CINXE.COM
Search results for: wearable nonwoven
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wearable nonwoven</title> <meta name="description" content="Search results for: wearable nonwoven"> <meta name="keywords" content="wearable nonwoven"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wearable nonwoven" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wearable nonwoven"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 211</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wearable nonwoven</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Development and Characterisation of Nonwoven Fabrics for Apparel Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Cheema">Muhammad Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Shah"> Tahir Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhash%20Anand"> Subhash Anand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cost of making apparel fabrics for garment manufacturing is very high because of their conventional manufacturing processes and new methods/processes are being constantly developed for making fabrics by unconventional methods. With the advancements in technology and the availability of the innovative fibres, durable nonwoven fabrics by using the hydroentanglement process that can compete with the woven fabrics in terms of their aesthetic and tensile properties are being developed. In the work reported here, the hydroentangled nonwoven fabrics were developed through a hybrid nonwoven manufacturing processes by using fibrillated Tencel® and bi-component (sheath/core) polyethylene/polyester (PE/PET) fibres, in which the initial nonwoven fabrics were prepared by the needle-punching method followed by hydroentanglement process carried out at optimal pressures of 50 to 250bars. The prepared fabrics were characterized according to the British Standards (BS 3356:1990, BS 9237:1995, BS 13934-1:1999) and the attained results were compared with those for a standard plain-weave cotton, polyester woven fabric and commercially available nonwoven fabric (Evolon®). The developed hydroentangled fabrics showed better drape properties owing to their flexural rigidity of 252 mg.cm in the machine direction, while the corresponding commercial hydroentangled fabric displayed a value of 1340 mg.cm in the machine direction. The tensile strength of the developed hydroentangled fabrics showed an approximately 200% increase than the commercial hydroentangled fabrics. Similarly, the developed hydroentangled fabrics showed higher properties in term of air permeability, such as the developed hydroentangled fabric exhibited 448 mm/sec and Evolon fabric exhibited 69 mm/sec at 100 Pa pressure. Thus for apparel fabrics, the work combining the existing methods of nonwoven production, provides additional benefits in terms of cost, time and also helps in reducing the carbon footprint for the apparel fabric manufacture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroentanglement" title="hydroentanglement">hydroentanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven%20apparel" title=" nonwoven apparel"> nonwoven apparel</a>, <a href="https://publications.waset.org/abstracts/search?q=durable%20nonwoven" title=" durable nonwoven"> durable nonwoven</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20nonwoven" title=" wearable nonwoven"> wearable nonwoven</a> </p> <a href="https://publications.waset.org/abstracts/94775/development-and-characterisation-of-nonwoven-fabrics-for-apparel-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> Improved Embroidery Based Textile Electrodes for Sustainability of Impedance Measurement Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bulcha%20Belay%20Etana">Bulcha Belay Etana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research shows that several challenges are to be resolved for textile sensors and wearable smart textiles systems to make it accurate and reproducible minimizing variability issues when tested. To achieve this, we developed stimulating embroidery electrode with three different filling textiles such as 3Dknit, microfiber, and nonwoven fabric, and tested with FTT for high recoverability on compression. Hence The impedance characteristics of wetted electrodes were caried out after 1hr of wetting under normal environmental conditions. The wetted 3D knit (W-3D knit), Wetted nonwoven (W-nonwoven), and wetted microfiber (W-microfiber) developed using Satin stitch performed better than a dry standard stitch or dry Satin stitch electrodes. Its performance was almost the same as that of the gel electrode (Ag/AgCl) as shown by the impedance result in figure 2 .The impedance characteristics of Dry and wetted 3D knit based Embroidered electrodes are better than that of the microfiber, and nonwoven filling textile. This is due to the fact that 3D knit fabric has high recoverability on compression to retain electrolyte gel than microfiber, and nonwoven. However,The non-woven fabric held the electrolyte for longer time without releasing it to the skin when needed, thus making its impedance characteristics poor as observed from the results. Whereas the dry Satin stitch performs better than the standard stitch based developed electrode. The inter electrode distance of all types of the electrode was 25mm, with the area of the electrode being 20mm by 20mm. Detail evaluation and further analysis is in progress for EMG monitoring application <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impedance" title="impedance">impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20retention" title=" moisture retention"> moisture retention</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20knit%20fabric" title=" 3D knit fabric"> 3D knit fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=microfiber" title=" microfiber"> microfiber</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven" title=" nonwoven"> nonwoven</a> </p> <a href="https://publications.waset.org/abstracts/158807/improved-embroidery-based-textile-electrodes-for-sustainability-of-impedance-measurement-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> [Keynote Talk]: A Comparative Study on Air Permeability Properties of Multilayered Nonwoven Structures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kucukali%20Ozturk">M. Kucukali Ozturk</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Nergis"> B. Nergis</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Candan"> C. Candan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air permeability plays an important role for applications such as filtration, thermal and acoustic insulation. The study discussed in this paper was conducted in an attempt to investigate air permeability property of various combinations of nonwovens. The PROWHITE air permeability tester was used for the measurement of the air permeability of the samples in accordance with the relevant standards and a comparative study of the results were made. It was found that the fabric mass per unit area was closely related to the air-permeability. The air permeability decreased with the increase in mass per unit area. Additionally, the air permeability of nonwoven fabrics decreased with the increase in thickness. Moreover, air permeability of multilayered SMS nonwoven structures was lower than those of single layered ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20permeability" title="air permeability">air permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20per%20unit%20area" title=" mass per unit area"> mass per unit area</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven%20structure" title=" nonwoven structure"> nonwoven structure</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20nonwoven" title=" polypropylene nonwoven"> polypropylene nonwoven</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a> </p> <a href="https://publications.waset.org/abstracts/62811/keynote-talk-a-comparative-study-on-air-permeability-properties-of-multilayered-nonwoven-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> Determination of Foaming Behavior in Thermoplastic Composite Nonwoven Structures for Automotive Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulfiye%20Ahan">Zulfiye Ahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Dogu"> Mustafa Dogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Elcin%20Yilmaz"> Elcin Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of materials is gradually growing especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent and a thermal process was applied to obtain porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20nonwoven" title="composite nonwoven">composite nonwoven</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20foams" title=" thermoplastic foams"> thermoplastic foams</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20agent" title=" foaming agent"> foaming agent</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20behavior" title=" foaming behavior"> foaming behavior</a> </p> <a href="https://publications.waset.org/abstracts/141516/determination-of-foaming-behavior-in-thermoplastic-composite-nonwoven-structures-for-automotive-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> Determination of Foaming Behavior in thermoplastic Composite Nonwoven Structures for Automotive Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulfiye%20Ahan">Zulfiye Ahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Dogu"> Mustafa Dogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Elcin%20Yilmaz"> Elcin Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world, with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of material is gradually growing, especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent, and a thermal process was applied to obtain a porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20nonwoven" title="composite nonwoven">composite nonwoven</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20foams" title=" thermoplastic foams"> thermoplastic foams</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20agent" title=" foaming agent"> foaming agent</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20behavior" title=" foaming behavior"> foaming behavior</a> </p> <a href="https://publications.waset.org/abstracts/141519/determination-of-foaming-behavior-in-thermoplastic-composite-nonwoven-structures-for-automotive-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> Effect of Bulk Density and Fiber Blend Content of Nonwoven Textiles on Flammability Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Klara%20Masnicova">Klara Masnicova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Chaloupek"> Jiri Chaloupek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flammability plays an important role in applications such as thermal and acoustic insulation and other technical nonwoven textiles. The study was conducted in an attempt to investigate the flammability behavior of nonwoven textiles in relation to their structural and material characteristics, with emphasis given to the blending ratios of flammable and non-flammable fibers or fibers with reduced flammability. Nonwoven structures made of blends of viscose/oxidized polyacrylonitrile (VS/oxidized PAN fibers and polyethylene terephthalate/oxidized polyacrylonitrile (PET/oxidized PAN) fibers in several bulk densities are evaluated. The VS/oxidized PAN blend is model material. The flammability was studied using a cone calorimeter. Reaction to fire was observed using the small flame test method. Interestingly, the results show some of the blending ratios do not react to the heat in linear response to bulk density. This outcome can have a huge impact on future product development in fire safety and for the general understanding of flammability behavior of nonwovens made of staple fibers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulk%20density" title="bulk density">bulk density</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20calorimetry" title=" cone calorimetry"> cone calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=flammability" title=" flammability"> flammability</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven%20textiles" title=" nonwoven textiles"> nonwoven textiles</a> </p> <a href="https://publications.waset.org/abstracts/133638/effect-of-bulk-density-and-fiber-blend-content-of-nonwoven-textiles-on-flammability-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Development and Sound Absorption and Insulation Performance Evaluation of Nonwoven Fabric Material including Paper Honeycomb Structure for Insulator Covering Shelf Trim</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=In-Sung%20Lee">In-Sung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Un-Hwan%20Park"> Un-Hwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Hyeok%20Heo"> Jun-Hyeok Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Gyu%20Park"> Dae-Gyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insulator Covering Shelf Trim is one of the automotive interior parts located in the rear seat of a car, and it is a component that is the most strongly demanded for impact resistance, strength, and heat resistance. Such an Insulator Covering Shelf Trim is composed of a polyethylene terephthalate (PET) nonwoven fabric which is a surface material appearing externally and a substrate layer which exerts shape and mechanical strength. In this paper, we develop a lightweight Insulator Covering Shelf Trim using the nonwoven fabric material with a high strength honeycomb structure and evaluate sound absorption and insulation performance by using acoustic impedance tubes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption%20and%20insulation" title="sound absorption and insulation">sound absorption and insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=insulator%20covering%20shelf%20trim" title=" insulator covering shelf trim"> insulator covering shelf trim</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven%20fabric" title=" nonwoven fabric"> nonwoven fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb" title=" honeycomb"> honeycomb</a> </p> <a href="https://publications.waset.org/abstracts/59886/development-and-sound-absorption-and-insulation-performance-evaluation-of-nonwoven-fabric-material-including-paper-honeycomb-structure-for-insulator-covering-shelf-trim" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">732</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> Influence of Packing Density of Layers Placed in Specific Order in Composite Nonwoven Structure for Improved Filtration Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saiyed%20M%20Ishtiaque">Saiyed M Ishtiaque</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyal%20Dixit"> Priyal Dixit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: An approach is being suggested to design the filter media to maximize the filtration efficiency with minimum possible pressure drop of composite nonwoven by incorporating the layers of different packing densities induced by fibre of different deniers and punching parameters by using the concept of sequential punching technique in specific order in layered composite nonwoven structure. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layer of differently oriented fibres influenced by fibres of different deniers and punching parameters in various combinations to minimize the pressure drop at maximum possible filtration efficiency. Methodology Used: This work involves preparation of needle punched layered structure with batts 100g/m2 basis weight having fibre denier, punch density and needle penetration depth as variables to produce 300 g/m2 basis weight nonwoven composite. