CINXE.COM

Search results for: adipogenesis

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: adipogenesis</title> <meta name="description" content="Search results for: adipogenesis"> <meta name="keywords" content="adipogenesis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="adipogenesis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="adipogenesis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: adipogenesis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Opuntia ficus-indica var. Saboten Stimulates Adipogenesis, Lipolysis, and Glucose Uptake in 3T3-L1 Adipocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hye%20Kyung%20Kim">Hye Kyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Gyou%20Kim"> Myung-Gyou Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang-Hyun%20Leem"> Kang-Hyun Leem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prickly pear cactus (Opuntia ficus-indica) has a global distribution and has been used for medicinal benefits such as artherosclerosis, diabetes, gastritis, and hyperglycemia. The prickly pear variety Opuntia ficus-indica var. Saboten (OFS) is widely cultivated in Cheju Island, the southwestern region of Korea, and used as a functional food. The present study investigated the effects of OFS on adipogenesis, lipolysis, glucose uptake, and glucose transporter (GLUT4) expression using preadipocyte 3T3-L1 cells. Adipogenesis was determined by preadipocyte differentiation and triglyceride accumulation assessed by Oil Red O staining. Lipolysis was determined as the rate of glycerol release. Insulin-stimulated glucose uptake and GLUT4 expression were measured using fluorescent glucose analogue, 2-NBDG, and ELISA, respectively. Quantitative real-time RT-PCR was performed to investigate the effects of OFS on the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), a regulator of adipocyte differentiation. Ethanol extracts of OFS dose-dependently enhanced adipocyte differentiation and cellular triglyceride levels indicating the enhancement of the differentiation of preadipocytes into adipocytes. Insulin-stimulated glucose uptake and GLUT4 expression were also dose-dependently increased by OFS treatment. Furthermore, OFS treatment also increased the mRNA levels of PPARγ. These effects of OFS on adipocytes suggest that OFS is potentially beneficial for type 2 diabetes by due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3T3-L1%20preadipocyte%20cell" title="3T3-L1 preadipocyte cell">3T3-L1 preadipocyte cell</a>, <a href="https://publications.waset.org/abstracts/search?q=adipogenesis" title=" adipogenesis"> adipogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=GLUT4" title=" GLUT4"> GLUT4</a>, <a href="https://publications.waset.org/abstracts/search?q=lipolysis" title=" lipolysis"> lipolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Opuntia%20ficus-indica%20var.%20Saboten" title=" Opuntia ficus-indica var. Saboten"> Opuntia ficus-indica var. Saboten</a>, <a href="https://publications.waset.org/abstracts/search?q=PPAR%CE%B3" title=" PPARγ"> PPARγ</a>, <a href="https://publications.waset.org/abstracts/search?q=prickly%20pear%20cactus" title=" prickly pear cactus"> prickly pear cactus</a> </p> <a href="https://publications.waset.org/abstracts/32209/opuntia-ficus-indica-var-saboten-stimulates-adipogenesis-lipolysis-and-glucose-uptake-in-3t3-l1-adipocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Prenatal Paraben Exposure Impacts Infant Overweight Development and in vitro Adipogenesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beate%20Englich">Beate Englich</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Schlittenbauer"> Linda Schlittenbauer</a>, <a href="https://publications.waset.org/abstracts/search?q=Christiane%20Pfeifer"> Christiane Pfeifer</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Kratochvil"> Isabel Kratochvil</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Borte"> Michael Borte</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20I.%20Stangl"> Gabriele I. Stangl</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20von%20Bergen"> Martin von Bergen</a>, <a href="https://publications.waset.org/abstracts/search?q=Thorsten%20Reemtsma"> Thorsten Reemtsma</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Lehmann"> Irina Lehmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristin%20M.%20Junge"> Kristin M. Junge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The worldwide production of endocrine disrupting compounds (EDC) has risen dramatically over the last decades, as so has the prevalence for obesity. Many EDCs are believed to contribute to this obesity epidemic, by enhancing adipogenesis or disrupting relevant metabolism. This effect is most tremendous in the early prenatal period when priming effects find a highly vulnerable time window. Therefore, we investigate the impact of parabens on childhood overweight development and adipogenesis in general. Parabens are ester of 4-hydroxy-benzoic acid and part of many cosmetic products or food packing. Therefore, ubiquitous exposure can be found in the westernized world, with exposure already starting during the sensitive prenatal period. We assessed maternal cosmetic product consumption, prenatal paraben exposure and infant BMI z-scores in the prospective German LINA cohort. In detail, maternal urinary concentrations (34 weeks of gestation) of methyl paraben (MeP), ethyl paraben (EtP), n-propyl paraben (PrP) and n-butyl paraben (BuP) were quantified using UPLC-MS/MS. Body weight and height of their children was assessed during annual clinical visits. Further, we investigated the direct influence of those parabens on adipogenesis in-vitro using a human mesenchymal stem cell (MSC) differentiation assay to mimic a prenatal exposure scenario. MSC were exposed to 0.1 – 50 µM paraben during the entire differentiation period. Differentiation outcome was monitored by impedance spectrometry, real-time PCR and triglyceride staining. We found that maternal cosmetic product consumption was highly correlated with urinary paraben concentrations at pregnancy. Further, prenatal paraben exposure was linked to higher BMI Z-scores in children. Our in-vitro analysis revealed that especially the long chained paraben BuP stimulates adipogenesis by increasing the expression of adipocyte specific genes (PPARγ, ADIPOQ, LPL, etc.) and triglyceride storage. Moreover, we found