CINXE.COM
Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application
<!DOCTYPE html> <html lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="https://www.facebook.com/2008/fbml"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta content="mdpi" name="sso-service" /> <meta content="width=device-width, initial-scale=1.0" name="viewport" /> <title>Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application</title><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/font-awesome.min.css?eb190a3a77e5e1ee?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery.multiselect.css?f56c135cbf4d1483?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/chosen.min.css?d7ca5ca9441ef9e1?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/main2.css?69b39374e6b554b7?1732286508"> <link rel="mask-icon" href="https://pub.mdpi-res.com/img/mask-icon-128.svg?c1c7eca266cd7013?1732286508" color="#4f5671"> <link rel="apple-touch-icon" sizes="180x180" href="https://pub.mdpi-res.com/icon/apple-touch-icon-180x180.png?1732286508"> <link rel="apple-touch-icon" sizes="152x152" href="https://pub.mdpi-res.com/icon/apple-touch-icon-152x152.png?1732286508"> <link rel="apple-touch-icon" sizes="144x144" href="https://pub.mdpi-res.com/icon/apple-touch-icon-144x144.png?1732286508"> <link rel="apple-touch-icon" sizes="120x120" href="https://pub.mdpi-res.com/icon/apple-touch-icon-120x120.png?1732286508"> <link rel="apple-touch-icon" sizes="114x114" href="https://pub.mdpi-res.com/icon/apple-touch-icon-114x114.png?1732286508"> <link rel="apple-touch-icon" sizes="76x76" href="https://pub.mdpi-res.com/icon/apple-touch-icon-76x76.png?1732286508"> <link rel="apple-touch-icon" sizes="72x72" href="https://pub.mdpi-res.com/icon/apple-touch-icon-72x72.png?1732286508"> <link rel="apple-touch-icon" sizes="57x57" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732286508"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732286508"> <link rel="apple-touch-icon-precomposed" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732286508"> <link rel="manifest" href="/manifest.json"> <meta name="theme-color" content="#ffffff"> <meta name="application-name" content=" "/> <link rel="apple-touch-startup-image" href="https://pub.mdpi-res.com/img/journals/nanomaterials-logo-sq.png?8600e93ff98dbf14"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/img/journals/nanomaterials-logo-sq.png?8600e93ff98dbf14"> <meta name="msapplication-TileImage" content="https://pub.mdpi-res.com/img/journals/nanomaterials-logo-sq.png?8600e93ff98dbf14"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/xml2html/article-html.css?230b005b39af4260?1732286508"> <style> h2, #abstract .related_suggestion_title { } .batch_articles a { color: #000; } a, .batch_articles .authors a, a:focus, a:hover, a:active, .batch_articles a:focus, .batch_articles a:hover, li.side-menu-li a { } span.label a { color: #fff; } #main-content a.title-link:hover, #main-content a.title-link:focus, #main-content div.generic-item a.title-link:hover, #main-content div.generic-item a.title-link:focus { } #main-content #middle-column .generic-item.article-item a.title-link:hover, #main-content #middle-column .generic-item.article-item a.title-link:focus { } .art-authors a.toEncode { color: #333; font-weight: 700; } #main-content #middle-column ul li::before { } .accordion-navigation.active a.accordion__title, .accordion-navigation.active a.accordion__title::after { } .accordion-navigation li:hover::before, .accordion-navigation li:hover a, .accordion-navigation li:focus a { } .relative-size-container .relative-size-image .relative-size { } .middle-column__help__fixed a:hover i, } input[type="checkbox"]:checked:after { } input[type="checkbox"]:not(:disabled):hover:before { } #main-content .bolded-text { } #main-content .hypothesis-count-container { } #main-content .hypothesis-count-container:before { } .full-size-menu ul li.menu-item .dropdown-wrapper { } .full-size-menu ul li.menu-item > a.open::after { } #title-story .title-story-orbit .orbit-caption { #background: url('/img/design/000000_background.png') !important; background: url('/img/design/ffffff_background.png') !important; color: rgb(51, 51, 51) !important; } #main-content .content__container__orbit { background-color: #000 !important; } #main-content .content__container__journal { color: #fff; } .html-article-menu .row span { } .html-article-menu .row span.active { } .accordion-navigation__journal .side-menu-li.active::before, .accordion-navigation__journal .side-menu-li.active a { color: rgba(64,78,157,0.75) !important; font-weight: 700; } .accordion-navigation__journal .side-menu-li:hover::before , .accordion-navigation__journal .side-menu-li:hover a { color: rgba(64,78,157,0.75) !important; } .side-menu-ul li.active a, .side-menu-ul li.active, .side-menu-ul li.active::before { color: rgba(64,78,157,0.75) !important; } .side-menu-ul li.active a { } .result-selected, .active-result.highlighted, .active-result:hover, .result-selected, .active-result.highlighted, .active-result:focus { } .search-container.search-container__default-scheme { } nav.tab-bar .open-small-search.active:after { } .search-container.search-container__default-scheme .custom-accordion-for-small-screen-link::after { color: #fff; } @media only screen and (max-width: 50em) { #main-content .content__container.journal-info { color: #fff; } #main-content .content__container.journal-info a { color: #fff; } } .button.button--color { } .button.button--color:hover, .button.button--color:focus { } .button.button--color-journal { position: relative; background-color: rgba(64,78,157,0.75); border-color: #fff; color: #fff !important; } .button.button--color-journal:hover::before { content: ''; position: absolute; top: 0; left: 0; height: 100%; width: 100%; background-color: #ffffff; opacity: 0.2; } .button.button--color-journal:visited, .button.button--color-journal:hover, .button.button--color-journal:focus { background-color: rgba(64,78,157,0.75); border-color: #fff; color: #fff !important; } .button.button--color path { } .button.button--color:hover path { fill: #fff; } #main-content #search-refinements .ui-slider-horizontal .ui-slider-range { } .breadcrumb__element:last-of-type a { } #main-header { } #full-size-menu .top-bar, #full-size-menu li.menu-item span.user-email { } .top-bar-section li:not(.has-form) a:not(.button) { } #full-size-menu li.menu-item .dropdown-wrapper li a:hover { } #full-size-menu li.menu-item a:hover, #full-size-menu li.menu.item a:focus, nav.tab-bar a:hover { } #full-size-menu li.menu.item a:active, #full-size-menu li.menu.item a.active { } #full-size-menu li.menu-item a.open-mega-menu.active, #full-size-menu li.menu-item div.mega-menu, a.open-mega-menu.active { } #full-size-menu li.menu-item div.mega-menu li, #full-size-menu li.menu-item div.mega-menu a { border-color: #9a9a9a; } div.type-section h2 { font-size: 20px; line-height: 26px; font-weight: 300; } div.type-section h3 { margin-left: 15px; margin-bottom: 0px; font-weight: 300; } .journal-tabs .tab-title.active a { } </style> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/slick.css?f38b2db10e01b157?1732286508"> <meta name="title" content="Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application"> <meta name="description" content="With the growing demand for personalized healthcare services, biomaterial-based triboelectric nanogenerators (BM-TENGs) have gained widespread attention due to their non-toxicity, biocompatibility, and biodegradability. This review systematically examines the working principles, material choices, biomimetic designs, and clinical application scenarios of BM-TENGs, with a focus on the use of natural biomaterials, biocomposites, hydrogels, and other materials in health diagnostics. Biomaterials show significant potential in enhancing TENG performance, improving device flexibility, and expanding application ranges, especially in early disease detection, health monitoring, and self-powered sensing devices. This paper also addresses the current challenges faced by BM-TENG technology, including performance optimization, biocompatibility, and device durability. By integrating existing research and technological advancements, this review aims to deeply analyze the development of BM-TENG technology, propose corresponding solutions, and explore its practical application prospects in the medical field." > <link rel="image_src" href="https://pub.mdpi-res.com/img/journals/nanomaterials-logo.png?8600e93ff98dbf14" > <meta name="dc.title" content="Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application"> <meta name="dc.creator" content="Qiliang Zhu"> <meta name="dc.creator" content="Enqi Sun"> <meta name="dc.creator" content="Yuchen Sun"> <meta name="dc.creator" content="Xia Cao"> <meta name="dc.creator" content="Ning Wang"> <meta name="dc.type" content="Review"> <meta name="dc.source" content="Nanomaterials 2024, Vol. 14, Page 1885"> <meta name="dc.date" content="2024-11-23"> <meta name ="dc.identifier" content="10.3390/nano14231885"> <meta name="dc.publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf" > <meta name="dc.language" content="en" > <meta name="dc.description" content="With the growing demand for personalized healthcare services, biomaterial-based triboelectric nanogenerators (BM-TENGs) have gained widespread attention due to their non-toxicity, biocompatibility, and biodegradability. This review systematically examines the working principles, material choices, biomimetic designs, and clinical application scenarios of BM-TENGs, with a focus on the use of natural biomaterials, biocomposites, hydrogels, and other materials in health diagnostics. Biomaterials show significant potential in enhancing TENG performance, improving device flexibility, and expanding application ranges, especially in early disease detection, health monitoring, and self-powered sensing devices. This paper also addresses the current challenges faced by BM-TENG technology, including performance optimization, biocompatibility, and device durability. By integrating existing research and technological advancements, this review aims to deeply analyze the development of BM-TENG technology, propose corresponding solutions, and explore its practical application prospects in the medical field." > <meta name="dc.subject" content="biomaterials" > <meta name="dc.subject" content="triboelectric nanogenerator" > <meta name="dc.subject" content="bionic" > <meta name="dc.subject" content="healthcare" > <meta name="dc.subject" content="self-powered devices" > <meta name ="prism.issn" content="2079-4991"> <meta name ="prism.publicationName" content="Nanomaterials"> <meta name ="prism.publicationDate" content="2024-11-23"> <meta name ="prism.volume" content="14"> <meta name ="prism.number" content="23"> <meta name ="prism.section" content="Review" > <meta name ="prism.startingPage" content="1885" > <meta name="citation_issn" content="2079-4991"> <meta name="citation_journal_title" content="Nanomaterials"> <meta name="citation_publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="citation_title" content="Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application"> <meta name="citation_publication_date" content="2024/1"> <meta name="citation_online_date" content="2024/11/23"> <meta name="citation_volume" content="14"> <meta name="citation_issue" content="23"> <meta name="citation_firstpage" content="1885"> <meta name="citation_author" content="Zhu, Qiliang"> <meta name="citation_author" content="Sun, Enqi"> <meta name="citation_author" content="Sun, Yuchen"> <meta name="citation_author" content="Cao, Xia"> <meta name="citation_author" content="Wang, Ning"> <meta name="citation_doi" content="10.3390/nano14231885"> <meta name="citation_id" content="mdpi-nano14231885"> <meta name="citation_abstract_html_url" content="https://www.mdpi.com/2079-4991/14/23/1885"> <meta name="citation_pdf_url" content="https://www.mdpi.com/2079-4991/14/23/1885/pdf?version=1732354674"> <link rel="alternate" type="application/pdf" title="PDF Full-Text" href="https://www.mdpi.com/2079-4991/14/23/1885/pdf?version=1732354674"> <meta name="fulltext_pdf" content="https://www.mdpi.com/2079-4991/14/23/1885/pdf?version=1732354674"> <meta name="citation_fulltext_html_url" content="https://www.mdpi.com/2079-4991/14/23/1885/htm"> <link rel="alternate" type="text/html" title="HTML Full-Text" href="https://www.mdpi.com/2079-4991/14/23/1885/htm"> <meta name="fulltext_html" content="https://www.mdpi.com/2079-4991/14/23/1885/htm"> <link rel="alternate" type="text/xml" title="XML Full-Text" href="https://www.mdpi.com/2079-4991/14/23/1885/xml"> <meta name="fulltext_xml" content="https://www.mdpi.com/2079-4991/14/23/1885/xml"> <meta name="citation_xml_url" content="https://www.mdpi.com/2079-4991/14/23/1885/xml"> <meta name="twitter:card" content="summary" /> <meta name="twitter:site" content="@MDPIOpenAccess" /> <meta name="twitter:image" content="https://pub.mdpi-res.com/img/journals/nanomaterials-logo-social.png?8600e93ff98dbf14" /> <meta property="fb:app_id" content="131189377574"/> <meta property="og:site_name" content="MDPI"/> <meta property="og:type" content="article"/> <meta property="og:url" content="https://www.mdpi.com/2079-4991/14/23/1885" /> <meta property="og:title" content="Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application" /> <meta property="og:description" content="With the growing demand for personalized healthcare services, biomaterial-based triboelectric nanogenerators (BM-TENGs) have gained widespread attention due to their non-toxicity, biocompatibility, and biodegradability. This review systematically examines the working principles, material choices, biomimetic designs, and clinical application scenarios of BM-TENGs, with a focus on the use of natural biomaterials, biocomposites, hydrogels, and other materials in health diagnostics. Biomaterials show significant potential in enhancing TENG performance, improving device flexibility, and expanding application ranges, especially in early disease detection, health monitoring, and self-powered sensing devices. This paper also addresses the current challenges faced by BM-TENG technology, including performance optimization, biocompatibility, and device durability. By integrating existing research and technological advancements, this review aims to deeply analyze the development of BM-TENG technology, propose corresponding solutions, and explore its practical application prospects in the medical field." /> <meta property="og:image" content="https://pub.mdpi-res.com/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g001-550.jpg?1732354788" /> <link rel="alternate" type="application/rss+xml" title="MDPI Publishing - Latest articles" href="https://www.mdpi.com/rss"> <meta name="google-site-verification" content="PxTlsg7z2S00aHroktQd57fxygEjMiNHydKn3txhvwY"> <meta name="facebook-domain-verification" content="mcoq8dtq6sb2hf7z29j8w515jjoof7" /> <script id="Cookiebot" data-cfasync="false" src="https://consent.cookiebot.com/uc.js" data-cbid="51491ddd-fe7a-4425-ab39-69c78c55829f" type="text/javascript" async></script> <!--[if lt IE 9]> <script>var browserIe8 = true;</script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/ie8foundationfix.css?50273beac949cbf0?1732286508"> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.6.2/html5shiv.js"></script> <script src="//s3.amazonaws.com/nwapi/nwmatcher/nwmatcher-1.2.5-min.js"></script> <script src="//html5base.googlecode.com/svn-history/r38/trunk/js/selectivizr-1.0.3b.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/respond.js/1.1.0/respond.min.js"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8patch.js?9e1d3c689a0471df?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/rem.min.js?94b62787dcd6d2f2?1732286508"></script> <![endif]--> <script type="text/plain" data-cookieconsent="statistics"> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-WPK7SW5'); </script> <script type="text/plain" data-cookieconsent="statistics"> _linkedin_partner_id = "2846186"; window._linkedin_data_partner_ids = window._linkedin_data_partner_ids || []; window._linkedin_data_partner_ids.push(_linkedin_partner_id); </script><script type="text/javascript"> (function(){var s = document.getElementsByTagName("script")[0]; var b = document.createElement("script"); b.type = "text/javascript";b.async = true; b.src = "https://snap.licdn.com/li.lms-analytics/insight.min.js"; s.parentNode.insertBefore(b, s);})(); </script> <script type="text/plain" data-cookieconsent="statistics" data-cfasync="false" src="//script.crazyegg.com/pages/scripts/0116/4951.js" async="async" ></script> </head> <body> <div class="direction direction_right" id="small_right" style="border-right-width: 0px; padding:0;"> <i class="fa fa-caret-right fa-2x"></i> </div> <div class="big_direction direction_right" id="big_right" style="border-right-width: 0px;"> <div style="text-align: right;"> Next Article in Journal<br> <div><a href="/2079-4991/14/23/1884">High-Performance Memristive Synapse Based on Space-Charge-Limited Conduction in LiNbO<sub>3</sub></a></div> </div> </div> <div class="direction" id="small_left" style="border-left-width: 0px"> <i class="fa fa-caret-left fa-2x"></i> </div> <div class="big_direction" id="big_left" style="border-left-width: 0px;"> <div> Previous Article in Journal<br> <div><a href="/2079-4991/14/23/1883">Thin Films of BaM Hexaferrite with an Inclined Orientation of the Easy Magnetization Axis: Crystal Structure and Magnetic Properties</a></div> </div> </div> <div style="clear: both;"></div> <div id="menuModal" class="reveal-modal reveal-modal-new reveal-modal-menu" aria-hidden="true" data-reveal role="dialog"> <div class="menu-container"> <div class="UI_NavMenu"> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Journals</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about/journals">Active Journals</a> <a href="/about/journalfinder">Find a Journal</a> <a href="/about/journals/proposal">Journal Proposal</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <a href="/topics"> <h2>Topics</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Information</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; max-width: 200px; float: left;"> <a href="/authors">For Authors</a> <a href="/reviewers">For Reviewers</a> <a href="/editors">For Editors</a> <a href="/librarians">For Librarians</a> <a href="/publishing_services">For Publishers</a> <a href="/societies">For Societies</a> <a href="/conference_organizers">For Conference Organizers</a> </div> <div style="width: 100%; max-width: 250px; float: left;"> <a href="/openaccess">Open Access Policy</a> <a href="/ioap">Institutional Open Access Program</a> <a href="/special_issues_guidelines">Special Issues Guidelines</a> <a href="/editorial_process">Editorial Process</a> <a href="/ethics">Research and Publication Ethics</a> <a href="/apc">Article Processing Charges</a> <a href="/awards">Awards</a> <a href="/testimonials">Testimonials</a> </div> </div> </div> </div> <a href="/authors/english"> <h2>Editing Services</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Initiatives</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer">Sciforum</a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer">MDPI Books</a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer">Preprints.org</a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer">Scilit</a> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer">SciProfiles</a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer">Encyclopedia</a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer">JAMS</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>About</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about">Overview</a> <a href="/about/contact">Contact</a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer">Careers</a> <a href="/about/announcements">News</a> <a href="/about/press">Press</a> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer">Blog</a> </div> </div> </div> </div> </div> <div class="menu-container__buttons"> <a class="button UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> </div> </div> </div> <div id="captchaModal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-label="Captcha" aria-hidden="true" role="dialog"></div> <div id="actionDisabledModal" class="reveal-modal" data-reveal aria-labelledby="actionDisableModalTitle" aria-hidden="true" role="dialog" style="width: 300px;"> <h2 id="actionDisableModalTitle">Notice</h2> <form action="/email/captcha" method="post" id="emailCaptchaForm"> <div class="row"> <div id="js-action-disabled-modal-text" class="small-12 columns"> </div> <div id="js-action-disabled-modal-submit" class="small-12 columns" style="margin-top: 10px; display: none;"> You can make submissions to other journals <a href="https://susy.mdpi.com/user/manuscripts/upload">here</a>. </div> </div> </form> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="rssNotificationModal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="rssNotificationModalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="rssNotificationModalTitle">Notice</h2> <p> You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader. </p> </div> </div> <div class="row"> <div class="small-12 columns"> <a class="button button--color js-rss-notification-confirm">Continue</a> <a class="button button--grey" onclick="$(this).closest('.reveal-modal').find('.close-reveal-modal').click(); return false;">Cancel</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="drop-article-label-openaccess" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to <a href="https://www.mdpi.com/openaccess">https://www.mdpi.com/openaccess</a>. </p> </div> <div id="drop-article-label-feature" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. </p> <p> Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers. </p> </div> <div id="drop-article-label-choice" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal. <div style="margin-top: -10px;"> <div id="drop-article-label-choice-journal-link" style="display: none; margin-top: -10px; padding-top: 10px;"> </div> </div> </p> </div> <div id="drop-article-label-resubmission" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Original Submission Date Received: <span id="drop-article-label-resubmission-date"></span>. </p> </div> <div id="container"> <noscript> <div id="no-javascript"> You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled. </div> </noscript> <div class="fixed"> <nav class="tab-bar show-for-medium-down"> <div class="row full-width collapse"> <div class="medium-3 small-4 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732286508" style="width: 64px;" title="MDPI Open Access Journals"> </a> </div> <div class="medium-3 small-4 columns right-aligned"> <div class="show-for-medium-down"> <a href="#" style="display: none;"> <i class="material-icons" onclick="$('#menuModal').foundation('reveal', 'close'); return false;">clear</i> </a> <a class="js-toggle-desktop-layout-link" title="Toggle desktop layout" style="display: none;" href="/toggle_desktop_layout_cookie"> <i class="material-icons">zoom_out_map</i> </a> <a href="#" class="js-open-small-search open-small-search"> <i class="material-icons show-for-small only">search</i> </a> <a title="MDPI main page" class="js-open-menu" data-reveal-id="menuModal" href="#"> <i class="material-icons">menu</i> </a> </div> </div> </div> </nav> </div> <section class="main-section"> <header> <div class="full-size-menu show-for-large-up"> <div class="row full-width"> <div class="large-1 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732286508" title="MDPI Open Access Journals"> </a> </div> <div class="large-8 columns text-right UI_NavMenu"> <ul> <li class="menu-item"> <a href="/about/journals" data-dropdown="journals-dropdown" aria-controls="journals-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Journals</a> <ul id="journals-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about/journals"> Active Journals </a> </li> <li> <a href="/about/journalfinder"> Find a Journal </a> </li> <li> <a href="/about/journals/proposal"> Journal Proposal </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/topics">Topics</a> </li> <li class="menu-item"> <a href="/authors" data-dropdown="information-dropdown" aria-controls="information-dropdown" aria-expanded="false" data-options="is_hover:true; hover_timeout:200">Information</a> <ul id="information-dropdown" class="f-dropdown dropdown-wrapper" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-5 columns right-border"> <ul> <li> <a href="/authors">For Authors</a> </li> <li> <a href="/reviewers">For Reviewers</a> </li> <li> <a href="/editors">For Editors</a> </li> <li> <a href="/librarians">For Librarians</a> </li> <li> <a href="/publishing_services">For Publishers</a> </li> <li> <a href="/societies">For Societies</a> </li> <li> <a href="/conference_organizers">For Conference Organizers</a> </li> </ul> </div> <div class="small-7 columns"> <ul> <li> <a href="/openaccess">Open Access Policy</a> </li> <li> <a href="/ioap">Institutional Open Access Program</a> </li> <li> <a href="/special_issues_guidelines">Special Issues Guidelines</a> </li> <li> <a href="/editorial_process">Editorial Process</a> </li> <li> <a href="/ethics">Research and Publication Ethics</a> </li> <li> <a href="/apc">Article Processing Charges</a> </li> <li> <a href="/awards">Awards</a> </li> <li> <a href="/testimonials">Testimonials</a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/authors/english">Editing Services</a> </li> <li class="menu-item"> <a href="/about/initiatives" data-dropdown="initiatives-dropdown" aria-controls="initiatives-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Initiatives</a> <ul id="initiatives-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> </li> <li> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> </li> <li> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> </li> <li> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> </li> <li> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer"> SciProfiles </a> </li> <li> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> </li> <li> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/about" data-dropdown="about-dropdown" aria-controls="about-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">About</a> <ul id="about-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about"> Overview </a> </li> <li> <a href="/about/contact"> Contact </a> </li> <li> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Careers </a> </li> <li> <a href="/about/announcements"> News </a> </li> <li> <a href="/about/press"> Press </a> </li> <li> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer"> Blog </a> </li> </ul> </div> </div> </li> </ul> </li> </ul> </div> <div class="large-3 columns text-right full-size-menu__buttons"> <div> <a class="button button--default-inversed UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> <a class="button button--default js-journal-active-only-link js-journal-active-only-submit-link UC_NavSubmitButton" href=" https://susy.mdpi.com/user/manuscripts/upload?journal=nanomaterials " data-disabledmessage="new submissions are not possible.">Submit</a> </div> </div> </div> </div> <div class="header-divider"> </div> <div class="search-container hide-for-small-down row search-container__homepage-scheme"> <form id="basic_search" style="background-color: inherit !important;" class="large-12 medium-12 columns " action="/search" method="get"> <div class="row search-container__main-elements"> <div class="large-2 medium-2 small-12 columns text-right1 small-only-text-left"> <div class="show-for-medium-up"> <div class="search-input-label"> </div> </div> <span class="search-container__title">Search<span class="hide-for-medium"> for Articles</span><span class="hide-for-small">:</span></span> </div> <div class="custom-accordion-for-small-screen-content"> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Title / Keyword</div> </div> <input type="text" placeholder="Title / Keyword" id="q" tabindex="1" name="q" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Author / Affiliation / Email</div> </div> <input type="text" id="authors" placeholder="Author / Affiliation / Email" tabindex="2" name="authors" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Journal</div> </div> <select id="journal" tabindex="3" name="journal" class="chosen-select"> <option value="">All Journals</option> <option value="acoustics" > Acoustics </option> <option value="amh" > Acta Microbiologica Hellenica (AMH) </option> <option value="actuators" > Actuators </option> <option value="admsci" > Administrative Sciences </option> <option value="adolescents" > Adolescents </option> <option value="arm" > Advances in Respiratory Medicine (ARM) </option> <option value="aerobiology" > Aerobiology </option> <option value="aerospace" > Aerospace </option> <option value="agriculture" > Agriculture </option> <option value="agriengineering" > AgriEngineering </option> <option value="agrochemicals" > Agrochemicals </option> <option value="agronomy" > Agronomy </option> <option value="ai" > AI </option> <option value="air" > Air </option> <option value="algorithms" > Algorithms </option> <option value="allergies" > Allergies </option> <option value="alloys" > Alloys </option> <option value="analytica" > Analytica </option> <option value="analytics" > Analytics </option> <option value="anatomia" > Anatomia </option> <option value="anesthres" > Anesthesia Research </option> <option value="animals" > Animals </option> <option value="antibiotics" > Antibiotics </option> <option value="antibodies" > Antibodies </option> <option value="antioxidants" > Antioxidants </option> <option value="applbiosci" > Applied Biosciences </option> <option value="applmech" > Applied Mechanics </option> <option value="applmicrobiol" > Applied Microbiology </option> <option value="applnano" > Applied Nano </option> <option value="applsci" > Applied Sciences </option> <option value="asi" > Applied System Innovation (ASI) </option> <option value="appliedchem" > AppliedChem </option> <option value="appliedmath" > AppliedMath </option> <option value="aquacj" > Aquaculture Journal </option> <option value="architecture" > Architecture </option> <option value="arthropoda" > Arthropoda </option> <option value="arts" > Arts </option> <option value="astronomy" > Astronomy </option> <option value="atmosphere" > Atmosphere </option> <option value="atoms" > Atoms </option> <option value="audiolres" > Audiology Research </option> <option value="automation" > Automation </option> <option value="axioms" > Axioms </option> <option value="bacteria" > Bacteria </option> <option value="batteries" > Batteries </option> <option value="behavsci" > Behavioral Sciences </option> <option value="beverages" > Beverages </option> <option value="BDCC" > Big Data and Cognitive Computing (BDCC) </option> <option value="biochem" > BioChem </option> <option value="bioengineering" > Bioengineering </option> <option value="biologics" > Biologics </option> <option value="biology" > Biology </option> <option value="blsf" > Biology and Life Sciences Forum </option> <option value="biomass" > Biomass </option> <option value="biomechanics" > Biomechanics </option> <option value="biomed" > BioMed </option> <option value="biomedicines" > Biomedicines </option> <option value="biomedinformatics" > BioMedInformatics </option> <option value="biomimetics" > Biomimetics </option> <option value="biomolecules" > Biomolecules </option> <option value="biophysica" > Biophysica </option> <option value="biosensors" > Biosensors </option> <option value="biotech" > BioTech </option> <option value="birds" > Birds </option> <option value="blockchains" > Blockchains </option> <option value="brainsci" > Brain Sciences </option> <option value="buildings" > Buildings </option> <option value="businesses" > Businesses </option> <option value="carbon" > C </option> <option value="cancers" > Cancers </option> <option value="cardiogenetics" > Cardiogenetics </option> <option value="catalysts" > Catalysts </option> <option value="cells" > Cells </option> <option value="ceramics" > Ceramics </option> <option value="challenges" > Challenges </option> <option value="ChemEngineering" > ChemEngineering </option> <option value="chemistry" > Chemistry </option> <option value="chemproc" > Chemistry Proceedings </option> <option value="chemosensors" > Chemosensors </option> <option value="children" > Children </option> <option value="chips" > Chips </option> <option value="civileng" > CivilEng </option> <option value="cleantechnol" > Clean Technologies (Clean Technol.) </option> <option value="climate" > Climate </option> <option value="ctn" > Clinical and Translational Neuroscience (CTN) </option> <option value="clinbioenerg" > Clinical Bioenergetics </option> <option value="clinpract" > Clinics and Practice </option> <option value="clockssleep" > Clocks & Sleep </option> <option value="coasts" > Coasts </option> <option value="coatings" > Coatings </option> <option value="colloids" > Colloids and Interfaces </option> <option value="colorants" > Colorants </option> <option value="commodities" > Commodities </option> <option value="complications" > Complications </option> <option value="compounds" > Compounds </option> <option value="computation" > Computation </option> <option value="csmf" > Computer Sciences & Mathematics Forum </option> <option value="computers" > Computers </option> <option value="condensedmatter" > Condensed Matter </option> <option value="conservation" > Conservation </option> <option value="constrmater" > Construction Materials </option> <option value="cmd" > Corrosion and Materials Degradation (CMD) </option> <option value="cosmetics" > Cosmetics </option> <option value="covid" > COVID </option> <option value="crops" > Crops </option> <option value="cryo" > Cryo </option> <option value="cryptography" > Cryptography </option> <option value="crystals" > Crystals </option> <option value="cimb" > Current Issues in Molecular Biology (CIMB) </option> <option value="curroncol" > Current Oncology </option> <option value="dairy" > Dairy </option> <option value="data" > Data </option> <option value="dentistry" > Dentistry Journal </option> <option value="dermato" > Dermato </option> <option value="dermatopathology" > Dermatopathology </option> <option value="designs" > Designs </option> <option value="diabetology" > Diabetology </option> <option value="diagnostics" > Diagnostics </option> <option value="dietetics" > Dietetics </option> <option value="digital" > Digital </option> <option value="disabilities" > Disabilities </option> <option value="diseases" > Diseases </option> <option value="diversity" > Diversity </option> <option value="dna" > DNA </option> <option value="drones" > Drones </option> <option value="ddc" > Drugs and Drug Candidates (DDC) </option> <option value="dynamics" > Dynamics </option> <option value="earth" > Earth </option> <option value="ecologies" > Ecologies </option> <option value="econometrics" > Econometrics </option> <option value="economies" > Economies </option> <option value="education" > Education Sciences </option> <option value="electricity" > Electricity </option> <option value="electrochem" > Electrochem </option> <option value="electronicmat" > Electronic Materials </option> <option value="electronics" > Electronics </option> <option value="ecm" > Emergency Care and Medicine </option> <option value="encyclopedia" > Encyclopedia </option> <option value="endocrines" > Endocrines </option> <option value="energies" > Energies </option> <option value="esa" > Energy Storage and Applications (ESA) </option> <option value="eng" > Eng </option> <option value="engproc" > Engineering Proceedings </option> <option value="entropy" > Entropy </option> <option value="environsciproc" > Environmental Sciences Proceedings </option> <option value="environments" > Environments </option> <option value="epidemiologia" > Epidemiologia </option> <option value="epigenomes" > Epigenomes </option> <option value="ebj" > European Burn Journal (EBJ) </option> <option value="ejihpe" > European Journal of Investigation in Health, Psychology and Education (EJIHPE) </option> <option value="fermentation" > Fermentation </option> <option value="fibers" > Fibers </option> <option value="fintech" > FinTech </option> <option value="fire" > Fire </option> <option value="fishes" > Fishes </option> <option value="fluids" > Fluids </option> <option value="foods" > Foods </option> <option value="forecasting" > Forecasting </option> <option value="forensicsci" > Forensic Sciences </option> <option value="forests" > Forests </option> <option value="fossstud" > Fossil Studies </option> <option value="foundations" > Foundations </option> <option value="fractalfract" > Fractal and Fractional (Fractal Fract) </option> <option value="fuels" > Fuels </option> <option value="future" > Future </option> <option value="futureinternet" > Future Internet </option> <option value="futurepharmacol" > Future Pharmacology </option> <option value="futuretransp" > Future Transportation </option> <option value="galaxies" > Galaxies </option> <option value="games" > Games </option> <option value="gases" > Gases </option> <option value="gastroent" > Gastroenterology Insights </option> <option value="gastrointestdisord" > Gastrointestinal Disorders </option> <option value="gastronomy" > Gastronomy </option> <option value="gels" > Gels </option> <option value="genealogy" > Genealogy </option> <option value="genes" > Genes </option> <option value="geographies" > Geographies </option> <option value="geohazards" > GeoHazards </option> <option value="geomatics" > Geomatics </option> <option value="geometry" > Geometry </option> <option value="geosciences" > Geosciences </option> <option value="geotechnics" > Geotechnics </option> <option value="geriatrics" > Geriatrics </option> <option value="glacies" > Glacies </option> <option value="gucdd" > Gout, Urate, and Crystal Deposition Disease (GUCDD) </option> <option value="grasses" > Grasses </option> <option value="hardware" > Hardware </option> <option value="healthcare" > Healthcare </option> <option value="hearts" > Hearts </option> <option value="hemato" > Hemato </option> <option value="hematolrep" > Hematology Reports </option> <option value="heritage" > Heritage </option> <option value="histories" > Histories </option> <option value="horticulturae" > Horticulturae </option> <option value="hospitals" > Hospitals </option> <option value="humanities" > Humanities </option> <option value="humans" > Humans </option> <option value="hydrobiology" > Hydrobiology </option> <option value="hydrogen" > Hydrogen </option> <option value="hydrology" > Hydrology </option> <option value="hygiene" > Hygiene </option> <option value="immuno" > Immuno </option> <option value="idr" > Infectious Disease Reports </option> <option value="informatics" > Informatics </option> <option value="information" > Information </option> <option value="infrastructures" > Infrastructures </option> <option value="inorganics" > Inorganics </option> <option value="insects" > Insects </option> <option value="instruments" > Instruments </option> <option value="iic" > Intelligent Infrastructure and Construction </option> <option value="ijerph" > International Journal of Environmental Research and Public Health (IJERPH) </option> <option value="ijfs" > International Journal of Financial Studies (IJFS) </option> <option value="ijms" > International Journal of Molecular Sciences (IJMS) </option> <option value="IJNS" > International Journal of Neonatal Screening (IJNS) </option> <option value="ijpb" > International Journal of Plant Biology (IJPB) </option> <option value="ijt" > International Journal of Topology </option> <option value="ijtm" > International Journal of Translational Medicine (IJTM) </option> <option value="ijtpp" > International Journal of Turbomachinery, Propulsion and Power (IJTPP) </option> <option value="ime" > International Medical Education (IME) </option> <option value="inventions" > Inventions </option> <option value="IoT" > IoT </option> <option value="ijgi" > ISPRS International Journal of Geo-Information (IJGI) </option> <option value="J" > J </option> <option value="jal" > Journal of Ageing and Longevity (JAL) </option> <option value="jcdd" > Journal of Cardiovascular Development and Disease (JCDD) </option> <option value="jcto" > Journal of Clinical & Translational Ophthalmology (JCTO) </option> <option value="jcm" > Journal of Clinical Medicine (JCM) </option> <option value="jcs" > Journal of Composites Science (J. Compos. Sci.) </option> <option value="jcp" > Journal of Cybersecurity and Privacy (JCP) </option> <option value="jdad" > Journal of Dementia and Alzheimer's Disease (JDAD) </option> <option value="jdb" > Journal of Developmental Biology (JDB) </option> <option value="jeta" > Journal of Experimental and Theoretical Analyses (JETA) </option> <option value="jfb" > Journal of Functional Biomaterials (JFB) </option> <option value="jfmk" > Journal of Functional Morphology and Kinesiology (JFMK) </option> <option value="jof" > Journal of Fungi (JoF) </option> <option value="jimaging" > Journal of Imaging (J. Imaging) </option> <option value="jintelligence" > Journal of Intelligence (J. Intell.) </option> <option value="jlpea" > Journal of Low Power Electronics and Applications (JLPEA) </option> <option value="jmmp" > Journal of Manufacturing and Materials Processing (JMMP) </option> <option value="jmse" > Journal of Marine Science and Engineering (JMSE) </option> <option value="jmahp" > Journal of Market Access & Health Policy (JMAHP) </option> <option value="jmp" > Journal of Molecular Pathology (JMP) </option> <option value="jnt" > Journal of Nanotheranostics (JNT) </option> <option value="jne" > Journal of Nuclear Engineering (JNE) </option> <option value="ohbm" > Journal of Otorhinolaryngology, Hearing and Balance Medicine (JOHBM) </option> <option value="jop" > Journal of Parks </option> <option value="jpm" > Journal of Personalized Medicine (JPM) </option> <option value="jpbi" > Journal of Pharmaceutical and BioTech Industry (JPBI) </option> <option value="jor" > Journal of Respiration (JoR) </option> <option value="jrfm" > Journal of Risk and Financial Management (JRFM) </option> <option value="jsan" > Journal of Sensor and Actuator Networks (JSAN) </option> <option value="joma" > Journal of the Oman Medical Association (JOMA) </option> <option value="jtaer" > Journal of Theoretical and Applied Electronic Commerce Research (JTAER) </option> <option value="jvd" > Journal of Vascular Diseases (JVD) </option> <option value="jox" > Journal of Xenobiotics (JoX) </option> <option value="jzbg" > Journal of Zoological and Botanical Gardens (JZBG) </option> <option value="journalmedia" > Journalism and Media </option> <option value="kidneydial" > Kidney and Dialysis </option> <option value="kinasesphosphatases" > Kinases and Phosphatases </option> <option value="knowledge" > Knowledge </option> <option value="labmed" > LabMed </option> <option value="laboratories" > Laboratories </option> <option value="land" > Land </option> <option value="languages" > Languages </option> <option value="laws" > Laws </option> <option value="life" > Life </option> <option value="limnolrev" > Limnological Review </option> <option value="lipidology" > Lipidology </option> <option value="liquids" > Liquids </option> <option value="literature" > Literature </option> <option value="livers" > Livers </option> <option value="logics" > Logics </option> <option value="logistics" > Logistics </option> <option value="lubricants" > Lubricants </option> <option value="lymphatics" > Lymphatics </option> <option value="make" > Machine Learning and Knowledge Extraction (MAKE) </option> <option value="machines" > Machines </option> <option value="macromol" > Macromol </option> <option value="magnetism" > Magnetism </option> <option value="magnetochemistry" > Magnetochemistry </option> <option value="marinedrugs" > Marine Drugs </option> <option value="materials" > Materials </option> <option value="materproc" > Materials Proceedings </option> <option value="mca" > Mathematical and Computational Applications (MCA) </option> <option value="mathematics" > Mathematics </option> <option value="medsci" > Medical Sciences </option> <option value="msf" > Medical Sciences Forum </option> <option value="medicina" > Medicina </option> <option value="medicines" > Medicines </option> <option value="membranes" > Membranes </option> <option value="merits" > Merits </option> <option value="metabolites" > Metabolites </option> <option value="metals" > Metals </option> <option value="meteorology" > Meteorology </option> <option value="methane" > Methane </option> <option value="mps" > Methods and Protocols (MPs) </option> <option value="metrics" > Metrics </option> <option value="metrology" > Metrology </option> <option value="micro" > Micro </option> <option value="microbiolres" > Microbiology Research </option> <option value="micromachines" > Micromachines </option> <option value="microorganisms" > Microorganisms </option> <option value="microplastics" > Microplastics </option> <option value="minerals" > Minerals </option> <option value="mining" > Mining </option> <option value="modelling" > Modelling </option> <option value="mmphys" > Modern Mathematical Physics </option> <option value="molbank" > Molbank </option> <option value="molecules" > Molecules </option> <option value="mti" > Multimodal Technologies and Interaction (MTI) </option> <option value="muscles" > Muscles </option> <option value="nanoenergyadv" > Nanoenergy Advances </option> <option value="nanomanufacturing" > Nanomanufacturing </option> <option value="nanomaterials" selected='selected'> Nanomaterials </option> <option value="ndt" > NDT </option> <option value="network" > Network </option> <option value="neuroglia" > Neuroglia </option> <option value="neurolint" > Neurology International </option> <option value="neurosci" > NeuroSci </option> <option value="nitrogen" > Nitrogen </option> <option value="ncrna" > Non-Coding RNA (ncRNA) </option> <option value="nursrep" > Nursing Reports </option> <option value="nutraceuticals" > Nutraceuticals </option> <option value="nutrients" > Nutrients </option> <option value="obesities" > Obesities </option> <option value="oceans" > Oceans </option> <option value="onco" > Onco </option> <option value="optics" > Optics </option> <option value="oral" > Oral </option> <option value="organics" > Organics </option> <option value="organoids" > Organoids </option> <option value="osteology" > Osteology </option> <option value="oxygen" > Oxygen </option> <option value="parasitologia" > Parasitologia </option> <option value="particles" > Particles </option> <option value="pathogens" > Pathogens </option> <option value="pathophysiology" > Pathophysiology </option> <option value="pediatrrep" > Pediatric Reports </option> <option value="pets" > Pets </option> <option value="pharmaceuticals" > Pharmaceuticals </option> <option value="pharmaceutics" > Pharmaceutics </option> <option value="pharmacoepidemiology" > Pharmacoepidemiology </option> <option value="pharmacy" > Pharmacy </option> <option value="philosophies" > Philosophies </option> <option value="photochem" > Photochem </option> <option value="photonics" > Photonics </option> <option value="phycology" > Phycology </option> <option value="physchem" > Physchem </option> <option value="psf" > Physical Sciences Forum </option> <option value="physics" > Physics </option> <option value="physiologia" > Physiologia </option> <option value="plants" > Plants </option> <option value="plasma" > Plasma </option> <option value="platforms" > Platforms </option> <option value="pollutants" > Pollutants </option> <option value="polymers" > Polymers </option> <option value="polysaccharides" > Polysaccharides </option> <option value="populations" > Populations </option> <option value="poultry" > Poultry </option> <option value="powders" > Powders </option> <option value="proceedings" > Proceedings </option> <option value="processes" > Processes </option> <option value="prosthesis" > Prosthesis </option> <option value="proteomes" > Proteomes </option> <option value="psychiatryint" > Psychiatry International </option> <option value="psychoactives" > Psychoactives </option> <option value="psycholint" > Psychology International </option> <option value="publications" > Publications </option> <option value="qubs" > Quantum Beam Science (QuBS) </option> <option value="quantumrep" > Quantum Reports </option> <option value="quaternary" > Quaternary </option> <option value="radiation" > Radiation </option> <option value="reactions" > Reactions </option> <option value="realestate" > Real Estate </option> <option value="receptors" > Receptors </option> <option value="recycling" > Recycling </option> <option value="rsee" > Regional Science and Environmental Economics (RSEE) </option> <option value="religions" > Religions </option> <option value="remotesensing" > Remote Sensing </option> <option value="reports" > Reports </option> <option value="reprodmed" > Reproductive Medicine (Reprod. Med.) </option> <option value="resources" > Resources </option> <option value="rheumato" > Rheumato </option> <option value="risks" > Risks </option> <option value="robotics" > Robotics </option> <option value="ruminants" > Ruminants </option> <option value="safety" > Safety </option> <option value="sci" > Sci </option> <option value="scipharm" > Scientia Pharmaceutica (Sci. Pharm.) </option> <option value="sclerosis" > Sclerosis </option> <option value="seeds" > Seeds </option> <option value="sensors" > Sensors </option> <option value="separations" > Separations </option> <option value="sexes" > Sexes </option> <option value="signals" > Signals </option> <option value="sinusitis" > Sinusitis </option> <option value="smartcities" > Smart Cities </option> <option value="socsci" > Social Sciences </option> <option value="siuj" > Société Internationale d’Urologie Journal (SIUJ) </option> <option value="societies" > Societies </option> <option value="software" > Software </option> <option value="soilsystems" > Soil Systems </option> <option value="solar" > Solar </option> <option value="solids" > Solids </option> <option value="spectroscj" > Spectroscopy Journal </option> <option value="sports" > Sports </option> <option value="standards" > Standards </option> <option value="stats" > Stats </option> <option value="stresses" > Stresses </option> <option value="surfaces" > Surfaces </option> <option value="surgeries" > Surgeries </option> <option value="std" > Surgical Techniques Development </option> <option value="sustainability" > Sustainability </option> <option value="suschem" > Sustainable Chemistry </option> <option value="symmetry" > Symmetry </option> <option value="synbio" > SynBio </option> <option value="systems" > Systems </option> <option value="targets" > Targets </option> <option value="taxonomy" > Taxonomy </option> <option value="technologies" > Technologies </option> <option value="telecom" > Telecom </option> <option value="textiles" > Textiles </option> <option value="thalassrep" > Thalassemia Reports </option> <option value="therapeutics" > Therapeutics </option> <option value="thermo" > Thermo </option> <option value="timespace" > Time and Space </option> <option value="tomography" > Tomography </option> <option value="tourismhosp" > Tourism and Hospitality </option> <option value="toxics" > Toxics </option> <option value="toxins" > Toxins </option> <option value="transplantology" > Transplantology </option> <option value="traumacare" > Trauma Care </option> <option value="higheredu" > Trends in Higher Education </option> <option value="tropicalmed" > Tropical Medicine and Infectious Disease (TropicalMed) </option> <option value="universe" > Universe </option> <option value="urbansci" > Urban Science </option> <option value="uro" > Uro </option> <option value="vaccines" > Vaccines </option> <option value="vehicles" > Vehicles </option> <option value="venereology" > Venereology </option> <option value="vetsci" > Veterinary Sciences </option> <option value="vibration" > Vibration </option> <option value="virtualworlds" > Virtual Worlds </option> <option value="viruses" > Viruses </option> <option value="vision" > Vision </option> <option value="waste" > Waste </option> <option value="water" > Water </option> <option value="wild" > Wild </option> <option value="wind" > Wind </option> <option value="women" > Women </option> <option value="world" > World </option> <option value="wevj" > World Electric Vehicle Journal (WEVJ) </option> <option value="youth" > Youth </option> <option value="zoonoticdis" > Zoonotic Diseases </option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Article Type</div> </div> <select id="article_type" tabindex="4" name="article_type" class="chosen-select"> <option value="">All Article Types</option> <option value="research-article">Article</option> <option value="review-article">Review</option> <option value="rapid-communication">Communication</option> <option value="editorial">Editorial</option> <option value="abstract">Abstract</option> <option value="book-review">Book Review</option> <option value="brief-communication">Brief Communication</option> <option value="brief-report">Brief Report</option> <option value="case-report">Case Report</option> <option value="clinicopathological-challenge">Clinicopathological Challenge</option> <option value="article-commentary">Comment</option> <option value="commentary">Commentary</option> <option value="concept-paper">Concept Paper</option> <option value="conference-report">Conference Report</option> <option value="correction">Correction</option> <option value="creative">Creative</option> <option value="data-descriptor">Data Descriptor</option> <option value="discussion">Discussion</option> <option value="Entry">Entry</option> <option value="essay">Essay</option> <option value="expression-of-concern">Expression of Concern</option> <option value="extended-abstract">Extended Abstract</option> <option value="field-guide">Field Guide</option> <option value="guidelines">Guidelines</option> <option value="hypothesis">Hypothesis</option> <option value="interesting-image">Interesting Images</option> <option value="letter">Letter</option> <option value="books-received">New Book Received</option> <option value="obituary">Obituary</option> <option value="opinion">Opinion</option> <option value="perspective">Perspective</option> <option value="proceedings">Proceeding Paper</option> <option value="project-report">Project Report</option> <option value="protocol">Protocol</option> <option value="registered-report">Registered Report</option> <option value="reply">Reply</option> <option value="retraction">Retraction</option> <option value="note">Short Note</option> <option value="study-protocol">Study Protocol</option> <option value="systematic_review">Systematic Review</option> <option value="technical-note">Technical Note</option> <option value="tutorial">Tutorial</option> <option value="viewpoint">Viewpoint</option> </select> </div> <div class="large-1 medium-1 small-6 end columns small-push-6 medium-reset-order large-reset-order js-search-collapsed-button-container"> <div class="search-input-label"> </div> <input type="submit" id="search" value="Search" class="button button--dark button--full-width searchButton1 US_SearchButton" tabindex="12"> </div> <div class="large-1 medium-1 small-6 end columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-collapsed-link-container"> <div class="search-input-label"> </div> <a class="main-search-clear search-container__link" href="#" onclick="openAdvanced(''); return false;">Advanced<span class="show-for-small-only"> Search</span></a> </div> </div> </div> <div class="search-container__advanced" style="margin-top: 0; padding-top: 0px; background-color: inherit; color: inherit;"> <div class="row"> <div class="large-2 medium-2 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Section</div> </div> <select id="section" tabindex="5" name="section" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Special Issue</div> </div> <select id="special_issue" tabindex="6" name="special_issue" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Volume</div> <input type="text" id="volume" tabindex="7" name="volume" placeholder="..." value="14" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Issue</div> <input type="text" id="issue" tabindex="8" name="issue" placeholder="..." value="23" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Number</div> <input type="text" id="number" tabindex="9" name="number" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Page</div> <input type="text" id="page" tabindex="10" name="page" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 columns small-push-6 medium-reset order large-reset-order medium-reset-order js-search-expanded-button-container"></div> <div class="large-1 medium-1 small-6 columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-expanded-link-container"></div> </div> </div> </form> <form id="advanced-search" class="large-12 medium-12 columns"> <div class="search-container__advanced"> <div id="advanced-search-template" class="row advanced-search-row"> <div class="large-2 medium-2 small-12 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-3 columns connector-div"> <div class="search-input-label"><span class="show-for-medium-up">Logical Operator</span><span class="show-for-small">Operator</span></div> <select class="connector"> <option value="and">AND</option> <option value="or">OR</option> </select> </div> <div class="large-3 medium-3 small-6 columns search-text-div"> <div class="search-input-label">Search Text</div> <input type="text" class="search-text" placeholder="Search text"> </div> <div class="large-2 medium-2 small-6 large-offset-0 medium-offset-0 small-offset-3 columns search-field-div"> <div class="search-input-label">Search Type</div> <select class="search-field"> <option value="all">All fields</option> <option value="title">Title</option> <option value="abstract">Abstract</option> <option value="keywords">Keywords</option> <option value="authors">Authors</option> <option value="affiliations">Affiliations</option> <option value="doi">Doi</option> <option value="full_text">Full Text</option> <option value="references">References</option> </select> </div> <div class="large-1 medium-1 small-3 columns"> <div class="search-input-label"> </div> <div class="search-action-div"> <div class="search-plus"> <i class="material-icons">add_circle_outline</i> </div> </div> <div class="search-action-div"> <div class="search-minus"> <i class="material-icons">remove_circle_outline</i> </div> </div> </div> <div class="large-1 medium-1 small-6 large-offset-0 medium-offset-0 small-offset-3 end columns"> <div class="search-input-label"> </div> <input class="advanced-search-button button button--dark search-submit" type="submit" value="Search"> </div> <div class="large-1 medium-1 small-6 end columns show-for-medium-up"></div> </div> </div> </form> </div> <div class="header-divider"> </div> <div class="breadcrumb row full-row"> <div class="breadcrumb__element"> <a href="/about/journals">Journals</a> </div> <div class="breadcrumb__element"> <a href="/journal/nanomaterials">Nanomaterials</a> </div> <div class="breadcrumb__element"> <a href="/2079-4991/14">Volume 14</a> </div> <div class="breadcrumb__element"> <a href="/2079-4991/14/23">Issue 23</a> </div> <div class="breadcrumb__element"> <a href="#">10.3390/nano14231885</a> </div> </div> </header> <div id="main-content" class=""> <div class="row full-width row-fixed-left-column"> <div id="left-column" class="content__column large-3 medium-3 small-12 columns"> <div class="content__container"> <a href="/journal/nanomaterials"> <img src="https://pub.mdpi-res.com/img/journals/nanomaterials-logo.png?8600e93ff98dbf14" alt="nanomaterials-logo" title="Nanomaterials" style="max-height: 60px; margin: 0 0 0 0;"> </a> <div class="generic-item no-border"> <a class="button button--color button--full-width js-journal-active-only-link js-journal-active-only-submit-link UC_ArticleSubmitButton" href="https://susy.mdpi.com/user/manuscripts/upload?form%5Bjournal_id%5D%3D105" data-disabledmessage="creating new submissions is not possible."