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layers of differently oriented fibres influenced by considered variables in various combinations. to minimize the pressure drop at maximum possible filtration efficiencyFor developing layered nonwoven fabrics, batts made of fibre of different deniers having 100g/m2 each basis weight were placed in various combinations. For second set of experiment, the composite nonwoven fabrics were prepared by using 3 denier circular cross section polyester fibre having 64 mm length on needle punched nonwoven machine by using the sequential punching technique to prepare the composite nonwoven fabrics. In this technique, three semi punched fabrics of 100 g/m2 each having either different punch densities or needle penetration depths were prepared for first phase of fabric preparation. These fabrics were later punched altogether to obtain the overall basis weight of 300 g/m2. The total punch density of the composite nonwoven fabric was kept at 200 punches/ cm2 with a needle penetration depth of 10 mm. The layered structures so formed were subcategorised into two groups- homogeneous layered structure in which all the three batts comprising the nonwoven fabric were made from same denier of fibre, punch density and needle penetration depth and were placed in different positions in respective fabric and heterogeneous layered structure in which batts were made from fibres of different deniers, punch densities and needle penetration depths and were placed in different positions. Contributions: The results concluded that reduction in pressure drop is not derived by the overall packing density of the layered nonwoven fabric rather sequencing of layers of specific packing density in layered structure decides the pressure drop. Accordingly, creation of inverse gradient of packing density in layered structure provided maximum filtration efficiency with least pressure drop. This study paves the way for the possibility of customising the composite nonwoven fabrics by the incorporation of differently oriented fibres in constituent layers induced by considered variablres for desired filtration properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filtration%20efficiency" title="filtration efficiency">filtration efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20nonwoven%20structure" title=" layered nonwoven structure"> layered nonwoven structure</a>, <a href="https://publications.waset.org/abstracts/search?q=packing%20density" title=" packing density"> packing density</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a> </p> <a href="https://publications.waset.org/abstracts/179311/influence-of-packing-density-of-layers-placed-in-specific-order-in-composite-nonwoven-structure-for-improved-filtration-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Product Design and Development of Wearable Assistant Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao-Jun%20Hong">Hao-Jun Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Tang%20Huang"> Jung-Tang Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The world is gradually becoming an aging society, and with the lack of laboring forces, this phenomenon is affecting the nation’s economy growth. Although nursing centers are booming in recent years, the lack of medical resources are yet to be resolved, thus creating an innovative wearable medical device could be a vital solution. This research is focused on the design and development of a wearable device which obtains a more precise heart failure measurement than products on the market. The method used by the device is based on the sensor fusion and big data algorithm. From the test result, the modified structure of wearable device can significantly decrease the MA (Motion Artifact) and provide users a more cozy and accurate physical monitor experience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20failure" title=" heart failure"> heart failure</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20artifact" title=" motion artifact"> motion artifact</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20fusion" title=" sensor fusion"> sensor fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20medical%20device" title=" wearable medical device"> wearable medical device</a> </p> <a href="https://publications.waset.org/abstracts/59226/product-design-and-development-of-wearable-assistant-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> On the Design of Wearable Fractal Antenna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amar%20Partap%20Singh%20Pharwaha">Amar Partap Singh Pharwaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Shweta%20Rani"> Shweta Rani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is aimed at proposing a rhombus shaped wearable fractal antenna for wireless communication systems. The geometrical descriptors of the antenna have been obtained using bacterial foraging optimization (BFO) for wide band operation. The method of moment based IE3D software has been used to simulate the antenna and observed that miniaturization of 13.08% has been achieved without degrading the resonating properties of the proposed antenna. An analysis with different substrates has also been done in order to evaluate the effectiveness of electrical permittivity on the presented structure. The proposed antenna has low profile, light weight and has successfully demonstrated wideband and multiband characteristics for wearable electronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BFO" title="BFO">BFO</a>, <a href="https://publications.waset.org/abstracts/search?q=bandwidth" title=" bandwidth"> bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20permittivity" title=" electrical permittivity"> electrical permittivity</a>, <a href="https://publications.waset.org/abstracts/search?q=fractals" title=" fractals"> fractals</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20antenna" title=" wearable antenna"> wearable antenna</a> </p> <a href="https://publications.waset.org/abstracts/31798/on-the-design-of-wearable-fractal-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> Sheathed Cotton Fibers: Material for Oil-Spill Cleanup</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20M%20Dauda">Benjamin M Dauda</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20Ibrahim"> Esther Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvester%20Gadimoh"> Sylvester Gadimoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Asabe%20Mustapha"> Asabe Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiyah%20Mohammed"> Jiyah Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite diverse optimization techniques on natural hydrophilic fibers, hydrophobic synthetic fibers are still the best oil sorption materials. However, these hydrophobic fibers are not biodegradable, making their disposal problematic. To this end, this work sets out to develop Nonwoven sorbents from epoxy-coated Cotton fibers. As a way of improving the compatibility of the crude oil and reduction of moisture absorption, cotton fibers were coated with epoxy resin by immersion in acetone-thinned epoxy solution. A needle-punching machine was used to convert the fibers into coherent nonwoven sheets. An oil sorption experiment was then carried out. The result indicates that the developed epoxy-modified sorbent has a higher crude oil-sorption capacity compared with those of untreated cotton and commercial polypropylene sorbents. Absorption Curves show that the coated fiber and polypropylene sorbent saturated faster than the uncoated cotton fiber pad. The result also shows that the coated cotton sorbent adsorbed crude faster than the polypropylene sorbent, and the equilibrium exhaustion was also higher. After a simple mechanical squeezing process, the Nonwoven pads could be restored to their original form and repeatedly recycled for oil/water separation. The results indicate that the cotton-coated non-woven pads hold promise for the cleanup of oil spills. Our data suggests that the sorption behaviors of the epoxy-coated Nonwoven pads and their crude oil sorption capacity are relatively stable under various environmental conditions compared to the commercial sheet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title="oil spill">oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven" title=" nonwoven"> nonwoven</a> </p> <a href="https://publications.waset.org/abstracts/183396/sheathed-cotton-fibers-material-for-oil-spill-cleanup" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Integrating Wearable Devices in Real-Time Computer Applications of Petrochemical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20B%20Stone">Paul B Stone</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhashini%20Ganapathy"> Subhashini Ganapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mary%20E.