that adiponectin secretion is increased whereas leptin secretion is reduced under BuP exposure in-vitro. Further mechanistic analysis for receptor binding and activation of PPARγ and other key players in adipogenesis are currently in process. We conclude that maternal cosmetic product consumption is linked to prenatal paraben exposure of children and contributes to the development of infant overweight development by triggering key pathways of adipogenesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adipogenesis" title="adipogenesis">adipogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disruptors" title=" endocrine disruptors"> endocrine disruptors</a>, <a href="https://publications.waset.org/abstracts/search?q=paraben" title=" paraben"> paraben</a>, <a href="https://publications.waset.org/abstracts/search?q=prenatal%20exposure" title=" prenatal exposure"> prenatal exposure</a> </p> <a href="https://publications.waset.org/abstracts/59000/prenatal-paraben-exposure-impacts-infant-overweight-development-and-in-vitro-adipogenesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Epigenetics Regulation Play Role in the Pathogenesis of Adipose Tissue Disorder, Lipedema</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musarat%20Ishaq">Musarat Ishaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Tara%20Karnezis"> Tara Karnezis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Shayan"> Ramin Shayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipedema, a poorly understood chronic disease of adipose hyper-deposition, is often mistaken for obesity and causes significant impairment to mobility and quality-of-life. To identify molecular mechanisms underpinning lipedema, we employed comprehensive omics-based comparative analyses of whole tissue, adipocyte precursors (adipose-derived stem cells (ADSCs)), and adipocytes from patients with or without lipedema. Transcriptional profiling revealed significant differences in lipedema tissue, adipocytes, and ADSCs, with altered levels of mRNAs involved inproliferation and cell adhesion. One highly up-regulated gene in lipedema adipose tissue, adipocytes and ADSCs, ZIC4, encodes Zinc Finger Protein ZIC 4, a class of transcription factor which may be involved in regulating metabolism and adipogenesis. ZIC4 inhibition impaired the adipogenesis of ADSCs into mature adipocytes. Epigenetic regulation study revealed overexpression of ZIC4 is involved in decreased promoter DNA methylation and subsequent decrease in adipogenesis. These epigenetic modifications can alter adipocytes microenvironment and adipocytes differentiation. Our study show that epigenetic events regulate the ability of ADSCs to commit and differentiate into mature adipocytes by modulating ZIC4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipedema" title="lipedema">lipedema</a>, <a href="https://publications.waset.org/abstracts/search?q=adipose-derived%20stem%20cells" title=" adipose-derived stem cells"> adipose-derived stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=adipose%20tisue" title=" adipose tisue"> adipose tisue</a>, <a href="https://publications.waset.org/abstracts/search?q=adipocytes" title=" adipocytes"> adipocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20finger%20protein" title=" zinc finger protein"> zinc finger protein</a>, <a href="https://publications.waset.org/abstracts/search?q=epigenetic" title=" epigenetic"> epigenetic</a> </p> <a href="https://publications.waset.org/abstracts/143812/epigenetics-regulation-play-role-in-the-pathogenesis-of-adipose-tissue-disorder-lipedema" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Comparison of Serum Levels of Secreted Frizzler Protein 5 in Patients with Type 2 Diabetes Mellitus Treated and Not Treated with Metformin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irma%20Gabriela%20Lopez-Moreno">Irma Gabriela Lopez-Moreno</a>, <a href="https://publications.waset.org/abstracts/search?q=Elva%20Perez-Luque"> Elva Perez-Luque</a>, <a href="https://publications.waset.org/abstracts/search?q=Herlinda%20Aguilar-Zavala"> Herlinda Aguilar-Zavala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Type 2 Diabetes Mellitus (T2DM) is characterized by combination of insulin resistance and deterioration of insulin secretion. Sfrp5 is a protein that antagonizes Wnt5a proteins by preventing it from reaching its receptor and activating the Wnt/β-catenin signaling pathway, this pathway is one of the most important regulators of adipogenesis. Although metformin decreases glucose levels its mechanisms of action are not fully known but it has been implicated in the inhibition of the Wnt/β-catenin signaling pathway. Objective: The objective was evaluating the effects of metformin on serum levels of Sfrp5 in patients with T2DM treated and not treated with metformin. Methods: Two groups of patients were selected: one group of T2DM patients treated with metformin (n = 35) and another group of subjects with recent diagnosis of T2DM untreated (n = 35) with a mean age of 48 ± 9 years. In these subjects anthropometric measures were taken as weight, height, waist and hip circumference, were calculated the percentage of body fat, visceral fat and muscle mass. In addition, were measured glucose levels, lipid profile, adiponectin and Sfrp5. Results: Sfrp5 were higher in metformin-treated patients compared to the untreated group (19.9 vs 13.6 ng/mL p < 0.001), a negative correlation was found between Sfrp5 levels and total cholesterol levels (r= -0.25, p = 0.03) and percentage of visceral fat (r = -0.26, p = 0.03) and a positive correlation with HDL cholesterol levels (r = 0.31, p = 0.01) and adiponectin (r=0.65, p = < 0.001). Conclusions: The findings show that metformin consumption increased levels of Sfrp5, which may lead to a decrease in the activation of the WNT/β-catenin pathway impacting on adipogenesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adiponectin" title="adiponectin">adiponectin</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=metformin" title=" metformin"> metformin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sfrp5" title=" Sfrp5"> Sfrp5</a> </p> <a href="https://publications.waset.org/abstracts/86854/comparison-of-serum-levels-of-secreted-frizzler-protein-5-in-patients-with-type-2-diabetes-mellitus-treated-and-not-treated-with-metformin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Dietary Supplementation with Coula edulis B. Walnuts Prevents Diet-Induced Obesity and Insulin Resistance in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Beyegue">Eric Beyegue</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Azantza"> Boris Azantza</a>, <a href="https://publications.waset.org/abstracts/search?q=Judith%20Laure%20Ngondi"> Judith Laure Ngondi</a>, <a href="https://publications.waset.org/abstracts/search?q=Julius%20E.