> Submit to this Journal </a> <a class="button button--color button--full-width js-journal-active-only-link UC_ArticleReviewButton" href="https://susy.mdpi.com/volunteer/journals/review" data-disabledmessage="volunteering as journal reviewer is not possible."> Review for this Journal </a> <a class="button button--color-inversed button--color-journal button--full-width js-journal-active-only-link UC_ArticleEditIssueButton" href="/journalproposal/sendproposalspecialissue/nanomaterials" data-path="/2079-4991/14/23/1885" data-disabledmessage="proposing new special issue is not possible."> Propose a Special Issue </a> </div> <div class="generic-item link-article-menu show-for-small"> <a href="#" class="link-article-menu show-for-small"> <span class="closed">►</span> <span class="open" style="display: none;">▼</span> Article Menu </a> </div> <div class="hide-small-down-initially UI_ArticleMenu"> <div class="generic-item"> <h2>Article Menu</h2> </div> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#academic_editors" class="accordion__title">Academic Editor</a> <div id="academic_editors" class="content active"> <div class="academic-editor-container " title="Department of Materials Science and Engineering, Pusan National University, Busan 48513, Republic of Korea"> <div class="sciprofiles-link" style="display: inline-block"><a class="sciprofiles-link__link" href="https://sciprofiles.com/profile/377674?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/profiles/377674/thumb/Jung_Woo_Lee.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Jung Woo Lee</span></a></div> </div> </div> </li> <li class="accordion-direct-link"> <a href="/2079-4991/14/23/1885/scifeed_display" data-reveal-id="scifeed-modal" data-reveal-ajax="true">Subscribe SciFeed</a> </li> <li class="accordion-direct-link js-article-similarity-container" style="display: none"> <a href="#" class="js-similarity-related-articles">Recommended Articles</a> </li> <li class="accordion-navigation"> <a href="#related" class="accordion__title">Related Info Link</a> <div id="related" class="content UI_ArticleMenu_RelatedLinks"> <ul> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Biomaterial%20Promotes%20Triboelectric%20Nanogenerator%20for%20Health%20Diagnostics%20and%20Clinical%20Application" target="_blank" rel="noopener noreferrer">Google Scholar</a> </li> </ul> </div> </li> <li class="accordion-navigation"> <a href="#authors" class="accordion__title">More by Authors Links</a> <div id="authors" class="content UI_ArticleMenu_AuthorsLinks"> <ul class="side-menu-ul"> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on DOAJ</a> </li> <div id="AuthorDOAJExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Qiliang%20Zhu%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Zhu, Q.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Enqi%20Sun%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Sun, E.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Yuchen%20Sun%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Sun, Y.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Xia%20Cao%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Cao, X.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Ning%20Wang%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Wang, N.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on Google Scholar</a> </li> <div id="AuthorGoogleExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Qiliang%20Zhu" target="_blank" rel="noopener noreferrer">Zhu, Q.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Enqi%20Sun" target="_blank" rel="noopener noreferrer">Sun, E.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Yuchen%20Sun" target="_blank" rel="noopener noreferrer">Sun, Y.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Xia%20Cao" target="_blank" rel="noopener noreferrer">Cao, X.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Ning%20Wang" target="_blank" rel="noopener noreferrer">Wang, N.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on PubMed</a> </li> <div id="AuthorPubMedExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Qiliang%20Zhu" target="_blank" rel="noopener noreferrer">Zhu, Q.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Enqi%20Sun" target="_blank" rel="noopener noreferrer">Sun, E.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Yuchen%20Sun" target="_blank" rel="noopener noreferrer">Sun, Y.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Xia%20Cao" target="_blank" rel="noopener noreferrer">Cao, X.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&term=Ning%20Wang" target="_blank" rel="noopener noreferrer">Wang, N.</a> <li> </li> </ul> </div> </ul> </div> </li> </ul> <span style="display:none" id="scifeed_hidden_flag"></span> <span style="display:none" id="scifeed_subscribe_url">/ajax/scifeed/subscribe</span> </div> </div> <div class="content__container responsive-moving-container large medium active hidden" data-id="article-counters"> <div id="counts-wrapper" class="row generic-item no-border" data-equalizer> <div id="js-counts-wrapper__views" class="small-12 hide columns count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Article Views</span> <span class="count view-number"></span> </div> </a> </div> <div id="js-counts-wrapper__citations" class="small-12 columns hide count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Citations</span> <span class="count citations-number Var_ArticleMaxCitations">-</span> </div> </a> </div> </div> </div> <div class="content__container"> <div class="hide-small-down-initially"> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#table_of_contents" class="accordion__title">Table of Contents</a> <div id="table_of_contents" class="content active"> <div class="menu-caption" id="html-quick-links-title"></div> </div> </li> </ul> </div> </div> <!-- PubGrade code --> <div id="pbgrd-sky"></div> <script src="https://cdn.pbgrd.com/core-mdpi.js"></script> <style>.content__container { min-width: 300px; }</style> <!-- PubGrade code --> </div> <div id="middle-column" class="content__column large-9 medium-9 small-12 columns end middle-bordered"> <div class="middle-column__help"> <div class="middle-column__help__fixed show-for-medium-up"> <span id="js-altmetrics-donut" href="#" target="_blank" rel="noopener noreferrer" style="display: none;"> <span data-badge-type='donut' class='altmetric-embed' data-doi='10.3390/nano14231885'></span> <span>Altmetric</span> </span> <a href="#" class="UA_ShareButton" data-reveal-id="main-share-modal" title="Share"> <i class="material-icons">share</i> <span>Share</span> </a> <a href="#" data-reveal-id="main-help-modal" title="Help"> <i class="material-icons">announcement</i> <span>Help</span> </a> <a href="javascript:void(0);" data-reveal-id="cite-modal" data-counterslink = "https://www.mdpi.com/2079-4991/14/23/1885/cite" > <i class="material-icons">format_quote</i> <span>Cite</span> </a> <a href="#" class="" data-hypothesis-trigger-endorses-tab title="Endorse"> <i data-hypothesis-endorse-trigger class="material-icons" >thumb_up</i> <div data-hypothesis-endorsement-count data-hypothesis-trigger-endorses-tab class="hypothesis-count-container"> ... </div> <span>Endorse</span> </a> <a href="#" data-hypothesis-trigger class="js-hypothesis-open UI_ArticleAnnotationsButton" title="Comment"> <i class="material-icons">textsms</i> <div data-hypothesis-annotation-count class="hypothesis-count-container"> ... </div> <span>Comment</span> </a> </div> <div id="main-help-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Need Help?</h2> </div> <div class="small-6 columns"> <h3>Support</h3> <p> Find support for a specific problem in the support section of our website. </p> <a target="_blank" href="/about/contactform" class="button button--color button--full-width"> Get Support </a> </div> <div class="small-6 columns"> <h3>Feedback</h3> <p> Please let us know what you think of our products and services. </p> <a target="_blank" href="/feedback/send" class="button button--color button--full-width"> Give Feedback </a> </div> <div class="small-6 columns end"> <h3>Information</h3> <p> Visit our dedicated information section to learn more about MDPI. </p> <a target="_blank" href="/authors" class="button button--color button--full-width"> Get Information </a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> <div class="middle-column__main "> <div class="page-highlight"> <style type="text/css"> img.review-status { width: 30px; } </style> <div id="jmolModal" class="reveal-modal" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <h2>JSmol Viewer</h2> <div class="row"> <div class="small-12 columns text-center"> <iframe style="width: 520px; height: 520px;" frameborder="0" id="jsmol-content"></iframe> <div class="content"></div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div itemscope itemtype="http://schema.org/ScholarlyArticle" id="abstract" class="abstract_div"> <div class="js-check-update-container"></div> <div class="html-content__container content__container content__container__combined-for-large__first" style="overflow: auto; position: inherit;"> <div class='html-profile-nav'> <div class='top-bar'> <div class='nav-sidebar-btn show-for-large-up' data-status='opened' > <i class='material-icons'>first_page</i> </div> <a id="js-button-download" class="button button--color-inversed" style="display: none;" href="/2079-4991/14/23/1885/pdf?version=1732354674" data-name="Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application" data-journal="nanomaterials"> <i class="material-icons custom-download"></i> Download PDF </a> <div class='nav-btn'> <i class='material-icons'>settings</i> </div> <a href="/2079-4991/14/23/1885/reprints" id="js-button-reprints" class="button button--color-inversed"> Order Article Reprints </a> </div> <div class='html-article-menu'> <div class='html-first-step row'> <div class='html-font-family large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'> Font Type: </div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option"><i style='font-family:Arial, Arial, Helvetica, sans-serif;' data-fontfamily='Arial, Arial, Helvetica, sans-serif'>Arial</i></span> <span class="html-article-menu-option"><i style='font-family:Georgia1, Georgia, serif;' data-fontfamily='Georgia1, Georgia, serif'>Georgia</i></span> <span class="html-article-menu-option"><i style='font-family:Verdana, Verdana, Geneva, sans-serif;' data-fontfamily='Verdana, Verdana, Geneva, sans-serif' >Verdana</i></span> </div> </div> </div> <div class='html-font-resize large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Font Size:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-percent="100">Aa</span> <span class="html-article-menu-option a2" data-percent="120">Aa</span> <span class="html-article-menu-option a3" data-percent="160">Aa</span> </div> </div> </div> </div> <div class='row'> <div class='html-line-space large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Line Spacing:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-line-height="1.5em"> <i class="fa"></i> </span> <span class="html-article-menu-option a2" data-line-height="1.8em"> <i class="fa"></i> </span> <span class="html-article-menu-option a3" data-line-height="2.1em"> <i class="fa"></i> </span> </div> </div> </div> <div class='html-column-width large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Column Width:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-column-width="20%"> <i class="fa"></i> </span> <span class="html-article-menu-option a2" data-column-width="10%"> <i class="fa"></i> </span> <span class="html-article-menu-option a3" data-column-width="0%"> <i class="fa"></i> </span> </div> </div> </div> </div> <div class='row'> <div class='html-font-bg large-6 medium-6 small-12 columns end'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Background:</div> <div class='large-8 medium-8 small-12 columns'> <div class="html-article-menu-option html-nav-bg html-nav-bright" data-bg="bright"> <i class="fa fa-file-text"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-dark" data-bg="dark"> <i class="fa fa-file-text-o"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-creme" data-bg="creme"> <i class="fa fa-file-text"></i> </div> </div> </div> </div> </div> </div> </div> <article ><div class='html-article-content'> <span itemprop="publisher" content="Multidisciplinary Digital Publishing Institute"></span><span itemprop="url" content="https://www.mdpi.com/2079-4991/14/23/1885"></span> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Review</span></div> <h1 class="title hypothesis_container" itemprop="name"> Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application </h1> <div class="art-authors hypothesis_container"> by <span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop13437276' data-options='is_hover:true, hover_timeout:5000'> Qiliang Zhu</div><div id="profile-card-drop13437276" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/profiles/2608196/thumb/Zhu_Qiliang.jpg" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Qiliang Zhu</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/2608196?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Qiliang%20Zhu" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Qiliang%20Zhu&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Qiliang%20Zhu" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1,†</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="13437276" href="/cdn-cgi/l/email-protection#e5ca868b81c886828cca89ca8088848c89c895978a918086918c8a8bc6d5d5d0d3d3d1d0d1d0d3d0d0d0d0d0d1d0d5d0d3d0d5d7d1d486d4d2d184d4d4d4d2d4d5d5d3d184d5d4d5d5d4d4d184d5d2d584"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0009-0006-9921-312X" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop13437277' data-options='is_hover:true, hover_timeout:5000'> Enqi Sun</div><div id="profile-card-drop13437277" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Enqi Sun</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/3555182?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Enqi%20Sun" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Enqi%20Sun&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Enqi%20Sun" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1,†</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="13437277" href="/cdn-cgi/l/email-protection#d6f9b5b8b2fbb5b1bff9baf9b3bbb7bfbafba6a4b9a2b3b5a2bfb9b8f5e6e6e3e0e0e2e3e2e3e0e3e1e3e3e3e2e3e6e3e7e3e1e4e2e7b5e7e1e2b7e7e7e7e1e7e6e6e0e2b7e6e7e6e6e7e7e2b7e6e1e6b7"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0001-5583-7308" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop13437278' data-options='is_hover:true, hover_timeout:5000'> Yuchen Sun</div><div id="profile-card-drop13437278" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Yuchen Sun</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/author/R3hSM2hncjAxeURuZGxydFAwa0VidW4xVlpDRHNqRjduUjFCZitrNWgxZz0=?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Yuchen%20Sun" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Yuchen%20Sun&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Yuchen%20Sun" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="13437278" href="/cdn-cgi/l/email-protection#47682429236a24202e682b68222a262e2b6a373528332224332e28296477777271717372737271727772727273727772747276757376247670732676767670767777717326777677777676732677707726"><sup><i class="fa fa-envelope-o"></i></sup></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop13437279' data-options='is_hover:true, hover_timeout:5000'> Xia Cao</div><div id="profile-card-drop13437279" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Xia Cao</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/2132605?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Xia%20Cao" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Xia%20Cao&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Xia%20Cao" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 2,3,*</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="13437279" href="/cdn-cgi/l/email-protection#36195558521b55515f195a19535b575f5a1b464459425355425f5958150606060400050655075406570604040507000706070106070252060006010700025206060652"><sup><i class="fa fa-envelope-o"></i></sup></a> and </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop13437280' data-options='is_hover:true, hover_timeout:5000'> Ning Wang</div><div id="profile-card-drop13437280" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/profiles/2180216/thumb/Ning_Wang.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Ning Wang</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/2180216?utm_source=mdpi.com&utm_medium=website&utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Ning%20Wang" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Ning%20Wang&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Ning%20Wang" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1,3,*</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="13437280" href="/cdn-cgi/l/email-protection#2e014d404a034d49470142014b434f4742035e5c415a4b4d5a4741400d1e1e1f1819191f171f1e1f171f4b1f171f1e1d191e1c1e1a1e1d1f1b1b171f1c1f1d1e1c1b171f1a1f17"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0001-9772-7270" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a></span> </div> <div class="nrm"></div> <span style="display:block; height:6px;"></span> <div></div> <div style="margin: 5px 0 15px 0;" class="hypothesis_container"> <div class="art-affiliations"> <div class="affiliation "> <div class="affiliation-item"><sup>1</sup></div> <div class="affiliation-name ">Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>2</sup></div> <div class="affiliation-name ">Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>3</sup></div> <div class="affiliation-name ">School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China</div> </div> <div class="affiliation"> <div class="affiliation-item"><sup>*</sup></div> <div class="affiliation-name ">Authors to whom correspondence should be addressed. </div> </div> <div class="affiliation"> <div class="affiliation-item"><sup>†</sup></div> <div class="affiliation-name ">These authors contributed equally to this work.</div> </div> </div> </div> <div class="bib-identity" style="margin-bottom: 10px;"> <em>Nanomaterials</em> <b>2024</b>, <em>14</em>(23), 1885; https://doi.org/10.3390/nano14231885 (registering DOI) </div> <div class="pubhistory" style="font-weight: bold; padding-bottom: 10px;"> <span style="display: inline-block">Submission received: 29 October 2024</span> / <span style="display: inline-block">Revised: 20 November 2024</span> / <span style="display: inline-block">Accepted: 21 November 2024</span> / <span style="display: inline-block">Published: 23 November 2024</span> </div> <div class="highlight-box1"> <div class="download"> <a class="button button--color-inversed button--drop-down" data-dropdown="drop-download-1527817" aria-controls="drop-supplementary-1527817" aria-expanded="false"> Download <i class="material-icons">keyboard_arrow_down</i> </a> <div id="drop-download-1527817" class="f-dropdown label__btn__dropdown label__btn__dropdown--button" data-dropdown-content aria-hidden="true" tabindex="-1"> <a class="UD_ArticlePDF" href="/2079-4991/14/23/1885/pdf?version=1732354674" data-name="Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application" data-journal="nanomaterials">Download PDF</a> <br/> <a id="js-xml-access-captcha" href="#" data-target="/2079-4991/14/23/1885/xml" class="accessCaptcha">Download XML</a> <br/> <a href="/2079-4991/14/23/1885/epub" id="epub_link">Download Epub</a> <br/> </div> <div class="js-browse-figures" style="display: inline-block;"> <a href="#" class="button button--color-inversed margin-bottom-10 openpopupgallery UI_BrowseArticleFigures" data-target='article-popup' data-counterslink = "https://www.mdpi.com/2079-4991/14/23/1885/browse" >Browse Figures</a> </div> <div id="article-popup" class="popupgallery" style="display: inline; line-height: 200%"> <a href="https://pub.mdpi-res.com/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g001.png?1732354787" title=" <strong>Figure 1</strong><br/> <p>Recent progress of TENG based on biomaterials including biomaterials like silk; reprinted with permission from Ref. [<a href="#B53-nanomaterials-14-01885" class="html-bibr">53</a>]. Copyright 2023, Elsevier; rice gluten and its application as blood vessel and sweat monitoring; reprinted with permission from Ref. [<a href="#B54-nanomaterials-14-01885" class="html-bibr">54</a>]. Copyright 2022, Elsevier; Cellulose; reprinted with permission from Ref. [<a href="#B55-nanomaterials-14-01885" class="html-bibr">55</a>]. Copyright 2022, Elsevier; Bionic tentacle; reprinted with permission from Ref. [<a href="#B56-nanomaterials-14-01885" class="html-bibr">56</a>]. Copyright 2024, Elsevier; Air permeability; reprinted with permission from Ref. [<a href="#B57-nanomaterials-14-01885" class="html-bibr">57</a>]. Copyright 2022, Elsevier; Self-healing; reprinted with permission from Ref. [<a href="#B58-nanomaterials-14-01885" class="html-bibr">58</a>]. Copyright 2021, Elsevier; Stretchability; reprinted with permission from Ref. [<a href="#B59-nanomaterials-14-01885" class="html-bibr">59</a>]. Copyright 2021, Wiley Online Library; Real-time monitoring of Parkinson’s disease; reprinted with permission from Ref. [<a href="#B60-nanomaterials-14-01885" class="html-bibr">60</a>]. Copyright 2021, Elsevier; Cardiac diagnosis; reprinted with permission from Ref. [<a href="#B61-nanomaterials-14-01885" class="html-bibr">61</a>]. Copyright 2023, ACS Publications; Pulse diagnosis; reprinted with permission from Ref. [<a href="#B62-nanomaterials-14-01885" class="html-bibr">62</a>]. Copyright 2023, Elsevier; Exercise Monitoring; reprinted with permission from Ref. [<a href="#B63-nanomaterials-14-01885" class="html-bibr">63</a>]. Copyright 2022, ACS Publications; In vivo monitoring; reprinted with permission from Ref. [<a href="#B64-nanomaterials-14-01885" class="html-bibr">64</a>]. Copyright 2020, Elsevier; Breath monitoring; reprinted with permission from Ref. [<a href="#B65-nanomaterials-14-01885" class="html-bibr">65</a>]. Copyright 2020, ACS Publications.</p> "> </a> <a href="https://pub.mdpi-res.com/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g002.png?1732354789" title=" <strong>Figure 2</strong><br/> <p>The four primary working modes of TENG are (<b>a</b>) vertical contact–separation mode, (<b>b</b>) lateral-sliding mode, (<b>c</b>) single-electrode mode, and (<b>d</b>) freestanding triboelectric-layer mode.</p> "> </a> <a href="https://pub.mdpi-res.com/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g003.png?1732354791" title=" <strong>Figure 3</strong><br/> <p>(<b>a</b>) Structure of HM-TENG: the upper part represents the simulation and SEM of L-cystine and the original nylon 6; the lower part represents the power density of the HM-TENG at different external resistances, with the charge curve of different capacitors. Reprinted with permission from Ref. [<a href="#B90-nanomaterials-14-01885" class="html-bibr">90</a>]. Copyright 2023, Elsevier. (<b>b</b>) Structure and output of nano-gap TENG: right shows its output current density and the voltage signal used to monitor the pulse. Reprinted with permission from Ref. [<a href="#B91-nanomaterials-14-01885" class="html-bibr">91</a>]. Copyright 2020, ACS Publications. (<b>c</b>) Structure design of SNR-TENG and its application in medical monitoring. Reprinted with permission from Ref. [<a href="#B64-nanomaterials-14-01885" class="html-bibr">64</a>]. Copyright 2020, Elsevier. (<b>d</b>) Top shows the preparation process of HA, middle shows the results of the cell viability assay of MC3T3-E1 after being treated with HA membrane for 24 h, and bottom shows the triboelectric outputs of the TENG based on HA and PTFE films under various external resistances. Reprinted with permission from Ref. [<a href="#B92-nanomaterials-14-01885" class="html-bibr">92</a>]. Copyright 2020, Elsevier.</p> "> </a> <a href="https://pub.mdpi-res.com/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g004.png?1732354794" title=" <strong>Figure 4</strong><br/> <p>(<b>a</b>) Source of wood fiber and schematic diagram of the TENG device based on wood fiber substrate. Reprinted with permission from Ref. [<a href="#B55-nanomaterials-14-01885" class="html-bibr">55</a>]. Copyright 2022, Elsevier. (<b>b</b>) Rice gluten films were prepared by the traditional method using NaOH (as shown in the upper diagram) and then fabricated into biocompatible and environmentally friendly triboelectric materials according to structural engineering (as shown in the lower diagram). Reprinted with permission from Ref. [<a href="#B54-nanomaterials-14-01885" class="html-bibr">54</a>]. Copyright 2022, Elsevier. (<b>c</b>) Preparation of CS–glycerin composite film, its output performance as a TENG, and its application in medical health. Reprinted with permission from Ref. [<a href="#B62-nanomaterials-14-01885" class="html-bibr">62</a>]. Copyright 2023, Elsevier. (<b>d</b>) Schematic of the structure of the PVA/SF-based TENG. Reprinted with permission from Ref. [<a href="#B53-nanomaterials-14-01885" class="html-bibr">53</a>]. Copyright 2023, Elsevier. (<b>e</b>) Schematic of the MoS2-based TENG patch for accelerating wound healing. Reprinted with permission from Ref. [<a href="#B96-nanomaterials-14-01885" class="html-bibr">96</a>]. Copyright 2024, Elsevier. (<b>f</b>) Schematic of the GAH-TES for sweat monitoring. TENG voltage response when detecting 0–500 μM glucose in artificial sweat and calibration curve for repeated glucose detection. Reprinted with permission from Ref. [<a href="#B97-nanomaterials-14-01885" class="html-bibr">97</a>]. Copyright 2023, Elsevier. (<b>g</b>) Schematic diagrams of the structure of CZL hydrogel, SEM (Scanning Electron Microscopy), pulse monitoring, and energy harvesting. Reprinted with permission from Ref. [<a href="#B56-nanomaterials-14-01885" class="html-bibr">56</a>]. Copyright 2024, Elsevier.</p> "> </a> <a href="https://pub.mdpi-res.com/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g005.png?1732354796" title=" <strong>Figure 5</strong><br/> <p>(<b>a</b>) Schematic diagrams of the manufacturing process of DF-CNF-based TENG and the self-powered biocompatible smart mask for human respiratory sensing and health monitoring. Reprinted with permission from Ref. [<a href="#B65-nanomaterials-14-01885" class="html-bibr">65</a>]. Copyright 2020, ACS Publications. (<b>b</b>) AF-TENG fabricated mask for patient respiratory detection via Wi-Fi and LoRa. Reprinted with permission from Ref. [<a href="#B103-nanomaterials-14-01885" class="html-bibr">103</a>]. Copyright 2023, ACS Publications. (<b>c</b>) Left shows the structure of SF@MXene-TENG and right shows the air permeability of common textile materials and SF@MXene-TENG as well as their corresponding error bars. Structure of SF@MXene-TENG mask fabricated for diagnosing asthma symptoms. Reprinted with permission from Ref. [<a href="#B104-nanomaterials-14-01885" class="html-bibr">104</a>]. Copyright 2023, ACS Publications. (<b>d</b>) SF/CNF scaffold for cardiac motion energy and iPSCs images captured over 14 days. Reprinted with permission from Ref. [<a href="#B61-nanomaterials-14-01885" class="html-bibr">61</a>]. Copyright 2023, ACS Publications. (<b>e</b>) Manufacturing process and structure of NFM-TENG and respiratory monitoring. Reprinted with permission from Ref. [<a href="#B105-nanomaterials-14-01885" class="html-bibr">105</a>]. Copyright 2019, ACS Publications.