%20Fendley"> Mary E. Fendley</a>, <a href="https://publications.waset.org/abstracts/search?q=Layla%20Akilan"> Layla Akilan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As notifications become more common through mobile devices, it is important to understand the impact of wearable devices on the improved user experience of man-machine interfaces. This study examined the use of a wearable device for a real-time system using a computer-simulated petrochemical system. The key research question was to determine how using the information provided by the wearable device can improve human performance through measures of situational awareness and decision making. Results indicate that there was a reduction in response time when using the watch, and there was no difference in situational awareness. Perception of using the watch was positive, with 83% of users finding value in using the watch and receiving haptic feedback. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20applications" title="computer applications">computer applications</a>, <a href="https://publications.waset.org/abstracts/search?q=haptic%20feedback" title=" haptic feedback"> haptic feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemical%20systems" title=" petrochemical systems"> petrochemical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=situational%20awareness" title=" situational awareness"> situational awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20technology" title=" wearable technology"> wearable technology</a> </p> <a href="https://publications.waset.org/abstracts/139604/integrating-wearable-devices-in-real-time-computer-applications-of-petrochemical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> The Integration of Patient Health Record Generated from Wearable and Internet of Things Devices into Health Information Exchanges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalvin%20D.%20Hill">Dalvin D. Hill</a>, <a href="https://publications.waset.org/abstracts/search?q=Hector%20M.%20Castro%20Garcia"> Hector M. Castro Garcia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A growing number of individuals utilize wearable devices on a daily basis. The usage and functionality of these wearable devices vary from user to user. One popular usage of said devices is to track health-related activities that are typically stored on a device’s memory or uploaded to an account in the cloud; based on the current trend, the data accumulated from the wearable device are stored in a standalone location. In many of these cases, this health related datum is not a factor when considering the holistic view of a user’s health lifestyle or record. This health-related data generated from wearable and Internet of Things (IoT) devices can serve as empirical information to a medical provider, as the standalone data can add value to the holistic health record of a patient. This paper proposes a solution to incorporate the data gathered from these wearable and IoT devices, with that a patient’s Personal Health Record (PHR) stored within the confines of a Health Information Exchange (HIE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20health%20record" title="electronic health record">electronic health record</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20information%20exchanges" title=" health information exchanges"> health information exchanges</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title=" internet of things"> internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20health%20records" title=" personal health records"> personal health records</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20devices" title=" wearable devices"> wearable devices</a>, <a href="https://publications.waset.org/abstracts/search?q=wearables" title=" wearables"> wearables</a> </p> <a href="https://publications.waset.org/abstracts/125668/the-integration-of-patient-health-record-generated-from-wearable-and-internet-of-things-devices-into-health-information-exchanges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Study of Influencing Factors on the Flowability of Jute Nonwoven Reinforced Sheet Molding Compound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miriam%20I.%20Lautenschl%C3%A4ger">Miriam I. Lautenschläger</a>, <a href="https://publications.waset.org/abstracts/search?q=Max%20H.%20Scheiwe"> Max H. Scheiwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Kay%20A.%20Weidenmann"> Kay A. Weidenmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Henning"> Frank Henning</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Elsner"> Peter Elsner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to increasing environmental awareness jute fibers are more often used in fiber reinforced composites. In the Sheet Molding Compound (SMC) process, the mold cavity is filled via material flow allowing more complex component design. But, the difficulty of using jute fibers in this process is the decreased capacity of fiber movement in the mold. A comparative flow study with jute nonwoven reinforced SMC was conducted examining the influence of the fiber volume content, the grammage of the jute nonwoven textile and a mechanical modification of the nonwoven textile on the flowability. The nonwoven textile reinforcement was selected to support homogeneous fiber distribution. Trials were performed using two SMC paste formulations differing only in filler type. Platy-shaped kaolin with a mean particle size of 0.8 μm and ashlar calcium carbonate with a mean particle size of 2.7 μm were selected as fillers. Ensuring comparability of the two SMC paste formulations the filler content was determined to reach equal initial viscosity for both systems. The calcium carbonate filled paste was set as reference. The flow study was conducted using a jute nonwoven textile with 300 g/m² as reference. The manufactured SMC sheets were stacked and centrally placed in a square mold. The mold coverage was varied between 25 and 90% keeping the weight of the stack for comparison constant. Comparing the influence of the two fillers kaolin yielded better results regarding a homogeneous fiber distribution. A mold coverage of about 68% was already sufficient to homogeneously fill the mold cavity whereas for calcium carbonate filled system about 79% mold coverage was necessary. The flow study revealed a strong influence of the fiber volume content on the flowability. A fiber volume content of 12 vol.-% and 25 vol.-% were compared for both SMC formulations. The lower fiber volume content strongly supported fiber transport whereas 25 vol.-% showed insignificant influence. The results indicate a limiting fiber volume content for the flowability. The influence of the nonwoven textile grammage was determined using nonwoven jute material with 500 g/m² and a fiber volume content of 20 vol.-%. The 500 g/m² reinforcement material showed inferior results with regard to fiber movement. A mold coverage of about 90 % was required to prevent the destruction of the nonwoven structure. Below this mold coverage the 500 g/m² nonwoven material was ripped and torn apart. Low mold coverages led to damage of the textile reinforcement. Due to the ripped nonwoven structure the textile was modified with cuts in order to facilitate fiber movement in the mold. Parallel cuts of about 20 mm length and 20 mm distance to each other were applied to the textile and stacked with varying orientations prior to molding. Stacks with unidirectional orientated cuts over stacks with cuts in various directions e.g. (0°, 45°, 90°, -45°) were investigated. The mechanical modification supported tearing of the textile without achieving benefit for the flowability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filler" title="filler">filler</a>, <a href="https://publications.waset.org/abstracts/search?q=flowability" title=" flowability"> flowability</a>, <a href="https://publications.waset.org/abstracts/search?q=jute%20fiber" title=" jute fiber"> jute fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven" title=" nonwoven"> nonwoven</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20molding%20compound" title=" sheet molding compound"> sheet molding compound</a> </p> <a href="https://publications.waset.org/abstracts/55517/study-of-influencing-factors-on-the-flowability-of-jute-nonwoven-reinforced-sheet-molding-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> Textile