%20Oben"> Julius E. Oben</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Dietary supplement may potentially help to fight obesity and other metabolic disorders such as adipogenesis, insulin resistance, and inflammation. The present study aimed to test whether supplementation with African walnuts (Aw) could have an effect on adipogenesis and others dysfunctions associated with obesity in rats. Methods: Wistar rats were fed with standard diet (SD) or high-fat high-sucrose diet (HFS) and HFS with supplemented (HFS-Aw) for eight weeks. Results: HFS diet-induced body weight gain and increased fat mass compared to SD. In addition HFS-fed rats developed fasting hyperglycaemia and insulinaemia as well as insulin resistance. Aw supplementation in HFS rats had a protective effect against adipose tissues weigh gain but slightly against body weight gain and major study related disorders. This could be mainly due to decreased food intake dependently of effect in food intake in central nervous system, which decreased in HFS rats supplemented with African walnut compared to the HFS-diet group. Interestingly, African walnut supplementation induced a slight decrease of fasting glycaemia, insulinaemia and Nitric Oxide which could partially explain its minor protective effect against diet-induced insulin resistance. Additionally a decrease in hepatic TG and transaminases levels suggesting a protective effect against liver injury. Conclusion: Taken together these data suggested that supplementation of African walnut could be used to prevent adipose weight gain and related disorders on the other hand, minimally reduced insulin resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=African%20walnut" title="African walnut">African walnut</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20fiber" title=" dietary fiber"> dietary fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/64502/dietary-supplementation-with-coula-edulis-b-walnuts-prevents-diet-induced-obesity-and-insulin-resistance-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Enhanced Anti-Obesity Effect of Soybean by Fermentation with Lactobacillus plantarum P1201 in 3T3-L1 Adipocyte</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chengliang%20Xie">Chengliang Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinhyun%20Ryu"> Jinhyun Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Joon%20Kim"> Hyun Joon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyeong%20Jae%20Cho"> Gyeong Jae Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Sung%20Choi"> Wan Sung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Soo%20Kang"> Sang Soo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kye%20Man%20Cho"> Kye Man Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Hoon%20Lee"> Dong Hoon Lee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Obesity has become a global health problem and a source of major metabolic diseases like type-2 diabetes, hypertension, heart disease, nonalcoholic fatty liver and cancer. Synthetic anti-obesity drugs are effective but very costly and with undesirable side effects, so natural products such as soybean are needed as an alternative for obesity treatment. Lactobacillus Plantarum P1201is a probiotic bacterial strain reported to produce conjugated linoleic acid (CLA) and increase the ratio of aglycone-isoflavone of soybean, both of which have anti-obesity effect. In this study, the anti-obesity effect of the fermented soybean extract with P1201 (FSE) will be evaluated compared with that of the soybean extract (SE) by 3T3-L1 cells as an in vitro model of adipogenesis. 3T3-L1 cells were treated with SE and FSE during the nine days of the differentiation, lipid accumulation was evaluated by oil-red staining and triglyceride content and the mRNA expression level of adipogenic or lipogenic genes were analyzed by RT-PCR and qPCR. The results showed that formation of lipid droplets in differentiated 3T3-L1 cells was inhibited and triglyceride content was reduced by 23.1% after treated with 1000 μg/mL of FSE compared with control. For SE-treated groups, no delipidating effect was observed. The effect of FSE on adipogenesis inhibition can be attributed to the down-regulation of mRNA expressionof CCAAT/enhancer binding protein (C/EBP-α), lipoprotein lipase (LPL), adiponectin, adipocyte fatty acid-binding protein (aP2), fatty acid synthesis (FAS) and CoA carboxylase (ACC). Our results demonstrated that the anti-obesity effect of soybean can be improved by fermentation with P1201, and P1201can be used as a potential probiotic bacterial strain to produce natural anti-obesity food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactobacillus%20plantarum%20P1201" title=" Lactobacillus plantarum P1201"> Lactobacillus plantarum P1201</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a> </p> <a href="https://publications.waset.org/abstracts/39309/enhanced-anti-obesity-effect-of-soybean-by-fermentation-with-lactobacillus-plantarum-p1201-in-3t3-l1-adipocyte" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Regulation of Differentiating Intramuscular Stromal Vascular Cells Isolated from Hanwoo Beef Cattle by Retinoic Acid and Calcium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seong%20Gu%20Hwang">Seong Gu Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Kyoon%20Oh">Young Kyoon Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20F.