTime=(0,S.t)()}function h(e,r){r instanceof fe&&"load"===e[0]&&t.emit("xhr-load-added",[e[1],e[2]],r)}function g(e,r){r instanceof fe&&"load"===e[0]&&t.emit("xhr-load-removed",[e[1],e[2]],r)}function m(e,t,r){t instanceof fe&&("onload"===r&&(this.onload=!0),("load"===(e[0]&&e[0].type)||this.onload)&&(this.xhrCbStart=(0,S.t)()))}function v(e,r){this.xhrCbStart&&t.emit("xhr-cb-time",[(0,S.t)()-this.xhrCbStart,this.onload,r],r)}function b(e){var t,r=e[1]||{};if("string"==typeof e[0]?0===(t=e[0]).length&&p.RI&&(t=""+p.gm.location.href):e[0]&&e[0].url?t=e[0].url:p.gm?.URL&&e[0]&&e[0]instanceof URL?t=e[0].href:"function"==typeof e[0].toString&&(t=e[0].toString()),"string"==typeof t&&0!==t.length){t&&(this.parsedOrigin=(0,ie.D)(t),this.sameOrigin=this.parsedOrigin.sameOrigin);var i=n.generateTracePayload(this.parsedOrigin);if(i&&(i.newrelicHeader||i.traceContextParentHeader))if(e[0]&&e[0].headers)s(e[0].headers,i)&&(this.dt=i);else{var o={};for(var a in r)o[a]=r[a];o.headers=new Headers(r.headers||{}),s(o.headers,i)&&(this.dt=i),e.length>1?e[1]=o:e.push(o)}}function s(e,t){var r=!1;return t.newrelicHeader&&(e.set("newrelic",t.newrelicHeader),r=!0),t.traceContextParentHeader&&(e.set("traceparent",t.traceContextParentHeader),t.traceContextStateHeader&&e.set("tracestate",t.traceContextStateHeader),r=!0),r}}function y(e,t){this.params={},this.metrics={},this.startTime=(0,S.t)(),this.dt=t,e.length>=1&&(this.target=e[0]),e.length>=2&&(this.opts=e[1]);var r,n=this.opts||{},i=this.target;"string"==typeof i?r=i:"object"==typeof i&&i instanceof le?r=i.url:p.gm?.URL&&"object"==typeof i&&i instanceof URL&&(r=i.href),pe(this,r);var o=(""+(i&&i instanceof le&&i.method||n.method||"GET")).toUpperCase();this.params.method=o,this.body=n.body,this.txSize=G(n.body)||0}function w(e,t){if(this.endTime=(0,S.t)(),this.params||(this.params={}),(0,ce.iW)(this.params))return;let n;this.params.status=t?t.status:0,"string"==typeof this.rxSize&&this.rxSize.length>0&&(n=+this.rxSize);const i={txSize:this.txSize,rxSize:n,duration:(0,S.t)()-this.startTime};r("xhr",[this.params,i,this.startTime,this.endTime,"fetch"],this,a.K7.ajax)}function R(e){const t=this.params,n=this.metrics;if(!this.ended){this.ended=!0;for(let t=0;t<de;t++)e.removeEventListener(ue[t],this.listener,!1);t.aborted||(0,ce.iW)(t)||(n.duration=(0,S.t)()-this.startTime,this.loadCazptureCalled||4!==e.readyState?null==t.status&&(t.status=0):T(this,e),n.cbTime=this.cbTime,r("xhr",[t,n,this.startTime,this.endTime,"xhr"],this,a.K7.ajax))}}function T(e,r){e.params.status=r.status;var n=function(e,t){var r=e.responseType;return"json"===r&&null!==t?t:"arraybuffer"===r||"blob"===r||"json"===r?G(e.response):"text"===r||""===r||void 0===r?G(e.responseText):void 0}(r,e.lastSize);if(n&&(e.metrics.rxSize=n),e.sameOrigin){var i=r.getResponseHeader("X-NewRelic-App-Data");i&&((0,x.p)(O.rs,["Ajax/CrossApplicationTracing/Header/Seen"],void 0,a.K7.metrics,t),e.params.cat=i.split(", ").pop())}e.loadCaptureCalled=!0}t.on("new-xhr",i),t.on("open-xhr-start",o),t.on("open-xhr-end",s),t.on("send-xhr-start",c),t.on("xhr-cb-time",u),t.on("xhr-load-added",d),t.on("xhr-load-removed",l),t.on("xhr-resolved",f),t.on("addEventListener-end",h),t.on("removeEventListener-end",g),t.on("fn-end",v),t.on("fetch-before-start",b),t.on("fetch-start",y),t.on("fn-start",m),t.on("fetch-done",w)}(e,this.ee,this.handler,this.dt),this.importAggregator(e)}}function pe(e,t){var r=(0,ie.D)(t),n=e.params||e;n.hostname=r.hostname,n.port=r.port,n.protocol=r.protocol,n.host=r.hostname+":"+r.port,n.pathname=r.pathname,e.parsedOrigin=r,e.sameOrigin=r.sameOrigin}const ge={},me=["pushState","replaceState"];function ve(e){const t=function(e){return(e||B.ee).get("history")}(e);return!p.RI||ge[t.debugId]++||(ge[t.debugId]=1,(0,W.YM)(t).inPlace(window.history,me,"-")),t}var be=i(3738);const{He:ye,bD:we,d3:Re,Kp:xe,TZ:Te,Lc:Ae,uP:Ee,Rz:Se}=be;class Ne extends b{static featureName=Te;constructor(e,t=!0){super(e,Te,t);if(!(0,m.V)(this.agentIdentifier))return void this.deregisterDrain();const r=this.ee;let n;ve(r),this.eventsEE=(0,F.u)(r),this.eventsEE.on(Ee,(function(e,t){this.bstStart=(0,S.t)()})),this.eventsEE.on(Ae,(function(e,t){(0,x.p)("bst",[e[0],t,this.bstStart,(0,S.t)()],void 0,a.K7.sessionTrace,r)})),r.on(Se+Re,(function(e){this.time=(0,S.t)(),this.startPath=location.pathname+location.hash})),r.on(Se+xe,(function(e){(0,x.p)("bstHist",[location.pathname+location.hash,this.startPath,this.time],void 0,a.K7.sessionTrace,r)}));try{n=new PerformanceObserver((e=>{const t=e.getEntries();(0,x.p)(ye,[t],void 0,a.K7.sessionTrace,r)})),n.observe({type:we,buffered:!0})}catch(e){}this.importAggregator(e,{resourceObserver:n})}}var Oe=i(2614);class _e extends b{static featureName=t.TZ;#i;#o;constructor(e,r=!0){let n;super(e,t.TZ,r),this.replayRunning=!1,this.#o=e;try{n=JSON.parse(localStorage.getItem("".concat(Oe.H3,"_").concat(Oe.uh)))}catch(e){}(0,g.SR)(e.agentIdentifier)&&this.ee.on(t.G4.RECORD,(()=>this.#a())),this.#s(n)?(this.#i=n?.sessionReplayMode,this.#c()):this.importAggregator(e),this.ee.on("err",(e=>{this.replayRunning&&(this.errorNoticed=!0,(0,x.p)(t.G4.ERROR_DURING_REPLAY,[e],void 0,this.featureName,this.ee))})),this.ee.on(t.G4.REPLAY_RUNNING,(e=>{this.replayRunning=e}))}#s(e){return e&&(e.sessionReplayMode===Oe.g.FULL||e.sessionReplayMode===Oe.g.ERROR)||(0,g.Aw)(this.agentIdentifier)}#u=!1;async#c(e){if(!this.#u){this.#u=!0;try{const{Recorder:t}=await Promise.all([i.e(478),i.e(249)]).then(i.bind(i,8589));this.recorder??=new t({mode:this.#i,agentIdentifier:this.agentIdentifier,trigger:e,ee:this.ee}),this.recorder.startRecording(),this.abortHandler=this.recorder.stopRecording}catch(e){}this.importAggregator(this.#o,{recorder:this.recorder,errorNoticed:this.errorNoticed})}}#a(){this.featAggregate?this.featAggregate.mode!==Oe.g.FULL&&this.featAggregate.initializeRecording(Oe.g.FULL,!0):(this.#i=Oe.g.FULL,this.#c(t.Qb.API),this.recorder&&this.recorder.parent.mode!==Oe.g.FULL&&(this.recorder.parent.mode=Oe.g.FULL,this.recorder.stopRecording(),this.recorder.startRecording(),this.abortHandler=this.recorder.stopRecording))}}var Ie=i(3962);class je extends b{static featureName=Ie.TZ;constructor(e,t=!0){if(super(e,Ie.TZ,t),!p.RI||!(0,R.dV)().o.MO)return;const r=ve(this.ee);Ie.tC.forEach((e=>{(0,A.sp)(e,(e=>{a(e)}),!0)}));const n=()=>(0,x.p)("newURL",[(0,S.t)(),""+window.location],void 0,this.featureName,this.ee);r.on("pushState-end",n),r.on("replaceState-end",n);try{this.removeOnAbort=new AbortController}catch(e){}(0,A.sp)("popstate",(e=>(0,x.p)("newURL",[e.timeStamp,""+window.location],void 0,this.featureName,this.ee)),!0,this.removeOnAbort?.signal);let i=!1;const o=new((0,R.dV)().o.MO)(((e,t)=>{i||(i=!0,requestAnimationFrame((()=>{(0,x.p)("newDom",[(0,S.t)()],void 0,this.featureName,this.ee),i=!1})))})),a=(0,v.s)((e=>{(0,x.p)("newUIEvent",[e],void 0,this.featureName,this.ee),o.observe(document.body,{attributes:!0,childList:!0,subtree:!0,characterData:!0})}),100,{leading:!0});this.abortHandler=function(){this.removeOnAbort?.abort(),o.disconnect(),this.abortHandler=void 0},this.importAggregator(e,{domObserver:o})}}var Pe=i(7378);const Ce={},ke=["appendChild","insertBefore","replaceChild"];function Le(e){const t=function(e){return(e||B.ee).get("jsonp")}(e);if(!p.RI||Ce[t.debugId])return t;Ce[t.debugId]=!0;var r=(0,W.YM)(t),n=/[?&](?:callback|cb)=([^&#]+)/,i=/(.*)\.([^.]+)/,o=/^(\w+)(\.|$)(.*)$/;function a(e,t){if(!e)return t;const r=e.match(o),n=r[1];return a(r[3],t[n])}return r.inPlace(Node.prototype,ke,"dom-"),t.on("dom-start",(function(e){!function(e){if(!e||"string"!=typeof e.nodeName||"script"!==e.nodeName.toLowerCase())return;if("function"!=typeof e.addEventListener)return;var o=(s=e.src,c=s.match(n),c?c[1]:null);var s,c;if(!o)return;var u=function(e){var t=e.match(i);if(t&&t.length>=3)return{key:t[2],parent:a(t[1],window)};return{key:e,parent:window}}(o);if("function"!=typeof u.parent[u.key])return;var d={};function l(){t.emit("jsonp-end",[],d),e.removeEventListener("load",l,(0,A.jT)(!1)),e.removeEventListener("error",f,(0,A.jT)(!1))}function f(){t.emit("jsonp-error",[],d),t.emit("jsonp-end",[],d),e.removeEventListener("load",l,(0,A.jT)(!1)),e.removeEventListener("error",f,(0,A.jT)(!1))}r.inPlace(u.parent,[u.key],"cb-",d),e.addEventListener("load",l,(0,A.jT)(!1)),e.addEventListener("error",f,(0,A.jT)(!1)),t.emit("new-jsonp",[e.src],d)}(e[0])})),t}const He={};function De(e){const t=function(e){return(e||B.ee).get("promise")}(e);if(He[t.debugId])return t;He[t.debugId]=!0;var r=t.context,n=(0,W.YM)(t),i=p.gm.Promise;return i&&function(){function e(r){var o=t.context(),a=n(r,"executor-",o,null,!1);const s=Reflect.construct(i,[a],e);return t.context(s).getCtx=function(){return o},s}p.gm.Promise=e,Object.defineProperty(e,"name",{value:"Promise"}),e.toString=function(){return i.toString()},Object.setPrototypeOf(e,i),["all","race"].forEach((function(r){const n=i[r];e[r]=function(e){let i=!1;[...e||[]].forEach((e=>{this.resolve(e).then(a("all"===r),a(!1))}));const o=n.apply(this,arguments);return o;function a(e){return function(){t.emit("propagate",[null,!i],o,!1,!1),i=i||!e}}}})),["resolve","reject"].forEach((function(r){const n=i[r];e[r]=function(e){const r=n.apply(this,arguments);return e!==r&&t.emit("propagate",[e,!0],r,!1,!1),r}})),e.prototype=i.prototype;const o=i.prototype.then;i.prototype.then=function(...e){var i=this,a=r(i);a.promise=i,e[0]=n(e[0],"cb-",a,null,!1),e[1]=n(e[1],"cb-",a,null,!1);const s=o.apply(this,e);return a.nextPromise=s,t.emit("propagate",[i,!0],s,!1,!1),s},i.prototype.then[W.Jt]=o,t.on("executor-start",(function(e){e[0]=n(e[0],"resolve-",this,null,!1),e[1]=n(e[1],"resolve-",this,null,!1)})),t.on("executor-err",(function(e,t,r){e[1](r)})),t.on("cb-end",(function(e,r,n){t.emit("propagate",[n,!0],this.nextPromise,!1,!1)})),t.on("propagate",(function(e,r,n){this.getCtx&&!r||(this.getCtx=function(){if(e instanceof Promise)var r=t.context(e);return r&&r.getCtx?r.getCtx():this})}))}(),t}const Me={},Ke="setTimeout",Ue="setInterval",Ve="clearTimeout",Ge="-start",Fe=[Ke,"setImmediate",Ue,Ve,"clearImmediate"];function Be(e){const t=function(e){return(e||B.ee).get("timer")}(e);if(Me[t.debugId]++)return t;Me[t.debugId]=1;var r=(0,W.YM)(t);return r.inPlace(p.gm,Fe.slice(0,2),Ke+"-"),r.inPlace(p.gm,Fe.slice(2,3),Ue+"-"),r.inPlace(p.gm,Fe.slice(3),Ve+"-"),t.on(Ue+Ge,(function(e,t,n){e[0]=r(e[0],"fn-",null,n)})),t.on(Ke+Ge,(function(e,t,n){this.method=n,this.timerDuration=isNaN(e[1])?0:+e[1],e[0]=r(e[0],"fn-",this,n)})),t}const We={};function ze(e){const t=function(e){return(e||B.ee).get("mutation")}(e);if(!p.RI||We[t.debugId])return t;We[t.debugId]=!0;var r=(0,W.YM)(t),n=p.gm.MutationObserver;return n&&(window.MutationObserver=function(e){return this instanceof n?new n(r(e,"fn-")):n.apply(this,arguments)},MutationObserver.prototype=n.prototype),t}const{TZ:qe,d3:Ze,Kp:Ye,$p:Xe,wW:Je,e5:Qe,tH:$e,uP:et,rw:tt,Lc:rt}=Pe;class nt extends b{static featureName=qe;constructor(e,t=!0){if(super(e,qe,t),!p.RI)return;try{this.removeOnAbort=new AbortController}catch(e){}let r,n=0;const i=this.ee.get("tracer"),o=Le(this.ee),a=De(this.ee),s=Be(this.ee),c=Z(this.ee),u=this.ee.get("events"),d=ne(this.ee),l=ve(this.ee),f=ze(this.ee);function h(e,t){l.emit("newURL",[""+window.location,t])}function g(){n++,r=window.location.hash,this[et]=(0,S.t)()}function m(){n--,window.location.hash!==r&&h(0,!0);var e=(0,S.t)();this[Qe]=~~this[Qe]+e-this[et],this[rt]=e}function v(e,t){e.on(t,(function(){this[t]=(0,S.t)()}))}this.ee.on(et,g),a.on(tt,g),o.on(tt,g),this.ee.on(rt,m),a.on(Je,m),o.on(Je,m),this.ee.on("fn-err",((...t)=>{t[2]?.__newrelic?.[e.agentIdentifier]||(0,x.p)("function-err",[...t],void 0,this.featureName,this.ee)})),this.ee.buffer([et,rt,"xhr-resolved"],this.featureName),u.buffer([et],this.featureName),s.buffer(["setTimeout"+Ye,"clearTimeout"+Ze,et],this.featureName),c.buffer([et,"new-xhr","send-xhr"+Ze],this.featureName),d.buffer([$e+Ze,$e+"-done",$e+Xe+Ze,$e+Xe+Ye],this.featureName),l.buffer(["newURL"],this.featureName),f.buffer([et],this.featureName),a.buffer(["propagate",tt,Je,"executor-err","resolve"+Ze],this.featureName),i.buffer([et,"no-"+et],this.featureName),o.buffer(["new-jsonp","cb-start","jsonp-error","jsonp-end"],this.featureName),v(d,$e+Ze),v(d,$e+"-done"),v(o,"new-jsonp"),v(o,"jsonp-end"),v(o,"cb-start"),l.on("pushState-end",h),l.on("replaceState-end",h),window.addEventListener("hashchange",h,(0,A.jT)(!0,this.removeOnAbort?.signal)),window.addEventListener("load",h,(0,A.jT)(!0,this.removeOnAbort?.signal)),window.addEventListener("popstate",(function(){h(0,n>1)}),(0,A.jT)(!0,this.removeOnAbort?.signal)),this.abortHandler=this.#n,this.importAggregator(e)}#n(){this.removeOnAbort?.abort(),this.abortHandler=void 0}}var it=i(3333);class ot extends b{static featureName=it.TZ;constructor(e,t=!0){super(e,it.TZ,t);const r=[e.init.page_action.enabled,e.init.performance.capture_marks,e.init.performance.capture_measures,e.init.user_actions.enabled];p.RI&&e.init.user_actions.enabled&&(it.Zp.forEach((e=>(0,A.sp)(e,(e=>(0,x.p)("ua",[e],void 0,this.featureName,this.ee)),!0))),it.qN.forEach((e=>(0,A.sp)(e,(e=>(0,x.p)("ua",[e],void 0,this.featureName,this.ee)))))),r.some((e=>e))?this.importAggregator(e):this.deregisterDrain()}}var at=i(993),st=i(3785);class ct extends b{static featureName=at.TZ;constructor(e,t=!0){super(e,at.TZ,t);const r=this.ee;this.ee.on("wrap-logger-end",(function([e]){const{level:t,customAttributes:n}=this;(0,st.R)(r,e,n,t)})),this.importAggregator(e)}}new class extends o{constructor(t,r){super(r),p.gm?