CINXE.COM

Search results for: Bitumen

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Bitumen</title> <meta name="description" content="Search results for: Bitumen"> <meta name="keywords" content="Bitumen"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Bitumen" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Bitumen"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 80</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Bitumen</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> The Effect of Styrene-Butadiene-Rubber (SBR) Polymer Modifier on Properties of Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abbas%20Tabatabaei">Seyed Abbas Tabatabaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Kiasat"> Alireza Kiasat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferdows%20Karimi%20Alkouhi"> Ferdows Karimi Alkouhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to use bitumen in hot mix asphalt, it must have specific characteristics. There are some methods to reach these properties. Using polymer modifiers are one of the methods to modify the bitumen properties. In this paper, the effect of Styrene-Butadiene-Rubber that is one of the bitumen polymer modifiers on rheology properties of bitumen is studied. In this regard, the rheological properties of base bitumen and the modified bitumen with 3, 4, and 5 percent of Styrene-Butadiene-Rubber (SBR) were analysed. The results show that bitumen modified with 5 percent of SBR has the best performance than the other samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen" title="bitumen">bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20modifier" title=" polymer modifier"> polymer modifier</a>, <a href="https://publications.waset.org/abstracts/search?q=styrene-butadiene-rubber" title=" styrene-butadiene-rubber"> styrene-butadiene-rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a> </p> <a href="https://publications.waset.org/abstracts/1250/the-effect-of-styrene-butadiene-rubber-sbr-polymer-modifier-on-properties-of-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Effects of Asphalt Modification with Nanomaterials on Fresh and Stored Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20W.%20Oda">Ahmed W. Oda</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Desouky"> Ahmed El-Desouky</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Mahdy"> Hassan Mahdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20M.%20Moussa"> Osama M. Moussa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials have many applications in the field of asphalt paving. Two locally produced nanomaterials were used in the asphalt binder modification. The nanomaterials used are Nanosilica (NS), and Nanoclay (NC). The virgin asphalt binder was characterized by the conventional tests. The bitumen was modified by 3%, 5% and 7% of NS and NC. The penetration index(PI), and the retaining penetration (RP) was calculated based on the results of the penetration and the softening point tests. The results show that the RP becomes 95.35% at 5%NS modified bitumen and reaches 97.56% when bitumen is modified with 3% NC. The results show significant improvement in the bitumen stiffness when modified by the two types of nanomaterials, either fresh or aged (stored). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen" title="bitumen">bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20bitumen" title=" modified bitumen"> modified bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=aged" title=" aged"> aged</a>, <a href="https://publications.waset.org/abstracts/search?q=stored" title="stored">stored</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/146856/effects-of-asphalt-modification-with-nanomaterials-on-fresh-and-stored-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Laboratory Evaluation of Gilsonite Modified Bituminous Mixes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Vishnu">R. Vishnu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Reddy"> K. S. Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Amrendra%20Kumar"> Amrendra Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present guideline for the construction of flexible pavement in India, IRC 37: 2012 recommends to use viscous grade VG 40 bitumen in both wearing and binder bituminous layers. However, most of the bitumen production plants in India are unable to produce the air-blown VG40 grade bitumen. This requires plant鈥檚 air-blowing technique modification, and often the manufactures finds it as uneconomical. In this context, stiffer grade bitumen can be produced if bitumen is modified. Gilsonite, which is naturally occurring asphalt have been found to be used for increasing the stiffness of binders. The present study evaluates the physical, rheological characteristics of Gilsonite modified binders and the performance characteristics of these binders when used in the mix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen" title="bitumen">bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=gilsonite" title=" gilsonite"> gilsonite</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20evaluation" title=" laboratory evaluation"> laboratory evaluation</a> </p> <a href="https://publications.waset.org/abstracts/24253/laboratory-evaluation-of-gilsonite-modified-bituminous-mixes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Towards an Understanding of Breaking and Coalescence Process in Bitumen Emulsions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Khan">Abdullah Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Per%20Redelius"> Per Redelius</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Kringos"> Nicole Kringos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The breaking and coalescence process in bitumen emulsion strongly influence the performance of the cold mix asphalt (CMA) and this phase separation process is affected by the physio-chemical changes happening at the bitumen/water interface. In this paper, coalescence experiments of two bitumen droplets in an emulsion environment have been carried out by a newly developed test procedure. In this study, different types of emulsifiers were selected to understand the coalescence process with respect to changes in the water phase surface tension due to addition of different surfactants and other additives such as salts. The research showed that the relaxation kinetics of bitumen droplets varied with the type of emulsifier, its concentration as well as with and without presence of salt in the water phase. Moreover, kinetics of the coalescence process was also investigated with the temperature variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen%20emulsions" title="bitumen emulsions">bitumen emulsions</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20and%20coalescence" title=" breaking and coalescence"> breaking and coalescence</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20mix%20asphalt" title=" cold mix asphalt"> cold mix asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsifiers" title=" emulsifiers"> emulsifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation" title=" relaxation"> relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=salts" title=" salts"> salts</a> </p> <a href="https://publications.waset.org/abstracts/62893/towards-an-understanding-of-breaking-and-coalescence-process-in-bitumen-emulsions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Assessment the Influence of Bitumen Emulsion PAHs Content in Arid Land</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalil%20Badamfirooz">Jalil Badamfirooz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil wind erosion has a negative impact on the environment. Mulching is one of the most efficient soil protection techniques. Bitumen emulsion has recently been utilized as a soil cover that is sprayed directly over the soil and forms a thin film. The thin coating of bitumen emulsion prevents soil erosion and keeps moisture in the soil. Besides, some compounds release into the soil and cause environmental problems. In the present study, the effect of bitumen emulsion on the release of polycyclic aromatic hydrocarbons (PAHs) into the soil is studied in an arid land located in the central part of Iran. The soil was Loamy-Sand and saline with a pH of 8.03. Bitumen emulsion was used in this study as mulch at a rate of 4 L m2. The effect of this mulch on soil properties was investigated after 6 months of mulch application. Then PAHs concentrations were determined in samples collected from different depths in bitumen emulsion sprayed and control soils. In general, bitumen emulsion application on soil led to a