%20dela%20Cruz"> Joseph F. dela Cruz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marbling, or intramuscular fat, has been consistently identified as one of the top beef quality problems. Intramuscular adipocytes distribute throughout the perimysial connective tissue of skeletal muscle and are the major site for the deposition of intramuscular fat, which is essential for the eating quality of meat. The stromal vascular fraction of the skeletal muscle contains progenitor cells that can be enhanced to differentiate to adipocytes and increase intramuscular fat. Primary cultures of bovine intramuscular stromal vascular cells were used in this study to elucidate the effects of extracellular calcium and retinoic acid concentration on adipocyte differentiation. Cell viability assay revealed that even at different concentrations of calcium and retinoic acid, there was no significant difference on cell viability. Monitoring of the adipocyte differentiation showed that bovine intramuscular stromal vascular cells cultured in a low concentration of extracellular calcium and retinoic acid had a better degree of fat accumulation. The mRNA and protein expressions of PPARγ, C/EBPα, SREBP-1c and aP2 were analyzed and showed a significant upregulation upon the reduction in the level of extracellular calcium and retinoic acid. The upregulation of these adipogenic related genes means that the decreasing concentration of calcium and retinoic acid is able to stimulate the adipogenic differentiation of bovine intramuscular stromal vascular cells. To further elucidate the effect of calcium, the expression level of calreticulin was measured. Calreticulin which is known to be an inhibitor of PPARγ was down regulated by the decreased level of calcium and retinoic acid in the culture media. The same tendency was observed on retinoic acid receptors RARα and CRABP-II. These receptors are recognized as adipogenic inhibitors, and the downregulation of their expression allowed a better level of differentiation in bovine intramuscular stromal vascular cells. In conclusion, data show that decreasing the level of extracellular calcium and retinoic acid can significantly promote adipogenesis in intramuscular stromal vascular cells of Hanwoo beef cattle. These findings may provide new insights in enhancing intramuscular adipogenesis and marbling in beef cattle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium" title="calcium">calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=calreticulin" title=" calreticulin"> calreticulin</a>, <a href="https://publications.waset.org/abstracts/search?q=hanwoo%20beef" title=" hanwoo beef"> hanwoo beef</a>, <a href="https://publications.waset.org/abstracts/search?q=retinoic%20acid" title=" retinoic acid"> retinoic acid</a> </p> <a href="https://publications.waset.org/abstracts/31990/regulation-of-differentiating-intramuscular-stromal-vascular-cells-isolated-from-hanwoo-beef-cattle-by-retinoic-acid-and-calcium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Anti-Obesity Effects of Pteryxin in Peucedanum japonicum Thunb Leaves through Different Pathways of Adipogenesis In-Vitro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruwani%20N.%20Nugara">Ruwani N. Nugara</a>, <a href="https://publications.waset.org/abstracts/search?q=Masashi%20Inafuku"> Masashi Inafuku</a>, <a href="https://publications.waset.org/abstracts/search?q=Kensaku%20Takara"> Kensaku Takara</a>, <a href="https://publications.waset.org/abstracts/search?q=Hironori%20Iwasaki"> Hironori Iwasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirosuke%20Oku"> Hirosuke Oku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pteryxin from the partially purified hexane phase (HP) of Peucedanum japonicum Thunb (PJT) was identified as the active compound related to anti-obesity. Thus, in this study we investigated the mechanisms related to anti-obesity activity in-vitro. The HP was fractionated, and effect on the triglyceride (TG) content was evaluated in 3T3-L1 and HepG2 cells. Comprehensive spectroscopic analyses were used to identify the structure of the active compound. The dose dependent effect of active constituent on the TG content, and the gene expressions related to adipogenesis, fatty acid catabolism, energy expenditure, lipolysis and lipogenesis (20 μg/mL) were examined in-vitro. Furthermore, higher dosage of pteryxin (50μg/mL) was tested against 20μg/mL in 3T3-L1 adipocytes. The mRNA were subjected to SOLiD next generation sequencer and the obtained data were analyzed by Ingenuity Pathway Analysis (IPA). The active constituent was identified as pteryxin, a known compound in PJT. However, its biological activities against obesity have not been reported previously. Pteryxin dose dependently suppressed TG content in both 3T3-L1 adipocytes and HepG2 hepatocytes (P < 0.05). Sterol regulatory element-binding protein-1 (SREBP1 c), Fatty acid synthase (FASN), and acetyl-CoA carboxylase-1 (ACC1) were downregulated in pteryxin-treated adipocytes (by 18.0, 36.1 and 38.2%; P < 0.05, respectively) and hepatocytes (by 72.3, 62.9 and 38.8%, respectively; P < 0.05) indicating its suppressive effects on fatty acid synthesis. The hormone-sensitive lipase (HSL), a lipid catabolising gene was upregulated (by 15.1%; P < 0.05) in pteryxin-treated adipocytes suggesting improved lipolysis. Concordantly, the adipocyte size marker gene, paternally expressed gene1/mesoderm specific transcript (MEST) was downregulated (by 42.8%; P < 0.05), further accelerating the lipolytic activity. The upregulated trend of uncoupling protein 2 (UCP2; by 77.5%; P < 0.05) reflected the improved energy expenditure due to pteryxin. The 50μg/mL dosage of pteryxin completely suppressed PPARγ, MEST, SREBP 1C, HSL, Adiponectin, Fatty Acid Binding Protein (FABP) 4, and UCP’s in 3T3-L1 adipocytes. The IPA suggested that pteryxin at 20μg/mL and 50μg/mL suppress obesity in two different pathways, whereas the WNT signaling pathway play a key role in the higher dose of pteryxin in preadipocyte stage. Pteryxin in PJT play the key role in regulating lipid metabolism related gene network and improving energy production in vitro. Thus, the results suggests pteryxin as a new natural compound to be used as an anti-obesity drug in pharmaceutical industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=obesity" title="obesity">obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=peucedanum%20japonicum%20thunb" title=" peucedanum japonicum thunb"> peucedanum japonicum thunb</a>, <a href="https://publications.waset.org/abstracts/search?q=pteryxin" title=" pteryxin"> pteryxin</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20science" title=" food science"> food science</a> </p> <a href="https://publications.waset.org/abstracts/26176/anti-obesity-effects-of-pteryxin-in-peucedanum-japonicum-thunb-leaves-through-different-pathways-of-adipogenesis-in-vitro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Biostimulation and Muscular Ergogenic Effect of Ozone Therapy on Buttock Augmentation: A Case Report and Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferreira%20R.">Ferreira R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Rocha%20K."