(this.features={},(0,R.bQ)(this.agentIdentifier,this),this.desiredFeatures=new Set(t.features||[]),this.desiredFeatures.add(w),this.runSoftNavOverSpa=[...this.desiredFeatures].some((e=>e.featureName===a.K7.softNav)),(0,d.j)(this,t,t.loaderType||"agent"),this.run()):(0,e.R)(21)}get config(){return{info:this.info,init:this.init,loader_config:this.loader_config,runtime:this.runtime}}run(){try{const t=u(this.agentIdentifier),r=[...this.desiredFeatures];r.sort(((e,t)=>a.P3[e.featureName]-a.P3[t.featureName])),r.forEach((r=>{if(!t[r.featureName]&&r.featureName!==a.K7.pageViewEvent)return;if(this.runSoftNavOverSpa&&r.featureName===a.K7.spa)return;if(!this.runSoftNavOverSpa&&r.featureName===a.K7.softNav)return;const n=function(e){switch(e){case a.K7.ajax:return[a.K7.jserrors];case a.K7.sessionTrace:return[a.K7.ajax,a.K7.pageViewEvent];case a.K7.sessionReplay:return[a.K7.sessionTrace];case a.K7.pageViewTiming:return[a.K7.pageViewEvent];default:return[]}}(r.featureName).filter((e=>!(e in this.features)));n.length>0&&(0,e.R)(36,{targetFeature:r.featureName,missingDependencies:n}),this.features[r.featureName]=new r(this)}))}catch(t){(0,e.R)(22,t);for(const e in this.features)this.features[e].abortHandler?.();const r=(0,R.Zm)();delete r.initializedAgents[this.agentIdentifier]?.api,delete r.initializedAgents[this.agentIdentifier]?.features,delete this.sharedAggregator;return r.ee.get(this.agentIdentifier).abort(),!1}}}({features:[he,w,N,Ne,_e,_,D,ot,ct,je,nt],loaderType:"spa"})})()})();</script><meta charset="UTF-8"/><meta name="robots" content="index, follow"/><meta name="DC.Creator" content="Hyun Uk Kim"/><meta name="DC.Creator" content="Pep Charusanti"/><meta name="DC.Creator" content="Sang Yup Lee"/><meta name="DC.Creator" content="Tilmann Weber"/><meta name="DC.title" content="Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites "/><meta name="DC.publisher" content="Royal Society of Chemistry"/><meta name="DC.Date" content="2016/07/27"/><meta name="DC.Identifier" scheme="doi" content="10.1039/C6NP00019C"/><meta name="DC.Language" content="en"/><meta name="citation_title" content="Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites "/><meta name="citation_author" content="Hyun Uk Kim"/><meta name="citation_author" content="Pep Charusanti"/><meta name="citation_author" content="Sang Yup Lee"/><meta name="citation_author" content="Tilmann Weber"/><meta name="citation_online_date" content="2016/04/13"/><meta name="citation_date" content="2016"/><meta name="citation_journal_title" content="Natural Product Reports"/><meta name="citation_volume" content="33"/><meta name="citation_issue" content="8"/><meta name="citation_firstpage" content="933"/><meta name="citation_lastpage" content="941"/><meta name="citation_doi" content="10.1039/C6NP00019C"/><meta name="citation_pdf_url" content="https://pubs.rsc.org/en/content/articlepdf/2016/np/c6np00019c"/><meta name="citation_abstract_html_url" content="https://pubs.rsc.org/en/content/articlelanding/2016/np/c6np00019c"/><meta name="citation_fulltext_html_url" content="https://pubs.rsc.org/en/content/articlehtml/2016/np/c6np00019c"/><link rel="shortcut icon" href=""/><link type="text/css" rel="stylesheet" href="/content/stylesheets/rschtml2.css?ver=6_2_3"/><link href="https://www.rsc-cdn.org/oxygen/assets/webfonts/fonts.min.css" rel="stylesheet" type="text/css"/><link type="text/css" rel="stylesheet" href="/content/stylesheets/pubs-ui.min.css"/><meta name="viewport" content="width=device-width, initial-scale=1"/><script type="text/javascript" src="/content/scripts/JQueryPlugins.min.js"> </script><script type="text/javascript" src="/content/scripts/GetAnchorText.js"> </script><script type="text/javascript"> $(function() { $("table.tgroup tfoot th").attr("colspan", "100"); $("table.tgroup.rtable").each( function (idx, el) { var tw = $(this).width(); $(this).parent().css("min-width", tw+"px"); }); }); </script><!--6_2_3--></head><body class="oxy-ui pubs-ui ahtml-page"><!--Google Tag Manager (noscript)--><noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5HVSFVCN" height="0" width="0" style="display:none;visibility:hidden"> </iframe></noscript><!--End Google Tag Manager (noscript)--><div class="viewport autopad"><div class="pnl pnl--drop autopad"><span id="top"/><div id="wrapper"><div class="left_head"><a class="simple" href="/"><img class="rsc-logo" border="0" src="/content/NewImages/royal-society-of-chemistry-logo.png" alt="Royal Society of Chemistry"/></a><br/><span class="btnContainer"><a class="btn btn--tiny btn--primary" target="_blank" title="Link to PDF version" href="/en/content/articlepdf/2016/np/c6np00019c">View PDF Version</a></span><span class="btnContainer"><a class="btn btn--tiny btn--nobg" title="Link to previous article (id:c6np00018e)" href="/en/content/articlehtml/2016/np/c6np00018e" target="_BLANK">Previous Article</a></span><span class="btnContainer"><a class="btn btn--tiny btn--nobg" title="Link to next article (id:c6np00024j)" href="/en/content/articlehtml/2016/np/c6np00024j" target="_BLANK">Next Article</a></span></div><div class="right_head"><div id="crossmark_container"><div id="crossmark-content"><a id="open-crossmark" href="#" data-target="crossmark"><img style="max-width:100px" id="crossmark-logo" src="https://crossmark-cdn.crossref.org/widget/v2.0/logos/CROSSMARK_Color_square.svg" alt="Check for updates"/></a><script src="https://crossmark-cdn.crossref.org/widget/v2.0/widget.js"> </script></div></div><br/><span class="oa"><img src="/content/newimages/open_access_blue.png" alt=""/> Open Access Article<br/><img src="/content/newimages/CCBY.svg" alt=""/> This Open Access Article is licensed under a <br/><a rel="license" href="http://creativecommons.org/licenses/by/3.0/">Creative Commons Attribution 3.0 Unported Licence</a></span></div><div class="article_info"> DOI: <a target="_blank" title="Link to landing page via DOI" href="https://doi.org/10.1039/C6NP00019C">10.1039/C6NP00019C</a> (Highlight) <span class="italic"><a title="Link to journal home page" href="https://doi.org/10.1039/1460-4752/1984">Nat. Prod. Rep.</a></span>, 2016, <strong>33</strong>, 933-941</div><h1 id="sect165"><span class="title_heading">Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites<a title="Select to navigate to footnote" href="#fn1">†</a></span></h1><p class="header_text"> <span class="bold"> Hyun Uk Kim </span>*<sup><span class="sup_ref italic">ab</span></sup>, <span class="bold"> Pep Charusanti </span><sup><span class="sup_ref italic">b</span></sup>, <span class="bold"> Sang Yup Lee </span><sup><span class="sup_ref italic">ab</span></sup><span class="bold"> and </span> <span class="bold"> Tilmann Weber </span>*<sup><span class="sup_ref italic">b</span></sup> <br/><a id="affa"><sup><span class="sup_ref italic">a</span></sup></a><span class="italic">BioInformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. E-mail: <a href="mailto:ehukim@kaist.ac.kr">ehukim@kaist.ac.kr</a></span> <br/><a id="affb"><sup><span class="sup_ref italic">b</span></sup></a><span class="italic">The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark. E-mail: <a href="mailto:tiwe@biosustain.dtu.dk">tiwe@biosustain.dtu.dk</a></span> </p><div id="art-admin"><span class="italic bold">Received 5th February 2016 </span></div><p class="bold italic">First published on 13th April 2016</p><hr/><div class="abstract"><h2>Abstract</h2><p>Covering: 2012 to 2016</p><p>Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for the optimal production of various prokaryotic secondary metabolites: native <span class="italic">versus</span> heterologous hosts (<span class="italic">e.g.</span>, <span class="italic">Escherichia coli</span>) and rational <span class="italic">versus</span> random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites. The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production.</p></div><hr/><table><tr><td class="biogPlate"><a href="/image/article/2016/NP/c6np00019c/c6np00019c-p1_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, "_blank", "toolbar=1,scrollbars=yes,resizable=1"); return false;"><img alt="image file: c6np00019c-p1.tif" src="/image/article/2016/NP/c6np00019c/c6np00019c-p1.gif"/></a><p><span class="graphic_title">Hyun Uk Kim</span></p></td><td><i><p>Dr Hyun Uk Kim is currently Research Fellow at Korea Advanced Institute of Science and Technology (KAIST), South Korea, and visiting Senior Researcher at the Novo Nordisk Foundation Center for Biosustainability at Technical University of Denmark (DTU). His research field lies in systems biology, biochemical and metabolic engineering, and drug targeting and discovery. His current studies are focused on development of systems approaches to produce and characterize natural products. He earned his Ph.D. at KAIST under the supervision of Prof. Sang Yup Lee.</p></i></td></tr></table><table><tr><td class="biogPlate"><a href="/image/article/2016/NP/c6np00019c/c6np00019c-p2_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, "_blank", "toolbar=1,scrollbars=yes,resizable=1"); return false;"><img alt="image file: c6np00019c-p2.tif" src="/image/article/2016/NP/c6np00019c/c6np00019c-p2.gif"/></a><p><span class="graphic_title">Pep Charusanti</span></p></td><td><i><p>Dr Pep Charusanti has dual affiliations with the University of California, San Diego, and the Novo Nordisk Foundation Center for Biosustainability at the Technical University of Denmark. His primary research interest is natural products discovery, especially novel secondary metabolites from actinomycetes that show antibacterial properties. A secondary interest is the application of mathematical models from systems biology to different topics, for example to guide the discovery of new enzyme targets for antibiotic development. He is co-inventor on a U.S. patent and has a strong interest in entrepreneurship.</p></i></td></tr></table><table><tr><td class="biogPlate"><a href="/image/article/2016/NP/c6np00019c/c6np00019c-p3_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, "_blank", "toolbar=1,scrollbars=yes,resizable=1"); return false;"><img alt="image file: c6np00019c-p3.tif" src="/image/article/2016/NP/c6np00019c/c6np00019c-p3.gif"/></a><p><span class="graphic_title">Sang Yup Lee</span></p></td><td><i><p>Prof. Sang Yup Lee is Distinguished Professor at KAIST, and also Scientific Director at the Novo Nordisk Foundation Center for Biosustainability, DTU. He has published more than 500 journal papers, 60 books/book chapters, and 500 patents, largely in the field of systems metabolic engineering. He has received numerous awards: recently, Order of Service Merit-Red Stripes from President of Korea and The Ho-Am Prize. He is Fellow of several academic societies (<span class="italic">e.g.</span>, Association for the Advancement of Science), Foreign Associate of National Academy of Engineering USA, Editor-in-Chief of Biotechnology Journal, and Associate Editor and board member of numerous journals.</p></i></td></tr></table><table><tr><td class="biogPlate"><a href="/image/article/2016/NP/c6np00019c/c6np00019c-p4_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, "_blank", "toolbar=1,scrollbars=yes,resizable=1"); return false;"><img alt="image file: c6np00019c-p4.tif" src="/image/article/2016/NP/c6np00019c/c6np00019c-p4.gif"/></a><p><span class="graphic_title">Tilmann Weber</span></p></td><td><i><p>Dr Tilmann Weber is Co-Principal Investigator of the New Bioactive Compound section at the Novo Nordisk Foundation Center for Biosustainability of the Technical University of Denmark. He is interested in integrating bioinformatics, genome mining, and systems biology approaches into Natural Products discovery and characterization, and thus bridging the <span class="italic">in silico</span> and <span class="italic">in vivo</span> world. He received his Ph.D. (supervisor Prof. Dr Wolfgang Wohlleben) and his habilitation from the Eberhard Karls University Tübingen, Germany.</p></i></td></tr></table><hr/> <h2 id="sect242"><span class="a_heading">1 Introduction</span></h2> <span>Microorganisms serve as an important source of secondary metabolites that have various medicinal and industrial uses.<a title="Select to navigate to references" href="#cit1"><sup><span class="sup_ref">1</span></sup></a> According to Newman and Cragg,<a title="Select to navigate to references" href="#cit2"><sup><span class="sup_ref">2</span></sup></a> who investigated the source of new drugs within a 30 year period from 1981–2010, 69% and 75% of newly introduced anti-infective and anti-cancer drugs, respectively, were natural products or their derivatives; this indicates the importance of natural products and the huge potential for the discovery of novel drug leads.<a title="Select to navigate to reference" href="#cit3"><sup><span class="sup_ref">3,4</span></sup></a> Bacteria of the family <span class="italic">Actinomycetaceae</span>, in particular, are prolific producers of secondary metabolites. These bacteria are the biological source of many drugs that, for example, are used in the treatment of infections (<span class="italic">e.g.</span>, streptomycin and erythromycin), as immunosuppressants (<span class="italic">e.g.</span>, rapamycin), and as anthelmintics (<span class="italic">e.g.</span>, ivermectins). In addition, many other genera, such as myxobacteria, bacilli, and many marine bacteria, have the capability to produce complex bioactive secondary metabolites. Bacteria, mainly of the <span class="italic">Streptomyces</span> genus, appear to be the fourth largest source of FDA-approved drugs at 16% overall.