</p> "> </a> <a href="https://pub.mdpi-res.com/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g006.png?1732354799" title=" <strong>Figure 6</strong><br/> <p>(<b>a</b>) Schematic diagram of WPHM connected to the human body via arc-shaped CS-TENG and its wireless monitoring application. Reprinted with permission from Ref. [<a href="#B108-nanomaterials-14-01885" class="html-bibr">108</a>]. Copyright 2024, Elsevier. (<b>b</b>) Concept and structural schematic of OFS-TENG implanted in the human body. Reprinted with permission from Ref. [<a href="#B63-nanomaterials-14-01885" class="html-bibr">63</a>]. Copyright 2022, ACS Publications. (<b>c</b>) Structural schematic of CCDHG-TENG and real-time monitoring of typical symptoms of Parkinson’s disease. Reprinted with permission from Ref. [<a href="#B60-nanomaterials-14-01885" class="html-bibr">60</a>]. Copyright 2021, Elsevier. (<b>d</b>) Self-powered strain sensor based on GO-PAM hydrogel for monitoring human motion. Reprinted with permission from Ref. [<a href="#B109-nanomaterials-14-01885" class="html-bibr">109</a>]. Copyright 2022, Elsevier.</p> "> </a> <a href="https://pub.mdpi-res.com/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g007.png?1732354801" title=" <strong>Figure 7</strong><br/> <p>(<b>a</b>) Schematic diagrams of the structure of the PLA-TENG self-powered sensor system and the current signals obtained by monitoring the concentration of bacteria. Reprinted with permission from Ref. [<a href="#B110-nanomaterials-14-01885" class="html-bibr">110</a>]. Copyright 2023, ACS Publications. (<b>b</b>) CNT-Arg-based TENG measures Gram-positive bacteria through voltage measurement. Reprinted with permission from Ref. [<a href="#B111-nanomaterials-14-01885" class="html-bibr">111</a>]. Copyright 2022, Elsevier. (<b>c</b>) Top shows the structure of TENG and the surface morphology of Ti orthopedic implants after anodization. Bottom shows the mechanism of action in the antibacterial and osteogenesis-promoting surfaces of the TENG. Reprinted with permission from Ref. [<a href="#B112-nanomaterials-14-01885" class="html-bibr">112</a>]. Copyright 2020, Elsevier. (<b>d</b>) Left shows the structure and working principle of P-TENG and its function as an antibacterial pressure sensor for monitoring human motions; right shows the preparation process of ZnO@paper. Schematic of antimicrobial pressure sensor based on P-TENG for monitoring human motion. Reprinted with permission from Ref. [<a href="#B113-nanomaterials-14-01885" class="html-bibr">113</a>]. Copyright 2021, MDPI.</p> "> </a> </div> <a class="button button--color-inversed" href="/2079-4991/14/23/1885/review_report">Review Reports</a> <a class="button button--color-inversed" href="/2079-4991/14/23/1885/notes">Versions Notes</a> </div> </div> <div class="responsive-moving-container small hidden" data-id="article-counters" style="margin-top: 15px;"></div> <div class="html-dynamic"> <section> <div class="art-abstract art-abstract-new in-tab hypothesis_container"> <p> <div><section class="html-abstract" id="html-abstract"> <h2 id="html-abstract-title">Abstract</h2><b>:</b> <div class="html-p">With the growing demand for personalized healthcare services, biomaterial-based triboelectric nanogenerators (BM-TENGs) have gained widespread attention due to their non-toxicity, biocompatibility, and biodegradability. This review systematically examines the working principles, material choices, biomimetic designs, and clinical application scenarios of BM-TENGs, with a focus on the use of natural biomaterials, biocomposites, hydrogels, and other materials in health diagnostics. Biomaterials show significant potential in enhancing TENG performance, improving device flexibility, and expanding application ranges, especially in early disease detection, health monitoring, and self-powered sensing devices. This paper also addresses the current challenges faced by BM-TENG technology, including performance optimization, biocompatibility, and device durability. By integrating existing research and technological advancements, this review aims to deeply analyze the development of BM-TENG technology, propose corresponding solutions, and explore its practical application prospects in the medical field.</div> </section> <div id="html-keywords"> <div class="html-gwd-group"><div id="html-keywords-title">Keywords: </div><a href="/search?q=biomaterials">biomaterials</a>; <a href="/search?q=triboelectric+nanogenerator">triboelectric nanogenerator</a>; <a href="/search?q=bionic">bionic</a>; <a href="/search?q=healthcare">healthcare</a>; <a href="/search?q=self-powered+devices">self-powered devices</a></div> <div> </div> </div> </div> </p> </div> </section> </div> <div class="hypothesis_container"> <ul class="menu html-nav" data-prev-node="#html-quick-links-title"> </ul> <div class="html-body"> <section id='sec1-nanomaterials-14-01885' type='intro'><h2 data-nested='1'> 1. Introduction</h2><div class='html-p'>With the rapid development of living standards, there is an increasing demand for personalized medical services [<a href="#B1-nanomaterials-14-01885" class="html-bibr">1</a>,<a href="#B2-nanomaterials-14-01885" class="html-bibr">2</a>,<a href="#B3-nanomaterials-14-01885" class="html-bibr">3</a>,<a href="#B4-nanomaterials-14-01885" class="html-bibr">4</a>,<a href="#B5-nanomaterials-14-01885" class="html-bibr">5</a>]. Owing to their benefits such as non-toxicity, biocompatibility, and biodegradability, biomaterial-based triboelectric nanogenerators (BM-TENGs) have emerged as a crucial technology to address this demand [<a href="#B6-nanomaterials-14-01885" class="html-bibr">6</a>,<a href="#B7-nanomaterials-14-01885" class="html-bibr">7</a>,<a href="#B8-nanomaterials-14-01885" class="html-bibr">8</a>]. Compared to traditional energy-converting devices, TENG devices that are based on biological materials can not only efficiently harvest mechanical energy but also be flexibly designed to meet the needs of various medical applications [<a href="#B9-nanomaterials-14-01885" class="html-bibr">9</a>,<a href="#B10-nanomaterials-14-01885" class="html-bibr">10</a>,<a href="#B11-nanomaterials-14-01885" class="html-bibr">11</a>,<a href="#B12-nanomaterials-14-01885" class="html-bibr">12</a>]. Bioinspired design plays a crucial role in this process. By mimicking the structures and functions of biological systems in nature, bioinspired TENG devices have made significant progress in material selection, surface structure, and electrical performance optimization [<a href="#B13-nanomaterials-14-01885" class="html-bibr">13</a>]. For example, many bioinspired materials replicate the mechanical properties of skin, muscles, or cells, giving TENGs better flexibility and durability, which demonstrates great potential, especially in personalized medical devices [<a href="#B14-nanomaterials-14-01885" class="html-bibr">14</a>].</div><div class='html-p'>In the field of personalized healthcare, TENG devices provide self-powered and wearable solutions for applications like early disease detection, chronic disease management, and health monitoring [<a href="#B15-nanomaterials-14-01885" class="html-bibr">15</a>,<a href="#B16-nanomaterials-14-01885" class="html-bibr">16</a>,<a href="#B17-nanomaterials-14-01885" class="html-bibr">17</a>,<a href="#B18-nanomaterials-14-01885" class="html-bibr">18</a>,<a href="#B19-nanomaterials-14-01885" class="html-bibr">19</a>]. For instance, wearable and implantable TENGs have garnered wide attention due to their efficiency and real-time capability in physiological signal collection [<a href="#B20-nanomaterials-14-01885" class="html-bibr">20</a>,<a href="#B21-nanomaterials-14-01885" class="html-bibr">21</a>,<a href="#B22-nanomaterials-14-01885" class="html-bibr">22</a>,<a href="#B23-nanomaterials-14-01885" class="html-bibr">23</a>,<a href="#B24-nanomaterials-14-01885" class="html-bibr">24</a>]. As a cutting-edge energy harvesting technology, TENGs show immense potential in wearable devices. Since 2012, TENGs have attracted wide attention due to the diverse material choices and sustainability they offer [<a href="#B25-nanomaterials-14-01885" class="html-bibr">25</a>]. Particularly driven by bioinspiration, the electrical performance of bioinspired surface structures and materials has significantly enhanced the energy conversion efficiency in bio-based applications [<a href="#B26-nanomaterials-14-01885" class="html-bibr">26</a>]. TENGs can convert various forms of mechanical energy from daily activities (e.g., walking, breathing) into electricity [<a href="#B27-nanomaterials-14-01885" class="html-bibr">27</a>,<a href="#B28-nanomaterials-14-01885" class="html-bibr">28</a>,<a href="#B29-nanomaterials-14-01885" class="html-bibr">29</a>]. Particularly in bio-based applications, TENGs have significantly improved energy conversion efficiency by optimizing the surface structure and electrical properties of biological materials [<a href="#B30-nanomaterials-14-01885" class="html-bibr">30</a>,<a href="#B31-nanomaterials-14-01885" class="html-bibr">31</a>].</div><div class='html-p'>As a core component of these devices, bio-materials not only enhance the flexibility and stretchability of TENGs but also offer excellent biocompatibility and degradability, making them suitable for long-term implantation and wearing [<a href="#B32-nanomaterials-14-01885" class="html-bibr">32</a>,<a href="#B33-nanomaterials-14-01885" class="html-bibr">33</a>,<a href="#B34-nanomaterials-14-01885" class="html-bibr">34</a>]. BM-TENGs can convert mechanical energy generated by body movements and physiological activities (e.g., breathing, heartbeat, pulse) into electricity, enabling continuous, self-powered health monitoring [<a href="#B35-nanomaterials-14-01885" class="html-bibr">35</a>,<a href="#B36-nanomaterials-14-01885" class="html-bibr">36</a>]. Alongside natural biomaterials and biocomposites, BM-TENGs integrate a diverse range of materials such as polymers (e.g., polyurethane, PDMS), textiles (e.g., cotton, silk), gels (e.g., hydrogels, organogels), and solid–liquid composite materials (e.g., polymer composites, metal–organic frameworks). These materials are selected for their exceptional biocompatibility, mechanical properties, and sustainability, collectively enhancing the performance and expanding the application potential of BM-TENGs in personalized healthcare scenarios.</div><div class='html-p'>In the era of the Internet of Things (IoT), personalized BM-TENG devices can also generate real-time health data while harvesting mechanical energy from the human body and be used as self-powered sensors for diagnosis and treatment [<a href="#B37-nanomaterials-14-01885" class="html-bibr">37</a>,<a href="#B38-nanomaterials-14-01885" class="html-bibr">38</a>,<a href="#B39-nanomaterials-14-01885" class="html-bibr">39</a>]. To achieve this, BM-TENG devices need to integrate sensing and therapeutic functions, creating intelligent and miniaturized health monitoring platforms for addressing a wide range of medical needs [<a href="#B40-nanomaterials-14-01885" class="html-bibr">40</a>,<a href="#B41-nanomaterials-14-01885" class="html-bibr">41</a>]. However, current BM-TENG devices face challenges in terms of performance, biocompatibility, durability, and sustainability [<a href="#B42-nanomaterials-14-01885" class="html-bibr">42</a>,<a href="#B43-nanomaterials-14-01885" class="html-bibr">43</a>]. For instance, these devices need to efficiently collect energy from the environment (such as mechanical or thermal energy) to be self-powered, but improving both the performance and biocompatibility, as well as degradation properties, remains a key issue [<a href="#B44-nanomaterials-14-01885" class="html-bibr">44</a>,<a href="#B45-nanomaterials-14-01885" class="html-bibr">45</a>,<a href="#B46-nanomaterials-14-01885" class="html-bibr">46</a>].</div><div class='html-p'>To date, BM-TENG research has covered multiple aspects, including mechanism exploration [<a href="#B25-nanomaterials-14-01885" class="html-bibr">25</a>], device development [<a href="#B47-nanomaterials-14-01885" class="html-bibr">47</a>], performance optimization [<a href="#B48-nanomaterials-14-01885" class="html-bibr">48</a>], and clinical applications [<a href="#B21-nanomaterials-14-01885" class="html-bibr">21</a>]. Utilizing the energy and simultaneously monitoring biomechanical movements of the human body is a critical approach to achieving self-powered medical devices [<a href="#B49-nanomaterials-14-01885" class="html-bibr">49</a>]. The output signals from TENGs can be used to monitor biochemical reactions, evolving into self-powered medical devices for disease diagnosis [<a href="#B50-nanomaterials-14-01885" class="html-bibr">50</a>], sports analysis [<a href="#B51-nanomaterials-14-01885" class="html-bibr">51</a>], and antibacterial/antimite applications [<a href="#B52-nanomaterials-14-01885" class="html-bibr">52</a>].</div><div class='html-p'>This review comprehensively summarizes the latest advances and practical challenges of BM-TENGs and the as-based intelligent devices in personalized healthcare. It begins with the selection of biological materials, bioinspired designs, and their specific application scenarios in TENG devices, such as the regulation and monitoring of signals like respiratory rate, muscle nerve stimulation, bacterial detection, and sterilization and mite removal functions. Key characteristics of BM-TENGs, including stretchability, shape adaptability, breathability, and self-healing capability, play a pivotal role in enhancing their functional performance in these applications. We then provide an in-depth analysis of the potential of BM-TENGs as self-powered energy sources, particularly their prospects in wearable and implantable devices, and discuss design strategies and functional integration across various application scenarios, including respiratory and cardiovascular monitoring, neuromuscular diseases diagnosis, and bacterial diagnostics. Additionally, this paper discusses various biomaterials, including natural biomaterials, biocomposites, and hydrogels, from the perspectives of biocompatibility and sustainability, to enhance TENG output performance and expand application domains. Moreover, we address the challenges and future directions of BM-TENG development, emphasizing the critical role of interdisciplinary collaboration in advancing BM-TENG technology towards more efficient energy utilization and broader clinical applications (<a href="#nanomaterials-14-01885-f001" class="html-fig">Figure 1</a>).</div></section><section id='sec2-nanomaterials-14-01885' type=''><h2 data-nested='1'> 2. Energy Collection</h2><div class='html-p'>TENG has emerged during a period marked by increasing demand for clinical applications, proving itself as a dependable and sustainable energy harvester. It offers advantages such as compact size [<a href="#B41-nanomaterials-14-01885" class="html-bibr">41</a>], light weight [<a href="#B66-nanomaterials-14-01885" class="html-bibr">66</a>], high efficiency [<a href="#B67-nanomaterials-14-01885" class="html-bibr">67</a>], low cost [<a href="#B68-nanomaterials-14-01885" class="html-bibr">68</a>], and portability [<a href="#B69-nanomaterials-14-01885" class="html-bibr">69</a>]. TENG can harness various forms of mechanical energy from the environment, primarily through the synergistic effects of the triboelectric effect and electrostatic induction, converting it into electrical energy to power medical diagnostic systems [<a href="#B70-nanomaterials-14-01885" class="html-bibr">70</a>,<a href="#B71-nanomaterials-14-01885" class="html-bibr">71</a>]. However, achieving practical applications requires TENG designs that strike a balance between comfort, durability, and, notably, high-output performance. This aspect is crucial for realizing the full potential of self-powered medical diagnostic systems [<a href="#B72-nanomaterials-14-01885" class="html-bibr">72</a>,<a href="#B73-nanomaterials-14-01885" class="html-bibr">73</a>].</div><section id='sec2dot1-nanomaterials-14-01885' type=''><h4 class='html-italic' data-nested='2'> 2.1. Working Principle</h4><div class='html-p'>Triboelectric charging is a common phenomenon encountered in daily life [<a href="#B74-nanomaterials-14-01885" class="html-bibr">74</a>,<a href="#B75-nanomaterials-14-01885" class="html-bibr">75</a>]. It occurs when the surfaces of two electrodes come into contact, causing electron clouds within the materials to overlap and generate triboelectricity [<a href="#B76-nanomaterials-14-01885" class="html-bibr">76</a>]. The origin of the triboelectric effect lies in the differences in electron affinity between materials, which influences their ability to gain or lose electrons during contact. This phenomenon can be applied in the medical field, particularly in self-powered biosensors and implantable devices. These devices can harvest biomechanical energy from body movements or mechanical stimuli and convert it into electrical energy, supporting the operation and data transmission of various biomedical sensors. Upon separation of the triboelectric surfaces without external force, an internal potential difference is established within the device [<a href="#B77-nanomaterials-14-01885" class="html-bibr">77</a>]. This prompts carriers to flow from one electrode to the other, counteracting the potential change induced by electrostatic induction and resulting in a positive current [<a href="#B78-nanomaterials-14-01885" class="html-bibr">78</a>]. When an external force is applied and the electrodes of the device move relative to each other, carriers within the material flow in the opposite direction, thereby altering the polarity of the potential [<a href="#B79-nanomaterials-14-01885" class="html-bibr">79</a>]. The efficient conversion of mechanical energy to electrical energy in TENGs is closely linked to the effective contact between the materials, which can be enhanced by surface roughness. Moreover, when these two electrodes repeatedly come into contact, this process cycles, resulting in periodic energy output [<a href="#B80-nanomaterials-14-01885" class="html-bibr">80</a>].</div><div class='html-p'>TENGs typically operate in four primary modes: vertical contact–separation, sliding, single-electrode, and freestanding triboelectric-layer modes [<a href="#B76-nanomaterials-14-01885" class="html-bibr">76</a>,<a href="#B81-nanomaterials-14-01885" class="html-bibr">81</a>,<a href="#B82-nanomaterials-14-01885" class="html-bibr">82</a>].</div><div class='html-p'>The most commonly utilized mode in TENGs is the vertical contact–separation mode (<a href="#nanomaterials-14-01885-f002" class="html-fig">Figure 2</a>a), where one electrode is attached to the top and the other to the bottom of a triboelectric layer. As these electrodes move vertically relative to each other under an external force, charges are generated, leading to a fluctuating potential between them during contact or separation, thereby generating current in the external circuit [<a href="#B27-nanomaterials-14-01885" class="html-bibr">27</a>,<a href="#B83-nanomaterials-14-01885" class="html-bibr">83</a>]. This characteristic can be applied to medical diagnostic devices to monitor body signals, such as pulse and muscle activity.</div><div class='html-p'>Following this is the sliding mode (<a href="#nanomaterials-14-01885-f002" class="html-fig">Figure 2</a>b), which resembles the vertical contact–separation mode. Here, a force parallel to the interface induces relative displacement between the device’s electrodes, generating a dense accumulation of triboelectric charges. The quantity of these charges varies periodically with changes in the contact area [<a href="#B39-nanomaterials-14-01885" class="html-bibr">39</a>,<a href="#B84-nanomaterials-14-01885" class="html-bibr">84</a>], making it suitable for dynamic medical applications, such as continuous patient condition monitoring.</div><div class='html-p'>The single-electrode mode (<a href="#nanomaterials-14-01885-f002" class="html-fig">Figure 2</a>c) offers an advantage due to its compatibility with irregular movements. In this mode, only one electrode needs grounding as a reference, facilitating charge generation upon contact with a freely moving object [<a href="#B85-nanomaterials-14-01885" class="html-bibr">85</a>,<a href="#B86-nanomaterials-14-01885" class="html-bibr">86</a>], making it highly suitable for portable medical devices by offering versatility and portability.</div><div class='html-p'>In the freestanding triboelectric-layer mode (<a href="#nanomaterials-14-01885-f002" class="html-fig">Figure 2</a>d), a freely moving component is integrated, altering the potential distribution asymmetrically as it shifts position. This movement prompts a continuous flow of electrons between the electrodes, resulting in periodic energy output, making it ideal for wearable or implantable medical devices [<a href="#B87-nanomaterials-14-01885" class="html-bibr">87</a>,<a href="#B88-nanomaterials-14-01885" class="html-bibr">88</a>].</div><div class='html-p'>These various TENG working modes can provide extensive support for future medical technologies, from real-time monitoring to self-powered systems in long-term implants, enhancing the intelligence and self-sufficiency of medical devices.</div></section><section id='sec2dot2-nanomaterials-14-01885' type=''><h4 class='html-italic' data-nested='2'> 2.2. Wearable BM-TENGs</h4><div class='html-p'>To meet the practical operational needs of self-powered portable electronic devices, various wearable TENGs have been designed to collect biomechanical energy for external use. The electricity generated by these TENGs can power small electronic devices such as LED lights, watches, and capacitors. Furthermore, wearable TENGs can also capture physiological data such as pulse, heart rate, and respiratory rate through the electrical signals they generate [<a href="#B89-nanomaterials-14-01885" class="html-bibr">89</a>]. These devices primarily function outside the body, providing a practical solution for powering external devices while also monitoring vital signs.</div><div class='html-p'>Hao et al. developed a high-output multilayer-structured triboelectric nanogenerator (HM-TENG) that efficiently harvested human mechanical energy by using a nylon/L-cystine composite nanofiber film (NCNF) (<a href="#nanomaterials-14-01885-f003" class="html-fig">Figure 3</a>a) [<a href="#B90-nanomaterials-14-01885" class="html-bibr">90</a>]. They found that adding 8% L-cystine to an NCNF significantly improved the output performance of the TENG, with the open-circuit voltage, short-circuit current, and short-circuit transfer charge being 2.98, 5.33, and 3.41 times higher than those of TENGs made from pure nylon nanofiber film. The team also designed a power management circuit and successfully installed the HM-TENG on the foot for energy harvesting, powering various self-powered wearable devices such as hygrometers, pedometers, and sports watches. This research not only provides a novel method for developing high-output TENGs but also offers an important solution for designing self-powered electronic devices, demonstrating the broad application prospects for using human mechanical energy to drive portable and wearable devices.</div><div class='html-p'>In separate research, Wu et al. developed a nanogap TENG based on a biodegradable polybutylene succinate (PBS) film (<a href="#nanomaterials-14-01885-f003" class="html-fig">Figure 3</a>b) [<a href="#B91-nanomaterials-14-01885" class="html-bibr">91</a>]. Using biocompatible silicone rubber (SR) as the negative counterpart and comparing it with other biodegradable plastics like poly (lactic acid) (PLA) and polycaprolactone (PCL), they found that the PBS-based TENG had the highest output performance, up to 3.5 times higher than that of other TENGs made from biodegradable materials. This performance enhancement was attributed to the rough surface of PBS and its high ester group content. The TENG showed potential as a pressure and angle sensor for health monitoring, and its environmental stability in air, natural water, and phosphate-buffered saline was verified. Moreover, the antibacterial properties of the PBS film indicated promising applications in wearable and implantable electronic devices. The study underscored the potential of biocompatible and environmentally stable TENGs for integration into wearable electronics and biomedical systems.</div></section><section id='sec2dot3-nanomaterials-14-01885' type=''><h4 class='html-italic' data-nested='2'> 2.3. Implantable BM-TENGs</h4><div class='html-p'>Implantable electronic devices are crucial medical technologies for monitoring physiological responses within the body. TENGs, as power sources for implantable medical devices, have greatly facilitated the application of physiological signal sensors, smart stomachs, pacemakers, cochlear implants, and deep brain stimulators. These implantable TENGs provide a reliable and biocompatible energy source for devices that operate inside the body, facilitating continuous health monitoring and therapeutic interventions.</div><div class='html-p'>In one study, Niu et al. emphasized the development of a silk nanoribbon (SNR)-based bio-triboelectric nanogenerator (bio-TENG) tailored for implantable self-powered electronic devices (<a href="#nanomaterials-14-01885-f003" class="html-fig">Figure 3</a>c) [<a href="#B64-nanomaterials-14-01885" class="html-bibr">64</a>]. The study achieved high biocompatibility, biodegradability, and a controllable degradation rate using a bio-TENG made entirely of silk and magnesium (Mg), thus avoiding the need for secondary surgery and minimizing the risk of inflammation. By directly exfoliating SNRs from natural silk at a thickness of 0.38 nm and maintaining its original meso/nanoscale structure, the team combined it with regenerated silk fibroin film (RSFF) as a friction layer. By controlling surface roughness and structural differences, the device achieved a maximum output voltage of 41.64 V, current of 0.5 μA, and power density of 86.7 mW/m<sup>2</sup>. The TENG also demonstrated high sensitivity, capable of detecting light forces such as finger tapping, footsteps, elbow movement, and even human pulse, indicating its broad application prospects in implantable bioelectronic devices, especially pacemakers and implantable sensors.</div><div class='html-p'>In another study, Kim and colleagues developed a TENG utilizing biocompatible and biodegradable hydrogel membranes derived from hyaluronic acid (HA) [<a href="#B92-nanomaterials-14-01885" class="html-bibr">92</a>]. This innovative HA-TENG efficiently converted mechanical energy into electrical energy, serving as a sustainable power source for bio-implantable devices (<a href="#nanomaterials-14-01885-f003" class="html-fig">Figure 3</a>d). The device demonstrated impressive power output, long-term stability, and low cytotoxicity, making it suitable for applications in tissue engineering and various biomedical fields. Fabricated with pure HA and crosslinked HA hydrogel membranes, the HA-TENG consistently generated energy over extended testing periods. Its successful implementation represents a compelling proof-of-concept for biodegradable, implantable devices, paving the way for transient self-powered systems across diverse biomedical applications.</div><div class='html-p'>Furthermore, to minimize the invasiveness of device implantation surgeries, Zheng et al. developed a biodegradable TENG designed to harness energy from biomechanical motions such as heartbeats [<a href="#B46-nanomaterials-14-01885" class="html-bibr">46</a>]. The device utilized biodegradable materials, comprising two chosen BDP layers (PLGA, PVA, PCL, and PHB/V), with a 200 μm BDP spacer between the friction layers. A 50 nm magnesium (Mg) film served as the electrode layer, positioned on one side of each friction layer. The entire structure was encapsulated with a 100 μm BDP layer to protect it from the surrounding physiological environment. Over time, the biodegradable TENG gradually degraded, reaching nearly complete mass loss after 90 days. This biodegradable feature eliminates the need for the surgical removal of cardiovascular therapeutic devices, reducing risks and improving patient quality of life.</div><div class='html-p'>In summary, wearable BM-TENGs focus on portability and everyday practicality, emphasizing the collection of biomechanical energy for external use. They generate electrical signals capable of capturing physiological data such as pulse, heart rate, and respiratory rate. In contrast, implantable BM-TENGs serve as energy sources for implantable medical devices, widely used for monitoring internal physiological responses. They offer stability and reliability for long-term monitoring and therapeutic applications, collectively advancing the application and development of self-powered technologies in the medical electronics field.