> Rocha K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ozone therapy is indicated for improving skin aesthetics, bio-stimulating and ergogenic effect. This paper aims to carry out a case report that demonstrates the positive results of ozone therapy in buttock augmentation. The application showed positive results for skin bio stimulating, neocollagenesis, adipogenesis, and ergogenic muscle effect in the reported case, demonstrating to be a viable clinical technique. Buttock augmentation with ozone therapy is a promising aesthetic therapeutic modality with fast and safe results as an aesthetic therapeutic option for buttock augmentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-stimulating%20effect" title="bio-stimulating effect">bio-stimulating effect</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone%20therapy" title=" ozone therapy"> ozone therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=muscular%20ergogenic" title=" muscular ergogenic"> muscular ergogenic</a>, <a href="https://publications.waset.org/abstracts/search?q=buttock%20augmentation" title=" buttock augmentation"> buttock augmentation</a> </p> <a href="https://publications.waset.org/abstracts/157131/biostimulation-and-muscular-ergogenic-effect-of-ozone-therapy-on-buttock-augmentation-a-case-report-and-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Screening of Potential Sources of Tannin and Its Therapeutic Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamta%20Kumari">Mamta Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashi%20Jain"> Shashi Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tannins are a unique category of plant phytochemicals especially in terms of their vast potential health-benefiting properties. Researchers have described the capacity of tannins to enhance glucose uptake and inhibit adipogenesis, thus being potential drugs for the treatment of non-insulin dependent diabetes mellitus. Thus, the present research was conducted to find out tannin content of food products. The percentage of tannin in various analyzed sources ranged from 0.0 to 108.53%; highest in kathaa and lowest in ker and mango bark. The percentage of tannins present in the plants, however, varies. Numerous studies have confirmed that the naturally occurring polyphenols are key factor for the beneficial effects of the herbal medicines. Isolation and identification of active constituents from plants, preparation of standardized dose & dosage regimen can play a significant role in improving the hypoglycaemic action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tannins" title="tannins">tannins</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=hypoglycemia" title=" hypoglycemia"> hypoglycemia</a> </p> <a href="https://publications.waset.org/abstracts/24395/screening-of-potential-sources-of-tannin-and-its-therapeutic-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> The Anti-Obesity Effects of the Aqueous and Ethanolic Leaf Extracts of Blumea balsamifera on Diet-Induced Obese Sprague-Dawley Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mae%20Genevieve%20G.%20Cheung">Mae Genevieve G. Cheung</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20G.%20Cuevas"> Michael G. Cuevas</a>, <a href="https://publications.waset.org/abstracts/search?q=Lovely%20Fe%20L.%20Cuison"> Lovely Fe L. Cuison</a>, <a href="https://publications.waset.org/abstracts/search?q=Elijin%20P.%20Dai"> Elijin P. Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Katrina%20Marie%20S.%20Duron"> Katrina Marie S. Duron</a>, <a href="https://publications.waset.org/abstracts/search?q=Azalea%20Damaris%20E.%20Encarnacion"> Azalea Damaris E. Encarnacion</a>, <a href="https://publications.waset.org/abstracts/search?q=May%20T.%20Magtoto"> May T. Magtoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Gina%20C.%20Castro"> Gina C. Castro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aims to evaluate the effectiveness of aqueous and ethanolic leaf extracts of Blumea balsamifera in reducing obesity on diet-induced obese Sprague-Dawley rats. Aqueous and ethanolic leaf extracts were obtained by maceration and percolation, respectively, of air-dried, grinded leaves. The test animals were given a high fat diet (HFD) for 21 days, except for one negative control group fed with a standard diet (SD). The Blumea balsamifera extracts were given at doses of 300 mg/Kg and 600 mg/Kg for BBAE and BBEE groups, and the positive control group, Orlistat, was given at 21.6 mg/Kg dose. After 24 days of treatment, the statistical difference of parameters such as Lee’s index and lipid profile of each group before and after the treatment period were determined separately using Tukey’s test of two-way Analysis of Variance (ANOVA). The statistical results showed that the600mg/kg dose of BBAE and BBEE had greatly lowered the Lee’s index among the other doses while the 300 mg/Kg dose BBEE, 600 mg/Kg BBAE, and 300 mg/kg BBAE lowered the total cholesterol level, LDL level, and VLDL and total triglyceride level respectively. The extracts, however, lowered the HDL level which was also exhibited by the standard drug, Orlistat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adipocytes" title="adipocytes">adipocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=adipogenesis" title=" adipogenesis"> adipogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Blumea%20balsamifera" title=" Blumea balsamifera"> Blumea balsamifera</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%E2%80%99s%20index" title=" Lee’s index"> Lee’s index</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=Sambong" title=" Sambong"> Sambong</a> </p> <a href="https://publications.waset.org/abstracts/46727/the-anti-obesity-effects-of-the-aqueous-and-ethanolic-leaf-extracts-of-blumea-balsamifera-on-diet-induced-obese-sprague-dawley-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> A Literature Review: The Anti-Obesity Effect of Epigallocathecin-3-Gallate of Camellia sinensis (Green Tea) Extraction as a Potential Adjuvant Therapy for Management Obesity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nunuy%20Nuraeni">Nunuy Nuraeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Amalia%20Lestari"> Vera Amalia Lestari</a>, <a