<a title="Select to navigate to references" href="#cit5"><sup><span class="sup_ref">5</span></sup></a> This amount is greater than the number of drugs derived from fungi (12% overall).</span> <p class="otherpara">In most described cases, biosynthetic pathways for secondary metabolites are organized as biosynthetic gene clusters (BGCs), which means that genes encoding core biosynthetic enzymes (<span class="italic">e.g.</span>, polyketide synthase and non-ribosomal peptide synthetase), genes encoding tailoring enzymes, genes encoding for specific precursor biosynthesis pathways, cluster-situated regulators and often genes encoding transporters or resistance factors are physically clustered on the chromosome. Thus, all required genes for the production of a secondary metabolite are encoded within such BGCs (<a title="Select to navigate to figure" href="#imgfig1">Fig. 1</a>).<a title="Select to navigate to references" href="#cit6"><sup><span class="sup_ref">6</span></sup></a></p> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgfig1"><a href="/image/article/2016/NP/c6np00019c/c6np00019c-f1_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, "_blank", "toolbar=1,scrollbars=yes,resizable=1"); return false;"><img alt="image file: c6np00019c-f1.tif" src="/image/article/2016/NP/c6np00019c/c6np00019c-f1.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Fig. 1 </b> <span id="fig1"><span class="graphic_title">Three major stages that lead to the optimized production of secondary metabolites from secondary metabolite-producing microorganism. In the context of rational engineering, each indicated component (<span class="italic">e.g.</span>, metabolite precursors, regulations, medium design, <span class="italic">etc.</span>) can be engineering targets. Five colored circles indicate different systems biology tools discussed, and are positioned near each component name where most applicable. Be noted, however, that applications of the shown systems biology tools are not necessarily confined to the indicated components. The word “Signals” in the figure can be any environmental conditions (<span class="italic">e.g.</span>, aeration, co-culturing with another microorganism and temperature) or chemical elicitors (<span class="italic">e.g.</span>, antibiotics at sub-lethal concentration and quorum sensing-dependent signaling molecules) that can influence the expression of secondary metabolite biosynthetic gene clusters.<a title="Select to navigate to references" href="#cit75"><sup><span class="sup_ref">75</span></sup></a></span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">Recently, the discipline of metabolic engineering has increasingly been applied to the secondary metabolite studies to help boost commercial production of target molecules.<a title="Select to navigate to reference" href="#cit6"><sup><span class="sup_ref">6,7</span></sup></a> The general objective of metabolic engineering is to overproduce chemicals that are valuable to mankind from microbial or mammalian cells, and was first coined in the field of biochemical engineering.<a title="Select to navigate to references" href="#cit8"><sup><span class="sup_ref">8</span></sup></a> By its definition, this discipline attempts to systematically understand and engineer a cell's metabolic network at a systems level.<a title="Select to navigate to reference" href="#cit9"><sup><span class="sup_ref">9–11</span></sup></a> Although conventional metabolic engineering takes a rational approach, a random approach such as adaptive laboratory evolution is also considered to be a part of metabolic engineering in recent years.<a title="Select to navigate to references" href="#cit12"><sup><span class="sup_ref">12</span></sup></a> Moreover, due to advances in systems and synthetic biology, a suite of high-throughput molecular and computational tools are increasingly deployed in the practice of metabolic engineering such that the field is now often called ‘systems metabolic engineering’.<a title="Select to navigate to references" href="#cit11"><sup><span class="sup_ref">11</span></sup></a> Systems metabolic engineering has been rigorously applied to platform production strains such as <span class="italic">Escherichia coli</span> and <span class="italic">Saccharomyces cerevisiae</span> for the production of various chemicals, biofuels and biopolymers.<a title="Select to navigate to references" href="#cit13"><sup><span class="sup_ref">13</span></sup></a> In this Highlight, both ‘metabolic engineering’ and ‘systems metabolic engineering’ are used interchangeably.</p> <p class="otherpara">Traditionally, the metabolic engineering and secondary metabolite communities have focused on different goals. In conventional metabolic engineering, quantitative values such as titer, yield and productivity for a target biochemical from a production host are more heavily emphasized.<a title="Select to navigate to reference" href="#cit11"><sup><span class="sup_ref">11,14</span></sup></a> These quantitative values constitute a production host's performance metrics in strain development. In contrast, the secondary metabolite studies seem to have focused more on the discovery of novel and diverse chemical structures and any possible bioactivity they might have. This focus stems partly from the unique biochemical logic of secondary metabolite BGCs, whose manipulation can give rise to diverse chemical structures as output. Manipulation of BGCs, including inactivation or exchange of domains in polyketide synthase and non-ribosomal peptide synthetase, engineering of a domain active site and tailoring enzymes, and shuffling of modules, can all lead to the production of secondary metabolites with novel structures, and has been a classical topic in the secondary metabolite community.<a title="Select to navigate to reference" href="#cit6"><sup><span class="sup_ref">6,15</span></sup></a> With this background in mind, it has become important to view the production of secondary metabolites from the metabolic engineer's perspective. A motivation is that once a structurally novel molecule is sufficiently determined to have commercial value, its production titer and yield need to be enhanced in order to implement larger-scale experiments, including (pre)clinical trials, and ultimately industrial production (<a title="Select to navigate to figure" href="#imgfig1">Fig. 1</a>).<a title="Select to navigate to references" href="#cit7"><sup><span class="sup_ref">7</span></sup></a> Such production optimization has recently become even more important because some secondary metabolites and their precursors have been identified by the metabolic engineering community to be important sources of industrial chemicals and biofuels that have conventionally been produced from petrochemical processes.<a title="Select to navigate to reference" href="#cit16"><sup><span class="sup_ref">16–18</span></sup></a></p> <p class="otherpara">To this end, this Highlight discusses recent studies on the metabolic optimization of native producers and other heterologous hosts for enhanced production of secondary metabolites. In particular, we focus on prokaryotic secondary metabolites because of their high contribution to currently marketed drugs,<a title="Select to navigate to references" href="#cit5"><sup><span class="sup_ref">5</span></sup></a> and their potential as a source of industrial chemicals and fuels.<a title="Select to navigate to reference" href="#cit16"><sup><span class="sup_ref">16–18</span></sup></a> First, we analyze recent trends in metabolic engineering conducted to enhance the production of various secondary metabolites with emphasis on host selection and different types of engineering approaches used (<span class="italic">i.e.</span>, rational, random or combined). This analysis is based on a survey of relevant studies reported since 2012. Second, we review various systems biology tools that have been applied to microbial hosts for the enhanced production of secondary metabolites. These tools are discussed in the context of current challenges encountered during the production of secondary metabolites.</p> <h2 id="sect285"><span class="a_heading">2 Recent trends in metabolic engineering for production of secondary metabolites</span></h2> <h3 id="sect288"><span class="b_heading">2.1 Different considerations for host selection when producing primary and secondary metabolites</span></h3> <span>Selection of a production host determines the suite of tools to be deployed for strain optimization, and therefore is a very important starting point of metabolic engineering.<a title="Select to navigate to references" href="#cit11"><sup><span class="sup_ref">11</span></sup></a> While variables considered for selecting microbial host to produce primary metabolites are also applicable to secondary metabolite production studies, different priorities appear to exist when optimizing the production of primary and secondary metabolites as target bioproducts (<a title="Select to navigate to figure" href="#imgfig2">Fig. 2</a>). Representative primary metabolites considered for bioproducts include those biosynthesized in central carbon metabolism (<span class="italic">e.g.</span>, ethanol, lactic acid and succinic acid), amino acids and recently fatty acids. Different priorities are largely caused by stark differences in the biochemistry of primary and secondary metabolites. Primary metabolites, in particular fermentation products and their derivatives, are often produced in high titers at the scale of grams per liter, whereas secondary metabolites are secreted at much lower levels, typically at the scale of micrograms or milligrams per liter. However, production of secondary metabolites can also reach the scale of grams per liter upon metabolic engineering.<a title="Select to navigate to reference" href="#cit19"><sup><span class="sup_ref">19,20</span></sup></a> For this reason, units of titer, yield and productivity for production of primary metabolites are usually defined to be ‘g L<small><sup>−1</sup></small>’, ‘g g<small><sup>−1</sup></small>’ and ‘g L<small><sup>−1</sup></small> h<small><sup>−1</sup></small>’, respectively, but can be varied for secondary metabolites.</span> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgfig2"><a href="/image/article/2016/NP/c6np00019c/c6np00019c-f2_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, "_blank", "toolbar=1,scrollbars=yes,resizable=1"); return false;"><img alt="image file: c6np00019c-f2.tif" src="/image/article/2016/NP/c6np00019c/c6np00019c-f2.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Fig. 2 </b> <span id="fig2"><span class="graphic_title">Flowchart of systems metabolic engineering considered for secondary metabolite production. Steps in red are specific to the secondary metabolite production, and can be considered altogether as examining the candidate host strain's native production capacity for a target bioproduct in the case of primary metabolite production. BAC and BGC stand for bacterial artificial chromosome and biosynthetic gene cluster, respectively. The step “Systems metabolic engineering” is also applicable to the primary metabolite production, and further details can be found elsewhere.<a title="Select to navigate to references" href="#cit11"><sup><span class="sup_ref">11</span></sup></a></span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">A key consideration for host selection in conventional metabolic engineering (<span class="italic">e.g.</span>, overproducing primary metabolites using model organisms) has been whether it is possible to maintain both high growth and production rates using defined minimal or industrial media, which are directly linked to the operation cost of a microbial bioprocess;<a title="Select to navigate to references" href="#cit21"><sup><span class="sup_ref">21</span></sup></a> cheaper nutrient utilization is always more favored from a bioprocess perspective. The availability of biosynthetic reactions for the production of a target biochemical is also an important criterion for host selection, but it has been somewhat overcome with state-of-the-art synthetic biology tools for model organisms.<a title="Select to navigate to reference" href="#cit22"><sup><span class="sup_ref">22,23</span></sup></a> Industrially or medicinally valuable compounds, such as 1,4-butanediol and opioid compounds, have been successfully produced from engineered heterologous production hosts <span class="italic">E. coli</span><a title="Select to navigate to references" href="#cit24"><sup><span class="sup_ref">24</span></sup></a> and <span class="italic">S. cerevisiae</span>,<a title="Select to navigate to references" href="#cit25"><sup><span class="sup_ref">25</span></sup></a> respectively, by constructing heterologous biosynthetic pathways.</p> <p class="otherpara">Meanwhile, studies on the production of secondary metabolites using native hosts (<span class="italic">e.g.</span>, actinomycetes) or heterologous hosts have additional considerations in addition to those already considered for the production of primary metabolites often using model organisms (<a title="Select to navigate to figure" href="#imgfig2">Fig. 2</a>). Culturability of a native production host can be a major issue because some secondary metabolite-producing microorganisms are unculturable, and do not grow fast enough or with sufficient reproducibility despite possession of secondary metabolite BGCs of interest.