</div></section></section><section id='sec3-nanomaterials-14-01885' type=''><h2 data-nested='1'> 3. Recent Progress in BM-TENGs</h2><section id='sec3dot1-nanomaterials-14-01885' type=''><h4 class='html-italic' data-nested='2'> 3.1. Materials and Structure Used in Contact Surfaces</h4><div class='html-p'>The performance of TENG is closely related to the triboelectric charge density of the selected materials [<a href="#B93-nanomaterials-14-01885" class="html-bibr">93</a>,<a href="#B94-nanomaterials-14-01885" class="html-bibr">94</a>,<a href="#B95-nanomaterials-14-01885" class="html-bibr">95</a>]. In the field of biomaterials, natural polymers, biocomposites, hydrogels, ceramic materials, and nanomaterials have been widely applied in the design of TENG interfaces. These materials not only exhibit excellent electrical properties but also offer superior biocompatibility and environmental friendliness, making them highly suitable for biomedical applications.</div><div class='html-p'>Biomaterials applied in TENGs for medical purposes include a wide range of substances that ensure safe interaction with biological systems. These materials, with their combination of electrical performance and biological compatibility, enable the development of self-powered devices for health monitoring, energy harvesting, and medical implants, offering potential for both wearable and implantable applications.</div><section id='sec3dot1dot1-nanomaterials-14-01885' type=''><h4 class='' data-nested='3'> 3.1.1. Natural BM</h4><div class='html-p'>Most TENGs are traditionally built using inorganic materials that lack biocompatibility, limiting their utility in wearable and implantable medical devices. Lignin, the most abundant aromatic biomaterial in nature, provides structural support and enhances the biomechanical strength of plants, suggesting significant potential for its application in biomedical devices.</div><div class='html-p'>For example, Saqib et al. investigated the feasibility of using lignin-based waste shell fragments (WFSs) derived from almonds (As), walnuts (Ws), and pistachios (Pis) as positive triboelectric materials in TENGs (<a href="#nanomaterials-14-01885-f004" class="html-fig">Figure 4</a>a) [<a href="#B55-nanomaterials-14-01885" class="html-bibr">55</a>]. Their study focused particularly on pistachio WFSs, integrating them with materials such as polytetrafluoroethylene (PTFE) and polyethylene terephthalate (PET). They found that Pi-WFSs demonstrated superior performance, exhibiting the highest open-circuit voltage, short-circuit current, and peak power density. These WFS-based TENGs were successfully applied to power medical devices, drive biosensors, and support self-powered wearable medical equipment. The research not only offers a new approach to resource recovery but also highlights the potential of natural materials in the biomedical field, especially in the development of eco-friendly, cost-effective, and efficient medical devices.</div><div class='html-p'>Plant proteins such as rice protein (RP), typically considered byproducts of the starch industry and often used as boiler fuel or animal feed, contribute to resource wastage. Jiang et al. explored the utilization of rice husk powder (RG), derived from these byproducts, to investigate the triboelectric behavior mechanism related to protein structure (<a href="#nanomaterials-14-01885-f004" class="html-fig">Figure 4</a>b) [<a href="#B54-nanomaterials-14-01885" class="html-bibr">54</a>]. Employing pH cycle interface engineering, they demonstrated that the secondary structure of RG significantly influences its triboelectric performance. They successfully enhanced the output power density of the BM-TENG by approximately 16 times. This study not only promotes the efficient use of resources but also demonstrates the tunability of plant proteins as natural materials, particularly in the medical field for applications such as smart implants and wearable devices, showcasing the potential of sustainable biomaterials.</div><div class='html-p'>Sun et al. proposed a method to create a flexible, transparent, and fully sustainable fish gelatin-based TENG, using fish scales from kitchen waste to produce gelatin films as triboelectric layers [<a href="#B98-nanomaterials-14-01885" class="html-bibr">98</a>]. These films degrade rapidly in the natural environment, providing eco-friendly properties. Introducing dopamine and fluorosilane modifications to the triboelectric layers resulted in the formation of a highly efficient triboelectric pair. The TENG device exhibited excellent output performance, which could be further enhanced through surface structuring and size optimization. This device significantly outperformed previously reported sustainable TENGs and successfully powered various electronic components. Moreover, the fish gelatin-based TENG could be applied to self-powered wearable sensors for human motion and human–machine interaction, demonstrating great potential in flexible, green medical devices, particularly for health monitoring and medical assistive equipment.</div><div class='html-p'>The research by Saqib, Jiang, and Sun collectively highlights the immense application potential of natural biomaterials for TENG devices, especially in the medical field. These innovative materials are expected to provide safer and more effective solutions in health monitoring, disease management, and human–machine interaction, significantly improving the sustainability of medical devices and enhancing patient experiences.</div></section><section id='sec3dot1dot2-nanomaterials-14-01885' type=''><h4 class='' data-nested='3'> 3.1.2. Biocomposite BM</h4><div class='html-p'>The application of biocomposites in TENGs demonstrates significant advantages and a broad range of potential applications. By optimizing the structure and composition of these materials, it is possible to significantly enhance the energy conversion efficiency and stability of TENGs. Additionally, the degradability and environmental friendliness of these materials highlight their enormous potential in medical and wearable devices.</div><div class='html-p'>For instance, Gao et al. successfully developed a high-performance and fully degradable chitosan (CS)-based TENG sensor by combining a plasticizer (glycerol) and a templating method (<a href="#nanomaterials-14-01885-f004" class="html-fig">Figure 4</a>c) [<a href="#B62-nanomaterials-14-01885" class="html-bibr">62</a>]. Their research showed that the CS–glycerol friction layer significantly improved electrical generation performance, with an open-circuit voltage and power density greatly exceeding those of traditional CS-based TENGs without the template method. Furthermore, this sensor could fully degrade in soil after completing its operational cycle, providing an eco-friendly and degradable wearable sensor solution, particularly suitable for disposable medical products. This innovation showcases the immense potential of using natural materials for efficient energy conversion and information transmission, especially in medical and environmental monitoring applications.</div><div class='html-p'>Candido et al. developed a PVA/SF-based TENG (<a href="#nanomaterials-14-01885-f004" class="html-fig">Figure 4</a>d) by incorporating silk fibroin (SF) into polyvinyl alcohol using a straightforward method [<a href="#B53-nanomaterials-14-01885" class="html-bibr">53</a>]. This impregnation process significantly impacted all polarization processes, directly influencing the device’s dielectric properties. However, pure SF does not meet commercial standards due to its inferior mechanical performance and susceptibility to degradation under conditions such as high temperatures, humidity, and extreme pH levels. In contrast, Xu and colleagues pioneered a flexible, stretchable, and fully biodegradable TENG capable of harvesting biomechanical energy both in vivo and in vitro [<a href="#B99-nanomaterials-14-01885" class="html-bibr">99</a>]. They introduced mesoscopic doping to enhance the structural stability of regenerated SF, resulting in silk films that exhibited excellent chemical stability (withstanding temperatures of up to 100 °C and pH levels ranging from 3 to 11) and outstanding mechanical properties (approximately 250% stretchability and enduring 1000 bending cycles at a 2 cm radius). These advancements position doped silk materials as promising candidates for applications in human health.</div></section><section id='sec3dot1dot3-nanomaterials-14-01885' type=''><h4 class='' data-nested='3'> 3.1.3. Hydrogel BM</h4><div class='html-p'>Hydrogel materials, known for their high water content and excellent flexibility, have become a popular choice for designing contact surfaces in TENGs. Hydrogels based on gelatin and alginate, with their good biocompatibility and ability to adsorb bodily fluids, are particularly suitable for energy harvesting on the skin’s surface.</div><div class='html-p'>For instance, Yu et al. conducted an innovative study to develop a single-electrode TENG skin patch using MoS<sub>2</sub> and a gelatin–methacryloyl (GelMA) hydrogel (<a href="#nanomaterials-14-01885-f004" class="html-fig">Figure 4</a>e) [<a href="#B96-nanomaterials-14-01885" class="html-bibr">96</a>]. MoS<sub>2</sub> exhibited excellent electrical conductivity and remarkable photothermal conversion properties, complemented by GelMA’s biocompatibility. This TENG device effectively harvested biophysical energy, generated an electric field around damaged tissues, and utilized near-infrared photothermal effects to expedite wound healing. Moreover, the TENG functioned as a real-time sensor for monitoring physiological signals. The prototype demonstrated significant open-circuit voltage and short-circuit current outputs, with in vitro experiments confirming its ability to enhance cell migration through photothermal heating and real-time electrical stimulation. Animal studies further validated its efficacy in promoting collagen deposition and angiogenesis, thereby significantly accelerating tissue regeneration and wound healing. These findings highlight its potential for self-powered wearable electronics, particularly in medical and environmental monitoring applications.</div><div class='html-p'>Kanokpaka et al. introduced a novel, self-healing, glucose-adaptive, hydrogel-based triboelectric biosensor (GAH-TES) for real-time glucose monitoring in human sweat (<a href="#nanomaterials-14-01885-f004" class="html-fig">Figure 4</a>f) [<a href="#B97-nanomaterials-14-01885" class="html-bibr">97</a>]. The research utilized β-cyclodextrin-encapsulated glucose oxidase (GOx) to construct a glucose-adaptive PVA hydrogel, which exhibited excellent electrical conductivity in various glucose environments. Integrating this adaptive hydrogel into a TENG enabled efficient energy conversion from glucose stimuli in human sweat to electrical output. The study demonstrated that higher glucose concentrations enhanced the sensor’s electrical performance due to increased ionic strength from enzymatic activity. The GAH-TES not only possessed excellent selectivity, stability, and reproducibility but also featured LED visualization for glucose levels exceeding normal health ranges. The research highlights GAH-TES’s substantial potential in diabetes management by providing a promising, non-invasive, continuous glucose monitoring platform, significantly advancing self-powered and real-time detection technologies in medical diagnostics.</div><div class='html-p'>Furthermore, combining hydrogels with nanomaterials such as cellulose nanofibers or graphene further enhances TENGs’ mechanical performance and charge output, broadening their application in wearable devices and implantable biomedical sensors.</div></section><section id='sec3dot1dot4-nanomaterials-14-01885' type=''><h4 class='' data-nested='3'> 3.1.4. Other BM</h4><div class='html-p'>Ceramic materials, particularly lead zirconate titanate (PZT) piezoelectric ceramics, have garnered significant attention in biomedical devices and TENGs due to their exceptional piezoelectric properties. PZT not only exhibits a high piezoelectric constant but also maintains stable performance in complex mechanical environments, making it an ideal material for self-powered systems and multifunctional biosensors. As a result, integrating ceramic materials into self-powered systems holds tremendous potential for continuous physiological signal monitoring and advancing healthcare applications.</div><div class='html-p'>Zhu’s team advanced health applications by developing a self-powered intelligent sock (S2-sock) that integrates energy harvesting and physiological signal sensing [<a href="#B100-nanomaterials-14-01885" class="html-bibr">100</a>]. Combining a PEDOT-coated TENG with a PZT piezoelectric chip, the sock collects energy from motion and detects signals like gait, contact force, and sweat levels. It generates up to 1.71 mW under light jumping, paving the way for self-sustained smart textiles. Using sensor fusion, it precisely captures physiological data, with TENG and PZT working together for rapid sweat detection. The S2-sock holds promise for smart homes, health monitoring, and personalized medicine, enhancing life quality and health management.</div><div class='html-p'>In addition, nanomaterials have shown great potential as bio-based materials for TENG and healthcare applications. For example, Chen et al. significantly improved the output power density of TENG by incorporating Ag@SiO<sub>2</sub> core–shell nanoparticles into tribo-materials [<a href="#B101-nanomaterials-14-01885" class="html-bibr">101</a>] utilizing the surface plasmon effect, achieving a maximum output power density of 4.375 mW/cm<sup>2</sup>. The design of the shell not only alleviated the leakage effect of conventional nanoparticles but also further enhanced the TENG’s output performance through the surface plasmon effect. Moreover, this study innovatively combined high-performance TENG with traditional Chinese medicine acupuncture, developing a self-powered electroacupuncture system that can rapidly regulate cardiovascular function, offering broad potential for healthcare applications.</div></section><section id='sec3dot1dot5-nanomaterials-14-01885' type=''><h4 class='' data-nested='3'> 3.1.5. Unique Properties</h4><div class='html-p'>The critical required characteristics of biomaterial-based TENGs include stretchability, shape adaptability, breathability, and self-healing capability. Compared to traditional synthetic materials, biomaterials exhibit greater flexibility, lower rigidity, and higher compatibility with human tissues, making them more suitable for wearable or implantable TENGs. Additionally, the self-healing properties of biomaterials ensure long-term reliability, while their breathability enhances user comfort, further underscoring their competitive edge in biomedical applications. These attributes not only influence their performance in medical electronic devices but also determine their wide applicability and practical feasibility in medical applications. With advancements in medical technology and increasing demand for personalized healthcare, developing biomaterial-based TENGs with these features has become a significant focus of current research.</div><div class='html-p'>Excellent stretchability is also a fundamental characteristic ensuring the conformity of wearable sensors with the deformation of the human body during motion. Fu et al. developed a fibrous stretchable TENG-based sensor with a core–sheath structure for physiological monitoring [<a href="#B58-nanomaterials-14-01885" class="html-bibr">58</a>]. The sensor showcased resilience, with stable performance under significant deformations. It detected ultra-low pressures and demonstrated high sensitivity to external forces. The FS-TENG sensor was applied for monitoring human motions and physiological indicators, and a tactile sensor array was developed for real-time pressure distribution recognition, highlighting its potential in healthcare monitoring and motion sensing.</div><div class='html-p'>With the background of breathability, Tan et al. successfully developed an open-porous PDMS-coated fabric-based TENG (oPF-TENG) [<a href="#B57-nanomaterials-14-01885" class="html-bibr">57</a>]. They achieved good breathability of the fabric by utilizing the synergistic effect of insoluble NaCl, DBP, and soluble silicone oil. The open-porous structure formed airflow channels with air permeability of approximately 73.3 ± 4.2 mm/s. Additionally, the porous structure and PVDF fillers enhanced the triboelectric performance of the oPF-TENG. The device exhibited stable electrical performance in energy harvesting and self-powered sensing, even under cyclic washing and repeated testing conditions. oPF-TENGs, with their stable performance even after repeated washing and testing, demonstrate clear applicability as energy-harvesting insoles and wearable sensors for monitoring body movements, supporting their potential in biomechanical energy and self-powered sensing.</div><div class='html-p'>The application of self-healing properties and biomaterials in flexible electronic devices is an important research direction. Jiang et al. successfully fabricated an ultra-stretchable TENG by incorporating hydrogen bonds and dynamic metal–ligand coordination into polydimethylsiloxane chains [<a href="#B59-nanomaterials-14-01885" class="html-bibr">59</a>]. This material exhibits 100% self-healing efficiency at room temperature, capable of autonomously repairing fractures and abrasions, highlighting its potential applications as a flexible power source and self-powered pressure sensor in flexible electronic devices.</div><div class='html-p'>These attributes not only enhance performance but also broaden applicability and practical feasibility in medical applications. With advancements in medical technology and the rising demand for personalized healthcare, research on developing BM-TENGs endowed with these features has intensified.</div></section><section id='sec3dot1dot6-nanomaterials-14-01885' type=''><h4 class='' data-nested='3'> 3.1.6. Bionic Design</h4><div class='html-p'>Driven by advances in biomimetic technology, researchers have developed high-performance, self-powered sensor systems by drawing inspiration from the complex mechanisms of natural biological structures and functions. These systems not only mimic the efficient energy conversion and sensing processes found in nature but have also achieved significant breakthroughs in sensitivity, stability, and durability. By incorporating biomimetic structures, these materials can optimize energy harvesting and improve performance significantly. For example, imitating the microscopic structures of natural organisms such as octopus tentacles, lotus leaves, butterfly wings, and fish scales, biomimetic sensors exhibit great potential in optimizing energy harvesting and signal transmission. This biomimetic design concept effectively converts mechanical, thermal, and other biomechanical energy into electrical energy while also advancing the broad application of self-powered sensor systems in precision medicine, wearable devices, and the Internet of Things.</div><div class='html-p'>A notable achievement is the high-sensitivity flexible sensor based on carbonized ZIF-8@loofah (CZL) developed by Yue et al. (<a href="#nanomaterials-14-01885-f004" class="html-fig">Figure 4</a>g) [<a href="#B56-nanomaterials-14-01885" class="html-bibr">56</a>]. The carbonized ZIF-8 nanoparticles simulated octopus tentacles, forming high-density contact–separation points, significantly improving sensor sensitivity. The CZL-based sensor demonstrated ultra-high sensitivity, fast response times (22 ms), and excellent durability (over 10,000 cycles), effectively monitoring complex human activities such as pulse and vocalization. Additionally, CZL-based TENGs converted irregular biomechanical energy into electrical energy, providing a sustainable power source for the continuous operation of micro-sensing systems.</div><div class='html-p'>In a similar line of research, Li et al. proposed a bioinspired, sweat-resistant, wearable triboelectric nanogenerator (BSRW-TENG) for movement monitoring during exercise [<a href="#B102-nanomaterials-14-01885" class="html-bibr">102</a>]. The BSRW-TENG featured two bioinspired superhydrophobic and self-cleaning triboelectric layers (elastic resin and polydimethylsiloxane (PDMS)), incorporating hierarchical micro/nanostructures that replicated the lotus leaf. These biomimetic structures not only enhanced the functional properties of the materials but also ensured consistent performance under varying environmental conditions. This design approach doubled the output of the BSRW-TENG and provided excellent contamination and humidity resistance. After saline (0.9%) was dripped and evaporated, the BSRW-TENG’s output remained unchanged, while that of the flat-TENG decreased by 41%. Additionally, the BSRW-TENG showed only an 11% reduction in output as the relative humidity increased from 10% to 80%. The device effectively monitored exercises like dumbbell curls and running, with stable performance before and after sweating. In summary, the biocompatibility of materials and processes is a primary prerequisite for BM-TENGs in the healthcare field. Based on bioinspired structural designs, creating materials with suitable properties and developing related processes according to specific needs may garner more public recognition than merely pursuing high TENG output performance (<a href="#nanomaterials-14-01885-t001" class="html-table">Table 1</a>). The integration of bionic design not only enhances material properties but also broadens the scope of potential applications in diverse fields. Only when the basic design of TENGs meets these standards can we truly explore more application scenarios and the practical value.</div></section></section><section id='sec3dot2-nanomaterials-14-01885' type=''><h4 class='html-italic' data-nested='2'> 3.2. Self-Powered Systems for Respiratory and Cardiovascular Monitoring</h4><section id='sec3dot2dot1-nanomaterials-14-01885' type=''><h4 class='' data-nested='3'> 3.2.1. Respiratory Real-Time Diagnosis</h4><div class='html-p'>Human respiration is considered a key indicator for real-time health monitoring and the early detection of heart failure and sleep apnea. However, most respiratory sensors are expensive, immobile, or require rechargeable batteries, limiting their mobility and daily use. Consequently, bio-friendly TENGs have been widely used for real-time respiratory monitoring.</div><div class='html-p'>For instance, Rajabi et al. enhanced the performance of cellulose nanofiber (CNF)-based TENGs by incorporating diatomaceous silica (DFs) (<a href="#nanomaterials-14-01885-f005" class="html-fig">Figure 5</a>a) [<a href="#B65-nanomaterials-14-01885" class="html-bibr">65</a>]. The hierarchical porous 3D structure and large surface area of DF, combined with CNF materials and structures, enhanced electron transfer and increased the surface roughness of the DF-CNF composite film. This composite film exhibited high mechanical strength and electron-rich surfaces and was low-cost, making it ideal for TENGs. The biocompatibility of this TENG was validated through cytotoxicity and animal tests. It was used in smart masks that successfully monitored various breathing patterns, providing new possibilities for future TENG applications in health monitoring.</div><div class='html-p'>Similarly, during the COVID-19 pandemic, a smart mask based on an all-fabric TENG (AF-TENG) was designed to monitor breathing and improve medical applications (<a href="#nanomaterials-14-01885-f005" class="html-fig">Figure 5</a>b) [<a href="#B103-nanomaterials-14-01885" class="html-bibr">103</a>]. This mask used ultra-high-molecular-weight polyethylene (UHMWPE) and cotton fabrics as negative and positive triboelectric layers, offering eco-friendly breathing monitoring and early warning features. The AF-TENG mask monitored respiration in real time using an Arduino microcontroller system, providing health monitoring for patients and the elderly, especially during pandemics.</div><div class='html-p'>Tan et al. developed a high-performance, biocompatible porous TENG using a composite of SF and MXene aerogel (SF@MXene-A) (<a href="#nanomaterials-14-01885-f005" class="html-fig">Figure 5</a>c) [<a href="#B104-nanomaterials-14-01885" class="html-bibr">104</a>]. The positive triboelectric layer was made of SF@MXene-A, while the negative layer used a PDMS sponge to increase surface area and charge density. The breathable TENG mask generated 1.96 V from breathing, showing potential for monitoring respiratory diseases like asthma.</div><div class='html-p'>Overall, BM-TENGs show great potential in respiratory disease monitoring. However, further studies are required to validate the accuracy and sensitivity of TENG monitoring devices in clinical applications, particularly under varying breathing patterns and complex environments.</div></section><section id='sec3dot2dot2-nanomaterials-14-01885' type=''><h4 class='' data-nested='3'> 3.2.2. Cardiac Real-Time Diagnosis</h4><div class='html-p'>The continuous operation of implantable bioelectronic devices can reduce the economic burden and health risks associated with surgeries for device removal or replacement. TENGs are a promising option for low-power implantable electronics.</div><div class='html-p'>An outstanding example of a modular BM-TENG for real-time cardiac diagnosis is the multifunctional SF-based porous scaffold designed by Tufan et al. (<a href="#nanomaterials-14-01885-f005" class="html-fig">Figure 5</a>d) [<a href="#B61-nanomaterials-14-01885" class="html-bibr">61</a>]. This scaffold combined the capabilities of cardiomyocyte differentiation and energy harvesting. By mimicking cardiac motion, it used induced pluripotent stem cells (iPSCs) to generate cardiomyocytes while converting mechanical energy into electrical energy. The SF scaffold featured optimized pore size (379 ± 34 μm), porosity (79 ± 1%), and pore interconnectivity (67 ± 1%), crucial for cardiomyocyte differentiation. Adding carbon nanofibers (CNF) enhanced the scaffold’s elasticity and conductivity, making it suitable for both cardiac tissue regeneration and as an electrode for TENGs to harvest energy from heartbeats. The SF/CNF scaffold also had excellent biocompatibility and mechanical strength and appropriate degradation properties, ensuring long-term stability in vivo.</div><div class='html-p'>Jiang et al. developed a TENG device utilizing natural bioabsorbable polymers (NBPs) including cellulose, chitin, rice protein (RP), SF, and egg white (EW). SF was chosen as the encapsulation layer for its triboelectric properties and resistance to body fluids following methanol treatment [<a href="#B20-nanomaterials-14-01885" class="html-bibr">20</a>]. Two NBPs were used as triboelectric layers, with an ultra-thin magnesium film as the back electrode. ICP etching created nanostructures on the surface, enhancing contact area and charge generation. The device materials were biodegradable, with tunable degradation times. In rat experiments, methanol-treated SF showed slower degradation, lasting 42 days, while untreated SF dissolved in 21 days. The device demonstrated good biocompatibility, with no inflammation observed after degradation. By employing TENG as a power source, the contraction rates of impaired cardiomyocyte clusters were enhanced, and the uniformity of their contractions was improved. This approach offers a novel and effective solution for treating heart conditions like bradycardia and arrhythmia and holds promise for both diagnostic and therapeutic applications in cardiology.</div><div class='html-p'>In conclusion, extensive research supports that BM-TENGs can harness the energy from heartbeats to power pacemakers. In vitro and in vivo experiments have consistently shown substantial voltage outputs, sufficient for continuous energy harvesting from natural heart motion via BM-TENGs. Device optimization has endowed BM-TENGs with promising features, including high energy output and biodegradability, enabling a symbiotic energy cycle within the body. This underscores the great potential of energy-harvesting devices in the development of personalized healthcare.</div></section><section id='sec3dot2dot3-nanomaterials-14-01885' type=''><h4 class='' data-nested='3'> 3.2.3. Pulse Real-Time Diagnosis</h4><div class='html-p'>Pulse waveform analysis offers valuable clinical insights for diagnosing cardiovascular diseases, encompassing parameters such as heart rate (HR), pulse wave velocity (PWV), and blood pressure (BP). Critical conditions like arrhythmia, coronary artery disease, and hypertension play pivotal roles in cardiovascular diagnosis. By analyzing pulse waves, relevant information can be obtained, simplifying the process of cardiovascular disease monitoring. BM-TENG-based pulse wave monitoring sensors address the limitations of traditional electronic devices. Scientists are currently developing wearable TENGs for pulse wave monitoring, offering accurate, non-invasive, and long-term pulse measurements.