Based Physical Wearable Sensors for Healthcare Monitoring in Medical and Protective Garments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sejuti%20Malakar">Sejuti Malakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile sensors have gained a lot of interest in recent years as it is instrumental in monitoring physiological and environmental changes, for a better diagnosis that can be useful in various fields like medical textiles, sports textiles, protective textiles, agro textiles, and geo-textiles. Moreover, with the development of flexible textile-based wearable sensors, the functionality of smart clothing is augmented for a more improved user experience when it comes to technical textiles. In this context, conductive textiles using new composites and nanomaterials are being developed while considering its compatibility with the textile manufacturing processes. This review aims to provide a comprehensive and detailed overview of the contemporary advancements in textile-based wearable physical sensors, used in the field of medical, security, surveillance, and protection, from a global perspective. The methodology used is through analysing various examples of integration of wearable textile-based sensors with clothing for daily use, keeping in mind the technological advances in the same. By comparing various case studies, we come across various challenges textile sensors, in terms of stability, the comfort of movement, and reliable sensing components to enable accurate measurements, in spite of progress in the engineering of the wearable. Addressing such concerns is critical for the future success of wearable sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20textile-based%20wearable%20sensors" title="flexible textile-based wearable sensors">flexible textile-based wearable sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=contemporary%20advancements" title=" contemporary advancements"> contemporary advancements</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20textiles" title=" conductive textiles"> conductive textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20conformal%20design" title=" body conformal design"> body conformal design</a> </p> <a href="https://publications.waset.org/abstracts/130601/textile-based-physical-wearable-sensors-for-healthcare-monitoring-in-medical-and-protective-garments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> Rheological Model for Describing Spunlace Nonwoven Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sana%20Ridene">Sana Ridene</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumaya%20Sayeb"> Soumaya Sayeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Houda%20Helali"> Houda Helali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ben%20Hassen"> Mohammed Ben Hassen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonwoven structures have a range of applications which include Medical, filtration, geotextile and recently this unconventional fabric is finding a niche in fashion apparel. In this paper, a modified form of Vangheluwe rheological model is used to describe the mechanical behavior of nonwovens fabrics in uniaxial tension. This model is an association in parallel of three Maxwell elements characterized by damping coefficients η1, η2 and η3 and E1, E2, E3 elastic modulus and a nonlinear spring C. The model is verified experimentally with two types of nonwovens (50% viscose /50% Polyester) and (40% viscose/60% Polyester) and a range of three square weights values. Comparative analysis of the theoretical model and the experimental results of tensile test proofs a high correlation between them. The proposed model can fairly well replicate the behavior of nonwoven fabrics during relaxation and sample traction. This allowed us to predict the mechanical behavior in tension and relaxation of fabrics starting only from their technical parameters (composition and weight). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title="mechanical behavior">mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation" title=" relaxation"> relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20model" title=" rheological model"> rheological model</a> </p> <a href="https://publications.waset.org/abstracts/51742/rheological-model-for-describing-spunlace-nonwoven-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> A Compact Wearable Slot Antenna for LTE and WLAN Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haider%20K.%20Raad">Haider K. Raad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a compact wide-band, ultra-thin and flexible slot antenna intended for wearable applications is presented. The presented antenna is designed to provide Wireless Local Area Network (WLAN) and Long Term Evolution (LTE) connectivity. The presented design exhibits a relatively wide bandwidth (1600-3500 MHz below -6 dB impedance bandwidth limit). The antenna is positioned on a 33 mm x 30 mm flexible substrate with a thickness of 50 µm. Antenna properties, such as the far-field radiation patterns, scattering parameter <em>S</em><sub>11</sub> are provided. The presented compact, thin and flexible design along with excellent radiation characteristics are deemed suitable for integration into flexible and wearable devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wearable%20electronics" title="wearable electronics">wearable electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=slot%20Antenna" title=" slot Antenna"> slot Antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=LTE" title=" LTE"> LTE</a>, <a href="https://publications.waset.org/abstracts/search?q=WLAN" title=" WLAN"> WLAN</a> </p> <a href="https://publications.waset.org/abstracts/56808/a-compact-wearable-slot-antenna-for-lte-and-wlan-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> Cortex-M3 Based Virtual Platform Implementation for Software Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Young%20Moon">Jun Young Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeonggeon%20Lee"> Hyeonggeon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Tae%20Kim"> Jong Tae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present Cortex-M3 based virtual platform which can virtualize wearable hardware platform and evaluate hardware performance. Cortex-M3 is very popular microcontroller in wearable devices, hardware sensors and display devices. This platform can be used to implement software layer for specific hardware architecture. By using the proposed platform the software development process can be parallelized with hardware development process. We present internal mechanism to implement the proposed virtual platform and describe how to use the proposed platform to develop software by using case study which is low cost wearable device that uses Cortex-M3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20system%20level%20design" title="electronic system level design">electronic system level design</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20development" title=" software development"> software development</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20platform" title=" virtual platform"> virtual platform</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20device" title=" wearable device"> wearable device</a> </p> <a href="https://publications.waset.org/abstracts/45115/cortex-m3-based-virtual-platform-implementation-for-software-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> Using Wearable Technology to Monitor Workers’ Stress for Construction Safety: A Conceptual Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Namhun%20Lee">Namhun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Jin%20Kim"> Seong Jin Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction industry represents one of the largest industries in the United States, yet it continues to face several occupational health and safety challenges. Many workers on construction sites are suffering from extended exposure to stressful situations such as poor and hazardous work environments and task complexity. Stress can be commonly defined as a feeling of emotional or physical tension, which can easily impact construction safety and