significant increase in some PAHs, which was higher than soil pollution standards critical level of pollution for commerce, groundwater protection, pasture forest, and park and residence uses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mulch" title="mulch">mulch</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen%20emulsion" title=" bitumen emulsion"> bitumen emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=arid%20land" title=" arid land"> arid land</a>, <a href="https://publications.waset.org/abstracts/search?q=PAH" title=" PAH"> PAH</a> </p> <a href="https://publications.waset.org/abstracts/161298/assessment-the-influence-of-bitumen-emulsion-pahs-content-in-arid-land" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Impact of Fly Ash-Based Geopolymer Modification on the High-Temperature Properties of Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burak%20Yigit%20Katanalp">Burak Yigit Katanalp</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Tastan"> Murat Tastan</a>, <a href="https://publications.waset.org/abstracts/search?q=Perviz%20Ahmedzade"> Perviz Ahmedzade</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%A7Igdem%20Canbay%20Turkyilmaz"> 莽Igdem Canbay Turkyilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Turkyilmaz"> Emrah Turkyilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study evaluated the mechanical and rheological performance of fly ash-based geopolymer at high temperatures. A series of laboratory tests were conducted on neat bitumen and three modified bitumen samples, which incorporated fly ash-based geopolymer at various percentages. Low-calcium fly ash was used as the alumina-silica source. The dynamic shear rheometer and rotational viscometer were employed to determine high-temperature properties, while conventional tests such as penetration and softening point were used to evaluate the physical properties of bitumen. The short-term aging resistance of the samples was assessed using the rolling thin film oven. The results show that geopolymer has a compromising effect on bitumen properties, with improved stiffness, enhanced mechanical strength, and increased thermal susceptibility of the asphalt binder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen" title="bitumen">bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mechanical%20analysis" title=" dynamic mechanical analysis"> dynamic mechanical analysis</a> </p> <a href="https://publications.waset.org/abstracts/165226/impact-of-fly-ash-based-geopolymer-modification-on-the-high-temperature-properties-of-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Experimental Squeeze Flow of Bitumen: Rheological Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kraiem">A. Kraiem</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ayadi"> A. Ayadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The squeeze flow tests were studied by many authors to measure the rheological properties of fluid. Experimental squeezing flow test with constant area between two parallel disks of bitumen is investigated in the present work. The effect of the temperature, the process of preparing the sample and the gap between the discs were discussed. The obtained results were compared with the theoretical models. The behavior of bitumen depends on the viscosity and the yield stress. Thus, the bitumen was presented as a power law for a small power law exponent and as a biviscous fluid when the viscosity ratio was smaller than one. Also, the influence of the ambient temperature is required for the compression test. Therefore, for a high temperature the yield stress decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen" title="bitumen">bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=biviscous%20fluid" title=" biviscous fluid"> biviscous fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=squeeze%20flow" title=" squeeze flow"> squeeze flow</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a> </p> <a href="https://publications.waset.org/abstracts/95528/experimental-squeeze-flow-of-bitumen-rheological-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Characterization of Waste Thermocol Modified Bitumen by Spectroscopy, Microscopic Technique, and Dynamic Shear Rheometer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supriya%20%20Mahida">Supriya Mahida</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangita"> Sangita</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20U.%20Shah"> Yogesh U. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanta%20Kumar"> Shanta Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global production of thermocol increasing day by day, due to vast applications of the use of thermocole in many sectors. Thermocol being non-biodegradable and more toxic than plastic leads towards a number of problems like its management into value-added products, environmental damage and landfill problems due to weight to volume ratio. Utilization of waste thermocol for modification of bitumen binders resulted in waste thermocol modified bitumen (WTMB) used in road construction and maintenance technology. Modification of bituminous mixes through incorporating thermocol into bituminous mixes through a dry process is one of the new options besides recycling process which consumes lots of waste thermocol. This process leads towards waste management and remedies against thermocol waste disposal. The present challenge is to dispose the thermocol waste under different forms in road infrastructure, either through the dry process or wet process to be developed in future. This paper focuses on the use of thermocol wastes which is mixed with VG 10 bitumen in proportions of 0.5%, 1%, 1.5%, and 2% by weight of bitumen. The physical properties of neat bitumen are evaluated and compared with modified VG 10 bitumen having thermocol. Empirical characterization like penetration, softening, and viscosity of bitumen has been carried out. Thermocol and waste thermocol modified bitumen (WTMB) were further analyzed by Fourier Transform Infrared Spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), and Dynamic Shear Rheometer (DSR). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSR" title="DSR">DSR</a>, <a href="https://publications.waset.org/abstracts/search?q=FESEM" title=" FESEM"> FESEM</a>, <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title=" FT-IR"> FT-IR</a>, <a href="https://publications.waset.org/abstracts/search?q=thermocol%20wastes" title=" thermocol wastes"> thermocol wastes</a> </p> <a href="https://publications.waset.org/abstracts/91034/characterization-of-waste-thermocol-modified-bitumen-by-spectroscopy-microscopic-technique-and-dynamic-shear-rheometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Qualitative Analysis of Bituminous Mix Modified by Polypropylene and Impact Characteristics on Pavement Wearing Course</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayisha%20Das%20Jaya">Jayisha Das Jaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Nafis%20As%20Sami"> Nafis As Sami</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazia%20Jahan"> Nazia Jahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamanna%20Jerin"> Tamanna Jerin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Russedul%20Islam"> Mohammed Russedul Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper contains continuous research which helps to analyze polypropylene modified bituminous mix and its impact characteristics with respect to original bitumen. Three percentages of polypropylene varying from (1-3) % of the weight of bitumen have been used to alter bitumen鈥檚 performance. The temperature of 170掳C has been maintained during the blending of polypropylene with bitumen. It was performed by a wet process as it has certain advantages over the dry process. A rough estimate of 210 rpm rotation speed was set to prepare the blend in a mixer for 30 minutes producing homogeneous mixture. The blended mix shows a change in physical properties in comparison with the original bitumen content. Modification shows that for a 1% increment of polypropylene, softening point increases by 1 degree, penetration values decrease gradually to 55.6, 54, 52.5, ductility values decrease gradually to 87,76, 63 and specific gravity remains the same. Then Marshall mix design is performed with 60/70 penetration grade bitumen contents varying from (4-6) % with .5% intervals. Marshall stability and flow test results indicate the increase in stability and decrease in flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen" title="bitumen">bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=marshall" title=" marshall"> marshall</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/117870/qualitative-analysis-of-bituminous-mix-modified-by-polypropylene-and-impact-characteristics-on-pavement-wearing-course" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Physical, Morphological, and Rheological Properties of Polypropylene Modified Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nioushasadat%20Haji%20Seyed%20Javadi">Nioushasadat Haji Seyed Javadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ailar%20Hajimohammadi"> Ailar Hajimohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Khalili"> Nasser Khalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The common method to improve the performance of asphalt binders is through modification. The utilization of recycled plastics for asphalt modification has been the subject of research studies due to their environmental and economic benefits over using commercial polymers. Polypropylene (PP) is one of the most available recycled plastics in Australia. Unlike other plastics, its contamination with other plastics during the recycling process is negligible. Therefore, the quality of recycled plastic is high, which makes it a good candidate for road construction applications. To assess its effectiveness for bitumen modification, three different grades of PP were selected. The PP grades were compared for blendability with bitumen, and the best suitable grade was chosen for further studies. The PP-modified bitumen and the base bitumen were then compared through physical and rheological properties. The stability of the PP-modified bitumen at elevated temperatures was measured, and the morphology of the samples before and after the storage stability was characterized by fluorescent microscopy. The results showed that PP had a significant influence on reducing the penetration and increasing the viscosity and the rutting resistance of the virgin bitumen. Storage stability test results indicated that the difference between the softening point of the top and bottom section of the tube sample is below the defined limit, which means the PP-modified bitumen is storage stable. However, the fluorescence microscopy results showed that the distribution of the PP particles in the bitumen matrix in the top and bottom sections of the tube are significantly different, which is an indicator of poor storage stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title="polypropylene">polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20plastic" title=" waste plastic"> waste plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen" title=" bitumen"> bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20pavements" title=" road pavements"> road pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20stability" title=" storage stability"> storage stability</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20microscopy" title=" fluorescent microscopy"> fluorescent microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a> </p> <a href="https://publications.waset.org/abstracts/152080/physical-morphological-and-rheological-properties-of-polypropylene-modified-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Studying the Behavior of Asphalt Mix and Their Properties in the Presence of Nano Materials </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aman%20Patidar">Aman Patidar</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipankar%20Sarkar"> Dipankar Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Pal"> Manish Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to rapid development, increase in the traffic load, higher traffic volume and seasonal variation in temperature, asphalt pavement shows distresses like rutting, fatigue and thermal cracking etc. because of this pavement fails during service life so that bitumen needs to be modified with some additive. In this study VG30 grade bitumen modify with addition of nanosilica with 1% to 5% (increment of 1%) by weight of bitumen. Hot mix asphalt (HMA) have higher mixing, laying and rolling temperatures which leads to higher consumption of fuel. To address this issue, a nano material named ZycoTherm which is chemical warm mix asphalt (WMA) additive is added to bitumen. Nanosilica modification (NSMB) results in the increase in stability compared to unmodified bitumen (UMB). WMA modified mix shows slightly higher stability than UMB and NSMB in a lower bitumen content. The Retained stability and tensile strength ratio (TSR) is more than 75% and 80% respectively for both mixes. Nanosilica with WMA has more resistant to temperature susceptibility, moisture susceptibility and short term aging than NSMB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HMA" title="HMA">HMA</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosilica" title=" nanosilica"> nanosilica</a>, <a href="https://publications.waset.org/abstracts/search?q=NSMB" title=" NSMB"> NSMB</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=TSR" title=" TSR"> TSR</a>, <a href="https://publications.waset.org/abstracts/search?q=UMB" title=" UMB"> UMB</a>, <a href="https://publications.waset.org/abstracts/search?q=WMA" title=" WMA"> WMA</a> </p> <a href="https://publications.waset.org/abstracts/77781/studying-the-behavior-of-asphalt-mix-and-their-properties-in-the-presence-of-nano-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Getting to Know the Types of Asphalt, Its Manufacturing and Processing Methods and Its Application in Road Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Fallah">Hamid Fallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asphalt is generally a mixture of stone materials with continuous granulation and a binder, which is usually bitumen. Asphalt is made in different shapes according to its use. The most familiar type of asphalt is hot asphalt or hot asphalt concrete. Stone materials usually make up more than 90% of the asphalt mixture. Therefore, stone materials have a significant impact on the quality of the resulting asphalt. According to the method of application and mixing, asphalt is divided into three categories: hot asphalt, protective asphalt, and cold asphalt. Cold mix asphalt is a mixture of stone materials and mixed bitumen or bitumen emulsion whose raw materials are mixed at ambient temperature. In some types of cold asphalt, the bitumen may be heated as necessary, but other materials are mixed with the bitumen without heating. Protective asphalts are used to make the roadbed impermeable, increase its abrasion and sliding resistance, and also temporarily improve the existing asphalt and concrete surfaces. This type of paving is very economical compared to hot asphalt due to the speed and ease of implementation and the limited need for asphalt machines and equipment. The present article, which is prepared in descriptive library form, introduces asphalt, its types, characteristics, and its application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt" title="asphalt">asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20of%20asphalt" title=" type of asphalt"> type of asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20concrete" title=" asphalt concrete"> asphalt concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20concrete" title=" sulfur concrete"> sulfur concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen%20in%20asphalt" title=" bitumen in asphalt"> bitumen in asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur" title=" sulfur"> sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20materials" title=" stone materials"> stone materials</a> </p> <a href="https://publications.waset.org/abstracts/178011/getting-to-know-the-types-of-asphalt-its-manufacturing-and-processing-methods-and-its-application-in-road-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Impacts of Low-Density Polyethylene (Plastic Shopping Bags) on Structural Strength and Permeability of Hot-Mix-Asphalt Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chayanon%20Boonyuid">Chayanon Boonyuid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper experiments the effects of low-density polyethylene (LDPE) on the structural strength and permeability of hot-mix-asphalt (HMA) pavements. Different proportions of bitumen (4%, 4.5%, 5%, 5.5% and 6% of total aggregates) and plastic (5%, 10% and 15% of bitumen) contents in HMA mixtures were investigated to estimate the optimum mixture of bitumen and plastic in HMA pavement with long-term performance. Marshall Tests and Falling Head Tests were performed to experiment the structure strength and permeability of HMA mixtures with different percentages of plastic materials and bitumen. The laboratory