</div><div class='html-p'>A study by Lou et al. involved a full-fiber structure TENG pressure sensor made using electrospinning technology (<a href="#nanomaterials-14-01885-f005" class="html-fig">Figure 5</a>e) [<a href="#B105-nanomaterials-14-01885" class="html-bibr">105</a>]. This sensor was composed of a polyvinylidene fluoride/Ag nanowire membrane, ethyl cellulose membrane, and two layers of conductive fabric, operated in vertical contact–separation mode. By introducing a layered rough structure on the nanofibers, the sensor’s adaptability was enhanced. The experimental results showed sensitivities of 1.67 and 0.2 mV Pa<sup>−1</sup> in the 0–3 and 3–32 kPa pressure ranges, respectively, and the sensor maintained good mechanical stability after 7200 cycles. Researchers placed the sensor on a healthy woman’s neck, successfully capturing clear pulse waveforms. This textile-based pressure sensor offers an effective tool for long-term cardiovascular disease monitoring.</div></section></section><section id='sec3dot3-nanomaterials-14-01885' type=''><h4 class='html-italic' data-nested='2'> 3.3. Neuromuscular Self-Powered System Design</h4><section id='sec3dot3dot1-nanomaterials-14-01885' type=''><h4 class='' data-nested='3'> 3.3.1. Exercise Monitoring and Analysis</h4><div class='html-p'>Soft tissues in the constantly moving human body, like muscles, tendons, and ligaments, are prone to injury during intense outdoor activities [<a href="#B106-nanomaterials-14-01885" class="html-bibr">106</a>,<a href="#B107-nanomaterials-14-01885" class="html-bibr">107</a>]. Without proper injury monitoring, the healing process may be hindered, potentially leading to impaired bodily functions in severe cases. As a result, it is crucial to have sensors that can quickly, affordably, and easily monitor physical parameters such as pressure and strain on muscles and ligaments. This allows for the development of personalized treatments tailored to specific injuries, while the ongoing observation of tissue repair is vital for effective soft tissue rehabilitation.</div><div class='html-p'>Bincy et al. used arrowroot, corn, potato, and cassava starch as active layers to fabricate a TENG (<a href="#nanomaterials-14-01885-f006" class="html-fig">Figure 6</a>a) [<a href="#B108-nanomaterials-14-01885" class="html-bibr">108</a>]. By using density functional theory (DFT) to analyze triboelectric active sites, it was found that the corn starch-based TENG (CS-TENG) performed best. The CS-TENG was used to construct a green, wearable IoT system, combining mechanical–electrical sensors and a wireless personal health monitoring system (WPHM). It can track physical activities and calculate calorie consumption. Supported by an Android app, the system allows real-time monitoring of various exercises, such as grip strength and running.</div><div class='html-p'>Sheng et al. developed an organic gel/silicone fiber helical sensor-based TENG (OFS-TENG) for implantable ligament strain monitoring without an external power source, mainly targeting muscle and ligament injuries caused by sports or disease (<a href="#nanomaterials-14-01885-f006" class="html-fig">Figure 6</a>b) [<a href="#B63-nanomaterials-14-01885" class="html-bibr">63</a>]. In contrast to existing implantable sensors that require external power or lack flexibility and stability, OFS-TENG exhibited high stability and extreme stretchability (up to 600%). The sensor, comprising organic gel fibers and silicone fibers in a double-helix structure, offers rapid preparation (15 s), high transparency (>95%), and exceptional stability (over six months). The OFS-TENG was successfully implanted into a rabbit’s patellar ligament, allowing for the real-time monitoring of ligament stretching and muscle strain. This provides an effective solution for the real-time diagnosis of muscle and ligament injuries. This self-powered OFS-TENG sensor can collect real-time data related to human muscles and ligaments, making it suitable for implantable medical devices.</div><div class='html-p'>Overall, the studies by Bincy et al. and Sheng et al. provide innovative technological solutions for monitoring human soft tissues. These works have laid a solid foundation for the development of flexible, wearable devices and implantable medical sensors, with broad application prospects. In particular, they demonstrate the ability to track movement and energy consumption in real time, making them especially promising in the fields of fitness and health monitoring.</div></section><section id='sec3dot3dot2-nanomaterials-14-01885' type=''><h4 class='' data-nested='3'> 3.3.2. Parkinson’s Disease Diagnosis</h4><div class='html-p'>A typical example of a self-powered system was designed by Kim et al. (<a href="#nanomaterials-14-01885-f006" class="html-fig">Figure 6</a>c) [<a href="#B60-nanomaterials-14-01885" class="html-bibr">60</a>]. This system integrates a highly stretchable and self-healing TENG with two modules: a catechol–chitosan–diatom hydrogel (CCDHG) electrode module and an M-shaped Kapton film module. The CCDHG electrode module provides excellent biocompatibility, stretchability, self-healing ability, and conductivity. In contrast, the M-shaped Kapton film module enhances the contact area and sensitivity of the TENG, serving as a tremor sensor to detect low-frequency vibrations, which is crucial for Parkinson’s disease diagnosis and biomedical health monitoring. Moreover, this self-powered tremor sensor shows potential applications in smart e-skin, soft robotics, and wearable bioelectronic devices.</div><div class='html-p'>Another example comes from Wang et al. (<a href="#nanomaterials-14-01885-f006" class="html-fig">Figure 6</a>d) [<a href="#B109-nanomaterials-14-01885" class="html-bibr">109</a>], who developed a device composed of two main modules: a flexible strain sensor and a data processing module. The flexible strain sensor was crafted from a graphene oxide–polyacrylamide (GO-PAM) hydrogel, tailored for clinical applications with a notable focus on detecting Parkinson’s disease and hemiplegia. This self-powered strain sensor, leveraging GO-PAM hydrogel, demonstrates exceptional sensitivity in detecting subtle body movements, including gait. Integrated into an in-shoe monitoring system with an artificial neural network algorithm, it accurately identifies speed variations and pathological changes in daily activities, providing a convenient and efficient solution for early diagnosis, rehabilitation assessment, and patient treatment.</div></section></section><section id='sec3dot4-nanomaterials-14-01885' type=''><h4 class='html-italic' data-nested='2'> 3.4. BM-TENG Systems for Bacterial Diagnostics and Sterilization</h4><section id='sec3dot4dot1-nanomaterials-14-01885' type=''><h4 class='' data-nested='3'> 3.4.1. Bacterial Diagnostics</h4><div class='html-p'>TENGs based on biomaterials can convert mechanical energy into electrical energy, offering a stable power source for bacterial diagnosis. Their sensitive electrical signal response characteristics allow for the real-time detection of bacterial attachment and growth, as well as the analysis of bacterial colonies and biofilm formation. Coupled with sensor technology, TENGs can achieve rapid and convenient bacterial diagnostics without the need for an external power source, making them suitable for implantable diagnostic devices and smart medical systems.</div><div class='html-p'>One example is Panda et al.’s development of a TENG-based biodegradable sensor system for detecting E. coli (<a href="#nanomaterials-14-01885-f007" class="html-fig">Figure 7</a>a) [<a href="#B110-nanomaterials-14-01885" class="html-bibr">110</a>]. This system combines D-mannose-functionalized 3D-printed polylactic acid (PLA) material with brush-painted silver electrodes to capture bacteria through a simple carbohydrate–protein interaction mechanism. As the concentration of bacteria changes, the sensor’s adsorption capacity varies, leading to changes in resistance, enabling the detection of bacterial concentrations. Additionally, the system was tested on real water samples and unpasteurized milk, confirming its performance. The sensor’s biodegradability was also tested under composting conditions, demonstrating environmental sustainability. This study provides a viable solution for fast and efficient bacterial detection.</div><div class='html-p'>Another example is the work by Wang et al., who developed a self-powered TENG-based biosensing system for the detection of Gram-positive bacteria (<a href="#nanomaterials-14-01885-f007" class="html-fig">Figure 7</a>b) [<a href="#B111-nanomaterials-14-01885" class="html-bibr">111</a>]. This system employs a vertical contact–separation TENG as a stable voltage source, using vancomycin to capture bacterial cells via specific interactions with the cell walls of Gram-positive bacteria. Additionally, guanidine-functionalized multi-walled carbon nanotubes (CNT-Arg) serve as signal amplification materials to enhance electrical conductivity and bacterial adhesion. By measuring voltage changes, this system precisely detects bacterial concentrations, demonstrating good linearity and low detection limits. Furthermore, the researchers developed a Labview warning program to convert voltage signals into visual alerts, simplifying monitoring. This self-powered system is simple, safe, and environmentally friendly, with potential applications in environmental pollution detection, healthcare, and microbial corrosion.</div><div class='html-p'>Overall, using TENGs for pathogen detection holds great potential for advancing healthcare by offering a rapid, sensitive, and cost-effective method for detecting bacterial infections.</div></section><section id='sec3dot4dot2-nanomaterials-14-01885' type=''><h4 class='' data-nested='3'> 3.4.2. Long-Lasting Antibacterials</h4><div class='html-p'>TENG devices can inhibit bacterial growth and biofilm formation by continuously generating negative charges, offering an innovative antibacterial approach for medical implants and surface disinfection. Compared to traditional antibacterial methods, TENG-based sterilization can effectively avoid antibiotic resistance and the side effects of new antimicrobial materials, while not affecting bone cell adhesion and growth, ensuring long-term stability and safety. This makes it suitable for medical fields such as surgical implants and wound dressings.</div><div class='html-p'>For example, Shi et al. proposed a self-powered technology using TENG to provide negative charges for anodized titanium implants (<a href="#nanomaterials-14-01885-f007" class="html-fig">Figure 7</a>c) [<a href="#B112-nanomaterials-14-01885" class="html-bibr">112</a>]. This technology converts mechanical energy from human daily movements into electrical energy, providing stable and long-lasting negative charges on the implant surface, effectively inhibiting bacterial adhesion, reducing bacterial counts, and lowering the ratio of live bacteria in mature biofilms. Compared to traditional antibacterial methods, this approach avoids the side effects of new antibacterial components and does not inhibit bone cell adhesion and osteogenesis. This innovative and sustainable antibacterial and bone regeneration method is promising for the future development of orthopedic and dental implants.</div><div class='html-p'>Lin et al. developed a flexible, paper-based triboelectric nanogenerator (P-TENG) using ZnO@paper paired with PTFE film (<a href="#nanomaterials-14-01885-f007" class="html-fig">Figure 7</a>d) [<a href="#B113-nanomaterials-14-01885" class="html-bibr">113</a>]. This P-TENG demonstrated not only high output performance but also antibacterial activity against E. coli and S. aureus, suggesting applications in surgery for inhibiting and killing bacteria. The study highlighted that ZnO enhances the surface roughness of cellulose paper, thereby improving the output performance of the flexible P-TENG. Moreover, the P-TENG-based pressure sensor shows promise for measuring human motion information.</div><div class='html-p'>To conclude, researchers have enabled BM-TENGs to continuously generate negative charges, providing an innovative antibacterial solution for biomaterials. This method effectively suppresses bacterial growth, avoiding antibiotic resistance and the drawbacks of new antimicrobial materials while maintaining bone cell adhesion and regeneration. As a result, it holds great promise in biomaterial applications such as surgical implants and wound dressings, with the potential to greatly enhance the long-term safety and biocompatibility of medical devices.</div></section><section id='sec3dot4dot3-nanomaterials-14-01885' type=''><h4 class='' data-nested='3'> 3.4.3. Mite Removal</h4><div class='html-p'>Biomaterials such as CS and hydroxyethyl cellulose, with their excellent biocompatibility and mite-resistant properties, are ideal choices for designing anti-mite TENGs. The charges generated through the triboelectric effect can effectively disrupt the growth environment of mites, and, combined with the structural optimization and surface modification of the materials, the anti-mite effects of TENGs can be further enhanced. Such TENG devices can be applied in household items, mattresses, and air purification systems to continuously inhibit mite reproduction.</div><div class='html-p'>For instance, Lu et al. synthesized a CTS–hydroxyethyl cellulose pectin (CHP) film via a hydrothermal method, employing it as a triboelectric material [<a href="#B114-nanomaterials-14-01885" class="html-bibr">114</a>]. The TENG, containing 11% CTS content, exhibited excellent current and voltage output, high energy conversion efficiency, and anti-mite antibacterial properties. These characteristics highlight its applications in TENG-based smart medical and health monitoring systems.</div><div class='html-p'>Overall, the design of self-powered systems for bacterial diagnostics and sterilization enhances both real-time detection and sensitivity while broadening their application range. By optimizing material selection and technological implementation, TENG systems demonstrate significant advantages in bacterial monitoring and antimicrobial treatment, providing innovative solutions for healthcare and environmental management (<a href="#nanomaterials-14-01885-t002" class="html-table">Table 2</a>).</div></section></section></section><section id='sec4-nanomaterials-14-01885' type='conclusions'><h2 data-nested='1'> 4. Conclusions and Prospects</h2><div class='html-p'>Compared with traditional polymers, biomaterials not only offer advantages such as non-toxicity, biocompatibility, and biodegradability but they are also abundant in resources and often have a higher surface area, which significantly impacts the output performance of TENG systems. This characteristic provides biomaterials with great potential for various applications.</div><div class='html-p'>This paper demonstrates that some BM-TENGs already rival the performance of existing inorganic-based TENGs, showing great promise for self-powered electronic devices, especially in medical diagnostics and health monitoring. With continuous technological advancements, BM-TENGs are expected to find applications in even more fields. These devices can efficiently harness mechanical energy from natural or biological sources, providing both improved user experiences and continuous and reliable self-powered operation, making them particularly suitable for disease diagnosis, bacterial detection, and environmental control.</div><div class='html-p'>Although BM-TENG technology faces several challenges, such as limited output performance, uncontrolled degradation, and poor durability, these issues are anticipated to be progressively addressed through meticulous material selection, bionic design, structural optimization, chemical surface modification, and advancements in energy management systems. Furthermore, innovations in surface treatment techniques, enhanced composite materials, and encapsulation technologies will further improve the long-term stability and durability of the devices.</div><div class='html-p'>For practical applications of BP-TENG technology in energy harvesting, medical diagnostics, and environmental monitoring, several key issues, such as the energy output, miniaturization, sensitivity, sustainability, and biocompatibility of biomaterials should be addressed.</div><section id='sec4dot1-nanomaterials-14-01885' type=''><h4 class='html-italic' data-nested='2'> 4.1. Energy Output</h4><div class='html-p'>The energy output of BM-TENGs is often constrained and may not suffice for the high energy demands of certain medical devices. Integrating additional energy harvesting technologies, such as solar and thermoelectric energy collection, can diversify energy sources and augment the overall energy supply. Selecting the appropriate energy harvesting technologies for specific application scenarios is critical to meeting energy needs [<a href="#B115-nanomaterials-14-01885" class="html-bibr">115</a>]. Furthermore, developing more efficient energy conversion materials and optimizing device designs are effective ways to enhance energy output. With technological advancements, future BM-TENGs may achieve higher energy densities, thereby better serving various medical applications. Ultimately, the integration of multiple energy harvesting methods will provide strong support for the sustainable development of BM-TENGs.</div></section><section id='sec4dot2-nanomaterials-14-01885' type=''><h4 class='html-italic' data-nested='2'> 4.2. Biocompatibility and Degradability</h4><div class='html-p'>Wearable bioelectronic devices must be tissue-compatible to prevent allergic reactions or other adverse effects from direct contact with the human body. Factors influencing degradation rates include chemical composition, structural design, and external environmental conditions, making the degradation process complex and difficult to predict. Additionally, the degradation byproducts must be non-toxic and harmless to prevent negative impacts on human health or the environment [<a href="#B116-nanomaterials-14-01885" class="html-bibr">116</a>]. Balancing these factors to ensure efficient performance while safely degrading at the end of its life cycle remains a major challenge for BM-TENG technology in medical and environmental applications.</div></section><section id='sec4dot3-nanomaterials-14-01885' type=''><h4 class='html-italic' data-nested='2'> 4.3. Comfort and Durability</h4><div class='html-p'>Considering the clinical characteristics of cardiovascular and other diseases (long-term and sudden occurrences), BM-TENGs need to be worn for extended periods to continuously monitor human health. However, some TENG devices lack breathability and aesthetics, making them unsuitable for long-term wear. Future wearable TENGs should focus more on comfort. By improving the material and microstructure of TENGs, breathability, softness, and stretchability can be enhanced, preventing discomfort and minimizing interference with daily activities [<a href="#B117-nanomaterials-14-01885" class="html-bibr">117</a>]. Additionally, BM-TENGs with poor durability can suffer from fatigue and degradation after stretching and deformation [<a href="#B118-nanomaterials-14-01885" class="html-bibr">118</a>]. Long-term cyclic testing and simulations should be conducted to evaluate performance changes under repeated stretching.</div></section><section id='sec4dot4-nanomaterials-14-01885' type=''><h4 class='html-italic' data-nested='2'> 4.4. Integration and Size</h4><div class='html-p'>To meet the demands of wearable and implantable BM-TENGs, devices must be miniaturized without compromising output performance, it is essential to miniaturize these devices while ensuring that their output performance is not compromised. This necessitates innovative approaches that integrate cutting-edge material science and advanced manufacturing technologies [<a href="#B119-nanomaterials-14-01885" class="html-bibr">119</a>]. These advancements offer promising solutions that can enhance the efficiency and functionality of BM-TENGs in compact formats. Addressing the various challenges associated with miniaturization and the integration of different functional units will be a significant focus for future research and development. The ability to effectively combine multiple components into a smaller footprint will not only improve the practicality of these devices in real-world applications but also pave the way for more sophisticated designs that can cater to diverse medical and technological needs. Ultimately, the evolution of BM-TENGs will hinge on the successful integration of these innovations to create highly efficient, adaptable, and user-friendly energy harvesting solutions.</div></section><section id='sec4dot5-nanomaterials-14-01885' type=''><h4 class='html-italic' data-nested='2'> 4.5. Sensitivity and Stability</h4><div class='html-p'>The performance of BM-TENGs can be affected by the complexity of biological environments, impacting detection accuracy. For example, low bacterial counts or subtle environmental changes may be difficult for traditional sensors to detect. Therefore, optimizing the structural design and material selection to improve sensitivity in detecting diseases and bacteria is crucial. Researchers can introduce micro-nanostructures, such as wrinkles, hemispherical arrays, pyramid arrays, and nanowires, which can increase the surface charge density of TENGs and enhance contact with detected substances, thereby improving sensitivity. In terms of material selection, methods such as doping, injection, and coating with exogenous chemicals can optimize the surface charge affinity of TENGs, increasing output voltage and improving detection performance. Additionally, assessing long-term stability under various environmental conditions is equally important, as it ensures device reliability across diverse applications. Continuous technological innovation and materials research will drive the application prospects of BM-TENGs in the biomedical field. Ultimately, combining multiple approaches will help achieve higher sensitivity and stability to meet future medical demands.</div><div class='html-p'>In conclusion, by addressing these technical challenges, BM-TENGs hold the promise of advancing clinical applications, achieving efficient and stable energy harvesting, and providing strong support for future health monitoring and sustainable development.</div></section></section> </div> <div class="html-back"> <section class='html-notes'><h2 >Author Contributions</h2><div class='html-p'>Writing—original draft preparation, writing—review and editing, Q.Z.; software, validation, formal analysis, E.S.; validation, formal analysis, Y.S.; investigation, formal analysis, methodology, software, X.C.; conceptualization, methodology, writing—review and editing, N.W. All authors have read and agreed to the published version of the manuscript.</div></section><section class='html-notes'><h2>Funding</h2><div class='html-p'>This work was funded by the National Key R&D Program of China (2023YFF0612804), the National Natural Science Foundation of China (NSFC no. 51873020), and the University Basic Scientific Research Business Fee (no. FRF-MP-20-38).</div></section><section class='html-notes'><h2 >Data Availability Statement</h2><div class='html-p'>Data available upon request from the authors.</div></section><section class='html-notes'><h2 >Conflicts of Interest</h2><div class='html-p'>The authors declare no conflicts of interest.</div></section><section id='html-references_list'><h2>References</h2><ol class='html-xxx'><li id='B1-nanomaterials-14-01885' class='html-x' data-content='1.'>Shrestha, K.; Sharma, S.; Pradhan, G.B.; Bhatta, T.; Maharjan, P.; Rana, S.S.; Lee, S.; Seonu, S.; Shin, Y.; Park, J.Y. A Siloxene/Ecoflex Nanocomposite-Based Triboelectric Nanogenerator with Enhanced Charge Retention by MoS2/LIG for Self-Powered Touchless Sensor Applications. <span class='html-italic'>Adv. Funct. Mater.</span> <b>2022</b>, <span class='html-italic'>32</span>, 2113005. [<a href="https://scholar.google.com/scholar_lookup?title=A+Siloxene/Ecoflex+Nanocomposite-Based+Triboelectric+Nanogenerator+with+Enhanced+Charge+Retention+by+MoS2/LIG+for+Self-Powered+Touchless+Sensor+Applications&author=Shrestha,+K.&author=Sharma,+S.&author=Pradhan,+G.B.&author=Bhatta,+T.&author=Maharjan,+P.&author=Rana,+S.S.&author=Lee,+S.&author=Seonu,+S.&author=Shin,+Y.&author=Park,+J.Y.&publication_year=2022&journal=Adv.+Funct.+Mater.&volume=32&pages=2113005&doi=10.1002/adfm.202113005" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adfm.202113005" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B2-nanomaterials-14-01885' class='html-x' data-content='2.'>Ma, J.; Zhu, J.; Ma, P.; Jie, Y.; Wang, Z.L.; Cao, X. Fish Bladder Film-Based Triboelectric Nanogenerator for Noncontact Position Monitoring. <span class='html-italic'>ACS Energy Lett.</span> <b>2020</b>, <span class='html-italic'>5</span>, 3005–3011. [<a href="https://scholar.google.com/scholar_lookup?title=Fish+Bladder+Film-Based+Triboelectric+Nanogenerator+for+Noncontact+Position+Monitoring&author=Ma,+J.&author=Zhu,+J.&author=Ma,+P.&author=Jie,+Y.&author=Wang,+Z.L.&author=Cao,+X.&publication_year=2020&journal=ACS+Energy+Lett.&volume=5&pages=3005%E2%80%933011&doi=10.1021/acsenergylett.0c01062" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsenergylett.0c01062" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B3-nanomaterials-14-01885' class='html-x' data-content='3.'>Wang, Z.; Luan, C.; Zhu, Y.; Liao, G.; Liu, J.; Li, X.; Yao, X.; Fu, J. Integrated and shape-adaptable multifunctional flexible triboelectric nanogenerators using coaxial direct ink writing 3D printing. <span class='html-italic'>Nano Energy</span> <b>2021</b>, <span class='html-italic'>90</span>, 106534. [<a href="https://scholar.google.com/scholar_lookup?title=Integrated+and+shape-adaptable+multifunctional+flexible+triboelectric+nanogenerators+using+coaxial+direct+ink+writing+3D+printing&author=Wang,+Z.&author=Luan,+C.&author=Zhu,+Y.&author=Liao,+G.&author=Liu,+J.&author=Li,+X.&author=Yao,+X.&author=Fu,+J.&publication_year=2021&journal=Nano+Energy&volume=90&pages=106534&doi=10.1016/j.nanoen.2021.106534" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2021.106534" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B4-nanomaterials-14-01885' class='html-x' data-content='4.'>Fan, W.; He, Q.; Meng, K.; Tan, X.; Zhou, Z.; Zhang, G.; Yang, J.; Wang, Z.L. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. <span class='html-italic'>Sci. Adv.</span> <b>2020</b>, <span class='html-italic'>6</span>, eaay2840. [<a href="https://scholar.google.com/scholar_lookup?title=Machine-knitted+washable+sensor+array+textile+for+precise+epidermal+physiological+signal+monitoring&author=Fan,+W.&author=He,+Q.&author=Meng,+K.&author=Tan,+X.&author=Zhou,+Z.&author=Zhang,+G.&author=Yang,+J.&author=Wang,+Z.L.&publication_year=2020&journal=Sci.+Adv.&volume=6&pages=eaay2840&doi=10.1126/sciadv.aay2840" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1126/sciadv.aay2840" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B5-nanomaterials-14-01885' class='html-x' data-content='5.'>Sheng, F.F.; Yi, J.; Shen, S.; Cheng, R.W.; Ning, C.; Ma, L.Y.; Peng, X.; Deng, W.; Dong, K.; Wang, Z.L. Self-Powered Smart Arm Training Band Sensor Based on Extremely Stretchable Hydrogel Conductors. <span class='html-italic'>ACS Appl. Mater. Interfaces</span> <b>2021</b>, <span class='html-italic'>13</span>, 44868–44877. [<a href="https://scholar.google.com/scholar_lookup?title=Self-Powered+Smart+Arm+Training+Band+Sensor+Based+on+Extremely+Stretchable+Hydrogel+Conductors&author=Sheng,+F.F.&author=Yi,+J.&author=Shen,+S.&author=Cheng,+R.W.&author=Ning,+C.&author=Ma,+L.Y.&author=Peng,+X.&author=Deng,+W.&author=Dong,+K.&author=Wang,+Z.L.&publication_year=2021&journal=ACS+Appl.+Mater.+Interfaces&volume=13&pages=44868%E2%80%9344877&doi=10.1021/acsami.1c12378" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsami.1c12378" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B6-nanomaterials-14-01885' class='html-x' data-content='6.'>Peng, X.; Dong, K.; Ye, C.Y.; Jiang, Y.; Zhai, S.Y.; Cheng, R.W.; Liu, D.; Gao, X.P.; Wang, J.; Wang, Z.L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. <span class='html-italic'>Sci. Adv.</span> <b>2020</b>, <span class='html-italic'>6</span>, eaba9624. [<a href="https://scholar.google.com/scholar_lookup?title=A+breathable,+biodegradable,+antibacterial,+and+self-powered+electronic+skin+based+on+all-nanofiber+triboelectric+nanogenerators&author=Peng,+X.&author=Dong,+K.&author=Ye,+C.Y.&author=Jiang,+Y.&author=Zhai,+S.Y.&author=Cheng,+R.W.&author=Liu,+D.&author=Gao,+X.P.&author=Wang,+J.&author=Wang,+Z.L.&publication_year=2020&journal=Sci.+Adv.&volume=6&pages=eaba9624&doi=10.1126/sciadv.aba9624&pmid=32637619" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1126/sciadv.aba9624" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/32637619" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B7-nanomaterials-14-01885' class='html-x' data-content='7.'>Ccorahua, R.; Huaroto, J.; Luyo, C.; Quintana, M.; Vela, E.A. Enhanced-performance bio-triboelectric nanogenerator based on starch polymer electrolyte obtained by a cleanroom-free processing method. <span class='html-italic'>Nano Energy</span> <b>2019</b>, <span class='html-italic'>59</span>, 610–618. [<a href="https://scholar.google.com/scholar_lookup?title=Enhanced-performance+bio-triboelectric+nanogenerator+based+on+starch+polymer+electrolyte+obtained+by+a+cleanroom-free+processing+method&author=Ccorahua,+R.