result in a higher rate of job-related injuries in the construction industry. Physiological signals transmitted from wearable biosensors can be used to detect excessive stress. Therefore, workers’ stress should be detected and mitigated to prevent any type of serious incident or accident proactively. By doing this, construction productivity, as well as job satisfaction, would also be improved in the construction industry. To establish a foundation in this field of research, a conceptual framework for using wearable technology for construction safety has been developed for continuous and automatic monitoring of worker’s stress. The conceptual framework will serve as a foothold in future studies on the application of wearable technology for construction safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20safety" title="construction safety">construction safety</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20stress" title=" occupational stress"> occupational stress</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20monitoring" title=" stress monitoring"> stress monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20biosensors" title=" wearable biosensors"> wearable biosensors</a> </p> <a href="https://publications.waset.org/abstracts/136006/using-wearable-technology-to-monitor-workers-stress-for-construction-safety-a-conceptual-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> The Impact of Artificial Intelligence on Textiles Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramy%20Kamel%20Fekrey%20Gadelrab">Ramy Kamel Fekrey Gadelrab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile sensors have gained a lot of interest in recent years as it is instrumental in monitoring physiological and environmental changes, for a better diagnosis that can be useful in various fields like medical textiles, sports textiles, protective textiles, agro textiles, and geo-textiles. Moreover, with the development of flexible textile-based wearable sensors, the functionality of smart clothing is augmented for a more improved user experience when it comes to technical textiles. In this context, conductive textiles using new composites and nanomaterials are being developed while considering its compatibility with the textile manufacturing processes. This review aims to provide a comprehensive and detailed overview of the contemporary advancements in textile-based wearable physical sensors, used in the field of medical, security, surveillance, and protection, from a global perspective. The methodology used is through analysing various examples of integration of wearable textile-based sensors with clothing for daily use, keeping in mind the technological advances in the same. By comparing various case studies, it come across various challenges textile sensors, in terms of stability, the comfort of movement, and reliable sensing components to enable accurate measurements, in spite of progress in the engineering of the wearable. Addressing such concerns is critical for the future success of wearable sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=textilesconductive%20yarn" title=" textilesconductive yarn"> textilesconductive yarn</a>, <a href="https://publications.waset.org/abstracts/search?q=e-textiles" title=" e-textiles"> e-textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20textiles" title=" smart textiles"> smart textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysisflexible%20textile-based%20wearable%20sensors" title=" thermal analysisflexible textile-based wearable sensors"> thermal analysisflexible textile-based wearable sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=contemporary%20advancements" title=" contemporary advancements"> contemporary advancements</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20textiles" title=" conductive textiles"> conductive textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20conformal%20design" title=" body conformal design"> body conformal design</a> </p> <a href="https://publications.waset.org/abstracts/185312/the-impact-of-artificial-intelligence-on-textiles-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">191</span> Designing for Wearable Interactions: Exploring Care Design for Design Anthropology and Participatory Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Chen%20Chang">Wei-Chen Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Cheng%20Pei"> Yu-Cheng Pei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research examines wearable interaction design to mediate the design anthropology and participatory design found in technology and fashion. We will discuss the principles of design anthropology and participatory design using a wearable and fashion product process to transmit the ‘people-situation-reason-object’ method and analyze five sense applied examples that provide new thinking for designers engaged in future industry. Design anthropology and Participatory Design attempt to engage physiological and psychological design through technology-function, meaning-form and fashion aesthetics to achieve cognition between user and environment. The wearable interaction provides technological characteristics and semantic ideas transmitted to craft-cultural, collective, cheerful and creative performance. It is more confident and innovative attempt, that is able to achieve a joyful, fundamental interface. This study takes two directions for cultural thinking as the basis to establish a set of life-craft designs with interactive experience objects by users that assist designers in examining the sensual feelings to initiate a new lifestyle value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20anthropology" title="design anthropology">design anthropology</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20design" title=" wearable design"> wearable design</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20communication" title=" design communication"> design communication</a>, <a href="https://publications.waset.org/abstracts/search?q=participatory%20design" title=" participatory design"> participatory design</a> </p> <a href="https://publications.waset.org/abstracts/83409/designing-for-wearable-interactions-exploring-care-design-for-design-anthropology-and-participatory-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">190</span> Octagon Shaped Wearable Antenna for Band at 4GHz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khazini">M. Khazini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.Damou"> M.Damou</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Souar"> Z. Souar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, octagon antenna ultra wideband (UWB) low band wearable antenna designs have been proposed for in-body to on-body communication channel of wireless. Single element antenna, dual elements, are designed and compared in free space and in body proximity. Conformal design has been focused. Liquid crystal polymer (LCP) is a material that has gained attention as a potential high-performance microwave substrate and packaging material. This investigation uses several methods to determine the electrical properties of LCP for millimeter-wave frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra%20wideband" title="ultra wideband">ultra wideband</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20antenna" title=" wearable antenna"> wearable antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=slot%20antenna" title=" slot antenna"> slot antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystal%20polymer%20%28LCP%29" title=" liquid crystal polymer (LCP)"> liquid crystal polymer (LCP)</a>, <a href="https://publications.waset.org/abstracts/search?q=CST%20studio" title=" CST studio"> CST studio</a> </p> <a href="https://publications.waset.org/abstracts/43758/octagon-shaped-wearable-antenna-for-band-at-4ghz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">189</span> U Slot Loaded Wearable Textile Antenna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varsha%20Kheradiya">Varsha Kheradiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganga%20Prasad%20Pandey"> Ganga Prasad Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of wearable antennas is rising