href="https://publications.waset.org/abstracts/search?q=Atri%20Laranova"> Atri Laranova</a>, <a href="https://publications.waset.org/abstracts/search?q=Viena%20Nissa%20Mien%20Fadhillah"> Viena Nissa Mien Fadhillah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutia"> Mutia</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ikhlas%20Abdian%20Putra"> Muhammad Ikhlas Abdian Putra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Obesity is a common disease with high prevalence especially in developing countries including Indonesia. The obesitygenic lifestyle such as excessive intake of food, sedentary lifestyle is the major environmental etiologies of obesity. Obesity is also as one of burden disease with high morbidity due to its complication, such as diabetes mellitus and hypertension. The objective of this literature review is to know how the Epigallocathecin-3-Gallate of Green tea or Camellia sinensis effect as anti-obesity agent and reduce the complication of obesity. Material and Methods: This study based on the secondary data analysis complemented by primary data collection from several journal and textbook. We identified the effect of Epigallocathecin-3-Gallate of Green tea or Camellia sinensis as adjuvant therapy for management obesity and to prevent the complications of obesity. Results: Based on the result, Green tea or Camellia sinensis contain Epigallocathecin-3-Gallate (EGCG) that has anti-obesity effect such as induce apoptosis, inhibit adipogenesis, increasing lipolytic activity, increasing fat oxidation and thermogenesis. Discussion: EGCG are naturally distributed in green tea, that contains a biological activity that has a potential effect to treat obesity. Conclusion: EGCG are capable to treat obesity. By consuming EGCG can prevent obesity in normal health person and prevent complication in patient with obesity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjuvant%20therapy" title="adjuvant therapy">adjuvant therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-obesity%20effect" title=" anti-obesity effect"> anti-obesity effect</a>, <a href="https://publications.waset.org/abstracts/search?q=complication" title=" complication"> complication</a>, <a href="https://publications.waset.org/abstracts/search?q=epigallocathecin-3-gallate" title=" epigallocathecin-3-gallate"> epigallocathecin-3-gallate</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a> </p> <a href="https://publications.waset.org/abstracts/43524/a-literature-review-the-anti-obesity-effect-of-epigallocathecin-3-gallate-of-camellia-sinensis-green-tea-extraction-as-a-potential-adjuvant-therapy-for-management-obesity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Possible Modulation of FAS and PTP-1B Signaling in Ameliorative Potential of Bombax ceiba against High Fat Diet Induced Obesity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paras%20Gupta">Paras Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Goyal"> Rohit Goyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamini%20Chauhan"> Yamini Chauhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Pyare%20Lal%20Sharma"> Pyare Lal Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Bombax ceiba Linn., commonly called as Semal, is used in various gastro-intestinal disturbances. It contains lupeol which inhibits PTP-1B, adipogenesis, TG synthesis and accumulation of lipids in adipocytes and adipokines whereas the flavonoids isolated from B. ceiba has FAS inhibitory activity. The present study was aimed to investigate ameliorative potential of Bombax ceiba to experimental obesity in Wistar rats, and its possible mechanism of action. Methods: Male Wistar albino rats weighing 180–220 g were employed in present study. Experimental obesity was induced by feeding high fat diet for 10 weeks. Methanolic extract of B. ceiba extract 100, 200 and 400 mg/kg and Gemfibrozil 50 mg/kg as standard drug were given orally from 7th to 10th week. Results: Induction with HFD for 10 weeks caused significant (p < 0.05) increase in % body wt, BMI, LEE indices; serum glucose, triglyceride, LDL, VLDL, cholesterol, free fatty acid, ALT, AST; tissue TBARS, nitrate/nitrite levels; different fat pads and relative liver weight; and significant decrease in food intake (g and kcal), serum HDL and tissue glutathione levels in HFD control rats. Treatment with B. ceiba extract and Gemfibrozil significantly attenuated these HFD induced changes, as compared to HFD control. The effect of B. ceiba 200 and 400 mg/kg was more pronounced in comparison to Gemfibrozil. Conclusion: On the basis of results obtained, it may be concluded that the methanolic extract of stem bark of Bombax ceiba has significant ameliorative potential against HFD induced obesity in rats, possibly through modulation of FAS and PTP-1B signaling due to the presence of flavonoids and lupeol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=obesity" title="obesity">obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=Bombax%20ceiba" title=" Bombax ceiba"> Bombax ceiba</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20fatty%20acid" title=" free fatty acid"> free fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20tyrosine%20phosphatase-1B" title=" protein tyrosine phosphatase-1B"> protein tyrosine phosphatase-1B</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20synthase" title=" fatty acid synthase"> fatty acid synthase</a> </p> <a href="https://publications.waset.org/abstracts/9263/possible-modulation-of-fas-and-ptp-1b-signaling-in-ameliorative-potential-of-bombax-ceiba-against-high-fat-diet-induced-obesity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Septin 11, Cytoskeletal Protein Involved in the Regulation of Lipid Metabolism in Adipocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Moreno-Castellanos">Natalia Moreno-Castellanos</a>, <a href="https://publications.waset.org/abstracts/search?q=Amaia%20Rodriguez"> Amaia Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Gema%20Fr%C3%BChbeck"> Gema Frühbeck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In adipocytes, the cytoskeleton undergoes important expression and distribution in adipocytes rearrangements during adipogenesis and in obesity. Indeed, a role for these proteins in the regulation of adipocyte differentiation and response to insulin has been demonstrated. Recently, septins have been considered as new components of the cytoskeletal