results show that the optimum binder content was 5.5% by weight of aggregates with higher contents of plastic materials, increase structural stability, reduce permanent deformation, increase ductility, and improve fatigue life of HMA pavements. The use of recycled plastic shopping bags can reduce the use of bitumen content by 0.5% - 1% in HMA mixtures resulting in cheaper material costs with better long-term performance. The plastic materials increase the impermeability of HMA pavements. This study has two-fold contributions: optimum contents of both bitumen and plastic materials in HMA mixtures and the impacts of plastic materials on the permeability of HMA pavements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plastic%20bags" title="plastic bags">plastic bags</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen" title=" bitumen"> bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20strength" title=" structural strength"> structural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a> </p> <a href="https://publications.waset.org/abstracts/115964/impacts-of-low-density-polyethylene-plastic-shopping-bags-on-structural-strength-and-permeability-of-hot-mix-asphalt-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Solvent-Aided Dilution Approach for Heavy Hydrocarbon Liquid Evaluation in the Eastern Dahomey Basin, Southwestern Nigeria: Case Study of Agbabu Bitumen in Ondo State.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adetokunbo%20Ademola%20Falade">Adetokunbo Ademola Falade</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatoyin%20Olakunle%20Akinsete"> Oluwatoyin Olakunle Akinsete</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Omeiza%20Aliu"> Hussein Omeiza Aliu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solvent-aided dilution processes are often employed to recover bitumen by reducing its viscosity. In this study, methanol, toluene, and xylene were investigated as potential hydrocarbon solvents for solvent-aided hydrocarbon recovery of Agbabu bitumen. Solubility, Viscosity, and Saturate, Aromatic, Resin and Asphaltene (SARA) Analysis tests were carried out to determine the solubility of the bitumen in the solvents, the viscosity, and the SARA fraction of the natural bitumen and bitumen-solvent mixtures. Agbabu bitumen was found to have a high content of saturates and aromatics. Viscosity decreases as pressure increases, while solubility reduces as temperature increases. The experimental diffusivity of the sample decreases with temperature and increases with pressure, indicating that the presence of additional solvent molecules in the oil phase facilitates diffusion. Agbabu bitumen was found to be most soluble in toluene, and its viscosity was reduced most in it. Xylene exhibited a similar effect as toluene on the sample, though lesser but better than methanol. Methanol reduced the saturated content and significantly raised the asphaltene content, keeping the mixture viscosity high, a condition that, in turn, favors its colloidal stability. The colloidal instability index (CII) values, which account for the asphaltene stability of the mixture, show that the bitumen-methanol system with a CII of 0.874 will have mild asphaltene deposit issues while others are unstable. This approach of combining multiple tests with the CII can accurately predict the behavior of Agbabu bitumen in solvents and enhance the decision on the choice of bitumen recovery technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphaltene" title="asphaltene">asphaltene</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen" title=" bitumen"> bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusivity" title=" diffusivity"> diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent" title=" hydrocarbon solvent"> hydrocarbon solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=SARA" title=" SARA"> SARA</a> </p> <a href="https://publications.waset.org/abstracts/187476/solvent-aided-dilution-approach-for-heavy-hydrocarbon-liquid-evaluation-in-the-eastern-dahomey-basin-southwestern-nigeria-case-study-of-agbabu-bitumen-in-ondo-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Experimental Investigations on Nanoclay (Cloisite-15A) Modified Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Kumar">Ashish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar%20Suman"> Sanjeev Kumar Suman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the influence of Cloisite-15A nanoclay on the physical, performance, and mechanical properties of bitumen binder. Cloisite-15A was blended in the bitumen in variegated percentages from 1% to 9% with increment of 2%. The blended bitumen was characterized using penetration, softening point, and dynamic viscosity using rotational viscometer, and compared with unmodified bitumen equally penetration grade 60/70. The rheological parameters were investigated using Dynamic Shear Rheometer (DSR), and mechanical properties were investigated by using Marshall Stability test. The results indicated an increase in softening point, dynamic viscosity and decrease in binder penetration. Rheological properties of bitumen increase complex modulus, decrease phase angle and improve rutting resistances as well. There was significant improvement in Marshall Stability, rather marginal improvement in flow value. The best improvement in the modified binder was obtained with 5% Cloisite-15A nanoclay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cloisite-15A" title="Cloisite-15A">Cloisite-15A</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20shear%20modulus" title=" complex shear modulus"> complex shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20angle" title=" phase angle"> phase angle</a>, <a href="https://publications.waset.org/abstracts/search?q=rutting%20resistance" title=" rutting resistance"> rutting resistance</a> </p> <a href="https://publications.waset.org/abstracts/58589/experimental-investigations-on-nanoclay-cloisite-15a-modified-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Physicochemical Characterization of Asphalt Ridge Froth Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nader%20Nciri">Nader Nciri</a>, <a href="https://publications.waset.org/abstracts/search?q=Suil%20Song"> Suil Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Namho%20Kim"> Namho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Namjun%20Cho"> Namjun Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Properties and compositions of bitumen and bitumen-derived liquids have significant influences on the selection of recovery, upgrading and refining processes. Optimal process conditions can often be directly related to these properties. The end uses of bitumen and bitumen products are thus related to their compositions. Because it is not possible to conduct a complete analysis of the molecular structure of bitumen, characterization must be made in other terms. The present paper focuses on physico-chemical analysis of two different types of bitumens. These bitumen samples were chosen based on: the original crude oil (sand oil and crude petroleum), and mode of process. The aim of this study is to determine both the manufacturing effect on chemical species and the chemical organization as a function of the type of bitumen sample. In order to obtain information on bitumen chemistry, elemental analysis (C, H, N, S, and O), heavy metal (Ni, V) concentrations, IATROSCAN chromatography (thin layer chromatography-flame ionization detection), FTIR spectroscopy, and 1H NMR spectroscopy have all been used. The characterization includes information about the major compound types (saturates, aromatics, resins and asphaltenes) which can be compared with similar data for other bitumens, more importantly, can be correlated with data from petroleum samples for which refining characteristics are known. Examination of Asphalt Ridge froth bitumen showed that it differed significantly from representative petroleum pitches, principally in their nonhydrocarbon content, heavy metal content and aromatic compounds. When possible, properties and composition were related to recovery and refining processes. This information is important because of the effects that composition has on recovery and processing reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=froth%20bitumen" title="froth bitumen">froth bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20sand" title=" oil sand"> oil sand</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20ridge" title=" asphalt ridge"> asphalt ridge</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20pitch" title=" petroleum pitch"> petroleum