<a title="Select to navigate to references" href="#cit26"><sup><span class="sup_ref">26</span></sup></a> If a target BGC never gets expressed in a native host, a heterologous host should be considered. Doing so introduces the challenge of capturing or cloning the BGC, which can be 100 kb in length or more, and optimally expressing genes within the BGC. Advanced synthetic biological tools greatly aid this process.<a title="Select to navigate to reference" href="#cit6"><sup><span class="sup_ref">6,27</span></sup></a> Finally, because general gene manipulation tools, such as knockout and overexpression of genes, have actively been applied to secondary metabolite-producing microorganisms as manifested in next section (Table S1<a title="Select to navigate to footnote" href="#fn1">†</a>), they no longer appear to be a limiting factor for host selection when producing secondary metabolites. In the same line, state-of-the-art synthetic biology tools mostly developed with model organisms (<span class="italic">e.g.</span>, <span class="italic">E. coli</span>) are increasingly available to secondary metabolite producers.<a title="Select to navigate to reference" href="#cit28"><sup><span class="sup_ref">28,29</span></sup></a></p> <h3 id="sect320"><span class="b_heading">2.2 Recent trends in host selection and engineering approaches: native <span class="italic">versus</span> heterologous hosts and rational <span class="italic">versus</span> random approaches</span></h3> <span>In order to gain insights on recent trends in host selection and engineering approaches deployed to optimize the production of secondary metabolites, we conducted a literature survey on relevant studies reported since 2012 (Table S1<a title="Select to navigate to footnote" href="#fn1">†</a>). Our survey reveals that production studies using native producers outnumber those using heterologous hosts (<a title="Select to navigate to figure" href="#imgfig3">Fig. 3A</a>). For native producers, diverse hosts such as <span class="italic">Saccharopolyspora spinosa</span>, <span class="italic">Streptomyces bingchenggensis</span>, <span class="italic">Streptomyces chattanoogensis</span> and <span class="italic">Streptomyces roseosporus</span>, have actively been subjected to production optimization of their native secondary metabolites. These hosts are not necessarily model actinomycetal species. Meanwhile, heterologous production hosts were not confined to actinomycetes such as <span class="italic">S. coelicolor</span><a title="Select to navigate to references" href="#cit30"><sup><span class="sup_ref">30</span></sup></a> and <span class="italic">Streptomyces venezuelae</span><a title="Select to navigate to references" href="#cit31"><sup><span class="sup_ref">31</span></sup></a> because biologically distant and/or model organisms such as <span class="italic">E. coli</span>,<a title="Select to navigate to references" href="#cit32"><sup><span class="sup_ref">32</span></sup></a><span class="italic">Bacillus subtilis</span><a title="Select to navigate to references" href="#cit33"><sup><span class="sup_ref">33</span></sup></a> and <span class="italic">Myxococcus xanthus</span><a title="Select to navigate to references" href="#cit34"><sup><span class="sup_ref">34</span></sup></a> were also considered (Table S1<a title="Select to navigate to footnote" href="#fn1">†</a>). Production performances of these heterologous hosts often appeared to be worse or at least not better than native producers, and the secondary metabolite production studies currently seem to favor the use of native producers.<a title="Select to navigate to references" href="#cit35"><sup><span class="sup_ref">35</span></sup></a> However, a potential advantage of using a model organism as a heterologous production host (<span class="italic">e.g.</span>, <span class="italic">E. coli</span>) would be better access to the state-of-the-art synthetic biology approach in comparison with native secondary metabolite producers. In a recent study using <span class="italic">E. coli</span> for the deoxyviolacein production,<a title="Select to navigate to references" href="#cit36"><sup><span class="sup_ref">36</span></sup></a> deoxyviolacein biosynthetic pathway was divided into two modules with <span class="small_caps">L</span>-tryptophan as a key intermediate, and heterologous expression of each module was independently optimized. In this optimization procedure, a molecular biosensor was newly developed and used to detect the intracellular pool of <span class="small_caps">L</span>-tryptophan along with fluorescence-activated cell sorting. This approach led to a titer of 1.92 g L<small><sup>−1</sup></small>.</span> <br/><div class="image_table"><table><tr><td colspan="3" class="imgHolder" id="imgfig3"><a href="/image/article/2016/NP/c6np00019c/c6np00019c-f3_hi-res.gif" title="Select to open image in new window" onclick="open(this.href, "_blank", "toolbar=1,scrollbars=yes,resizable=1"); return false;"><img alt="image file: c6np00019c-f3.tif" src="/image/article/2016/NP/c6np00019c/c6np00019c-f3.gif"/></a></td></tr><tr><td class="pushTitleRight"> </td><td class="image_title"><b>Fig. 3 </b> <span id="fig3"><span class="graphic_title">Number of reported studies aimed at enhancing the production of prokaryotic secondary metabolites using (A) different types of production hosts and (B) engineering approaches (<span class="italic">i.e.</span>, rational, random or combined). Summaries of each study are available in Table S1.<a title="Select to navigate to footnote" href="#fn1">†</a> Search words in PubMed were: production[tiab] AND engineering[tiab] AND (secondary metabolites OR polyketides OR nonribosomal peptides OR lactam OR glycopeptide OR macrolide) NOT plant AND 2012:2016[dp]; (secondary metabolite[tiab] OR natural product[tiab] OR actinomycetes[tiab] OR streptomyces[tiab]) AND (design[tiab] OR engineering[tiab]) AND 2012:2016[dp].</span></span></td><td class="pushTitleLeft"> </td></tr></table></div> <p class="otherpara">Also, among the metabolic engineering studies examined (Table S1<a title="Select to navigate to footnote" href="#fn1">†</a>), rational approaches were more frequently deployed than conventionally-used random (<span class="italic">e.g.</span>, ribosome engineering using antibiotics at sub-lethal concentrations) and combined approaches (<a title="Select to navigate to figure" href="#imgfig3">Fig. 3B</a>).<a title="Select to navigate to reference" href="#cit37"><sup><span class="sup_ref">37,38</span></sup></a> Examples of the rational approaches used to improve the production of secondary metabolites include the enhanced supply of intracellular precursors<a title="Select to navigate to reference" href="#cit39"><sup><span class="sup_ref">39,40</span></sup></a> and the overexpression of positive regulators<a title="Select to navigate to references" href="#cit41"><sup><span class="sup_ref">41</span></sup></a> and/or removal of competing pathways leading to other byproducts.<a title="Select to navigate to references" href="#cit42"><sup><span class="sup_ref">42</span></sup></a> These rational approaches also employed systems biology tools such as statistical medium optimization<a title="Select to navigate to references" href="#cit43"><sup><span class="sup_ref">43</span></sup></a> and genome-scale metabolic modeling<a title="Select to navigate to reference" href="#cit44"><sup><span class="sup_ref">44,45</span></sup></a> (see next section). Rational approaches are expected to remain dominant due to recent releases of precise gene manipulation tools specifically developed for actinomycetes, for instance CRISPR-Cas9.<a title="Select to navigate to reference" href="#cit28"><sup><span class="sup_ref">28,29</span></sup></a> In one recent metabolic engineering study, <span class="italic">Streptomyces pristinaespiralis</span> was systematically engineered to improve its production of pristinamycin II.<a title="Select to navigate to references" href="#cit19"><sup><span class="sup_ref">19</span></sup></a> The pristinamycin II biosynthetic gene cluster was duplicated using a modified Gibson assembly method for its overexpression. Also, the combined effects of knocking out repressor genes and overexpressing activator genes were examined. Finally, macroreticular resin was added to the medium in order to facilitate separation of pristinamycin from the medium, thereby reducing feedback inhibition by pristinamycin. Final engineered strain produced 1.16 g L<small><sup>−1</sup></small> of pristinamycin II from 5 L bioreactor, corresponding to 5.26-fold increase in titer, compared to the parental strain.</p> <p class="otherpara">Although it is extremely difficult to predict changes in the relative frequency of using native and heterologous hosts for the optimal production of secondary metabolites in coming years, lines of evidence collected herein suggest that native producers can serve as competitive hosts. This conclusion is also supported by large fold increases in production titer (or yield) of secondary metabolites from native producers upon their engineering (Table S1<a title="Select to navigate to footnote" href="#fn1">†</a>). Technical aspects of molecular technologies used for the enhanced production of secondary metabolites are extensively discussed elsewhere.<a title="Select to navigate to reference" href="#cit6"><sup><span class="sup_ref">6,15,35</span></sup></a></p> <h2 id="sect372"><span class="a_heading">3 Systems biology tools to optimize production of secondary metabolites</span></h2> <span>As just mentioned, many metabolic engineering efforts to boost the production of secondary metabolite are centered on engineering native producers. In this case, systems biology tools tend to be more important than synthetic biology tools initially because one needs to gain insights into the fundamental biochemistry of native producers before actually engineering them. Therefore, we next discuss systems biology tools that have been used in the study on optimization of secondary metabolite production (Table S1<a title="Select to navigate to footnote" href="#fn1">†</a>). We also discuss additional systems tools that can be further considered to overcome current challenges associated with secondary metabolite production.</span> <h3 id="sect377"><span class="b_heading">3.1 Genome-scale metabolic models</span></h3> <span>Genome-scale metabolic modeling has become a popular rational approach to enhance the production of secondary metabolites.<a title="Select to navigate to reference" href="#cit46"><sup><span class="sup_ref">46,47</span></sup></a> Genome-scale metabolic models continue to be an important tool in systems biology by predicting global metabolic flux distributions under given genetic and environmental conditions. A genome-scale metabolic model is a large-scale stoichiometric model that describes all the metabolic pathways experimentally and/or theoretically characterized through stoichiometric coefficients and mass balances of participating metabolites, and is simulated using numerical optimization.<a title="Select to navigate to references" href="#cit9"><sup><span class="sup_ref">9</span></sup></a> This modeling approach takes an assumption of pseudo-steady state, which can be best applied to simulating primary metabolism in an exponential growth phase.<a title="Select to navigate to references" href="#cit9"><sup><span class="sup_ref">9</span></sup></a> Metabolic questions that can be best addressed with genome-scale metabolic models include, but are not limited to, prediction of the most efficient pathway that leads to the maximal production yield of a target bioproduct, and optimization of precursor supply and intracellular redox balances, typically through prediction of the effects of gene knockouts and overexpressions.<a title="Select to navigate to reference" href="#cit48"><sup><span class="sup_ref">48,49</span></sup></a> Due to its ease of implementation and relatively high predictive power, this modeling approach has contributed to a diverse array of applications,<a title="Select to navigate to reference" href="#cit11"><sup><span class="sup_ref">11,50</span></sup></a> for example prediction of gene manipulation targets in metabolic engineering for enhanced biochemical production,<a title="Select to navigate to references" href="#cit21"><sup><span class="sup_ref">21</span></sup></a> and prediction of drug targets in microbial pathogens<a title="Select to navigate to references" href="#cit51"><sup><span class="sup_ref">51</span></sup></a> and cancers (<span class="italic">e.g.</span>, hepatocellular carcinoma).<a title="Select to navigate to references" href="#cit52"><sup><span class="sup_ref">52</span></sup></a> Genome-scale metabolic models can be relatively easily created using the genome sequence of an organism.<a title="Select to navigate to reference" href="#cit53"><sup><span class="sup_ref">53,54</span></sup></a> Several software programs have been introduced to automate a large part of the metabolic modeling procedure, which enable the rapid reconstruction of draft genome-scale metabolic models of multiple species.