network that interact with other cytoskeletal elements (actin and tubulin) profoundly modifying their dynamics. However, these proteins have not been characterized as yet in adipose tissue. In this work, were examined the cellular, molecular and functional features of a member of this family, septin 11 (SEPT11), in adipocytes and evaluated the impact of obesity on the expression of this protein in human adipose tissue. Methods: Adipose gene and protein expression levels of SEPT11 were analysed in human samples. SEPT11 distribution was evaluated by immunocytochemistry, electronic microscopy, and subcellular fractionation techniques. GST-pull down, immunoprecipitation and a Yeast-Two Hybrid (Y2H) screening were used to identify the SEPT11 interactome. Gene silencing was employed to assess the role of SEPT11 in the regulation of insulin signaling and lipid metabolism in adipocytes. Results: SEPT11 is expressed in human adipocytes, and its levels increased in both omental and subcutaneous adipose tissue in obesity, with SEPT11 mRNA content positively correlating with parameters of insulin resistance in subcutaneous fat. In non-stimulated adipocytes, SEPT11 immunoreactivity showed a ring-like distribution at the cell surface and associated to caveolae. Biochemical analyses showed that SEPT11 interacted with the main component of caveolae, caveolin-1 (CAV1) as well as with the fatty acid-binding protein, FABP5. Notably, the three proteins redistributed and co-localized at the surface of lipid droplets upon exposure of adipocytes to oleate. In this line, SEPT11 silencing in 3T3-L1 adipocytes impaired insulin signaling and decreased insulin-induced lipogenesis. Conclusions: Those findings demonstrate that SEPT11 is a novel component of the adipocyte cytoskeleton that plays an important role in the regulation of lipid traffic, metabolism and can thus represent a potential biomarker of insulin resistance in obesity in adipocytes through its interaction with both CAV1 and FABP5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caveolae" title="caveolae">caveolae</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20metabolism" title=" lipid metabolism"> lipid metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=septins" title=" septins"> septins</a> </p> <a href="https://publications.waset.org/abstracts/79045/septin-11-cytoskeletal-protein-involved-in-the-regulation-of-lipid-metabolism-in-adipocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Caffeic Acid Methyl and Ethyl Esters Exhibit Beneficial Effect on Glucose and Lipid Metabolism in Cultured Murine Insulin-Sensitive Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoda%20M.%20Eid">Hoda M. Eid</a>, <a href="https://publications.waset.org/abstracts/search?q=Abir%20Nachar"> Abir Nachar</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Thong"> Farah Thong</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Sweeney"> Gary Sweeney</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20S.%20Haddad"> Pierre S. Haddad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Caffeic acid methyl ester (CAME) and caffeic ethyl esters (CAEE) were previously reported to potently stimulate glucose uptake in cultured C2C12 skeletal muscle cells via insulin-independent mechanisms involving the activation of adenosine monophosphate-activated protein kinase (AMPK). In the present study, we investigated the effect of the two compounds on the translocation of glucose transporter GLUT4 in L6 skeletal muscle cells. The cells were treated with the optimum non-toxic concentration (50 µM) of either CAME or CAEE for 18 h. Levels of GLUT4myc at the cell surface were measured by O-phenylenediamine dihydrochloride (OPD) assay. The effects of CAME and CAEE on GLUT1 and GLUT4 protein content were also measured by western immunoblot. Our results show that CAME and CAEE significantly increased glucose uptake, GLUT4 translocation and GLUT4 protein content. Furthermore, the effect of the two CA esters on two insulin-sensitive cell lines: H4IIE rat hepatoma and 3T3-L1 adipocytes were investigated. CAME and CAEE reduced the enzymatic activity of the key hepatic gluconeogenic enzyme glucose-6-phosphatase in a concentration-dependent manner. In addition, they exerted a concentration-dependent antiadipogenic effect on 3T3-L1 cells. Mitotic clonal expansion (MCE), a prerequisite for adipocytes differentiation was also concentration-dependently inhibited. The two compounds abrogated lipid droplet accumulation, blocked MCE and maintained cells in fibroblast-like state when applied at the maximum non-toxic concentration (100 µM). In addition, the expression of the early key adipogenic transcription factors CCAAT enhancer-binding protein beta (C/EBP-β) and the master regulator of adipogenesis peroxisome-proliferator-activated receptor gamma (PPAR-γ) were inhibited. We, therefore, conclude that CAME and CAEE exert pleiotropic benefits in several insulin-sensitive cell lines through insulin-independent mechanisms involving AMPK, hence they may treat obesity, diabetes and other metabolic diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes%20mellitus" title="type 2 diabetes mellitus">type 2 diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=GLUT4" title=" GLUT4"> GLUT4</a>, <a href="https://publications.waset.org/abstracts/search?q=Akt" title=" Akt"> Akt</a>, <a href="https://publications.waset.org/abstracts/search?q=AMPK." title=" AMPK."> AMPK.</a> </p> <a href="https://publications.waset.org/abstracts/44025/caffeic-acid-methyl-and-ethyl-esters-exhibit-beneficial-effect-on-glucose-and-lipid-metabolism-in-cultured-murine-insulin-sensitive-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Identification of Peroxisome Proliferator-Activated Receptors α/γ Dual Agonists for Treatment of Metabolic Disorders, Insilico Screening, and Molecular Dynamics Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Virendra%20Nath">Virendra Nath</a>, <a href="https://publications.waset.org/abstracts/search?q=Vipin%20Kumar"> Vipin Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: TypeII Diabetes mellitus is a foremost health problem worldwide, predisposing to increased mortality and morbidity. Undesirable effects of the current medications have prompted the researcher to develop more potential drug(s) against the disease. The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptors family and take part in a vital