pitch</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20layer%20chromatography-flame%20ionization%20detection" title=" thin layer chromatography-flame ionization detection"> thin layer chromatography-flame ionization detection</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20spectroscopy" title=" infrared spectroscopy"> infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=1H%20nuclear%20magnetic%20resonance%20spectroscopy" title=" 1H nuclear magnetic resonance spectroscopy"> 1H nuclear magnetic resonance spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/1883/physicochemical-characterization-of-asphalt-ridge-froth-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Characterization and Design of a Crumb Rubber Modified Asphalt Mix Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Al-Baghli">H. Al-Baghli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laboratory trial results of mixing crumb rubber produced from discarded tires with 60/70 pen grade Kuwaiti bitumen are presented on this paper. PG grading and multiple stress creep recovery tests were conducted on Kuwaiti bitumen blended with 15% and 18% crumb rubber at temperatures ranging from 40 to 70 &deg;C. The results from elastic recovery and non-recoverable creep presented optimum performance at 18% rubber content. The optimum rubberized-bitumen mix was next transformed into a pelletized form (PelletPave<sup>&reg;</sup>), and was used as a partial replacement to the conventional bitumen in the manufacture of continuously graded hot mix asphalts at a number of binder contents. The trialed PelletPave<sup>&reg;</sup> contents were at 2.5%, 3.0%, and 3.5% by mass of asphalt mix. In this investigation, it was not possible to utilize the results of standard Marshall method of mix design (i.e. volumetric, stability and flow tests) and subsequently additional assessment of mix compactability was carried out using gyratory compactor in order to determine the optimum PelletPave<sup>&reg;</sup> and total binder contents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crumb%20rubber" title="crumb rubber">crumb rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=Marshall%20mix%20design" title=" Marshall mix design"> Marshall mix design</a>, <a href="https://publications.waset.org/abstracts/search?q=PG%20grading" title=" PG grading"> PG grading</a>, <a href="https://publications.waset.org/abstracts/search?q=rubberized-bitumen" title=" rubberized-bitumen"> rubberized-bitumen</a> </p> <a href="https://publications.waset.org/abstracts/110194/characterization-and-design-of-a-crumb-rubber-modified-asphalt-mix-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Deformation Behavior of Virgin and Polypropylene Modified Bituminous Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Zainab%20Habib">Noor Zainab Habib</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Kamaruddin"> Ibrahim Kamaruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Madzlan%20Napiah"> Madzlan Napiah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper present a part of research conducted to investigate the creep behavior of bituminous concrete mixture prepared with well graded using the dynamic creep test. The samples were prepared from unmodified control mix and Polypropylene modified bituminous mix. Unmodified or control mix was prepared with 80/100 grade bitumen while polypropylene modified mix was prepared using polypropylene PP polymer as modifier, blended with 80/100 Pen bitumen. The concentration of polymer in the blend was kept at 1%, 2%, and 3% by weight of bitumen content. For Dynamic Creep Test, Marshall Specimen were prepared at optimum bitumen content and then tested using IPC Global Universal Testing Machine (UTM), in order to investigate the creep stiffness of both modified and control mix. From the results obtained it was found that 1% and 2% PP modified bituminous mix offer better results in comparison to control and 3% PP modified mix samples. The results verify all the findings of empirical and viscosity test results which indicates that polymer modification induces stiffening effect in the binder. Enhanced viscous component of the binder was considered responsible for this change which eventually enhances the mechanical strength of the modified bituminous mixes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20modified%20bitumen" title="polymer modified bitumen">polymer modified bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/19345/deformation-behavior-of-virgin-and-polypropylene-modified-bituminous-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Design Procedure of Cold Bitumen Emulsion Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayder%20Shanbara">Hayder Shanbara</a>, <a href="https://publications.waset.org/abstracts/search?q=Felicite%20Ruddock"> Felicite Ruddock</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Atherton"> William Atherton</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Al-Rifaie"> Ali Al-Rifaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In highways construction, Hot Mix Asphalt (HMA) is used predominantly as a paving material from many years. Around 90 percent of the world road network is laid by flexible pavements. However, there are some restrictions on paving hot mix asphalt such as immoderate greenhouse gas emission, rainy season difficulties, fuel and energy consumption and cost. Therefore, Cold Bitumen Emulsion Mixture (CBEM) is considered an alternative mix to the HMA. CBEM is the popular type of Cold Mix Asphalt (CMA). It is unheated emulsion, aggregate and filler mixtures, which can be prepared and mixed at ambient temperature. This research presents a simple and more practicable design procedure of CBEM and discusses limitations of this design. CBEM is a mixture of bitumen emulsion and aggregates that mixed and produced at ambient temperature. It is relatively easy to produce, but the design procedure that provided by Asphalt Institute (Manual Series 14 (1989)) pose some issues in its practical application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20bitumen" title="cold bitumen">cold bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion%20mixture" title=" emulsion mixture"> emulsion mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20procedure" title=" design procedure"> design procedure</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement" title=" pavement"> pavement</a> </p> <a href="https://publications.waset.org/abstracts/76521/design-procedure-of-cold-bitumen-emulsion-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Warm Mix and Reclaimed Asphalt Pavement: A Greener Road Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lillian%20Gungat">Lillian Gungat</a>, <a href="https://publications.waset.org/abstracts/search?q=Meor%20Othman%20Hamzah"> Meor Othman Hamzah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Rosli%20Mohd%20Hasan"> Mohd Rosli Mohd Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Valentin"> Jan Valentin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilization of a high percentage of reclaimed asphalt pavement (RAP) requires higher production temperatures and consumes more energy. High production temperature expedites the aging of bitumen in RAP, which could affect the mixture performance. Warm mix asphalt (WMA) additive enables reduced production temperatures as a result of viscosity reduction. This paper evaluates the integration of a high percentage of RAP with a WMA additive known as RH-WMA. The optimum dosage of RH-WMA was determined from basic properties tests. A total of 0%, 30% and 50% RAP contents from two roads sources were modified with RH-WMA. The modified RAP bitumen were examined for viscosity, stiffness, rutting resistance and greenhouse gas emissions. The addition of RH-WMA improved the flow of bitumen by reducing the viscosity, and thus, decreased the construction temperature. The stiffness of the RAP modified bitumen reduced with the incorporation of RH-WMA. The positive improvement in rutting resistance was observed on bitumen with the addition of RAP and RH-WMA in comparison with control. It was estimated that the addition of RH-WMA could potentially reduce fuel usage and GHG emissions by 22 %. Hence, the synergy of RAP and WMA technology can be an alternative in green road construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reclaimed%20asphalt%20pavement" title="reclaimed asphalt pavement">reclaimed asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=WMA%20additive" title=" WMA additive"> WMA additive</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a> </p> <a