because wireless devices become small. The wearable antenna is part of clothes used in communication applications, including energy harvesting, medical application, navigation, and tracking. In current years, Antennas embroidered on clothes, conducting antennas based on fabric, polymer embedded antennas, and inkjet-printed antennas are all attractive ways. Also shows the analysis required for wearable antennas, such as wearable antennae interacting with the human body. The primary requirements for the antenna are small size, low profile minimizing radiation absorption by the human body, high efficiency, structural integrity to survive worst situations, and good gain. Therefore, research in energy harvesting, biomedicine, and military application design is increasingly favoring flexible wearable antennas. Textile materials that are effectively used for designing and developing wearable antennas for body area networks. The wireless body area network is primarily concerned with creating effective antenna systems. The antenna should reduce their size, be lightweight, and be adaptable when integrated into clothes. When antennas integrate into clothes, it provides a convenient alternative to those fabricated using rigid substrates. This paper presents a study of U slot loaded wearable textile antenna. U slot patch antenna design is illustrated for wideband from 1GHz to 6 GHz using textile material jeans as substrate and pure copper polyester taffeta fabric as conducting material. This antenna design exhibits dual band results for WLAN at 2.4 GHz and 3.6 GHz frequencies. Also, study U slot position horizontal and vertical shifting. Shifting the horizontal positive X-axis position of the U slot produces the third band at 5.8 GHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstrip%20patch%20antenna" title="microstrip patch antenna">microstrip patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20material" title=" textile material"> textile material</a>, <a href="https://publications.waset.org/abstracts/search?q=U%20slot%20wearable%20antenna" title=" U slot wearable antenna"> U slot wearable antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20body%20area%20network" title=" wireless body area network"> wireless body area network</a> </p> <a href="https://publications.waset.org/abstracts/167234/u-slot-loaded-wearable-textile-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">188</span> Achieving Shear Wave Elastography by a Three-element Probe for Wearable Human-machine Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jipeng%20Yan">Jipeng Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingchen%20Yang"> Xingchen Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaowei%20Zhou"> Xiaowei Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengxing%20Tang"> Mengxing Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Honghai%20Liu"> Honghai Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear elastic modulus of skeletal muscles can be obtained by shear wave elastography (SWE) and has been linearly related to muscle force. However, SWE is currently implemented using array probes. Price and volumes of these probes and their driving equipment prevent SWE from being used in wearable human-machine interfaces (HMI). Moreover, beamforming processing for array probes reduces the real-time performance. To achieve SWE by wearable HMIs, a customized three-element probe is adopted in this work, with one element for acoustic radiation force generation and the others for shear wave tracking. In-phase quadrature demodulation and 2D autocorrelation are adopted to estimate velocities of tissues on the sound beams of the latter two elements. Shear wave speeds are calculated by phase shift between the tissue velocities. Three agar phantoms with different elasticities were made by changing the weights of agar. Values of the shear elastic modulus of the phantoms were measured as 8.98, 23.06 and 36.74 kPa at a depth of 7.5 mm respectively. This work verifies the feasibility of measuring shear elastic modulus by wearable devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20elastic%20modulus" title="shear elastic modulus">shear elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=skeletal%20muscle" title=" skeletal muscle"> skeletal muscle</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20human-machine%20interface" title=" wearable human-machine interface"> wearable human-machine interface</a> </p> <a href="https://publications.waset.org/abstracts/127469/achieving-shear-wave-elastography-by-a-three-element-probe-for-wearable-human-machine-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">187</span> The Optimization Design of Sound Absorbing for Automotive Interior Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Un-Hwan%20Park">Un-Hwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Hyeok%20Heo"> Jun-Hyeok Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Sung%20Lee"> In-Sung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Hyeon%20Oh"> Tae-Hyeon Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Gyu%20Park"> Dae-Gyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonwoven fabric such as an automobile interior material becomes consists of several material layers required for the sound-absorbing function. Because several material layers, many experimental tuning is required to achieve the target of sound absorption. Therefore, a lot of time and money is spent in the development of the car interior materials. In this study, we present the method to predict the sound-absorbing performance of the various layers with physical properties of each material. and we will verify it with the measured value of a prototype. If the sound absorption can be estimated, it can be optimized without a number of tuning tests of the interiors. So, it can reduce the development cost and time during development <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20interior%20material" title="automotive interior material">automotive interior material</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20absorbing" title=" sound absorbing"> sound absorbing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20design" title=" optimization design"> optimization design</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven%20fabric" title=" nonwoven fabric"> nonwoven fabric</a> </p> <a href="https://publications.waset.org/abstracts/51023/the-optimization-design-of-sound-absorbing-for-automotive-interior-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">837</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">186</span> Developement of a New Wearable Device for Automatic Guidance Service</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Cai">Dawei Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a new wearable device that provide an automatic guidance servie for visitors. By combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor, the head's direction can be calculated. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wearable%20device" title="wearable device">wearable device</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20computing" title=" ubiquitous computing"> ubiquitous computing</a>, <a href="https://publications.waset.org/abstracts/search?q=guide%20sysem" title=" guide sysem"> guide sysem</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20sensor" title=" MEMS sensor"> MEMS sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=NFC" title=" NFC"> NFC</a> </p> <a href="https://publications.waset.org/abstracts/21436/developement-of-a-new-wearable-device-for-automatic-guidance-service" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">185</span> Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Naik">R. P. Naik</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Rakshit"> A. K. Rakshit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silica-gel" title="silica-gel">silica-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20insulation" title=" heat insulation"> heat insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven%20fabric" title=" nonwoven fabric"> nonwoven fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20clothing" title=" thermal barrier clothing"> thermal barrier clothing</a> </p> <a href="https://publications.waset.org/abstracts/99086/development-of-mesoporous-gel-based-nonwoven-structure-for-thermal-barrier-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">184</span> Chemical Degradation of a Polyester Nonwoven Membrane Used in Aerosol and Drainage Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachid%20El%20Aidani">Rachid El Aidani</a>, <a href="https://publications.waset.org/abstracts/search?q=Phuong%20Nguyen-Tri"> Phuong Nguyen-Tri</a>, <a href="https://publications.waset.org/abstracts/search?q=Toan%20Vu-Khanh"> Toan Vu-Khanh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The filter media in synthetic fibre is the most geotextile materials used in aerosol and drainage filtration, particularly for buildings soil reinforcement in civil engineering due to its appropriated properties and its low cost. However, the current understanding of the durability and stability of this material in real service conditions, especially under severe long-term conditions are completely limited. This study has examined the effects of the chemical aging of a filter media in polyester nonwoven under different temperatures (50, 70 and 80˚C) and pH (2. 