<a title="Select to navigate to reference" href="#cit55"><sup><span class="sup_ref">55,56</span></sup></a></span> <p class="otherpara">In recent years, genome-scale metabolic models have been manually constructed for <span class="italic">Amycolatopsis balhimycina</span>,<a title="Select to navigate to references" href="#cit57"><sup><span class="sup_ref">57</span></sup></a><span class="italic">S. coelicolor</span>,<a title="Select to navigate to references" href="#cit45"><sup><span class="sup_ref">45</span></sup></a><span class="italic">Saccharopolyspora erythraea</span>,<a title="Select to navigate to references" href="#cit44"><sup><span class="sup_ref">44</span></sup></a><span class="italic">S. spinosa</span>,<a title="Select to navigate to references" href="#cit58"><sup><span class="sup_ref">58</span></sup></a><span class="italic">Streptomyces lividans</span><a title="Select to navigate to references" href="#cit59"><sup><span class="sup_ref">59</span></sup></a> and <span class="italic">Streptomyces tsukubaensis</span><a title="Select to navigate to references" href="#cit60"><sup><span class="sup_ref">60</span></sup></a> (Table S1<a title="Select to navigate to footnote" href="#fn1">†</a>). Genome-scale metabolic models of <span class="italic">S. erythraea</span> and <span class="italic">S. spinosa</span> were used to identify the effects of supplementing amino acids in media on production yield,<a title="Select to navigate to reference" href="#cit44"><sup><span class="sup_ref">44,58</span></sup></a> while those of <span class="italic">A. balhimycina</span>, <span class="italic">S. coelicolor</span> and <span class="italic">S. tsukubaensis</span> were used to identify gene manipulation targets to enhance target production.<a title="Select to navigate to reference" href="#cit45"><sup><span class="sup_ref">45,60,61</span></sup></a> In these metabolic models, only experimentally known secondary metabolite biosynthetic pathways were considered. For example, separate biosynthetic pathways for actinorhodin, undecylprodigiosin, calcium-dependent antibiotic, ectoine, and germicidin were included in the latest version of the <span class="italic">S. coelicolor</span> metabolic model,<a title="Select to navigate to references" href="#cit45"><sup><span class="sup_ref">45</span></sup></a> while the <span class="italic">S. erythraea</span> metabolic model describes biosynthetic pathways for erythromycin, 2-methylisoborneol, rhamnosylflaviolin, and erythrochelin.<a title="Select to navigate to references" href="#cit44"><sup><span class="sup_ref">44</span></sup></a></p> <p class="otherpara">Now that many BGCs can be effectively detected using software programs (<span class="italic">e.g.</span>, antiSMASH<a title="Select to navigate to references" href="#cit53"><sup><span class="sup_ref">53</span></sup></a>), incorporating their corresponding biosynthetic reactions into metabolic models becomes an important task. The biosynthetic reactions for several clusters have been characterized, but the majority have not. More complete information on secondary metabolite biosynthetic reactions would help to evaluate systematically the production capacity of secondary metabolite producers of interest using metabolic models. Zakrzewski <span class="italic">et al.</span> demonstrated a proof-of-concept study relevant to this issue by automatically generating genome-scale metabolic models of 38 actinobacteria, and predicting theoretical production capacity of each strain for 15 heterologously expressed secondary metabolites. The prediction outcomes showed that large genomic sizes do not necessarily lead to optimal production.<a title="Select to navigate to references" href="#cit56"><sup><span class="sup_ref">56</span></sup></a></p> <p class="otherpara">Interestingly, in addition to the studies summarized in Table S1,<a title="Select to navigate to footnote" href="#fn1">†</a> D'Huys <span class="italic">et al.</span> investigated the effects of growing <span class="italic">S. lividans</span> under complex media using its genome-scale metabolic model. The metabolic studies revealed that nutritionally rich media do not necessarily lead to maximal biomass formation.<a title="Select to navigate to references" href="#cit59"><sup><span class="sup_ref">59</span></sup></a> Although this study was aimed at heterologous production of proteins, it is noteworthy because actinomycetes are almost always cultivated in complex media, and elucidating the effects of complex media on the production of secondary metabolites will be an invaluable resource in the context of bioprocess optimization.</p> <h3 id="sect427"><span class="b_heading">3.2 Medium design using statistical optimization</span></h3> <span>Although genome-scale metabolic modeling can partly address the problem of media optimization as mentioned above, this area often requires more thorough independent analyses. Media components heavily influence the production performance of microbial hosts because the cells use different metabolic pathways depending on the availability of different nutrients in the media. A challenge here is that the design of optimal media for the best possible production performance is often complicated by a large possible number of combinations of nutrients. For this reason, a ‘design-of-experiments (DOE)’ approach has often been applied to media optimization in bioprocess engineering for the enhanced production of various bioproducts, including secondary metabolites.<a title="Select to navigate to references" href="#cit62"><sup><span class="sup_ref">62</span></sup></a> Frequently deployed methods have been statistical optimization involving Plackett–Burman design and response surface methodology, leading to identification of key medium components along with their optimal concentrations. Recently, this statistical optimization approach has been applied to the production of daptomycin from a <span class="italic">S. roseosporus</span> mutant strain,<a title="Select to navigate to references" href="#cit63"><sup><span class="sup_ref">63</span></sup></a> neomycin from <span class="italic">Streptomyces fradiae</span>,<a title="Select to navigate to references" href="#cit64"><sup><span class="sup_ref">64</span></sup></a> nosiheptide from <span class="italic">Streptomyces actuosus</span>,<a title="Select to navigate to references" href="#cit65"><sup><span class="sup_ref">65</span></sup></a> and pikromycin from <span class="italic">S. venezuelae</span>.<a title="Select to navigate to references" href="#cit43"><sup><span class="sup_ref">43</span></sup></a> In all these studies, minerals and/or carbon sources that most affected the secondary metabolite production were selected, and their optimal concentrations were determined using the Plackett–Burman design and response surface methodology. The DOE approach will continue to play an important role in optimizing multiple bioprocess variables, including microbial cultivation media.</span> <h3 id="sect440"><span class="b_heading">3.3 <small><sup>13</sup></small>C-Metabolic flux analysis</span></h3> <span>A similar approach to the aforementioned genome-scale metabolic modeling is <small><sup>13</sup></small>C-metabolic flux analysis, which also uses information on mass balance of metabolites with their stoichiometric coefficients.<a title="Select to navigate to references" href="#cit9"><sup><span class="sup_ref">9</span></sup></a> However, the two differ in that <small><sup>13</sup></small>C-metabolic flux analysis uses <small><sup>13</sup></small>C-labelling data from isotopic labelling experiments in addition to a stoichiometric metabolic network model in order to estimate <span class="italic">in vivo</span> metabolic fluxes under a given condition. Despite its precise measurement of <span class="italic">in vivo</span> flux values, <small><sup>13</sup></small>C-metabolic flux analysis has not been frequently deployed to analyze metabolism of secondary metabolite-producing microorganisms in the past when compared to model organisms.<a title="Select to navigate to reference" href="#cit46"><sup><span class="sup_ref">46,66</span></sup></a> Recently, Coze <span class="italic">et al.</span> investigated differences in metabolic flux distributions of an actinorhodin-producing <span class="italic">S. coelicolor</span> wild-type and its mutant, in which its native four BGCs were removed.<a title="Select to navigate to references" href="#cit67"><sup><span class="sup_ref">67</span></sup></a><small><sup>13</sup></small>C-Metabolic flux analysis revealed a few insights, including a more active pentose phosphate pathway in the mutant, and a competition for common precursors such as acetyl-CoA between primary and secondary metabolism. Although this study was not intended for production optimization, the <small><sup>13</sup></small>C-metabolic flux analysis used in this study could be useful in analyzing the metabolic status of engineered strains towards enhanced production. Finally, use of dynamic <small><sup>13</sup></small>C-metabolic flux analysis should be useful in analyzing metabolic status during the secondary metabolite production phase that is in non-steady state.<a title="Select to navigate to references" href="#cit68"><sup><span class="sup_ref">68</span></sup></a> Because many complex regulations take place during the secondary metabolite production, conventional <small><sup>13</sup></small>C-metabolic flux analysis based on the pseudo-steady state assumption, in the strict sense, is not an ideal approach to analyze this specific metabolic status. Also, dynamic <small><sup>13</sup></small>C-metabolic flux analysis can be more advantageous for the analysis of microbial metabolism in fed-batch fermentations because this fermentation mode has very dynamic cultivation conditions. Fed-batch fermentations are predominantly conducted in industry.</span> <h3 id="sect462"><span class="b_heading">3.4 A challenge of identifying metabolic and regulatory gene manipulation targets and further systems approaches to be considered</span></h3> <span>Identifying metabolic and/or regulatory genes responsible for the enhanced production of secondary metabolites stands as an important challenge. We expect that additional systems biology tools available in the metabolic engineering community, which have not been applied to the secondary metabolite production yet, will help to meet this challenge.</span> <p class="otherpara">First, the aforementioned genome-scale metabolic model contains information about the reactions that lead to secondary metabolite biosynthesis, but it does not contain any regulatory information. Probabilistic modeling approach is likely to be a good option to model regulation associated with secondary metabolite biosynthesis. As a relevant recent example, a regulatory network describing relationships between genes encoding transcription factors and their target metabolic genes was modeled by calculating conditional probabilities for <span class="italic">Mycobacterium tuberculosis</span>.<a title="Select to navigate to references" href="#cit69"><sup><span class="sup_ref">69</span></sup></a> In this modeling approach, conditional probabilities are used to describe relationship between transcription factors and their target metabolic genes; they reveal the probability that a metabolic gene gets expressed or inactivated, depending on the expression status of a transcription factor. This probabilistic information is used to calculate more accurate metabolic flux values using the genome-scale metabolic model of <span class="italic">M. tuberculosis</span>. A similar integrative modeling approach can be considered to identify regulatory genes that can boost the expression of metabolic genes related to the biosynthesis of a target secondary metabolite.</p> <p class="otherpara">The above probabilistic regulatory modeling approach in turn requires a large transcriptome dataset to bestow greater reliability on the calculated conditional probabilities for metabolic genes and transcription factors. Of particular importance is that the large transcriptome (or other omics) dataset needs to be obtained from as many different environmental and/or genetic conditions as possible in order to accurately determine the conditional probabilities that describe relationships between genes. Massive transcriptome analyses have been conducted for <span class="italic">S. coelicolor</span> under multiple conditions in the past, for example, elucidating: nutritional stress response of an antibiotic regulator AfsS,<a title="Select to navigate to references" href="#cit70"><sup><span class="sup_ref">70</span></sup></a> a genome-wide regulatory network,<a title="Select to navigate to references" href="#cit71"><sup><span class="sup_ref">71</span></sup></a> genome-wide gene expression changes during a metabolic switch from exponential to stationary antibiotic production phase,<a title="Select to navigate to references" href="#cit72"><sup><span class="sup_ref">72</span></sup></a> and sigma factor-regulated genes in germination.<a title="Select to navigate to references" href="#cit73"><sup><span class="sup_ref">73</span></sup></a> Despite several massive transcriptome analyses conducted on actinomycetes (or heterologous model hosts), they have barely been deployed to enhance the production of secondary metabolites. Generation of massive omics data in the context of secondary metabolite production should be very important resources for optimizing the whole bioprocess.