&author=Huaroto,+J.&author=Luyo,+C.&author=Quintana,+M.&author=Vela,+E.A.&publication_year=2019&journal=Nano+Energy&volume=59&pages=610%E2%80%93618&doi=10.1016/j.nanoen.2019.03.018" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2019.03.018" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B8-nanomaterials-14-01885' class='html-x' data-content='8.'>Bao, Y.K.; Wang, R.X.; Lu, Y.M.; Wu, W.Z. Lignin biopolymer based triboelectric nanogenerators. <span class='html-italic'>APL Mater.</span> <b>2017</b>, <span class='html-italic'>5</span>, 074109. [<a href="https://scholar.google.com/scholar_lookup?title=Lignin+biopolymer+based+triboelectric+nanogenerators&author=Bao,+Y.K.&author=Wang,+R.X.&author=Lu,+Y.M.&author=Wu,+W.Z.&publication_year=2017&journal=APL+Mater.&volume=5&pages=074109&doi=10.1063/1.4984625" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1063/1.4984625" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B9-nanomaterials-14-01885' class='html-x' data-content='9.'>Xu, F.; Dong, S.; Liu, G.; Pan, C.; Guo, Z.H.; Guo, W.; Li, L.; Liu, Y.; Zhang, C.; Pu, X.; et al. Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. <span class='html-italic'>Nano Energy</span> <b>2021</b>, <span class='html-italic'>88</span>, 106247. [<a href="https://scholar.google.com/scholar_lookup?title=Scalable+fabrication+of+stretchable+and+washable+textile+triboelectric+nanogenerators+as+constant+power+sources+for+wearable+electronics&author=Xu,+F.&author=Dong,+S.&author=Liu,+G.&author=Pan,+C.&author=Guo,+Z.H.&author=Guo,+W.&author=Li,+L.&author=Liu,+Y.&author=Zhang,+C.&author=Pu,+X.&publication_year=2021&journal=Nano+Energy&volume=88&pages=106247&doi=10.1016/j.nanoen.2021.106247" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2021.106247" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B10-nanomaterials-14-01885' class='html-xx' data-content='10.'>Wang, L.; Daoud, W.A. Highly Flexible and Transparent Polyionic-Skin Triboelectric Nanogenerator for Biomechanical Motion Harvesting. <span class='html-italic'>Adv. Energy Mater.</span> <b>2019</b>, <span class='html-italic'>9</span>, 1803183. [<a href="https://scholar.google.com/scholar_lookup?title=Highly+Flexible+and+Transparent+Polyionic-Skin+Triboelectric+Nanogenerator+for+Biomechanical+Motion+Harvesting&author=Wang,+L.&author=Daoud,+W.A.&publication_year=2019&journal=Adv.+Energy+Mater.&volume=9&pages=1803183&doi=10.1002/aenm.201803183" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/aenm.201803183" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B11-nanomaterials-14-01885' class='html-xx' data-content='11.'>Rahman, M.T.; Rana, S.S.; Salauddin, M.; Maharjan, P.; Bhatta, T.; Park, J.Y. Biomechanical Energy-Driven Hybridized Generator as a Universal Portable Power Source for Smart/Wearable Electronics. <span class='html-italic'>Adv. Energy Mater.</span> <b>2020</b>, <span class='html-italic'>10</span>, 1903663. [<a href="https://scholar.google.com/scholar_lookup?title=Biomechanical+Energy-Driven+Hybridized+Generator+as+a+Universal+Portable+Power+Source+for+Smart/Wearable+Electronics&author=Rahman,+M.T.&author=Rana,+S.S.&author=Salauddin,+M.&author=Maharjan,+P.&author=Bhatta,+T.&author=Park,+J.Y.&publication_year=2020&journal=Adv.+Energy+Mater.&volume=10&pages=1903663&doi=10.1002/aenm.201903663" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/aenm.201903663" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B12-nanomaterials-14-01885' class='html-xx' data-content='12.'>Yu, J.B.; Hou, X.J.; He, J.; Cui, M.; Wang, C.; Geng, W.P.; Mu, J.L.; Han, B.; Chou, X.J. Ultra-flexible and high-sensitive triboelectric nanogenerator as electronic skin for self-powered human physiological signal monitoring. <span class='html-italic'>Nano Energy</span> <b>2020</b>, <span class='html-italic'>69</span>, 104437. [<a href="https://scholar.google.com/scholar_lookup?title=Ultra-flexible+and+high-sensitive+triboelectric+nanogenerator+as+electronic+skin+for+self-powered+human+physiological+signal+monitoring&author=Yu,+J.B.&author=Hou,+X.J.&author=He,+J.&author=Cui,+M.&author=Wang,+C.&author=Geng,+W.P.&author=Mu,+J.L.&author=Han,+B.&author=Chou,+X.J.&publication_year=2020&journal=Nano+Energy&volume=69&pages=104437&doi=10.1016/j.nanoen.2019.104437" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2019.104437" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B13-nanomaterials-14-01885' class='html-xx' data-content='13.'>Liu, M.J.; Zhang, X.; Xin, Y.; Guo, D.X.; Hu, G.K.; Ma, Y.F.; Yu, B.; Huang, T.; Ji, C.C.; Zhu, M.F.; et al. Earthworm-Inspired Ultra-Durable Sliding Triboelectric Nanogenerator with Bionic Self-Replenishing Lubricating Property for Wind Energy Harvesting and Self-Powered Intelligent Sports Monitoring. <span class='html-italic'>Adv. Sci.</span> <b>2024</b>, <span class='html-italic'>11</span>, 2401636. [<a href="https://scholar.google.com/scholar_lookup?title=Earthworm-Inspired+Ultra-Durable+Sliding+Triboelectric+Nanogenerator+with+Bionic+Self-Replenishing+Lubricating+Property+for+Wind+Energy+Harvesting+and+Self-Powered+Intelligent+Sports+Monitoring&author=Liu,+M.J.&author=Zhang,+X.&author=Xin,+Y.&author=Guo,+D.X.&author=Hu,+G.K.&author=Ma,+Y.F.&author=Yu,+B.&author=Huang,+T.&author=Ji,+C.C.&author=Zhu,+M.F.&publication_year=2024&journal=Adv.+Sci.&volume=11&pages=2401636&doi=10.1002/advs.202401636&pmid=38741379" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/advs.202401636" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/38741379" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B14-nanomaterials-14-01885' class='html-xx' data-content='14.'>Wang, L.K.; Xu, H.C.; Huang, F.C.; Tao, X.M.; Ouyang, Y.F.; Zhou, Y.L.; Mo, X.M. High-Output Lotus-Leaf-Bionic Triboelectric Nanogenerators Based on 2D MXene for Health Monitoring of Human Feet. <span class='html-italic'>Nanomaterials</span> <b>2022</b>, <span class='html-italic'>12</span>, 3217. [<a href="https://scholar.google.com/scholar_lookup?title=High-Output+Lotus-Leaf-Bionic+Triboelectric+Nanogenerators+Based+on+2D+MXene+for+Health+Monitoring+of+Human+Feet&author=Wang,+L.K.&author=Xu,+H.C.&author=Huang,+F.C.&author=Tao,+X.M.&author=Ouyang,+Y.F.&author=Zhou,+Y.L.&author=Mo,+X.M.&publication_year=2022&journal=Nanomaterials&volume=12&pages=3217&doi=10.3390/nano12183217" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/nano12183217" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B15-nanomaterials-14-01885' class='html-xx' data-content='15.'>Rao, J.H.; Chen, Z.T.; Zhao, D.N.; Ma, R.; Yi, W.Y.; Zhang, C.X.; Liu, D.; Chen, X.; Yang, Y.H.; Wang, X.F.; et al. Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based on a triboelectric nanogenerator. <span class='html-italic'>Nano Energy</span> <b>2020</b>, <span class='html-italic'>75</span>. [<a href="https://scholar.google.com/scholar_lookup?title=Tactile+electronic+skin+to+simultaneously+detect+and+distinguish+between+temperature+and+pressure+based+on+a+triboelectric+nanogenerator&author=Rao,+J.H.&author=Chen,+Z.T.&author=Zhao,+D.N.&author=Ma,+R.&author=Yi,+W.Y.&author=Zhang,+C.X.&author=Liu,+D.&author=Chen,+X.&author=Yang,+Y.H.&author=Wang,+X.F.&publication_year=2020&journal=Nano+Energy&volume=75&doi=10.1016/j.nanoen.2020.105073" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2020.105073" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B16-nanomaterials-14-01885' class='html-xx' data-content='16.'>Qin, Y.; Mo, J.L.; Liu, Y.H.; Zhang, S.; Wang, J.L.; Fu, Q.; Wang, S.F.; Nie, S.X. Stretchable Triboelectric Self-Powered Sweat Sensor Fabricated from Self-Healing Nanocellulose Hydrogels. <span class='html-italic'>Adv. Funct. Mater.</span> <b>2022</b>, <span class='html-italic'>32</span>, 2201846. [<a href="https://scholar.google.com/scholar_lookup?title=Stretchable+Triboelectric+Self-Powered+Sweat+Sensor+Fabricated+from+Self-Healing+Nanocellulose+Hydrogels&author=Qin,+Y.&author=Mo,+J.L.&author=Liu,+Y.H.&author=Zhang,+S.&author=Wang,+J.L.&author=Fu,+Q.&author=Wang,+S.F.&author=Nie,+S.X.&publication_year=2022&journal=Adv.+Funct.+Mater.&volume=32&pages=2201846&doi=10.1002/adfm.202201846" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adfm.202201846" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B17-nanomaterials-14-01885' class='html-xx' data-content='17.'>Zhao, T.M.; Fu, Y.M.; Sun, C.X.; Zhao, X.S.; Jiao, C.X.; Du, A.; Wang, Q.; Mao, Y.P.; Liu, B.D. Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators. <span class='html-italic'>Biosens. Bioelectron.</span> <b>2022</b>, <span class='html-italic'>205</span>, 114115. [<a href="https://scholar.google.com/scholar_lookup?title=Wearable+biosensors+for+real-time+sweat+analysis+and+body+motion+capture+based+on+stretchable+fiber-based+triboelectric+nanogenerators&author=Zhao,+T.M.&author=Fu,+Y.M.&author=Sun,+C.X.&author=Zhao,+X.S.&author=Jiao,+C.X.&author=Du,+A.&author=Wang,+Q.&author=Mao,+Y.P.&author=Liu,+B.D.&publication_year=2022&journal=Biosens.+Bioelectron.&volume=205&pages=114115&doi=10.1016/j.bios.2022.114115" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.bios.2022.114115" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B18-nanomaterials-14-01885' class='html-xx' data-content='18.'>Lin, Z.W.; Sun, C.C.; Liu, W.C.; Fan, E.D.; Zhang, G.Q.; Tan, X.L.; Shen, Z.Y.; Qiu, J.; Yang, J. A self-powered and high-frequency vibration sensor with layer-powder-layer structure for structural health monitoring. <span class='html-italic'>Nano Energy</span> <b>2021</b>, <span class='html-italic'>90</span>, 106366. [<a href="https://scholar.google.com/scholar_lookup?title=A+self-powered+and+high-frequency+vibration+sensor+with+layer-powder-layer+structure+for+structural+health+monitoring&author=Lin,+Z.W.&author=Sun,+C.C.&author=Liu,+W.C.&author=Fan,+E.D.&author=Zhang,+G.Q.&author=Tan,+X.L.&author=Shen,+Z.Y.&author=Qiu,+J.&author=Yang,+J.&publication_year=2021&journal=Nano+Energy&volume=90&pages=106366&doi=10.1016/j.nanoen.2021.106366" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2021.106366" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B19-nanomaterials-14-01885' class='html-xx' data-content='19.'>Lin, Z.M.; Chen, J.; Li, X.S.; Zhou, Z.H.; Meng, K.Y.; Wei, W.; Yang, J.; Wang, Z.L. Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring. <span class='html-italic'>Acs Nano</span> <b>2017</b>, <span class='html-italic'>11</span>, 8830–8837. [<a href="https://scholar.google.com/scholar_lookup?title=Triboelectric+Nanogenerator+Enabled+Body+Sensor+Network+for+Self-Powered+Human+Heart-Rate+Monitoring&author=Lin,+Z.M.&author=Chen,+J.&author=Li,+X.S.&author=Zhou,+Z.H.&author=Meng,+K.Y.&author=Wei,+W.&author=Yang,+J.&author=Wang,+Z.L.&publication_year=2017&journal=Acs+Nano&volume=11&pages=8830%E2%80%938837&doi=10.1021/acsnano.7b02975" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsnano.7b02975" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B20-nanomaterials-14-01885' class='html-xx' data-content='20.'>Jiang, W.; Li, H.; Liu, Z.; Li, Z.; Tian, J.; Shi, B.; Zou, Y.; Ouyang, H.; Zhao, C.; Zhao, L.; et al. Fully Bioabsorbable Natural-Materials-Based Triboelectric Nanogenerators. <span class='html-italic'>Adv. Mater.</span> <b>2018</b>, <span class='html-italic'>30</span>, 1801895. [<a href="https://scholar.google.com/scholar_lookup?title=Fully+Bioabsorbable+Natural-Materials-Based+Triboelectric+Nanogenerators&author=Jiang,+W.&author=Li,+H.&author=Liu,+Z.&author=Li,+Z.&author=Tian,+J.&author=Shi,+B.&author=Zou,+Y.&author=Ouyang,+H.&author=Zhao,+C.&author=Zhao,+L.&publication_year=2018&journal=Adv.+Mater.&volume=30&pages=1801895&doi=10.1002/adma.201801895" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adma.201801895" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B21-nanomaterials-14-01885' class='html-xx' data-content='21.'>Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. <span class='html-italic'>Biosens. Bioelectron.</span> <b>2021</b>, <span class='html-italic'>171</span>, 112714. [<a href="https://scholar.google.com/scholar_lookup?title=Advances+in+triboelectric+nanogenerators+for+biomedical+sensing&author=Tat,+T.&author=Libanori,+A.&author=Au,+C.&author=Yau,+A.&author=Chen,+J.&publication_year=2021&journal=Biosens.+Bioelectron.&volume=171&pages=112714&doi=10.1016/j.bios.2020.112714&pmid=33068881" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.bios.2020.112714" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/33068881" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B22-nanomaterials-14-01885' class='html-xx' data-content='22.'>Seyedin, S.; Uzun, S.; Levitt, A.; Anasori, B.; Dion, G.; Gogotsi, Y.; Razal, J.M. MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles. <span class='html-italic'>Adv. Funct. Mater.</span> <b>2020</b>, <span class='html-italic'>30</span>, 1910504. [<a href="https://scholar.google.com/scholar_lookup?title=MXene+Composite+and+Coaxial+Fibers+with+High+Stretchability+and+Conductivity+for+Wearable+Strain+Sensing+Textiles&author=Seyedin,+S.&author=Uzun,+S.&author=Levitt,+A.&author=Anasori,+B.&author=Dion,+G.&author=Gogotsi,+Y.&author=Razal,+J.M.&publication_year=2020&journal=Adv.+Funct.+Mater.&volume=30&pages=1910504&doi=10.1002/adfm.201910504" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adfm.201910504" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B23-nanomaterials-14-01885' class='html-xx' data-content='23.'>Basatneh, R.; Najafi, B.; Armstrong, D.G. Health Sensors, Smart Home Devices, and the Internet of Medical Things: An Opportunity for Dramatic Improvement in Care for the Lower Extremity Complications of Diabetes. <span class='html-italic'>J. Diabetes Sci. Technol.</span> <b>2018</b>, <span class='html-italic'>12</span>, 577–586. [<a href="https://scholar.google.com/scholar_lookup?title=Health+Sensors,+Smart+Home+Devices,+and+the+Internet+of+Medical+Things:+An+Opportunity+for+Dramatic+Improvement+in+Care+for+the+Lower+Extremity+Complications+of+Diabetes&author=Basatneh,+R.&author=Najafi,+B.&author=Armstrong,+D.G.&publication_year=2018&journal=J.+Diabetes+Sci.+Technol.&volume=12&pages=577%E2%80%93586&doi=10.1177/1932296818768618&pmid=29635931" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1177/1932296818768618" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/29635931" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B24-nanomaterials-14-01885' class='html-xx' data-content='24.'>Tian, J.J.; Shi, R.; Liu, Z.; Ouyang, H.; Yu, M.; Zhao, C.C.; Zou, Y.; Jiang, D.J.; Zhang, J.S.; Li, Z. Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation. <span class='html-italic'>Nano Energy</span> <b>2019</b>, <span class='html-italic'>59</span>, 705–714. [<a href="https://scholar.google.com/scholar_lookup?title=Self-powered+implantable+electrical+stimulator+for+osteoblasts%E2%80%99+proliferation+and+differentiation&author=Tian,+J.J.&author=Shi,+R.&author=Liu,+Z.&author=Ouyang,+H.&author=Yu,+M.&author=Zhao,+C.C.&author=Zou,+Y.&author=Jiang,+D.J.&author=Zhang,+J.S.&author=Li,+Z.&publication_year=2019&journal=Nano+Energy&volume=59&pages=705%E2%80%93714&doi=10.1016/j.nanoen.2019.02.073" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2019.02.073" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B25-nanomaterials-14-01885' class='html-xx' data-content='25.'>Wang, S.H.; Lin, L.; Wang, Z.L. Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics. <span class='html-italic'>Nano Lett.</span> <b>2012</b>, <span class='html-italic'>12</span>, 6339–6346. [<a href="https://scholar.google.com/scholar_lookup?title=Nanoscale+Triboelectric-Effect-Enabled+Energy+Conversion+for+Sustainably+Powering+Portable+Electronics&author=Wang,+S.H.&author=Lin,+L.&author=Wang,+Z.L.&publication_year=2012&journal=Nano+Lett.&volume=12&pages=6339%E2%80%936346&doi=10.1021/nl303573d" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/nl303573d" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B26-nanomaterials-14-01885' class='html-xx' data-content='26.'>Wang, Y.; Liu, X.Y.; Wang, Y.W.; Wang, H.; Wang, H.; Zhang, S.L.; Zhao, T.C.; Xu, M.Y.; Wang, Z.L. Flexible Seaweed-Like Triboelectric Nanogenerator as a Wave Energy Harvester Powering Marine Internet of Things. <span class='html-italic'>Acs Nano</span> <b>2021</b>, <span class='html-italic'>15</span>, 15700–15709. [<a href="https://scholar.google.com/scholar_lookup?title=Flexible+Seaweed-Like+Triboelectric+Nanogenerator+as+a+Wave+Energy+Harvester+Powering+Marine+Internet+of+Things&author=Wang,+Y.&author=Liu,+X.Y.&author=Wang,+Y.W.&author=Wang,+H.&author=Wang,+H.&author=Zhang,+S.L.&author=Zhao,+T.C.&author=Xu,+M.Y.&author=Wang,+Z.L.&publication_year=2021&journal=Acs+Nano&volume=15&pages=15700%E2%80%9315709&doi=10.1021/acsnano.1c05127&pmid=34528797" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsnano.1c05127" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/34528797" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B27-nanomaterials-14-01885' class='html-xx' data-content='27.'>Yang, W.Q.; Chen, J.; Zhu, G.; Yang, J.; Bai, P.; Su, Y.J.; Jing, Q.S.; Cao, X.; Wang, Z.L. Harvesting Energy from the Natural Vibration of Human Walking. <span class='html-italic'>Acs Nano</span> <b>2013</b>, <span class='html-italic'>7</span>, 11317–11324. [<a href="https://scholar.google.com/scholar_lookup?title=Harvesting+Energy+from+the+Natural+Vibration+of+Human+Walking&author=Yang,+W.Q.&author=Chen,+J.&author=Zhu,+G.&author=Yang,+J.&author=Bai,+P.&author=Su,+Y.J.&author=Jing,+Q.S.&author=Cao,+X.&author=Wang,+Z.L.&publication_year=2013&journal=Acs+Nano&volume=7&pages=11317%E2%80%9311324&doi=10.1021/nn405175z" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/nn405175z" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B28-nanomaterials-14-01885' class='html-xx' data-content='28.'>Ding, X.H.; Cao, H.L.; Zhang, X.H.; Li, M.Y.; Liu, Y.T. Large Scale Triboelectric Nanogenerator and Self-Powered Flexible Sensor for Human Sleep Monitoring. <span class='html-italic'>Sensors</span> <b>2018</b>, <span class='html-italic'>18</span>, 1713. [<a href="https://scholar.google.com/scholar_lookup?title=Large+Scale+Triboelectric+Nanogenerator+and+Self-Powered+Flexible+Sensor+for+Human+Sleep+Monitoring&author=Ding,+X.H.&author=Cao,+H.L.&author=Zhang,+X.H.&author=Li,+M.Y.&author=Liu,+Y.T.&publication_year=2018&journal=Sensors&volume=18&pages=1713&doi=10.3390/s18061713" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/s18061713" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B29-nanomaterials-14-01885' class='html-xx' data-content='29.'>Sharma, K.; Abisegapriyan, K.S.; Kim, S.J. Wearable electret based metal oxide nanostructure for self-powered respiration monitoring. <span class='html-italic'>Sustain. Mater. Technol.</span> <b>2023</b>, <span class='html-italic'>38</span>, e00734. [<a href="https://scholar.google.com/scholar_lookup?title=Wearable+electret+based+metal+oxide+nanostructure+for+self-powered+respiration+monitoring&author=Sharma,+K.&author=Abisegapriyan,+K.S.&author=Kim,+S.J.&publication_year=2023&journal=Sustain.+Mater.+Technol.&volume=38&pages=e00734&doi=10.1016/j.susmat.2023.e00734" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.susmat.2023.e00734" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B30-nanomaterials-14-01885' class='html-xx' data-content='30.'>Zhu, Q.L.; Sun, E.Q.; Zhao, Z.Q.; Wu, T.; Meng, S.C.; Ma, Z.M.; Shoaib, M.; Rehman, H.U.; Cao, X.; Wang, N. Biopolymer Materials in Triboelectric Nanogenerators: A Review. <span class='html-italic'>Polymers</span> <b>2024</b>, <span class='html-italic'>16</span>, 1304. [<a href="https://scholar.google.com/scholar_lookup?title=Biopolymer+Materials+in+Triboelectric+Nanogenerators:+A+Review&author=Zhu,+Q.L.&author=Sun,+E.Q.&author=Zhao,+Z.Q.&author=Wu,+T.&author=Meng,+S.C.&author=Ma,+Z.M.&author=Shoaib,+M.&author=Rehman,+H.U.&author=Cao,+X.&author=Wang,+N.&publication_year=2024&journal=Polymers&volume=16&pages=1304&doi=10.3390/polym16101304" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/polym16101304" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B31-nanomaterials-14-01885' class='html-xx' data-content='31.'>Zhao, Z.Q.; Lu, Y.; Mi, Y.J.; Zhu, Q.L.; Meng, J.J.; Wang, X.Q.; Cao, X.; Wang, N. Modular Design in Triboelectric Sensors: A Review on the Clinical Applications for Real-Time Diagnosis. <span class='html-italic'>Sensors</span> <b>2023</b>, <span class='html-italic'>23</span>, 4194. [<a href="https://scholar.google.com/scholar_lookup?title=Modular+Design+in+Triboelectric+Sensors:+A+Review+on+the+Clinical+Applications+for+Real-Time+Diagnosis&author=Zhao,+Z.Q.&author=Lu,+Y.&author=Mi,+Y.J.&author=Zhu,+Q.L.&author=Meng,+J.J.&author=Wang,+X.Q.&author=Cao,+X.&author=Wang,+N.&publication_year=2023&journal=Sensors&volume=23&pages=4194&doi=10.3390/s23094194&pmid=37177395" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/s23094194" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/37177395" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B32-nanomaterials-14-01885' class='html-xx' data-content='32.'>Zou, Y.J.; Raveendran, V.; Chen, J. Wearable triboelectric nanogenerators for biomechanical energy harvesting. <span class='html-italic'>Nano Energy</span> <b>2020</b>, <span class='html-italic'>77</span>, 105303. [<a href="https://scholar.google.com/scholar_lookup?title=Wearable+triboelectric+nanogenerators+for+biomechanical+energy+harvesting&author=Zou,+Y.J.&author=Raveendran,+V.&author=Chen,+J.&publication_year=2020&journal=Nano+Energy&volume=77&pages=105303&doi=10.1016/j.nanoen.2020.105303" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2020.105303" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B33-nanomaterials-14-01885' class='html-xx' data-content='33.'>Noh, K.N.; Park, S.I.; Qazi, R.; Zou, Z.N.; Mickle, A.D.; Grajales-Reyes, J.G.; Jang, K.I.; Gereau, R.W.; Xiao, J.L.; Rogers, J.A.; et al. Miniaturized, Battery-Free Optofluidic Systems with Potential for Wireless Pharmacology and Optogenetics. <span class='html-italic'>Small</span> <b>2018</b>, <span class='html-italic'>14</span>, 1702479. [<a href="https://scholar.google.com/scholar_lookup?title=Miniaturized,+Battery-Free+Optofluidic+Systems+with+Potential+for+Wireless+Pharmacology+and+Optogenetics&author=Noh,+K.N.&author=Park,+S.I.&author=Qazi,+R.&author=Zou,+Z.N.&author=Mickle,+A.D.&author=Grajales-Reyes,+J.G.&author=Jang,+K.I.&author=Gereau,+R.W.&author=Xiao,+J.L.&author=Rogers,+J.A.&publication_year=2018&journal=Small&volume=14&pages=1702479&doi=10.1002/smll.201702479&pmid=29215787" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/smll.201702479" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/29215787" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B34-nanomaterials-14-01885' class='html-xx' data-content='34.'>Sun, J.Z.; Ahn, D.; Kim, J.; Ahn, S.; Hwang, J.S.; Kwon, J.Y.; Lee, J.S.; Oh, J.M.; Nam, K.; Park, J.J. Surface-control enhanced crater-like electrode in a gelatin/polyvinyl alcohol/carbon composite for biodegradable multi-modal sensing systems with human-affinity. <span class='html-italic'>J. Mater. Chem. A</span> <b>2021</b>, <span class='html-italic'>9</span>, 9145–9156. [<a href="https://scholar.google.com/scholar_lookup?title=Surface-control+enhanced+crater-like+electrode+in+a+gelatin/polyvinyl+alcohol/carbon+composite+for+biodegradable+multi-modal+sensing+systems+with+human-affinity&author=Sun,+J.Z.&author=Ahn,+D.&author=Kim,+J.&author=Ahn,+S.&author=Hwang,+J.S.&author=Kwon,+J.Y.&author=Lee,+J.S.&author=Oh,+J.M.&author=Nam,+K.&author=Park,+J.J.&publication_year=2021&journal=J.+Mater.+Chem.+A&volume=9&pages=9145%E2%80%939156&doi=10.1039/D1TA00453K" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D1TA00453K" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B35-nanomaterials-14-01885' class='html-xx' data-content='35.'>Wang, Y.M.; Wang, X.K.; Nie, S.J.; Meng, K.Y.; Lin, Z.M. Recent Progress of Wearable Triboelectric Nanogenerator-Based Sensor for Pulse Wave Monitoring. <span class='html-italic'>Sensors</span> <b>2024</b>, <span class='html-italic'>24</span>, 36. [<a href="https://scholar.google.com/scholar_lookup?title=Recent+Progress+of+Wearable+Triboelectric+Nanogenerator-Based+Sensor+for+Pulse+Wave+Monitoring&author=Wang,+Y.M.&author=Wang,+X.K.&author=Nie,+S.J.&author=Meng,+K.Y.&author=Lin,+Z.M.&publication_year=2024&journal=Sensors&volume=24&pages=36&doi=10.3390/s24010036" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/s24010036" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B36-nanomaterials-14-01885' class='html-xx' data-content='36.'>Wang, H.B.; Han, M.D.; Song, Y.; Zhang, H.X. Design, manufacturing and applications of wearable triboelectric nanogenerators. <span class='html-italic'>Nano Energy</span> <b>2021</b>, <span class='html-italic'>81</span>, 105627. [<a href="https://scholar.google.com/scholar_lookup?title=Design,+manufacturing+and+applications+of+wearable+triboelectric+nanogenerators&author=Wang,+H.B.&author=Han,+M.D.&author=Song,+Y.&author=Zhang,+H.X.&publication_year=2021&journal=Nano+Energy&volume=81&pages=105627&doi=10.1016/j.nanoen.2020.105627" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2020.105627" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B37-nanomaterials-14-01885' class='html-xx' data-content='37.'>Luo, J.J.; Wang, Z.M.; Xu, L.; Wang, A.C.; Han, K.; Jiang, T.; Lai, Q.S.; Bai, Y.; Tang, W.; Fan, F.R.; et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. <span class='html-italic'>Nat. Commun.</span> <b>2019</b>, <span class='html-italic'>10</span>, 5147. [<a href="https://scholar.google.com/scholar_lookup?title=Flexible+and+durable+wood-based+triboelectric+nanogenerators+for+self-powered+sensing+in+athletic+big+data+analytics&author=Luo,+J.J.&author=Wang,+Z.M.&author=Xu,+L.&author=Wang,+A.C.&author=Han,+K.&author=Jiang,+T.&author=Lai,+Q.S.&author=Bai,+Y.&author=Tang,+W.&author=Fan,+F.R.&publication_year=2019&journal=Nat.+Commun.&volume=10&pages=5147&doi=10.1038/s41467-019-13166-6" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41467-019-13166-6" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B38-nanomaterials-14-01885' class='html-xx' data-content='38.'>Shi, Q.F.; Dong, B.W.; He, T.Y.Y.; Sun, Z.D.; Zhu, J.X.; Zhang, Z.X.; Lee, C. Progress in wearable electronics/photonics-Moving toward the era of artificial intelligence and internet of things. <span class='html-italic'>Infomat</span> <b>2020</b>, <span class='html-italic'>2</span>, 1131–1162. [<a href="https://scholar.google.com/scholar_lookup?title=Progress+in+wearable+electronics/photonics-Moving+toward+the+era+of+artificial+intelligence+and+internet+of+things&author=Shi,+Q.F.&author=Dong,+B.W.&author=He,+T.Y.Y.&author=Sun,+Z.D.&author=Zhu,+J.X.&author=Zhang,+Z.X.&author=Lee,+C.&publication_year=2020&journal=Infomat&volume=2&pages=1131%E2%80%931162&doi=10.1002/inf2.12122" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/inf2.12122" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B39-nanomaterials-14-01885' class='html-xx' data-content='39.'>Chen, M.H.; Zhou, Y.K.; Lang, J.Y.; Li, L.J.; Zhang, Y. Triboelectric nanogenerator and artificial intelligence to promote precision medicine for cancer. <span class='html-italic'>Nano Energy</span> <b>2022</b>, <span class='html-italic'>92</span>, 106783. [<a href="https://scholar.google.com/scholar_lookup?title=Triboelectric+nanogenerator+and+artificial+intelligence+to+promote+precision+medicine+for+cancer&author=Chen,+M.H.&author=Zhou,+Y.K.&author=Lang,+J.Y.&author=Li,+L.J.&author=Zhang,+Y.&publication_year=2022&journal=Nano+Energy&volume=92&pages=106783&doi=10.1016/j.nanoen.2021.106783" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2021.106783" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B40-nanomaterials-14-01885' class='html-xx' data-content='40.'>Jiang, M.; Lu, Y.; Zhu, Z.Y.; Jia, W.Z. Advances in Smart Sensing and Medical Electronics by Self-Powered Sensors Based on Triboelectric Nanogenerators. <span class='html-italic'>Micromachines</span> <b>2021</b>, <span class='html-italic'>12</span>, 698. [<a href="https://scholar.google.com/scholar_lookup?title=Advances+in+Smart+Sensing+and+Medical+Electronics+by+Self-Powered+Sensors+Based+on+Triboelectric+Nanogenerators&author=Jiang,+M.&author=Lu,+Y.&author=Zhu,+Z.Y.&author=Jia,+W.Z.&publication_year=2021&journal=Micromachines&volume=12&pages=698&doi=10.3390/mi12060698" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/mi12060698" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B41-nanomaterials-14-01885' class='html-xx' data-content='41.'>Wu, J.J.; Lin, X.B.; Yang, C.K.; Yang, S.R.; Liu, C.N.; Cao, Y.Y. Wearable Sensors Based on Miniaturized High-Performance Hybrid Nanogenerator for Medical Health Monitoring. <span class='html-italic'>Biosensors</span> <b>2024</b>, <span class='html-italic'>14</span>, 361. [<a href="https://scholar.google.com/scholar_lookup?title=Wearable+Sensors+Based+on+Miniaturized+High-Performance+Hybrid+Nanogenerator+for+Medical+Health+Monitoring&author=Wu,+J.J.&author=Lin,+X.B.&author=Yang,+C.K.&author=Yang,+S.R.&author=Liu,+C.N.&author=Cao,+Y.Y.