href="https://publications.waset.org/abstracts/69909/warm-mix-and-reclaimed-asphalt-pavement-a-greener-road-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> The Effect of Ethylene Propylene Diene Monomer on the Rheological Properties of Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20Eren">Emre Eren</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Yigit%20Katanalp"> Burak Yigit Katanalp</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Tastan"> Murat Tastan</a>, <a href="https://publications.waset.org/abstracts/search?q=Perviz%20Ahmedzade"> Perviz Ahmedzade</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87igdem%20Canbay%20Turkyilmaz"> 脟igdem Canbay Turkyilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Turkyilmaz"> Emrah Turkyilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to investigate the mechanical and high-temperature rheological properties of Ethylene Propylene Diene Monomer (EPDM) modified bitumen. To achieve this, the neat binder was modified with EPDM additive in different percentages: 2% to 5%. The neat and modified binder were subjected to conventional and rheological tests, including penetration and softening point tests, as well as evaluations of their rutting performance and high-temperature viscosity characteristics. Additionally, the mixing and compaction temperatures for hot mix asphalt production were identified using a rotational viscometer. The findings indicated that EPDM is a highly effective bitumen modifier, with the high temperature performance class of the neat binder improving by 3 grades according to the Superpave asphalt grading system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer" title="polymer">polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen" title=" bitumen"> bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=EPDM" title=" EPDM"> EPDM</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mechanical%20analysis" title=" dynamic mechanical analysis"> dynamic mechanical analysis</a> </p> <a href="https://publications.waset.org/abstracts/165229/the-effect-of-ethylene-propylene-diene-monomer-on-the-rheological-properties-of-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> The Effect of Linear Low-Density Polyethylene Cross-Contamination by Other Plastic Types on Bitumen Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nioushasadat%20Haji%20Seyed%20Javadi">Nioushasadat Haji Seyed Javadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ailar%20Hajimohammadi"> Ailar Hajimohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Khalili"> Nasser Khalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the recycling of plastic wastes has been the subject of much research attention, especially in pavement constructions, where virgin polymers can be replaced by recycled plastics for asphalt binder modification. Among the plastic types, recycled linear low-density polyethylene (RLLDPE) has been one of the common and largely available plastics for bitumen modification. However, it is important to note that during the recycling process, LLDPE can easily be contaminated with other plastic types, especially with low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP). The cross-contamination of LLDPE with other plastics lowers its quality and, consequently, can affect the asphalt modification process. This study aims to assess the effect of LLDPE cross-contamination on bitumen modification. To do so, samples of bitumen modified with LLDPE and blends of LLDPE with LDPE, HDPE, and PP were prepared and compared through physical and rheological evaluations. The experimental tests, including softening point, penetration, viscosity at 135 掳C, and dynamic shear rheometer, were conducted. The results indicated that the effect of cross-contamination on softening point and rutting resistance was negligible. On the other side, penetration and viscosity were highly impacted. The results also showed that among contamination of LLDPE with the other plastic types, PP had the highest influence in comparison with HDPE and LDPE on changing the properties of the LLDPE- modified bitumen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20polyethylene" title="recycled polyethylene">recycled polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20cross-contamination" title=" polymer cross-contamination"> polymer cross-contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20plastic" title=" waste plastic"> waste plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen" title=" bitumen"> bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=rutting%20resistance" title=" rutting resistance"> rutting resistance</a> </p> <a href="https://publications.waset.org/abstracts/152078/the-effect-of-linear-low-density-polyethylene-cross-contamination-by-other-plastic-types-on-bitumen-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Evaluation of the Rheological Properties of Bituminous Binders Modified with Biochars Obtained from Various Biomasses by Pyrolysis Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Ertu%C4%9Frul%20%C3%87elo%C4%9Flu">Muhammed Ertu臒rul 脟elo臒lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Y%C4%B1lmaz"> Mehmet Y谋lmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, apricot seed shell, walnut shell, and sawdust were chosen as biomass sources. The materials were sorted by using a sieve No. 50 and the sieved materials were subjected to pyrolysis process at 400 &deg;C, resulting in three different biochar products. The resulting biochar products were added to the bitumen at three different rates (5%, 10% and 15%), producing modified bitumen. Penetration, softening point, rotation viscometer and dynamic shear rheometer (DSR) tests were conducted on modified binders. Thus the modified bitumen, which was obtained by using additives at 3 different rates obtained from biochar produced at 400 &deg;C temperatures of 3 different biomass sources were compared and the effects of pyrolysis temperature and additive rates were evaluated. As a result of the conducted tests, it was determined that the rheology of the pure bitumen improved significantly as a result of the modification of the bitumen with the biochar. Additionally, with biochar additive, it was determined that the rutting parameter values obtained from softening point, viscometer and DSR tests were increased while the values in terms of penetration and phase angle decreased. It was also observed that the most effective biomass is sawdust while the least effective was ground apricot seed shell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheology" title="rheology">rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a> </p> <a href="https://publications.waset.org/abstracts/83777/evaluation-of-the-rheological-properties-of-bituminous-binders-modified-with-biochars-obtained-from-various-biomasses-by-pyrolysis-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Effects of Preparation Conditions on the Properties of Crumb Rubber Modified Binder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baha%20Vural%20K%C3%B6k">Baha Vural K枚k</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Yilmaz"> Mehmet Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Akpolat"> Mustafa Akpolat</a>, <a href="https://publications.waset.org/abstracts/search?q=Cihat%20Sav"> Cihat Sav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various types of additives are used frequently in order to improve the rheological and mechanical properties of bituminous mixtures. Small devices instead of full scale machines are used for bitumen modification in the laboratory. These laboratory scale devices vary in terms of their properties such as mixing rate, mixing blade and the amount of binder. In this study, the effect of mixing rate and time during the bitumen modification processes on conventional and rheological properties of pure and crumb rubber modified binder were investigated. Penetration, softening point, rotational viscosity (RV) and dynamic shear rheometer (DSR) tests were applied to pure and CR modified bitumen. It was concluded that the penetration and softening point test did not show the efficiency of CR obtained by different mixing conditions. Besides, oxidation that occurred during the preparation processes plays a great part in the improvement effects of the modified binder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen" title="bitumen">bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=crumb%20rubber" title=" crumb rubber"> crumb rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a> </p> <a href="https://publications.waset.org/abstracts/79014/effects-of-preparation-conditions-on-the-properties-of-crumb-rubber-modified-binder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Filler