role in the regulation of metabolic equilibrium. They can induce or repress genes associated with adipogenesis, lipid, and glucose metabolism. Aims: Investigation of PPARα/γ agonistic hits were screened by hierarchical virtual screening followed by molecular dynamics simulation and knowledge-based structure-activity relation (SAR) analysis using approved PPAR α/γ dual agonist. Methods: The PPARα/γ agonistic activity of compounds was searched by using Maestro through structure-based virtual screening and molecular dynamics (MD) simulation application. Virtual screening of nuclear-receptor ligands was done, and the binding modes with protein-ligand interactions of newer entity(s) were investigated. Further, binding energy prediction, Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit along with the structural comparative analysis of approved PPARα/γ agonists with screened hit was done for knowledge-based SAR. Results and Discussion: The silicone chip-based approach recognized the most capable nine hits and had better predictive binding energy as compared to the reference drug compound (Tesaglitazar). In this study, the key amino acid residues of binding pockets of both targets PPARα/γ were acknowledged as essential and were found to be associated in the key interactions with the most potential dual hit (ChemDiv-3269-0443). Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit and found root mean square deviation (RMSD) stabile around 2Å and 2.1Å, respectively. Frequency distribution data also revealed that the key residues of both proteins showed maximum contacts with a potent hit during the MD simulation of 20 nanoseconds (ns). The knowledge-based SAR studies of PPARα/γ agonists were studied using 2D structures of approved drugs like aleglitazar, tesaglitazar, etc. for successful designing and synthesis of compounds PPARγ agonistic candidates with anti-hyperlipidimic potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational" title="computational">computational</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=PPAR" title=" PPAR"> PPAR</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/121800/identification-of-peroxisome-proliferator-activated-receptors-agh-dual-agonists-for-treatment-of-metabolic-disorders-insilico-screening-and-molecular-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Reconstruction of Alveolar Bone Defects Using Bone Morphogenetic Protein 2 Mediated Rabbit Dental Pulp Stem Cells Seeded on Nano-Hydroxyapatite/Collagen/Poly(L-Lactide)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ling-Ling%20E.">Ling-Ling E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Chen%20Liu"> Hong-Chen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Sheng%20Wang"> Dong-Sheng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Su"> Fang Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Xia%20Wu"> Xia Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhan-Ping%20Shi"> Zhan-Ping Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Lv"> Yan Lv</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia-Zhu%20Wang"> Jia-Zhu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The objective of the present study is to evaluate the capacity of a tissue-engineered bone complex of recombinant human bone morphogenetic protein 2 (rhBMP-2) mediated dental pulp stem cells (DPSCs) and nano-hydroxyapatite/collagen/poly(L-lactide)(nHAC/PLA) to reconstruct critical-size alveolar bone defects in New Zealand rabbit. Methods: Autologous DPSCs were isolated from rabbit dental pulp tissue and expanded ex vivo to enrich DPSCs numbers, and then their attachment and differentiation capability were evaluated when cultured on the culture plate or nHAC/PLA. The alveolar bone defects were treated with nHAC/PLA, nHAC/PLA+rhBMP-2, nHAC/PLA+DPSCs, nHAC/PLA+DPSCs+rhBMP-2, and autogenous bone (AB) obtained from iliac bone or were left untreated as a control. X-ray and a polychrome sequential fluorescent labeling were performed post-operatively and the animals were sacrificed 12 weeks after operation for histological observation and histomorphometric analysis. Results: Our results showed that DPSCs expressed STRO-1 and vementin, and favoured osteogenesis and adipogenesis in conditioned media. DPSCs attached and spread well, and retained their osteogenic phenotypes on nHAC/PLA. The rhBMP-2 could significantly increase protein content, alkaline phosphatase (ALP) activity/protein, osteocalcin (OCN) content, and mineral formation of DPSCs cultured on nHAC/PLA. The X-ray graph, the fluorescent, histological observation and histomorphometric analysis showed that the nHAC/PLA+DPSCs+rhBMP-2 tissue-engineered bone complex had an earlier mineralization and more bone formation inside the scaffold than nHAC/PLA, nHAC/PLA+rhBMP-2 and nHAC/PLA+DPSCs, or even autologous bone. Implanted DPSCs contribution to new bone were detected through transfected eGFP genes. Conclutions: Our findings indicated that stem cells existed in adult rabbit dental pulp tissue. The rhBMP-2 promoted osteogenic capability of DPSCs as a potential cell source for periodontal bone regeneration. The nHAC/PLA could serve as a good scaffold for autologous DPSCs seeding, proliferation and differentiation. The tissue-engineered bone complex with nHAC/PLA, rhBMP-2, and autologous DPSCs might be a better alternative to autologous bone for the clinical reconstruction of periodontal bone defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-hydroxyapatite%2Fcollagen%2Fpoly%20%28L-lactide%29" title="nano-hydroxyapatite/collagen/poly (L-lactide)">nano-hydroxyapatite/collagen/poly (L-lactide)</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20pulp%20stem%20cell" title=" dental pulp stem cell"> dental pulp stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20human%20bone%20morphogenetic%20protein" title=" recombinant human bone morphogenetic protein"> recombinant human bone morphogenetic protein</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title=" bone tissue engineering"> bone tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=alveolar%20bone" title=" alveolar bone"> alveolar bone</a> </p> <a href="https://publications.waset.org/abstracts/21179/reconstruction-of-alveolar-bone-defects-using-bone-morphogenetic-protein-2-mediated-rabbit-dental-pulp-stem-cells-seeded-on-nano-hydroxyapatitecollagenpolyl-lactide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10