</p> <h3 id="sect476"><span class="b_heading">3.5 A starting point of systems biology and metabolic engineering studies for secondary metabolites: the Secondary Metabolite Bioinformatics Portal</span></h3> <span>BGCs of secondary metabolites are a very complex system, and therefore optimization of secondary metabolite production requires relevant insights before actual metabolic engineering for production optimization begins. This step can be particularly challenging for metabolic engineers who are not familiar with the biology of actinomycetes. To this end, we recently released the Secondary Metabolite Bioinformatics Portal (SMBP) available at http://secondarymetabolites.org/, which provides a full list of databases and tools dedicated to secondary metabolite bioinformatics, along with their descriptions and URLs.<a title="Select to navigate to references" href="#cit54"><sup><span class="sup_ref">54</span></sup></a> This portal provides a concise gateway to various bioinformatic resources and tools that can facilitate metabolic engineering of actinomycetes and heterologous model hosts, including databases of secondary metabolites and BGC mining tools (<span class="italic">e.g.</span>, antiSMASH). There are also other software tools with more generic applications, for example CRISPy-web, an application that supports the design of guideRNAs (sgRNAs) for CRISPR-Cas9 mediated genetic manipulation of microorganisms.<a title="Select to navigate to references" href="#cit74"><sup><span class="sup_ref">74</span></sup></a></span> <h3 id="sect484"><span class="b_heading">3.6 Perspectives on the direction of secondary metabolite production studies</span></h3> <span>It should be noted that systems biology tools used in metabolic engineering are complementary to tools and strategies that have been uniquely developed and used for secondary metabolite studies. An obvious reason is that the production of secondary metabolites needs unique considerations that are distinct from those of the primary metabolite production (<a title="Select to navigate to figure" href="#imgfig2">Fig. 2</a>). For the optimal production and potential commercialization of secondary metabolites, following considerations can be useful. First, processes of systems metabolic engineering need to be taken into account at an early phase of the secondary metabolite production study (<span class="italic">e.g.</span>, genome mining and host selection). This will enable decision-makings not only from a pure biochemistry perspective, but also from an engineering perspective, leading to an integral pipeline from novel secondary metabolite identification to its optimal production. Second, metabolic engineers also need to have a better understanding of the working mechanism of secondary metabolite BGCs. This will facilitate introduction of state-of-the-art tools to secondary metabolite producers, which were initially developed for model organisms. With recent efforts, more relevant achievements are awaiting to be realized.<a title="Select to navigate to reference" href="#cit17"><sup><span class="sup_ref">17,28,29,36</span></sup></a></span> <h2 id="sect491"><span class="a_heading">4 Conclusions</span></h2> <span>As the discipline of metabolic engineering has expanded into the realm of prokaryotic secondary metabolites, this Highlight aimed to review the current status of metabolic engineering for secondary metabolite production and the relevant systems biology tools used. While our analysis manifested the progress made for the optimal production of secondary metabolites, it also clearly pinpointed room for further development. In particular, state-of-the-art systems biology tools established for the metabolic engineering community, including integrative metabolic and regulatory modeling, (dynamic) <small><sup>13</sup></small>C-metabolic flux analysis and omics data generation, have not been fully deployed in the production optimization of secondary metabolites. Upon successful implementation of such tools, more diverse secondary metabolites will be considered for industrial production and commercialization in both medicinal and chemical industries.</span> <h2 id="sect497"><span class="a_heading">5 Acknowledgements</span></h2> <span>This work was supported by the Novo Nordisk Foundation. H.U.K. and S.Y.L. are also supported by the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries from the Ministry of Science, ICT and Future Planning (MSIP) through the National Research Foundation (NRF) of Korea (NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557).</span> <span id="sect499"><h2 id="sect496"><span class="a_heading">6 Notes and references</span></h2></span><ol type="1"> <li><span id="cit1">A. L. Demain, <span class="italic">J. Ind. Microbiol. Biotechnol.</span>, 2014, <span class="bold">41</span>, 185–201 <a target="_blank" class="DOILink" href="https://doi.org/10.1007/s10295-013-1325-z" title="DOI Link to resource 10.1007/s10295-013-1325-z">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3sXhtl2qtrrI" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=23990168%5Buid%5D" title="PubMed Link to resource 23990168">PubMed</a>.</span></li> <li><span id="cit2">D. J. Newman and G. M. Cragg, <span class="italic">J. Nat. Prod.</span>, 2012, <span class="bold">75</span>, 311–335 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/np200906s" title="DOI Link to resource 10.1021/np200906s">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC38XitVeku78%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=22316239%5Buid%5D" title="PubMed Link to resource 22316239">PubMed</a>.</span></li> <li><span id="cit3">G. M. Cragg and D. J. Newman, <span class="italic">Biochim. Biophys. Acta</span>, 2013, <span class="bold">1830</span>, 3670–3695 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.bbagen.2013.02.008" title="DOI Link to resource 10.1016/j.bbagen.2013.02.008">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3sXmsFCmtbY%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=23428572%5Buid%5D" title="PubMed Link to resource 23428572">PubMed</a>.</span></li> <li><span id="cit4">L. Katz and R. H. Baltz, <span class="italic">J. Ind. Microbiol. Biotechnol.</span>, 2016, <span class="bold">43</span>, 155–176 <a target="_blank" class="DOILink" href="https://doi.org/10.1007/s10295-015-1723-5" title="DOI Link to resource 10.1007/s10295-015-1723-5">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC28XjtFKhug%253D%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=26739136%5Buid%5D" title="PubMed Link to resource 26739136">PubMed</a>.</span></li> <li><span id="cit5">E. Patridge, P. Gareiss, M. S. Kinch and D. Hoyer, <span class="italic">Drug Discov. Today</span>, 2016, <span class="bold">21</span>, 204–207 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.drudis.2015.01.009" title="DOI Link to resource 10.1016/j.drudis.2015.01.009">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXhs1ejt70%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25617672%5Buid%5D" title="PubMed Link to resource 25617672">PubMed</a>.</span></li> <li><span id="cit6">T. Weber, P. Charusanti, E. M. Musiol-Kroll, X. Jiang, Y. Tong, H. U. Kim and S. Y. Lee, <span class="italic">Trends Biotechnol.</span>, 2015, <span class="bold">33</span>, 15–26 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.tibtech.2014.10.009" title="DOI Link to resource 10.1016/j.tibtech.2014.10.009">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXitFCrtLzM" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25497361%5Buid%5D" title="PubMed Link to resource 25497361">PubMed</a>.</span></li> <li><span id="cit7">S. Y. Lee, H. U. Kim, J. H. Park, J. M. Park and T. Y. Kim, <span class="italic">Drug Discov. Today</span>, 2009, <span class="bold">14</span>, 78–88 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.drudis.2008.08.004" title="DOI Link to resource 10.1016/j.drudis.2008.08.004">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD1MXktVShtg%253D%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=18775509%5Buid%5D" title="PubMed Link to resource 18775509">PubMed</a>.</span></li> <li><span id="cit8">J. E. Bailey, <span class="italic">Science</span>, 1991, <span class="bold">252</span>, 1668–1675 <a target="_blank" class="DOILink" href="https://doi.org/10.1126/science.2047876" title="DOI Link to resource 10.1126/science.2047876">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADyaK3MXks12rt7c%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=2047876%5Buid%5D" title="PubMed Link to resource 2047876">PubMed</a>.</span></li> <li><span id="cit9">H. U. Kim, T. Y. Kim and S. Y. Lee, <span class="italic">Mol. BioSyst.</span>, 2008, <span class="bold">4</span>, 113–120 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=B712395G&newsite=1" title="Link to RSC resource DOI:10.1039/B712395G">RSC</a>.</span></li> <li><span id="cit10">G. Stephanopoulos, <span class="italic">Metab. Eng.</span>, 1999, <span class="bold">1</span>, 1–11 <a target="_blank" class="DOILink" href="https://doi.org/10.1006/mben.1998.0101" title="DOI Link to resource 10.1006/mben.1998.0101">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADyaK1MXmsFOitbc%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=10935750%5Buid%5D" title="PubMed Link to resource 10935750">PubMed</a>.</span></li> <li><span id="cit11">S. Y. Lee and H. U. Kim, <span class="italic">Nat. Biotechnol.</span>, 2015, <span class="bold">33</span>, 1061–1072 <a target="_blank" class="DOILink" href="https://doi.org/10.1038/nbt.3365" title="DOI Link to resource 10.1038/nbt.3365">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXhvFKksLjJ" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=26448090%5Buid%5D" title="PubMed Link to resource 26448090">PubMed</a>.</span></li> <li><span id="cit12">M. Dragosits and D. Mattanovich, <span class="italic">Microb. Cell Fact.</span>, 2013, <span class="bold">12</span>, 64 <a target="_blank" class="DOILink" href="https://doi.org/10.1186/1475-2859-12-64" title="DOI Link to resource 10.1186/1475-2859-12-64">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=23815749%5Buid%5D" title="PubMed Link to resource 23815749">PubMed</a>.</span></li> <li><span id="cit13">C. Cho, S. Y. Choi, Z. W. Luo and S. Y. Lee, <span class="italic">Biotechnol. Adv.</span>, 2015, <span class="bold">33</span>, 1455–1466 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.biotechadv.2014.11.006" title="DOI Link to resource 10.1016/j.biotechadv.2014.11.006">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXitVWrsb7L" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25450194%5Buid%5D" title="PubMed Link to resource 25450194">PubMed</a>.</span></li> <li><span id="cit14">S. Van Dien, <span class="italic">Curr. Opin. Biotechnol.</span>, 2013, <span class="bold">24</span>, 1061–1068 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.copbio.2013.03.002" title="DOI Link to resource 10.1016/j.copbio.2013.03.002">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3sXks1Smtbs%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=23537815%5Buid%5D" title="PubMed Link to resource 23537815">PubMed</a>.</span></li> <li><span id="cit15">K. J. Weissman, <span class="italic">Nat. Prod. Rep.</span>, 2016, <span class="bold">33</span>, 203–230 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C5NP00109A&newsite=1" title="Link to RSC resource DOI:10.1039/C5NP00109A">RSC</a>.</span></li> <li><span id="cit16">A. Hagen, S. Poust, T. Rond, J. L. Fortman, L. Katz, C. J. Petzold and J. D. Keasling, <span class="italic">ACS Synth. Biol.</span>, 2016, <span class="bold">5</span>, 21–27 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acssynbio.5b00153" title="DOI Link to resource 10.1021/acssynbio.5b00153">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXhslSrtLfP" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=26501439%5Buid%5D" title="PubMed Link to resource 26501439">PubMed</a>.</span></li> <li><span id="cit17">R. M. Phelan, O. N. Sekurova, J. D. Keasling and S. B. Zotchev, <span class="italic">ACS Synth. Biol.</span>, 2015, <span class="bold">4</span>, 393–399 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/sb5002517" title="DOI Link to resource 10.1021/sb5002517">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXhtFShs7zM" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25006988%5Buid%5D" title="PubMed Link to resource 25006988">PubMed</a>.</span></li> <li><span id="cit18">S. Menendez-Bravo, S. Comba, M. Sabatini, A. Arabolaza and H. Gramajo, <span class="italic">Metab. Eng.</span>, 2014, <span class="bold">24</span>, 97–106 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.ymben.2014.05.002" title="DOI Link to resource 10.1016/j.ymben.2014.05.002">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXhtFansrrE" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=24831705%5Buid%5D" title="PubMed Link to resource 24831705">PubMed</a>.</span></li> <li><span id="cit19">L. Li, Y. Zhao, L. Ruan, S. Yang, M. Ge, W. Jiang and Y. Lu, <span class="italic">Metab. Eng.</span>, 2015, <span class="bold">29</span>, 12–25 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.ymben.2015.02.001" title="DOI Link to resource 10.1016/j.ymben.2015.02.001">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXjsFGitLo%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25708513%5Buid%5D" title="PubMed Link to resource 25708513">PubMed</a>.</span></li> <li><span id="cit20">A. S. Eustaquio, L. P. Chang, G. L. Steele, C. J. O’Donnell and F. E. Koehn, <span class="italic">Metab. Eng.</span>, 2016, <span class="bold">33</span>, 67–75 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.ymben.2015.11.003" title="DOI Link to resource 10.1016/j.ymben.2015.11.003">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXhvFenur7F" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=26620532%5Buid%5D" title="PubMed Link to resource 26620532">PubMed</a>.