for Higher Bitumen Adhesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Rezagholilou">Alireza Rezagholilou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moisture susceptibility of bituminous mixes directly affect the stripping of asphalt layers. The majority of relevant test methods are mechanical methods with low repeatability and consistency of results. Thus, this research aims to evaluate the physicochemical interactions of bitumen and aggregates based on the wettability concept. As such, the surface energies of components at the interface are measured by contact angle method. That gives an opportunity to investigate the adhesion properties of multiple mineral fillers at various percentages to explore the best dosage in the mix. Three types of fillers, such as hydrated lime, ground lime and rock powder, are incorporated into the bitumen mix for a series of sessile drop tests for both aggregates and binders. Results show the variation of adhesion properties versus filler (%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion" title="adhesion">adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title=" contact angle"> contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=filler" title=" filler"> filler</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20energy" title=" surface energy"> surface energy</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20susceptibility" title=" moisture susceptibility"> moisture susceptibility</a> </p> <a href="https://publications.waset.org/abstracts/171324/filler-for-higher-bitumen-adhesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Temperature Susceptibility of Multigrade Bitumen Asphalt and an Approach to Account for Temperature Variation through Deep Pavements </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brody%20R.%20Clark">Brody R. Clark</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaminda%20Gallage"> Chaminda Gallage</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Yeaman"> John Yeaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multigrade bitumen asphalt is a quality asphalt product that is not utilised in many places globally. Multigrade bitumen is believed to be less sensitive to temperature, which gives it an advantage over conventional binders. Previous testing has shown that asphalt temperature changes greatly with depth, but currently the industry standard is to nominate a single temperature for design. For detailed design of asphalt roads, perhaps asphalt layers should be divided into nominal layer depths and different modulus and fatigue equations/values should be used to reflect the temperatures of each respective layer. A collaboration of previous laboratory testing conducted on multigrade bitumen asphalt beams under a range of temperatures and loading conditions was analysed. The samples tested included 0% or 15% recycled asphalt pavement (RAP) to determine what impact the recycled material has on the fatigue life and stiffness of the pavement. This paper investigated the temperature susceptibility of multigrade bitumen asphalt pavements compared to conventional binders by combining previous testing that included conducting a sweep of fatigue tests, developing complex modulus master curves for each mix and a study on how pavement temperature changes through pavement depth. This investigation found that the final design of the pavement is greatly affected by the nominated pavement temperature and respective material properties. This paper has outlined a potential revision to the current design approach for asphalt pavements and proposes that further investigation is needed into pavement temperature and its incorporation into design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt" title="asphalt">asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20modulus" title=" complex modulus"> complex modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20stiffness" title=" flexural stiffness"> flexural stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20point%20bending" title=" four point bending"> four point bending</a>, <a href="https://publications.waset.org/abstracts/search?q=multigrade%20bitumen" title=" multigrade bitumen"> multigrade bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20asphalt%20pavement" title=" recycled asphalt pavement"> recycled asphalt pavement</a> </p> <a href="https://publications.waset.org/abstracts/84273/temperature-susceptibility-of-multigrade-bitumen-asphalt-and-an-approach-to-account-for-temperature-variation-through-deep-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Study on the Application of Lime to Improve the Rheological Properties of Polymer Modified Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Chegenizadeh">A. Chegenizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Keramatikerman"> M. Keramatikerman</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Nikraz"> H. Nikraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bitumen is one of the most applicable materials in pavement engineering. It is a binding material with unique viscoelastic properties, especially when it mixes with polymer. In this study, to figure out the viscoelastic behaviour of the polymer modified with bitumen (PMB), a series of dynamic shearing rheological (DSR) tests were conducted. Four percentages of lime (i.e. 1%, 2%, 4% and 5%) were mixed with PMB and tested under four different temperatures including 64&ordm;C, 70&ordm;C, 76&ordm;C and 82&ordm;C. The results indicated that complex shearing modulus (G*) increased by increasing the frequency due to raised resistance against deformation. The phase angle (&delta;) showed a decreasing trend by incrementing the frequency. The addition of lime percentages increased the complex modulus value and declined phase angle parameter. Increasing the temperature decreased the complex modulus and increased the phase angle until 70&ordm;C. The decreasing trend of rutting factor with increasing temperature revealed that rutting factor improved by the addition of the lime to the PMB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title="rheological properties">rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=DSR%20test" title=" DSR test"> DSR test</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20mixed%20with%20bitumen%20%28PMB%29" title=" polymer mixed with bitumen (PMB)"> polymer mixed with bitumen (PMB)</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20modulus" title=" complex modulus"> complex modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a> </p> <a href="https://publications.waset.org/abstracts/83817/study-on-the-application-of-lime-to-improve-the-rheological-properties-of-polymer-modified-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> The Microstructural and Mechanical Characterization of Organo-Clay-Modified Bitumen, Calcareous Aggregate, and Organo-Clay Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20G%C3%BCrses">A. G眉rses</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20B.%20Bar%C4%B1n"> T. B. Bar谋n</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87.%20Do%C4%9Far"> 脟. Do臒ar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bitumen has been widely used as the binder of aggregate in road pavement due to its good viscoelastic properties, as a viscous organic mixture with various chemical compositions. Bitumen is a liquid at high temperature and it becomes brittle at low temperatures, and this temperature-sensitivity can cause the rutting and cracking of the pavement and limit its application. Therefore, the properties of existing asphalt materials need to be enhanced. The pavement with polymer modified bitumen exhibits greater resistance to rutting and thermal cracking, decreased fatigue damage, as well as stripping and temperature susceptibility; however, they are expensive and their applications have disadvantages. Bituminous mixtures are composed of very irregular aggregates bound together with hydrocarbon-based asphalt, with a low volume fraction of voids dispersed within the matrix. Montmorillonite (MMT) is a layered silicate with low cost and abundance, which consists of layers of tetrahedral silicate and octahedral hydroxide sheets. Recently, the layered silicates have been widely used for the modification of polymers, as well as in many different fields. However, there are not too much studies related with the preparation of the modified asphalt with MMT, currently. In this study, organo-clay-modified bitumen, and calcareous aggregate and organo-clay blends were prepared by hot blending method with OMMT, which has been synthesized