7 and 12). The effect of aging conditions on mechanical properties, morphology, permeability, thermal stability and molar weigh changes is investigated. The results showed a significant reduction of mechanical properties in term of tensile strength, puncture force and tearing forces of the filter media after chemical aging due to the chemical degradation. The molar mass and mechanical properties changes in different temperature and pH showed a complex dependence of material properties on environmental conditions. The SEM and AFM characterizations showed a significant impact of the thermal aging on the morphological properties of the fibres. Based on the obtained results, the lifetime of the material in different temperatures was determined by the use of the Arrhenius model. These results provide useful information to better understand phenomena occurring during chemical aging of the filter media and may help to predict the service lifetime of this material in real used conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonwoven%20membrane" title="nonwoven membrane">nonwoven membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20aging" title=" chemical aging"> chemical aging</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20media" title=" filter media"> filter media</a> </p> <a href="https://publications.waset.org/abstracts/29367/chemical-degradation-of-a-polyester-nonwoven-membrane-used-in-aerosol-and-drainage-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> Wearable Heart Rate Sensor Based on Wireless System for Heart Health Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murtadha%20Kareem">Murtadha Kareem</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Faust"> Oliver Faust</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wearable biosensor systems can be designed and developed for health monitoring. There is much interest in both scientific and industrial communities established since 2007. Fundamentally, the cost of healthcare has increased dramatically and the world population is aging. That creates the need to harvest technological improvements with small bio-sensing devices, wireless-communication, microelectronics and smart textiles, that leads to non-stop developments of wearable sensor based systems. There has been a significant demand to monitor patient's health status while the patient leaves the hospital in his/her personal environment. To address this need, there are numerous system prototypes which has been launched in the medical market recently, the aim of that is to provide real time information feedback about patient's health status, either to the patient himself/herself or direct to the supervising medical centre station, while being capable to give a notification for the patient in case of possible imminent health threatening conditions. Furthermore, wearable health monitoring systems comprise new techniques to address the problem of managing and monitoring chronic heart diseases for elderly people. Wearable sensor systems for health monitoring include various types of miniature sensors, either wearable or implantable. To be specific, our proposed system able to measure essential physiological parameter, such as heart rate signal which could be transmitted through Bluetooth to the cloud server in order to store, process, analysis and visualise the data acquisition. The acquired measurements are connected through internet of things to a central node, for instance an android smart phone or tablet used for visualising the collected information on application or transmit it to a medical centre. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wearable%20sensor" title="Wearable sensor">Wearable sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Heart%20rate" title=" Heart rate"> Heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=Internet%20of%20things" title=" Internet of things"> Internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=Chronic%20heart%20disease" title=" Chronic heart disease"> Chronic heart disease</a> </p> <a href="https://publications.waset.org/abstracts/100678/wearable-heart-rate-sensor-based-on-wireless-system-for-heart-health-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> Realization of Wearable Inertial Measurement Units-Sensor-Fusion Harness to Control Therapeutic Smartphone Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svilen%20Dimitrov">Svilen Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Manthan%20Pancholi"> Manthan Pancholi</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbert%20Schmitz"> Norbert Schmitz</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20Stricker"> Didier Stricker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the end-to-end development of a wearable motion sensing harness consisting of computational unit and four inertial measurement units to control three smartphone therapeutic games for children. The inertial data is processed in real time to obtain lower body motion information like knee raises, feet taps and squads. By providing a Wi-Fi connection interface the sensor harness acts wireless remote control for smartphone applications. By performing various lower body movements the users provoke corresponding game state changes. In contrary to the current similar offers, like Nintendo Wii Remote, Xbox Kinect and Playstation Move, this product, consisting of the sensor harness and the applications on top of it, are fully wearable, which means they do not rely on the user to be bound to concrete soft- or hardwareequipped space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wearable%20harness" title="wearable harness">wearable harness</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20measurement%20units" title=" inertial measurement units"> inertial measurement units</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone%20therapeutic%20games" title=" smartphone therapeutic games"> smartphone therapeutic games</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20tracking" title=" motion tracking"> motion tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=lower-body%20activity%20monitoring" title=" lower-body activity monitoring"> lower-body activity monitoring</a> </p> <a href="https://publications.waset.org/abstracts/65691/realization-of-wearable-inertial-measurement-units-sensor-fusion-harness-to-control-therapeutic-smartphone-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wearable%20nonwoven&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wearable%20nonwoven&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wearable%20nonwoven&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wearable%20nonwoven&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wearable%20nonwoven&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wearable%20nonwoven&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wearable%20nonwoven&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wearable%20nonwoven&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>