</span></li> <li><span id="cit21">T. Y. Kim, J. M. Park, H. U. Kim, K. M. Cho and S. Y. Lee, <span class="italic">Metab. Eng.</span>, 2015, <span class="bold">28</span>, 63–73 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.ymben.2014.11.012" title="DOI Link to resource 10.1016/j.ymben.2014.11.012">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXhs1Shtrw%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25542849%5Buid%5D" title="PubMed Link to resource 25542849">PubMed</a>.</span></li> <li><span id="cit22">K. M. Esvelt and H. H. Wang, <span class="italic">Mol. Syst. Biol.</span>, 2013, <span class="bold">9</span>, 641 <a target="_blank" class="DOILink" href="https://doi.org/10.1038/msb.2012.66" title="DOI Link to resource 10.1038/msb.2012.66">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=23340847%5Buid%5D" title="PubMed Link to resource 23340847">PubMed</a>.</span></li> <li><span id="cit23">C. W. Song, J. Lee and S. Y. Lee, <span class="italic">Biotechnol. J.</span>, 2015, <span class="bold">10</span>, 56–68 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/biot.201400057" title="DOI Link to resource 10.1002/biot.201400057">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXhsVWksb%252FP" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25155412%5Buid%5D" title="PubMed Link to resource 25155412">PubMed</a>.</span></li> <li><span id="cit24">H. Yim, R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, J. Boldt, J. Khandurina, J. D. Trawick, R. E. Osterhout, R. Stephen, J. Estadilla, S. Teisan, H. B. Schreyer, S. Andrae, T. H. Yang, S. Y. Lee, M. J. Burk and S. Van Dien, <span class="italic">Nat. Chem. Biol.</span>, 2011, <span class="bold">7</span>, 445–452 <a target="_blank" class="DOILink" href="https://doi.org/10.1038/nchembio.580" title="DOI Link to resource 10.1038/nchembio.580">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3MXmsVGlsLw%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=21602812%5Buid%5D" title="PubMed Link to resource 21602812">PubMed</a>.</span></li> <li><span id="cit25">S. Galanie, K. Thodey, I. J. Trenchard, M. Filsinger Interrante and C. D. Smolke, <span class="italic">Science</span>, 2015, <span class="bold">349</span>, 1095–1100 <a target="_blank" class="DOILink" href="https://doi.org/10.1126/science.aac9373" title="DOI Link to resource 10.1126/science.aac9373">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXhsVyntbbK" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=26272907%5Buid%5D" title="PubMed Link to resource 26272907">PubMed</a>.</span></li> <li><span id="cit26">S. E. Ongley, X. Bian, Y. Zhang, R. Chau, W. H. Gerwick, R. Muller and B. A. Neilan, <span class="italic">ACS Chem. Biol.</span>, 2013, <span class="bold">8</span>, 1888–1893 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/cb400189j" title="DOI Link to resource 10.1021/cb400189j">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3sXptFSgt7c%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=23751865%5Buid%5D" title="PubMed Link to resource 23751865">PubMed</a>.</span></li> <li><span id="cit27">Y. Luo, B. Enghiad and H. Zhao, <span class="italic">Nat. Prod. Rep.</span>, 2016, <span class="bold">33</span>, 174–182 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C5NP00085H&newsite=1" title="Link to RSC resource DOI:10.1039/C5NP00085H">RSC</a>.</span></li> <li><span id="cit28">Y. Tong, P. Charusanti, L. Zhang, T. Weber and S. Y. Lee, <span class="italic">ACS Synth. Biol.</span>, 2015, <span class="bold">4</span>, 1020–1029 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/acssynbio.5b00038" title="DOI Link to resource 10.1021/acssynbio.5b00038">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXltFSlsb8%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25806970%5Buid%5D" title="PubMed Link to resource 25806970">PubMed</a>.</span></li> <li><span id="cit29">R. E. Cobb, Y. Wang and H. Zhao, <span class="italic">ACS Synth. Biol.</span>, 2015, <span class="bold">4</span>, 723–728 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/sb500351f" title="DOI Link to resource 10.1021/sb500351f">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXitVWhsrvJ" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25458909%5Buid%5D" title="PubMed Link to resource 25458909">PubMed</a>.</span></li> <li><span id="cit30">L. Huo, S. Rachid, M. Stadler, S. C. Wenzel and R. Muller, <span class="italic">Chem. Biol.</span>, 2012, <span class="bold">19</span>, 1278–1287 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.chembiol.2012.08.013" title="DOI Link to resource 10.1016/j.chembiol.2012.08.013">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC38XhsVaqtLjF" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=23021914%5Buid%5D" title="PubMed Link to resource 23021914">PubMed</a>.</span></li> <li><span id="cit31">W. S. Jung, E. Kim, Y. J. Yoo, Y. H. Ban, E. J. Kim and Y. J. Yoon, <span class="italic">Appl. Microbiol. Biotechnol.</span>, 2014, <span class="bold">98</span>, 3701–3713 <a target="_blank" class="DOILink" href="https://doi.org/10.1007/s00253-013-5503-8" title="DOI Link to resource 10.1007/s00253-013-5503-8">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXotFKntQ%253D%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=24413979%5Buid%5D" title="PubMed Link to resource 24413979">PubMed</a>.</span></li> <li><span id="cit32">J. Jaitzig, J. Li, R. D. Sussmuth and P. Neubauer, <span class="italic">ACS Synth. Biol.</span>, 2014, <span class="bold">3</span>, 432–438 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/sb400082j" title="DOI Link to resource 10.1021/sb400082j">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3sXhvFWqsLnK" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=24350980%5Buid%5D" title="PubMed Link to resource 24350980">PubMed</a>.</span></li> <li><span id="cit33">J. Kumpfmuller, K. Methling, L. Fang, B. A. Pfeifer, M. Lalk and T. Schweder, <span class="italic">Appl. Microbiol. Biotechnol.</span>, 2016, <span class="bold">100</span>, 1209–1220 <a target="_blank" class="DOILink" href="https://doi.org/10.1007/s00253-015-6990-6" title="DOI Link to resource 10.1007/s00253-015-6990-6">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=26432460%5Buid%5D" title="PubMed Link to resource 26432460">PubMed</a>.</span></li> <li><span id="cit34">Y. Chai, S. Shan, K. J. Weissman, S. Hu, Y. Zhang and R. Muller, <span class="italic">Chem. Biol.</span>, 2012, <span class="bold">19</span>, 361–371 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.chembiol.2012.01.007" title="DOI Link to resource 10.1016/j.chembiol.2012.01.007">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC38XksFeht7s%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=22444591%5Buid%5D" title="PubMed Link to resource 22444591">PubMed</a>.</span></li> <li><span id="cit35">S. E. Ongley, X. Bian, B. A. Neilan and R. Muller, <span class="italic">Nat. Prod. Rep.</span>, 2013, <span class="bold">30</span>, 1121–1138 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C3NP70034H&newsite=1" title="Link to RSC resource DOI:10.1039/C3NP70034H">RSC</a>.</span></li> <li><span id="cit36">M. Fang, T. Wang, C. Zhang, J. Bai, X. Zheng, X. Zhao, C. Lou and X. H. Xing, <span class="italic">Metab. Eng.</span>, 2016, <span class="bold">33</span>, 41–51 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.ymben.2015.10.006" title="DOI Link to resource 10.1016/j.ymben.2015.10.006">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXhslanurfM" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=26506462%5Buid%5D" title="PubMed Link to resource 26506462">PubMed</a>.</span></li> <li><span id="cit37">L. Li, T. Ma, Q. Liu, Y. Huang, C. Hu and G. Liao, <span class="italic">BioMed Res. Int.</span>, 2013, <span class="bold">2013</span>, 479742 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&db=pubmed&cmd=Search&term=BioMed%20Res.%20Int.%5BJour%5D%20AND%202013%5Bvolume%5D%20AND%20479742%5Bpage%5D%20and%202013%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a>.</span></li> <li><span id="cit38">J. Zhao, Y. Li, C. Zhang, Z. Yao, L. Zhang, X. Bie, F. Lu and Z. Lu, <span class="italic">J. Ind. Microbiol. Biotechnol.</span>, 2012, <span class="bold">39</span>, 889–896 <a target="_blank" class="DOILink" href="https://doi.org/10.1007/s10295-012-1098-9" title="DOI Link to resource 10.1007/s10295-012-1098-9">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC38XntlOntLk%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=22350068%5Buid%5D" title="PubMed Link to resource 22350068">PubMed</a>.</span></li> <li><span id="cit39">D. Chen, Q. Zhang, Q. Zhang, P. Cen, Z. Xu and W. Liu, <span class="italic">Appl. Environ. Microbiol.</span>, 2012, <span class="bold">78</span>, 5093–5103 <a target="_blank" class="DOILink" href="https://doi.org/10.1128/AEM.00450-12" title="DOI Link to resource 10.1128/AEM.00450-12">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC38XhtFWjsL%252FO" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=22582065%5Buid%5D" title="PubMed Link to resource 22582065">PubMed</a>.</span></li> <li><span id="cit40">W. Wohlleben, Y. Mast, G. Muth, M. Rottgen, E. Stegmann and T. Weber, <span class="italic">FEBS Lett.</span>, 2012, <span class="bold">586</span>, 2171–2176 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.febslet.2012.04.025" title="DOI Link to resource 10.1016/j.febslet.2012.04.025">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC38XntFahtLo%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=22710162%5Buid%5D" title="PubMed Link to resource 22710162">PubMed</a>.</span></li> <li><span id="cit41">S. R. Li, G. S. Zhao, M. W. Sun, H. G. He, H. X. Wang, Y. Y. Li, C. H. Lu and Y. M. Shen, <span class="italic">Gene</span>, 2014, <span class="bold">544</span>, 93–99 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.gene.2014.04.052" title="DOI Link to resource 10.1016/j.gene.2014.04.052">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXntlentrg%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=24768719%5Buid%5D" title="PubMed Link to resource 24768719">PubMed</a>.</span></li> <li><span id="cit42">J. Zhang, J. An, J. J. Wang, Y. J. Yan, H. R. He, X. J. Wang and W. S. Xiang, <span class="italic">Appl. Microbiol. Biotechnol.</span>, 2013, <span class="bold">97</span>, 10091–10101 <a target="_blank" class="DOILink" href="https://doi.org/10.1007/s00253-013-5255-5" title="DOI Link to resource 10.1007/s00253-013-5255-5">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3sXhsFequrfL" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=24077727%5Buid%5D" title="PubMed Link to resource 24077727">PubMed</a>.</span></li> <li><span id="cit43">J. S. Yi, M. S. Kim, S. J. Kim and B. G. Kim, <span class="italic">J. Microbiol. Biotechnol.</span>, 2015, <span class="bold">25</span>, 496–502 <a target="_blank" class="DOILink" href="https://doi.org/10.4014/jmb.1409.09009" title="DOI Link to resource 10.4014/jmb.1409.09009">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXhtVWrt7vK" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25341465%5Buid%5D" title="PubMed Link to resource 25341465">PubMed</a>.</span></li> <li><span id="cit44">C. Licona-Cassani, E. Marcellin, L. E. Quek, S. Jacob and L. K. Nielsen, <span class="italic">Antonie van Leeuwenhoek</span>, 2012, <span class="bold">102</span>, 493–502 <a target="_blank" class="DOILink" href="https://doi.org/10.1007/s10482-012-9783-2" title="DOI Link to resource 10.1007/s10482-012-9783-2">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC38XhsVeitLnN" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=22847261%5Buid%5D" title="PubMed Link to resource 22847261">PubMed</a>.</span></li> <li><span id="cit45">M. Kim, J. Sang Yi, J. Kim, J. N. Kim, M. W. Kim and B. G. Kim, <span class="italic">Biotechnol. J.</span>, 2014, <span class="bold">9</span>, 1185–1194 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/biot.201300539" title="DOI Link to resource 10.1002/biot.201300539">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXms1ajs7o%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=24623710%5Buid%5D" title="PubMed Link to resource 24623710">PubMed</a>.</span></li> <li><span id="cit46">K. S. Hwang, H. U. Kim, P. Charusanti, B. O. Palsson and S. Y. Lee, <span class="italic">Biotechnol. Adv.</span>, 2014, <span class="bold">32</span>, 255–268 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.biotechadv.2013.10.008" title="DOI Link to resource 10.1016/j.biotechadv.2013.10.008">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3sXhvVagsrfF" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=24189093%5Buid%5D" title="PubMed Link to resource 24189093">PubMed</a>.</span></li> <li><span id="cit47">R. Breitling, F. Achcar and E. Takano, <span class="italic">ACS Synth. Biol.</span>, 2013, <span class="bold">2</span>, 373–378 <a target="_blank" class="DOILink" href="https://doi.org/10.1021/sb4000228" title="DOI Link to resource 10.1021/sb4000228">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3sXnsVeqs7c%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=23659212%5Buid%5D" title="PubMed Link to resource 23659212">PubMed</a>.</span></li> <li><span id="cit48">B. Kim, W. J. Kim, D. I. Kim and S. Y. Lee, <span class="italic">J. Ind. Microbiol. Biotechnol.