using a cationic surfactant (Cetyltrymethylammonium bromide, CTAB) and long chain hydrocarbon, and MMT. When the exchangeable cations in the interlayer region of pristine MMT were exchanged with hydrocarbon attached surfactant ions, the MMT becomes organophilic and more compatible with bitumen. The effects of the super hydrophobic OMMT onto the micro structural and mechanic properties (Marshall Stability and volumetric parameters) of the prepared blends were investigated. Stability and volumetric parameters of the blends prepared were measured using Marshall Test. Also, in order to investigate the morphological and micro structural properties of the organo-clay-modified bitumen and calcareous aggregate and organo-clay blends, their SEM and HRTEM images were taken. It was observed that the stability and volumetric parameters of the prepared mixtures improved significantly compared to the conventional hot mixes and even the stone matrix mixture. A micro structural analysis based on SEM images indicates that the organo-clay platelets dispersed in the bitumen have a dominant role in the increase of effectiveness of bitumen - aggregate interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20mix%20asphalt" title="hot mix asphalt">hot mix asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20matrix%20asphalt" title=" stone matrix asphalt"> stone matrix asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=organo%20clay" title=" organo clay"> organo clay</a>, <a href="https://publications.waset.org/abstracts/search?q=Marshall%20test" title=" Marshall test"> Marshall test</a>, <a href="https://publications.waset.org/abstracts/search?q=calcareous%20aggregate" title=" calcareous aggregate"> calcareous aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20bitumen" title=" modified bitumen"> modified bitumen</a> </p> <a href="https://publications.waset.org/abstracts/53072/the-microstructural-and-mechanical-characterization-of-organo-clay-modified-bitumen-calcareous-aggregate-and-organo-clay-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Impact of Fischer-Tropsch Wax on Ethylene Vinyl Acetate/Waste Crumb Rubber Modified Bitumen: An Energy-Sustainability Nexus </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keith%20D.%20Nare">Keith D. Nare</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohau%20J.%20Phiri"> Mohau J. Phiri</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Carson"> James Carson</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20D.%20Woolard"> Chris D. Woolard</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanganyane%20P.%20Hlangothi"> Shanganyane P. Hlangothi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an energy-intensive world, minimizing energy consumption is paramount to cost saving and reducing the carbon footprint. Improving mixture procedures utilizing warm mix additive Fischer-Tropsch (FT) wax in ethylene vinyl acetate (EVA) and modified bitumen highlights a greener and sustainable approach to modified bitumen. In this study, the impact of FT wax on optimized EVA/waste crumb rubber modified bitumen is assayed with a maximum loading of 2.5%. The rationale of the FT wax loading is to maintain the original maximum loading of EVA in the optimized mixture. The phase change abilities of FT wax enable EVA co-crystallization with the support of the elastomeric backbone of crumb rubber. Less than 1% loading of FT wax worked in the EVA/crumb rubber modified bitumen energy-sustainability nexus. Response surface methodology approach to the mixture design is implemented amongst the different loadings of FT wax, EVA for a consistent amount of crumb rubber and bitumen. Rheological parameters (complex shear modulus, phase angle and rutting parameter) were the factors used as performance indicators of the different optimized mixtures. The low temperature chemistry of the optimized mixtures is analyzed using elementary beam theory and the elastic-viscoelastic correspondence principle. Master curves and black space diagrams are developed and used to predict age-induced cracking of the different long term aged mixtures. Modified binder rheology reveals that the strain response is not linear and that there is substantial re-arrangement of polymer chains as stress is increased, this is based on the age state of the mixture and the FT wax and EVA loadings. Dominance of individual effects is evident over effects of synergy in co-interaction of EVA and FT wax. All-inclusive FT wax and EVA formulations were best optimized in mixture 4 with mixture 7 reflecting increase in ease of workability. Findings show that interaction chemistry of bitumen, crumb rubber EVA, and FT wax is first and second order in all cases involving individual contributions and co-interaction amongst the components of the mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen" title="bitumen">bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=crumb%20rubber" title=" crumb rubber"> crumb rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20vinyl%20acetate" title=" ethylene vinyl acetate"> ethylene vinyl acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=FT%20wax" title=" FT wax"> FT wax</a> </p> <a href="https://publications.waset.org/abstracts/89166/impact-of-fischer-tropsch-wax-on-ethylene-vinyl-acetatewaste-crumb-rubber-modified-bitumen-an-energy-sustainability-nexus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Influence of the Quality Differences in the Same Type of Bitumen and Dosage Rate of Reclaimed Asphalt on Lifetime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pahirangan%20Sivapatham">Pahirangan Sivapatham</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=Esser%20Barbara">Esser Barbara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impacts of the asphalt mix design, the properties of aggregates and quality differences in the same type of bitumen, as well as the dosage rate of reclaimed asphalt on the relevant material parameter of the analytical pavement design method are not known. Due to that, in this study, the influence of the above mentioned characteristics on relevant material parameters has been determined and analyzed by means of the analytical pavement calculations method. Therefore, material parameters for several asphalt mixes for asphalt wearing course, asphalt binder course and asphalt base course have been determined. Thereby several bitumens of the same type from different producer鈥檚 have been used. In addition, asphalt base course materials with three different dosages of reclaimed asphalt have been produced and tested. As material parameter according to the German analytical pavement design guide(RDO Asphalt), the stiffness鈥檚 at different temperatures and fatigue behavior have been determined. The findings of asphalt base course materials produced with several pen graded bitumen from different producers and different dosages of reclaimed asphalt indicate the distinct impact on fatigue behaviors and mechanical properties. The calculated test results of the analytical pavement design method show significant differences in the lifetimes. The pavement design calculation is to carry out by means of the actual material parameter. The calculated lifetime of the asphalt base course materials differentiates by the factor 3.2. The determining test results of bitumen characteristics meet the requirement according to the German Standards. But, further investigations of bitumen in different aging conditions show significant differences in their quality. The fatigue behavior and stiffness of asphalt pavement improves with increasing dosage of reclaimed asphalt. Furthermore, the type of aggregates used shows no significant influences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reclaimed%20asphalt%20pavement" title="reclaimed asphalt pavement">reclaimed asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20differences%20in%20the%20bitumen" title=" quality differences in the bitumen"> quality differences in the bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20time%20calculation" title=" life time calculation"> life time calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=Asphalt%20mix%20with%20RAP" title=" Asphalt mix with RAP"> Asphalt mix with RAP</a> </p> <a href="https://publications.waset.org/abstracts/137874/influence-of-the-quality-differences-in-the-same-type-of-bitumen-and-dosage-rate-of-reclaimed-asphalt-on-lifetime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bitumen&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bitumen&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bitumen&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10