</span>, 2015, <span class="bold">42</span>, 339–348 <a target="_blank" class="DOILink" href="https://doi.org/10.1007/s10295-014-1554-9" title="DOI Link to resource 10.1007/s10295-014-1554-9">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXitVWgt7jE" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25465049%5Buid%5D" title="PubMed Link to resource 25465049">PubMed</a>.</span></li> <li><span id="cit49">N. E. Lewis, H. Nagarajan and B. O. Palsson, <span class="italic">Nat. Rev. Microbiol.</span>, 2012, <span class="bold">10</span>, 291–305 <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC38XislyntLw%253D" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit50">H. U. Kim, S. B. Sohn and S. Y. Lee, <span class="italic">Biotechnol. J.</span>, 2012, <span class="bold">7</span>, 330–342 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/biot.201100159" title="DOI Link to resource 10.1002/biot.201100159">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3MXhsFaru7vJ" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=22125297%5Buid%5D" title="PubMed Link to resource 22125297">PubMed</a>.</span></li> <li><span id="cit51">H. U. Kim, S. Y. Kim, H. Jeong, T. Y. Kim, J. J. Kim, H. E. Choy, K. Y. Yi, J. H. Rhee and S. Y. Lee, <span class="italic">Mol. Syst. Biol.</span>, 2011, <span class="bold">7</span>, 460 <a target="_blank" class="DOILink" href="https://doi.org/10.1038/msb.2010.115" title="DOI Link to resource 10.1038/msb.2010.115">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=21245845%5Buid%5D" title="PubMed Link to resource 21245845">PubMed</a>.</span></li> <li><span id="cit52">R. Agren, A. Mardinoglu, A. Asplund, C. Kampf, M. Uhlen and J. Nielsen, <span class="italic">Mol. Syst. Biol.</span>, 2014, <span class="bold">10</span>, 721 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/msb.145122" title="DOI Link to resource 10.1002/msb.145122">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=24646661%5Buid%5D" title="PubMed Link to resource 24646661">PubMed</a>.</span></li> <li><span id="cit53">T. Weber, K. Blin, S. Duddela, D. Krug, H. U. Kim, R. Bruccoleri, S. Y. Lee, M. A. Fischbach, R. Muller, W. Wohlleben, R. Breitling, E. Takano and M. H. Medema, <span class="italic">Nucleic Acids Res.</span>, 2015, <span class="bold">43</span>, W237–W243 <a target="_blank" class="DOILink" href="https://doi.org/10.1093/nar/gkv437" title="DOI Link to resource 10.1093/nar/gkv437">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25948579%5Buid%5D" title="PubMed Link to resource 25948579">PubMed</a>.</span></li> <li><span id="cit54">T. Weber and H. U. Kim, <span class="italic">Synth. Syst. Biotechnol.</span>, 2016<small> DOI:<a class="DOILink" href="https://doi.org/10.1016/j.synbio.2015.12.002" TARGET="_BLANK" title="DOI Link to 10.1016/j.synbio.2015.12.002">10.1016/j.synbio.2015.12.002</a></small>.</span></li> <li><span id="cit55">J. J. Hamilton and J. L. Reed, <span class="italic">Environ. Microbiol.</span>, 2014, <span class="bold">16</span>, 49–59 <a target="_blank" class="DOILink" href="https://doi.org/10.1111/1462-2920.12312" title="DOI Link to resource 10.1111/1462-2920.12312">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=24148076%5Buid%5D" title="PubMed Link to resource 24148076">PubMed</a>.</span></li> <li><span id="cit56">P. Zakrzewski, M. H. Medema, A. Gevorgyan, A. M. Kierzek, R. Breitling and E. Takano, <span class="italic">PLoS One</span>, 2012, <span class="bold">7</span>, e51511 <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3sXht1ejtw%253D%253D" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit57">W. Vongsangnak, L. F. Figueiredo, J. Forster, T. Weber, J. Thykaer, E. Stegmann, W. Wohlleben and J. Nielsen, <span class="italic">Biotechnol. Bioeng.</span>, 2012, <span class="bold">109</span>, 1798–1807 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/bit.24436" title="DOI Link to resource 10.1002/bit.24436">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC38XhvVWrtro%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=22252737%5Buid%5D" title="PubMed Link to resource 22252737">PubMed</a>.</span></li> <li><span id="cit58">X. Wang, C. Zhang, M. Wang and W. Lu, <span class="italic">Microb. Cell Fact.</span>, 2014, <span class="bold">13</span>, 41 <a target="_blank" class="DOILink" href="https://doi.org/10.1186/1475-2859-13-41" title="DOI Link to resource 10.1186/1475-2859-13-41">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=24628959%5Buid%5D" title="PubMed Link to resource 24628959">PubMed</a>.</span></li> <li><span id="cit59">P. J. D'Huys, I. Lule, D. Vercammen, J. Anne, J. F. Van Impe and K. Bernaerts, <span class="italic">J. Biotechnol.</span>, 2012, <span class="bold">161</span>, 1–13 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.jbiotec.2012.04.010" title="DOI Link to resource 10.1016/j.jbiotec.2012.04.010">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=22641041%5Buid%5D" title="PubMed Link to resource 22641041">PubMed</a>.</span></li> <li><span id="cit60">D. Huang, S. Li, M. Xia, J. Wen and X. Jia, <span class="italic">Microb. Cell Fact.</span>, 2013, <span class="bold">12</span>, 52 <a target="_blank" class="DOILink" href="https://doi.org/10.1186/1475-2859-12-52" title="DOI Link to resource 10.1186/1475-2859-12-52">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3sXhtVemsLnO" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=23705993%5Buid%5D" title="PubMed Link to resource 23705993">PubMed</a>.</span></li> <li><span id="cit61">M. Kim, J. S. Yi, M. Lakshmanan, D. Y. Lee and B. G. Kim, <span class="italic">Biotechnol. Bioeng.</span>, 2016, <span class="bold">113</span>, 651–660 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/bit.25830" title="DOI Link to resource 10.1002/bit.25830">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2MXhsFKntbjP" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=26369755%5Buid%5D" title="PubMed Link to resource 26369755">PubMed</a>.</span></li> <li><span id="cit62">C. F. Mandenius and A. Brundin, <span class="italic">Biotechnol. Prog.</span>, 2008, <span class="bold">24</span>, 1191–1203 <a target="_blank" class="DOILink" href="https://doi.org/10.1002/btpr.67" title="DOI Link to resource 10.1002/btpr.67">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD1MXlt1Khurw%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=19194932%5Buid%5D" title="PubMed Link to resource 19194932">PubMed</a>.</span></li> <li><span id="cit63">G. Yu and G. Wang, <span class="italic">Interdiscip. Sci.: Comput. Life Sci.</span>, 2015<small> DOI:<a class="DOILink" href="https://doi.org/10.1007/s12539-015-0133-8" TARGET="_BLANK" title="DOI Link to 10.1007/s12539-015-0133-8">10.1007/s12539-015-0133-8</a></small>.</span></li> <li><span id="cit64">B. M. Vastrad and S. E. Neelagund, <span class="italic">Biotechnol. Res. Int.</span>, 2014, <span class="bold">2014</span>, 674286 <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ASTN%3A280%3ADC%252BC2cbgvFGhtA%253D%253D" title="Link to resource in CAS">CAS</a>.</span></li> <li><span id="cit65">W. Zhou, X. Liu, P. Zhang, P. Zhou and X. Shi, <span class="italic">Molecules</span>, 2014, <span class="bold">19</span>, 15507–15520 <a target="_blank" class="DOILink" href="https://doi.org/10.3390/molecules191015507" title="DOI Link to resource 10.3390/molecules191015507">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXhslSitLvN" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=25264834%5Buid%5D" title="PubMed Link to resource 25264834">PubMed</a>.</span></li> <li><span id="cit66">I. Borodina, J. Siebring, J. Zhang, C. P. Smith, G. van Keulen, L. Dijkhuizen and J. Nielsen, <span class="italic">J. Biol. Chem.</span>, 2008, <span class="bold">283</span>, 25186–25199 <a target="_blank" class="DOILink" href="https://doi.org/10.1074/jbc.M803105200" title="DOI Link to resource 10.1074/jbc.M803105200">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BD1cXhtVyisL3I" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=18606812%5Buid%5D" title="PubMed Link to resource 18606812">PubMed</a>.</span></li> <li><span id="cit67">F. Coze, F. Gilard, G. Tcherkez, M. J. Virolle and A. Guyonvarch, <span class="italic">PLoS One</span>, 2013, <span class="bold">8</span>, e84151 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&db=pubmed&cmd=Search&term=PLoS%20One%5BJour%5D%20AND%208%5Bvolume%5D%20AND%20e84151%5Bpage%5D%20and%202013%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a>.</span></li> <li><span id="cit68">R. W. Leighty and M. R. Antoniewicz, <span class="italic">Metab. Eng.</span>, 2011, <span class="bold">13</span>, 745–755 <a target="_blank" class="DOILink" href="https://doi.org/10.1016/j.ymben.2011.09.010" title="DOI Link to resource 10.1016/j.ymben.2011.09.010">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC3MXhsVaqu7jO" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=22001431%5Buid%5D" title="PubMed Link to resource 22001431">PubMed</a>.</span></li> <li><span id="cit69">S. Ma, K. J. Minch, T. R. Rustad, S. Hobbs, S. L. Zhou, D. R. Sherman and N. D. Price, <span class="italic">PLoS Comput. Biol.</span>, 2015, <span class="bold">11</span>, e1004543 <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/sites/entrez?orig_db=PubMed&db=pubmed&cmd=Search&term=PLoS%20Comput.%20Biol.%5BJour%5D%20AND%2011%5Bvolume%5D%20AND%20e1004543%5Bpage%5D%20and%202015%5Bpdat%5D" title="Search PubMed for this citation">Search PubMed</a>.</span></li> <li><span id="cit70">W. Lian, K. P. Jayapal, S. Charaniya, S. Mehra, F. Glod, Y. S. Kyung, D. H. Sherman and W. S. Hu, <span class="italic">BMC Genomics</span>, 2008, <span class="bold">9</span>, 56 <a target="_blank" class="DOILink" href="https://doi.org/10.1186/1471-2164-9-56" title="DOI Link to resource 10.1186/1471-2164-9-56">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=18230178%5Buid%5D" title="PubMed Link to resource 18230178">PubMed</a>.</span></li> <li><span id="cit71">M. Castro-Melchor, S. Charaniya, G. Karypis, E. Takano and W. S. Hu, <span class="italic">BMC Genomics</span>, 2010, <span class="bold">11</span>, 578 <a target="_blank" class="DOILink" href="https://doi.org/10.1186/1471-2164-11-578" title="DOI Link to resource 10.1186/1471-2164-11-578">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=20955611%5Buid%5D" title="PubMed Link to resource 20955611">PubMed</a>.</span></li> <li><span id="cit72">K. Nieselt, F. Battke, A. Herbig, P. Bruheim, A. Wentzel, O. M. Jakobsen, H. Sletta, M. T. Alam, M. E. Merlo, J. Moore, W. A. Omara, E. R. Morrissey, M. A. Juarez-Hermosillo, A. Rodriguez-Garcia, M. Nentwich, L. Thomas, M. Iqbal, R. Legaie, W. H. Gaze, G. L. Challis, R. C. Jansen, L. Dijkhuizen, D. A. Rand, D. L. Wild, M. Bonin, J. Reuther, W. Wohlleben, M. C. Smith, N. J. Burroughs, J. F. Martin, D. A. Hodgson, E. Takano, R. Breitling, T. E. Ellingsen and E. M. Wellington, <span class="italic">BMC Genomics</span>, 2010, <span class="bold">11</span>, 10 <a target="_blank" class="DOILink" href="https://doi.org/10.1186/1471-2164-11-10" title="DOI Link to resource 10.1186/1471-2164-11-10">CrossRef</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=20053288%5Buid%5D" title="PubMed Link to resource 20053288">PubMed</a>.</span></li> <li><span id="cit73">E. Strakova, A. Zikova and J. Vohradsky, <span class="italic">Nucleic Acids Res.</span>, 2014, <span class="bold">42</span>, 748–763 <a target="_blank" class="DOILink" href="https://doi.org/10.1093/nar/gkt917" title="DOI Link to resource 10.1093/nar/gkt917">CrossRef</a> <a target="_blank" class="COILink" href="/en/content/coiresolver?coi=1%3ACAS%3A528%3ADC%252BC2cXhtlSht7w%253D" title="Link to resource in CAS">CAS</a> <a target="_blank" class="PMedLink" href="http://www.ncbi.nlm.nih.gov/pubmed/?term=24157841%5Buid%5D" title="PubMed Link to resource 24157841">PubMed</a>.</span></li> <li><span id="cit74">K. Blin, L. E. Pedersen, T. Weber and S. Y. Lee, <span class="italic">Synth. Syst. Biotechnol.</span>, 2016<small> DOI:<a class="DOILink" href="https://doi.org/10.1016/j.synbio.2016.01.003" TARGET="_BLANK" title="DOI Link to 10.1016/j.synbio.2016.01.003">10.1016/j.synbio.2016.01.003</a></small>.</span></li> <li><span id="cit75">J. S. Zarins-Tutt, T. T. Barberi, H. Gao, A. Mearns-Spragg, L. Zhang, D. J. Newman and R. J. Goss, <span class="italic">Nat. Prod. Rep.</span>, 2015, <span class="bold">33</span>, 54–72 <a target="_blank" class="RSCLink" href="http://xlink.rsc.org/?doi=C5NP00111K&newsite=1" title="Link to RSC resource DOI:10.1039/C5NP00111K">RSC</a>.</span></li> </ol> <hr/><table><tr><td><h3>Footnote</h3></td></tr><tr><td><span class="sup_ref">† <span id="fn1">Electronic supplementary information (ESI) available: Table S1. See DOI: <a href="http://xlink.rsc.org/?DOI=c6np00019c" target="_blank" title="Select to resolve DOI: 10.1039/c6np00019c">10.1039/c6np00019c</a></span></span></td></tr></table><table><tr><td><hr/></td></tr><tr><td><b>This journal is © The Royal Society of Chemistry 2016</b></td></tr></table><div><strong>Click <a title="Link to cookies page" aria-label="Link to cookies page" href="/en/content/cookies" target="_blank">here</a> to see how this site uses Cookies. View our privacy policy <a title="Link to privacy policy page" aria-label="Link to privacy policy page" href="https://www.rsc.org/help-legal/legal/privacy/" target="_blank">here</a>.</strong></div></div></div></div></body><script src="/content/scripts/CrossMarkIE.js"> </script><SaxonLicenceTest result="pass" message="Licenced Enterprise Edition [ EE 9.3.0.4 ]"/></html>