&publication_year=2024&journal=Biosensors&volume=14&pages=361&doi=10.3390/bios14080361&pmid=39194590" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/bios14080361" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/39194590" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B42-nanomaterials-14-01885' class='html-xx' data-content='42.'>Zhou, H.W.; Wang, Z.W.; Zhao, W.F.; Tong, X.M.; Jin, X.L.; Zhang, X.C.; Yu, Y.; Liu, H.B.; Ma, Y.C.; Li, S.S.; et al. Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers. <span class='html-italic'>Chem. Eng. J.</span> <b>2021</b>, <span class='html-italic'>403</span>, 126307. [<a href="https://scholar.google.com/scholar_lookup?title=Robust+and+sensitive+pressure/strain+sensors+from+solution+processable+composite+hydrogels+enhanced+by+hollow-structured+conducting+polymers&author=Zhou,+H.W.&author=Wang,+Z.W.&author=Zhao,+W.F.&author=Tong,+X.M.&author=Jin,+X.L.&author=Zhang,+X.C.&author=Yu,+Y.&author=Liu,+H.B.&author=Ma,+Y.C.&author=Li,+S.S.&publication_year=2021&journal=Chem.+Eng.+J.&volume=403&pages=126307&doi=10.1016/j.cej.2020.126307" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.cej.2020.126307" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B43-nanomaterials-14-01885' class='html-xx' data-content='43.'>Liu, Y.Q.; He, K.; Chen, G.; Leow, W.R.; Chen, X.D. Nature-Inspired Structural Materials for Flexible Electronic Devices. <span class='html-italic'>Chem. Rev.</span> <b>2017</b>, <span class='html-italic'>117</span>, 12893–12941. [<a href="https://scholar.google.com/scholar_lookup?title=Nature-Inspired+Structural+Materials+for+Flexible+Electronic+Devices&author=Liu,+Y.Q.&author=He,+K.&author=Chen,+G.&author=Leow,+W.R.&author=Chen,+X.D.&publication_year=2017&journal=Chem.+Rev.&volume=117&pages=12893%E2%80%9312941&doi=10.1021/acs.chemrev.7b00291&pmid=28991450" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acs.chemrev.7b00291" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/28991450" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B44-nanomaterials-14-01885' class='html-xx' data-content='44.'>Jian, G.; Zhu, S.T.; Yuan, X.; Fu, S.Q.; Yang, N.; Yan, C.; Wang, X.; Wong, C.P. Biodegradable triboelectric nanogenerator as a implantable power source for embedded medicine devices. <span class='html-italic'>NPG Asia Mater.</span> <b>2024</b>, <span class='html-italic'>16</span>, 12. [<a href="https://scholar.google.com/scholar_lookup?title=Biodegradable+triboelectric+nanogenerator+as+a+implantable+power+source+for+embedded+medicine+devices&author=Jian,+G.&author=Zhu,+S.T.&author=Yuan,+X.&author=Fu,+S.Q.&author=Yang,+N.&author=Yan,+C.&author=Wang,+X.&author=Wong,+C.P.&publication_year=2024&journal=NPG+Asia+Mater.&volume=16&pages=12&doi=10.1038/s41427-023-00528-2" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41427-023-00528-2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B45-nanomaterials-14-01885' class='html-xx' data-content='45.'>Baburaj, A.; Banerjee, S.; Aliyana, A.K.; Shee, C.; Banakar, M.; Bairagi, S.; Kumar, S.K.N.; Ali, S.W.; Stylios, G.K. Biodegradable based TENGs for self-sustaining implantable medical devices. <span class='html-italic'>Nano Energy</span> <b>2024</b>, <span class='html-italic'>127</span>, 109785. [<a href="https://scholar.google.com/scholar_lookup?title=Biodegradable+based+TENGs+for+self-sustaining+implantable+medical+devices&author=Baburaj,+A.&author=Banerjee,+S.&author=Aliyana,+A.K.&author=Shee,+C.&author=Banakar,+M.&author=Bairagi,+S.&author=Kumar,+S.K.N.&author=Ali,+S.W.&author=Stylios,+G.K.&publication_year=2024&journal=Nano+Energy&volume=127&pages=109785&doi=10.1016/j.nanoen.2024.109785" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2024.109785" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B46-nanomaterials-14-01885' class='html-xx' data-content='46.'>Zheng, Q.; Zou, Y.; Zhang, Y.L.; Liu, Z.; Shi, B.J.; Wang, X.X.; Jin, Y.M.; Ouyang, H.; Li, Z.; Wang, Z.L. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. <span class='html-italic'>Sci. Adv.</span> <b>2016</b>, <span class='html-italic'>2</span>, e1501478. [<a href="https://scholar.google.com/scholar_lookup?title=Biodegradable+triboelectric+nanogenerator+as+a+life-time+designed+implantable+power+source&author=Zheng,+Q.&author=Zou,+Y.&author=Zhang,+Y.L.&author=Liu,+Z.&author=Shi,+B.J.&author=Wang,+X.X.&author=Jin,+Y.M.&author=Ouyang,+H.&author=Li,+Z.&author=Wang,+Z.L.&publication_year=2016&journal=Sci.+Adv.&volume=2&pages=e1501478&doi=10.1126/sciadv.1501478" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1126/sciadv.1501478" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B47-nanomaterials-14-01885' class='html-xx' data-content='47.'>Fan, F.R.; Tang, W.; Wang, Z.L. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics. <span class='html-italic'>Adv. Mater.</span> <b>2016</b>, <span class='html-italic'>28</span>, 4283–4305. [<a href="https://scholar.google.com/scholar_lookup?title=Flexible+Nanogenerators+for+Energy+Harvesting+and+Self-Powered+Electronics&author=Fan,+F.R.&author=Tang,+W.&author=Wang,+Z.L.&publication_year=2016&journal=Adv.+Mater.&volume=28&pages=4283%E2%80%934305&doi=10.1002/adma.201504299" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adma.201504299" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B48-nanomaterials-14-01885' class='html-xx' data-content='48.'>Kim, D.W.; Lee, J.H.; Kim, J.K.; Jeong, U. Material aspects of triboelectric energy generation and sensors. <span class='html-italic'>NPG Asia Mater.</span> <b>2020</b>, <span class='html-italic'>12</span>, 6. [<a href="https://scholar.google.com/scholar_lookup?title=Material+aspects+of+triboelectric+energy+generation+and+sensors&author=Kim,+D.W.&author=Lee,+J.H.&author=Kim,+J.K.&author=Jeong,+U.&publication_year=2020&journal=NPG+Asia+Mater.&volume=12&pages=6&doi=10.1038/s41427-019-0176-0" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41427-019-0176-0" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B49-nanomaterials-14-01885' class='html-xx' data-content='49.'>Khandelwal, G.; Raj, N.; Kim, S.J. Triboelectric nanogenerator for healthcare and biomedical applications. <span class='html-italic'>Nano Today</span> <b>2020</b>, <span class='html-italic'>33</span>, 100882. [<a href="https://scholar.google.com/scholar_lookup?title=Triboelectric+nanogenerator+for+healthcare+and+biomedical+applications&author=Khandelwal,+G.&author=Raj,+N.&author=Kim,+S.J.&publication_year=2020&journal=Nano+Today&volume=33&pages=100882&doi=10.1016/j.nantod.2020.100882" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nantod.2020.100882" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B50-nanomaterials-14-01885' class='html-xx' data-content='50.'>Peng, X.; Dong, K.; Ning, C.A.; Cheng, R.W.; Yi, J.; Zhang, Y.H.; Sheng, F.F.; Wu, Z.Y.; Wang, Z.L. All-Nanofiber Self-Powered Skin-Interfaced Real-Time Respiratory Monitoring System for Obstructive Sleep Apnea-Hypopnea Syndrome Diagnosing. <span class='html-italic'>Adv. Funct. Mater.</span> <b>2021</b>, <span class='html-italic'>31</span>, 2103559. [<a href="https://scholar.google.com/scholar_lookup?title=All-Nanofiber+Self-Powered+Skin-Interfaced+Real-Time+Respiratory+Monitoring+System+for+Obstructive+Sleep+Apnea-Hypopnea+Syndrome+Diagnosing&author=Peng,+X.&author=Dong,+K.&author=Ning,+C.A.&author=Cheng,+R.W.&author=Yi,+J.&author=Zhang,+Y.H.&author=Sheng,+F.F.&author=Wu,+Z.Y.&author=Wang,+Z.L.&publication_year=2021&journal=Adv.+Funct.+Mater.&volume=31&pages=2103559&doi=10.1002/adfm.202103559" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adfm.202103559" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B51-nanomaterials-14-01885' class='html-xx' data-content='51.'>Lin, Z.M.; Wu, Z.Y.; Zhang, B.B.; Wang, Y.C.; Guo, H.Y.; Liu, G.L.; Chen, C.Y.; Chen, Y.L.; Yang, J.; Wang, Z.L. A Triboelectric Nanogenerator-Based Smart Insole for Multifunctional Gait Monitoring. <span class='html-italic'>Adv. Mater. Technol.</span> <b>2019</b>, <span class='html-italic'>4</span>, 1800360. [<a href="https://scholar.google.com/scholar_lookup?title=A+Triboelectric+Nanogenerator-Based+Smart+Insole+for+Multifunctional+Gait+Monitoring&author=Lin,+Z.M.&author=Wu,+Z.Y.&author=Zhang,+B.B.&author=Wang,+Y.C.&author=Guo,+H.Y.&author=Liu,+G.L.&author=Chen,+C.Y.&author=Chen,+Y.L.&author=Yang,+J.&author=Wang,+Z.L.&publication_year=2019&journal=Adv.+Mater.+Technol.&volume=4&pages=1800360&doi=10.1002/admt.201800360" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/admt.201800360" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B52-nanomaterials-14-01885' class='html-xx' data-content='52.'>Jiang, Y.; Dong, K.; An, J.; Liang, F.; Yi, J.; Peng, X.; Ning, C.; Ye, C.Y.; Wang, Z.L. UV-Protective, Self-Cleaning, and Antibacterial Nanofiber-Based Triboelectric Nanogenerators for Self-Powered Human Motion Monitoring. <span class='html-italic'>ACS Appl. Mater. Interfaces</span> <b>2021</b>, <span class='html-italic'>13</span>, 11205–11214. [<a href="https://scholar.google.com/scholar_lookup?title=UV-Protective,+Self-Cleaning,+and+Antibacterial+Nanofiber-Based+Triboelectric+Nanogenerators+for+Self-Powered+Human+Motion+Monitoring&author=Jiang,+Y.&author=Dong,+K.&author=An,+J.&author=Liang,+F.&author=Yi,+J.&author=Peng,+X.&author=Ning,+C.&author=Ye,+C.Y.&author=Wang,+Z.L.&publication_year=2021&journal=ACS+Appl.+Mater.+Interfaces&volume=13&pages=11205%E2%80%9311214&doi=10.1021/acsami.0c22670&pmid=33645227" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsami.0c22670" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/33645227" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B53-nanomaterials-14-01885' class='html-xx' data-content='53.'>Candido, I.C.M.; Oliveira, G.D.; Ribeiro, S.J.L.; Cavicchioli, M.; Barud, H.S.; Silva, L.G.; de Oliveira, H.P. PVA-silk fibroin bio-based triboelectric nanogenerator. <span class='html-italic'>Nano Energy</span> <b>2023</b>, <span class='html-italic'>105</span>, 108035. [<a href="https://scholar.google.com/scholar_lookup?title=PVA-silk+fibroin+bio-based+triboelectric+nanogenerator&author=Candido,+I.C.M.&author=Oliveira,+G.D.&author=Ribeiro,+S.J.L.&author=Cavicchioli,+M.&author=Barud,+H.S.&author=Silva,+L.G.&author=de+Oliveira,+H.P.&publication_year=2023&journal=Nano+Energy&volume=105&pages=108035&doi=10.1016/j.nanoen.2022.108035" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2022.108035" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B54-nanomaterials-14-01885' class='html-xx' data-content='54.'>Jiang, C.M.; He, C.X.; Lin, R.Z.; Li, X.J.; Zhao, Q.; Ying, Y.B.; Song, J.Z.; Ping, J.F. Engineering squandered plant protein into eco-friendly triboelectric films for highly efficient energy harvesting. <span class='html-italic'>Nano Energy</span> <b>2022</b>, <span class='html-italic'>101</span>, 107589. [<a href="https://scholar.google.com/scholar_lookup?title=Engineering+squandered+plant+protein+into+eco-friendly+triboelectric+films+for+highly+efficient+energy+harvesting&author=Jiang,+C.M.&author=He,+C.X.&author=Lin,+R.Z.&author=Li,+X.J.&author=Zhao,+Q.&author=Ying,+Y.B.&author=Song,+J.Z.&author=Ping,+J.F.&publication_year=2022&journal=Nano+Energy&volume=101&pages=107589&doi=10.1016/j.nanoen.2022.107589" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2022.107589" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B55-nanomaterials-14-01885' class='html-xx' data-content='55.'>Saqib, Q.M.; Chougale, M.Y.; Khan, M.U.; Shaukat, R.A.; Kim, J.; Bhat, K.S.; Bae, J. Triboelectric nanogenerator based on lignocellulosic waste fruit shell tribopositive material: Comparative analysis. <span class='html-italic'>Mater. Today Sustain.</span> <b>2022</b>, <span class='html-italic'>18</span>, 100146. [<a href="https://scholar.google.com/scholar_lookup?title=Triboelectric+nanogenerator+based+on+lignocellulosic+waste+fruit+shell+tribopositive+material:+Comparative+analysis&author=Saqib,+Q.M.&author=Chougale,+M.Y.&author=Khan,+M.U.&author=Shaukat,+R.A.&author=Kim,+J.&author=Bhat,+K.S.&author=Bae,+J.&publication_year=2022&journal=Mater.+Today+Sustain.&volume=18&pages=100146&doi=10.1016/j.mtsust.2022.100146" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.mtsust.2022.100146" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B56-nanomaterials-14-01885' class='html-xx' data-content='56.'>Yue, J.J.; Huang, Y.; Teng, Y.L.; Fan, R.C.; Li, C.; Lv, Y.N.; Tao, Y.H.; Lu, J.; Du, J.; Wang, H.S. Carboxymethyl cellulose-based hydrogel with high-density crack microstructures inspired from the multi-tentacles of octopus for ultrasensitive flexible sensing microsystem. <span class='html-italic'>Int. J. Biol. Macromol.</span> <b>2024</b>, <span class='html-italic'>261</span>, 129533. [<a href="https://scholar.google.com/scholar_lookup?title=Carboxymethyl+cellulose-based+hydrogel+with+high-density+crack+microstructures+inspired+from+the+multi-tentacles+of+octopus+for+ultrasensitive+flexible+sensing+microsystem&author=Yue,+J.J.&author=Huang,+Y.&author=Teng,+Y.L.&author=Fan,+R.C.&author=Li,+C.&author=Lv,+Y.N.&author=Tao,+Y.H.&author=Lu,+J.&author=Du,+J.&author=Wang,+H.S.&publication_year=2024&journal=Int.+J.+Biol.+Macromol.&volume=261&pages=129533&doi=10.1016/j.ijbiomac.2024.129533" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ijbiomac.2024.129533" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B57-nanomaterials-14-01885' class='html-xx' data-content='57.'>Tan, D.; Xu, B.G.; Gao, Y.Y.; Tang, Y.; Liu, Y.F.; Yang, Y.J.; Li, Z.H. Breathable fabric-based triboelectric nanogenerators with open-porous architected polydimethylsiloxane coating for wearable applications. <span class='html-italic'>Nano Energy</span> <b>2022</b>, <span class='html-italic'>104</span>, 107873. [<a href="https://scholar.google.com/scholar_lookup?title=Breathable+fabric-based+triboelectric+nanogenerators+with+open-porous+architected+polydimethylsiloxane+coating+for+wearable+applications&author=Tan,+D.&author=Xu,+B.G.&author=Gao,+Y.Y.&author=Tang,+Y.&author=Liu,+Y.F.&author=Yang,+Y.J.&author=Li,+Z.H.&publication_year=2022&journal=Nano+Energy&volume=104&pages=107873&doi=10.1016/j.nanoen.2022.107873" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2022.107873" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B58-nanomaterials-14-01885' class='html-xx' data-content='58.'>Fu, K.; Zhou, J.; Wu, H.U.; Su, Z.Q. Fibrous self-powered sensor with high stretchability for physiological information monitoring. <span class='html-italic'>Nano Energy</span> <b>2021</b>, <span class='html-italic'>88</span>, 106258. [<a href="https://scholar.google.com/scholar_lookup?title=Fibrous+self-powered+sensor+with+high+stretchability+for+physiological+information+monitoring&author=Fu,+K.&author=Zhou,+J.&author=Wu,+H.U.&author=Su,+Z.Q.&publication_year=2021&journal=Nano+Energy&volume=88&pages=106258&doi=10.1016/j.nanoen.2021.106258" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2021.106258" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B59-nanomaterials-14-01885' class='html-xx' data-content='59.'>Jiang, J.X.; Guan, Q.B.; Liu, Y.N.; Sun, X.H.; Wen, Z. Abrasion and Fracture Self-Healable Triboelectric Nanogenerator with Ultrahigh Stretchability and Long-Term Durability. <span class='html-italic'>Adv. Funct. Mater.</span> <b>2021</b>, <span class='html-italic'>31</span>, 2105380. [<a href="https://scholar.google.com/scholar_lookup?title=Abrasion+and+Fracture+Self-Healable+Triboelectric+Nanogenerator+with+Ultrahigh+Stretchability+and+Long-Term+Durability&author=Jiang,+J.X.&author=Guan,+Q.B.&author=Liu,+Y.N.&author=Sun,+X.H.&author=Wen,+Z.&publication_year=2021&journal=Adv.+Funct.+Mater.&volume=31&pages=2105380&doi=10.1002/adfm.202105380" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adfm.202105380" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B60-nanomaterials-14-01885' class='html-xx' data-content='60.'>Kim, J.N.; Lee, J.; Lee, H.; Oh, I.K. Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at Parkinson disease. <span class='html-italic'>Nano Energy</span> <b>2021</b>, <span class='html-italic'>82</span>, 105705. [<a href="https://scholar.google.com/scholar_lookup?title=Stretchable+and+self-healable+catechol-chitosan-diatom+hydrogel+for+triboelectric+generator+and+self-powered+tremor+sensor+targeting+at+Parkinson+disease&author=Kim,+J.N.&author=Lee,+J.&author=Lee,+H.&author=Oh,+I.K.&publication_year=2021&journal=Nano+Energy&volume=82&pages=105705&doi=10.1016/j.nanoen.2020.105705" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2020.105705" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B61-nanomaterials-14-01885' class='html-xx' data-content='61.'>Tufan, Y.; Öztatli, H.; Doganay, D.; Buyuksungur, A.; Cicek, M.O.; Dös, I.T.; Berberoglu, Ç.; Unalan, H.E.; Garipcan, B.; Ercan, B. Multifunctional Silk Fibroin/Carbon Nanofiber Scaffolds for In Vitro Cardiomyogenic Differentiation of Induced Pluripotent Stem Cells and Energy Harvesting from Simulated Cardiac Motion. <span class='html-italic'>ACS Appl. Mater. Interfaces</span> <b>2023</b>, <span class='html-italic'>15</span>, 42271–42283. [<a href="https://scholar.google.com/scholar_lookup?title=Multifunctional+Silk+Fibroin/Carbon+Nanofiber+Scaffolds+for+In+Vitro+Cardiomyogenic+Differentiation+of+Induced+Pluripotent+Stem+Cells+and+Energy+Harvesting+from+Simulated+Cardiac+Motion&author=Tufan,+Y.&author=%C3%96ztatli,+H.&author=Doganay,+D.&author=Buyuksungur,+A.&author=Cicek,+M.O.&author=D%C3%B6s,+I.T.&author=Berberoglu,+%C3%87.&author=Unalan,+H.E.&author=Garipcan,+B.&author=Ercan,+B.&publication_year=2023&journal=ACS+Appl.+Mater.+Interfaces&volume=15&pages=42271%E2%80%9342283&doi=10.1021/acsami.3c08601&pmid=37643896" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsami.3c08601" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/37643896" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B62-nanomaterials-14-01885' class='html-xx' data-content='62.'>Gao, C.X.; Tong, W.S.; Liu, S.L.; Wang, X.M.; Zhang, Y.H. Fully degradable chitosan-based triboelectric nanogenerators applying in disposable medical products for information transfer. <span class='html-italic'>Nano Energy</span> <b>2023</b>, <span class='html-italic'>117</span>, 108876. [<a href="https://scholar.google.com/scholar_lookup?title=Fully+degradable+chitosan-based+triboelectric+nanogenerators+applying+in+disposable+medical+products+for+information+transfer&author=Gao,+C.X.&author=Tong,+W.S.&author=Liu,+S.L.&author=Wang,+X.M.&author=Zhang,+Y.H.&publication_year=2023&journal=Nano+Energy&volume=117&pages=108876&doi=10.1016/j.nanoen.2023.108876" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2023.108876" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B63-nanomaterials-14-01885' class='html-xx' data-content='63.'>Sheng, F.F.; Zhang, B.; Zhang, Y.H.; Li, Y.Y.; Cheng, R.W.; Wei, C.H.; Ning, C.; Dong, K.; Wang, Z.L. Ultrastretchable Organogel/Silicone Fiber-Helical Sensors for Self-Powered Implantable Ligament Strain Monitoring. <span class='html-italic'>Acs Nano</span> <b>2022</b>, <span class='html-italic'>16</span>, 10958–10967. [<a href="https://scholar.google.com/scholar_lookup?title=Ultrastretchable+Organogel/Silicone+Fiber-Helical+Sensors+for+Self-Powered+Implantable+Ligament+Strain+Monitoring&author=Sheng,+F.F.&author=Zhang,+B.&author=Zhang,+Y.H.&author=Li,+Y.Y.&author=Cheng,+R.W.&author=Wei,+C.H.&author=Ning,+C.&author=Dong,+K.&author=Wang,+Z.L.&publication_year=2022&journal=Acs+Nano&volume=16&pages=10958%E2%80%9310967&doi=10.1021/acsnano.2c03365&pmid=35775629" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsnano.2c03365" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/35775629" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B64-nanomaterials-14-01885' class='html-xx' data-content='64.'>Niu, Q.Q.; Huang, L.; Lv, S.S.; Shao, H.L.; Fan, S.N.; Zhang, Y.P. Pulse-driven bio-triboelectric nanogenerator based on silk nanoribbons. <span class='html-italic'>Nano Energy</span> <b>2020</b>, <span class='html-italic'>74</span>, 104837. [<a href="https://scholar.google.com/scholar_lookup?title=Pulse-driven+bio-triboelectric+nanogenerator+based+on+silk+nanoribbons&author=Niu,+Q.Q.&author=Huang,+L.&author=Lv,+S.S.&author=Shao,+H.L.&author=Fan,+S.N.&author=Zhang,+Y.P.&publication_year=2020&journal=Nano+Energy&volume=74&pages=104837&doi=10.1016/j.nanoen.2020.104837" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2020.104837" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B65-nanomaterials-14-01885' class='html-xx' data-content='65.'>Rajabi-Abhari, A.; Kim, J.N.; Lee, J.; Tabassian, R.; Mahato, M.; Youn, H.J.; Lee, H.; Oh, I.K. Diatom Bio-Silica and Cellulose Nanofibril for Bio-Triboelectric Nanogenerators and Self-Powered Breath Monitoring Masks. <span class='html-italic'>ACS Appl. Mater. Interfaces</span> <b>2021</b>, <span class='html-italic'>13</span>, 219–232. [<a href="https://scholar.google.com/scholar_lookup?title=Diatom+Bio-Silica+and+Cellulose+Nanofibril+for+Bio-Triboelectric+Nanogenerators+and+Self-Powered+Breath+Monitoring+Masks&author=Rajabi-Abhari,+A.&author=Kim,+J.N.&author=Lee,+J.&author=Tabassian,+R.&author=Mahato,+M.&author=Youn,+H.J.&author=Lee,+H.&author=Oh,+I.K.&publication_year=2021&journal=ACS+Appl.+Mater.+Interfaces&volume=13&pages=219%E2%80%93232&doi=10.1021/acsami.0c18227&pmid=33375776" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsami.0c18227" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/33375776" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B66-nanomaterials-14-01885' class='html-xx' data-content='66.'>Saadatnia, Z.; Mosanenzadeh, S.G.; Esmailzadeh, E.; Naguib, H. Performance-enhanced triboelectric nanogenerator using polyimide aerogel for energy harvesting and sensing. In Proceedings of the Conference on Smart Materials and Nondestructive Evaluation for Energy Systems IV, Denver, CO, USA, 5–6 March 2018. [<a href="https://scholar.google.com/scholar_lookup?title=Performance-enhanced+triboelectric+nanogenerator+using+polyimide+aerogel+for+energy+harvesting+and+sensing&conference=Proceedings+of+the+Conference+on+Smart+Materials+and+Nondestructive+Evaluation+for+Energy+Systems+IV&author=Saadatnia,+Z.&author=Mosanenzadeh,+S.G.&author=Esmailzadeh,+E.&author=Naguib,+H.&publication_year=2018" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B67-nanomaterials-14-01885' class='html-xx' data-content='67.'>Lone, S.A.; Lim, K.C.; Kaswan, K.; Chatterjee, S.; Fan, K.P.; Choi, D.; Lee, S.; Zhang, H.L.; Cheng, J.; Lin, Z.H. Recent advancements for improving the performance of triboelectric nanogenerator devices. <span class='html-italic'>Nano Energy</span> <b>2022</b>, <span class='html-italic'>99</span>, 107318. [<a href="https://scholar.google.com/scholar_lookup?title=Recent+advancements+for+improving+the+performance+of+triboelectric+nanogenerator+devices&author=Lone,+S.A.&author=Lim,+K.C.&author=Kaswan,+K.&author=Chatterjee,+S.&author=Fan,+K.P.&author=Choi,+D.&author=Lee,+S.&author=Zhang,+H.L.&author=Cheng,+J.&author=Lin,+Z.H.&publication_year=2022&journal=Nano+Energy&volume=99&pages=107318&doi=10.1016/j.nanoen.2022.107318" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2022.107318" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B68-nanomaterials-14-01885' class='html-xx' data-content='68.'>Peng, F.; Liu, D.; Zhao, W.; Zheng, G.Q.; Ji, Y.X.; Dai, K.; Mi, L.W.; Zhang, D.B.; Liu, C.T.; Shen, C.Y. Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing. <span class='html-italic'>Nano Energy</span> <b>2019</b>, <span class='html-italic'>65</span>, 104068. [<a href="https://scholar.google.com/scholar_lookup?title=Facile+fabrication+of+triboelectric+nanogenerator+based+on+low-cost+thermoplastic+polymeric+fabrics+for+large-area+energy+harvesting+and+self-powered+sensing&author=Peng,+F.&author=Liu,+D.&author=Zhao,+W.&author=Zheng,+G.Q.&author=Ji,+Y.X.&author=Dai,+K.&author=Mi,+L.W.&author=Zhang,+D.B.&author=Liu,+C.T.&author=Shen,+C.Y.&publication_year=2019&journal=Nano+Energy&volume=65&pages=104068&doi=10.1016/j.nanoen.2019.104068" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2019.104068" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B69-nanomaterials-14-01885' class='html-xx' data-content='69.'>Wu, C.; Kima, T.W.; Sung, S.; Park, J.H.; Li, F.S. Ultrasoft and cuttable paper-based triboelectric nanogenerators for mechanical energy harvesting. <span class='html-italic'>Nano Energy</span> <b>2018</b>, <span class='html-italic'>44</span>, 279–287. [<a href="https://scholar.google.com/scholar_lookup?title=Ultrasoft+and+cuttable+paper-based+triboelectric+nanogenerators+for+mechanical+energy+harvesting&author=Wu,+C.&author=Kima,+T.W.&author=Sung,+S.&author=Park,+J.H.&author=Li,+F.S.&publication_year=2018&journal=Nano+Energy&volume=44&pages=279%E2%80%93287&doi=10.1016/j.nanoen.2017.11.080" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2017.11.080" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B70-nanomaterials-14-01885' class='html-xx' data-content='70.'>Ryu, H.; Park, H.M.; Kim, M.K.; Kim, B.; Myoung, H.S.; Kim, T.Y.; Yoon, H.J.; Kwak, S.S.; Kim, J.; Hwang, T.H.; et al. Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. <span class='html-italic'>Nat. Commun.</span> <b>2021</b>, <span class='html-italic'>12</span>, 4374. [<a href="https://scholar.google.com/scholar_lookup?title=Self-rechargeable+cardiac+pacemaker+system+with+triboelectric+nanogenerators&author=Ryu,+H.&author=Park,+H.M.&author=Kim,+M.K.&author=Kim,+B.&author=Myoung,+H.S.&author=Kim,+T.Y.&author=Yoon,+H.J.&author=Kwak,+S.S.&author=Kim,+J.&author=Hwang,+T.H.&publication_year=2021&journal=Nat.+Commun.&volume=12&pages=4374&doi=10.1038/s41467-021-24417-w" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41467-021-24417-w" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B71-nanomaterials-14-01885' class='html-xx' data-content='71.'>Mathew, A.A.; Chandrasekhar, A.; Vivekanandan, S. A review on real-time implantable and wearable health monitoring sensors based on triboelectric nanogenerator approach. <span class='html-italic'>Nano Energy</span> <b>2021</b>, <span class='html-italic'>80</span>, 105566. [<a href="https://scholar.google.com/scholar_lookup?title=A+review+on+real-time+implantable+and+wearable+health+monitoring+sensors+based+on+triboelectric+nanogenerator+approach&author=Mathew,+A.A.&author=Chandrasekhar,+A.&author=Vivekanandan,+S.&publication_year=2021&journal=Nano+Energy&volume=80&pages=105566&doi=10.1016/j.nanoen.2020.105566" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2020.105566" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B72-nanomaterials-14-01885' class='html-xx' data-content='72.'>Sardana, S.; Singh, Z.; Sharma, A.K.; Kaur, N.; Pati, P.K.; Mahajan, A. Self-powered biocompatible humidity sensor based on an electrospun anisotropic triboelectric nanogenerator for non-invasive diagnostic applications. <span class='html-italic'>Sens. Actuators B-Chem.</span> <b>2022</b>, <span class='html-italic'>371</span>, 132507. [<a href="https://scholar.google.com/scholar_lookup?title=Self-powered+biocompatible+humidity+sensor+based+on+an+electrospun+anisotropic+triboelectric+nanogenerator+for+non-invasive+diagnostic+applications&author=Sardana,+S.&author=Singh,+Z.&author=Sharma,+A.K.&author=Kaur,+N.&author=Pati,+P.K.&author=Mahajan,+A.&publication_year=2022&journal=Sens.+Actuators+B-Chem.&volume=371&pages=132507&doi=10.1016/j.snb.2022.132507" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.snb.2022.132507" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B73-nanomaterials-14-01885' class='html-xx' data-content='73.'>Yang, P.; Shi, Y.X.; Li, S.Y.; Tao, X.L.; Liu, Z.Q.; Wang, X.L.; Wang, Z.L.; Chen, X.Y. Monitoring the Degree of Comfort of Shoes In-Motion Using Triboelectric Pressure Sensors with an Ultrawide Detection Range. <span class='html-italic'>Acs Nano</span> <b>2022</b>, <span class='html-italic'>16</span>, 4654–4665. [<a href="https://scholar.google.com/scholar_lookup?title=Monitoring+the+Degree+of+Comfort+of+Shoes+In-Motion+Using+Triboelectric+Pressure+Sensors+with+an+Ultrawide+Detection+Range&author=Yang,+P.&author=Shi,+Y.X.&author=Li,+S.Y.&author=Tao,+X.L.&author=Liu,+Z.Q.&author=Wang,+X.L.&author=Wang,+Z.L.&author=Chen,+X.Y.&publication_year=2022&journal=Acs+Nano&volume=16&pages=4654%E2%80%934665&doi=10.1021/acsnano.1c11321&pmid=35171554" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsnano.1c11321" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/35171554" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B74-nanomaterials-14-01885' class='html-xx' data-content='74.'>McCarty, L.S.; Whitesides, G.M. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. <span class='html-italic'>Angew. Chem.-Int. Ed.</span> <b>2008</b>, <span class='html-italic'>47</span>, 2188–2207. [<a href="https://scholar.google.com/scholar_lookup?title=Electrostatic+charging+due+to+separation+of+ions+at+interfaces:+Contact+electrification+of+ionic+electrets&author=McCarty,+L.S.&author=Whitesides,+G.M.&publication_year=2008&journal=Angew.+Chem.-Int.+Ed.&volume=47&pages=2188%E2%80%932207&doi=10.1002/anie.200701812" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/anie.200701812" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B75-nanomaterials-14-01885' class='html-xx' data-content='75.'>Lacks, D.J.; Sankaran, R.M. Contact electrification of insulating materials. <span class='html-italic'>J. Phys. D-Appl. Phys.</span> <b>2011</b>, <span class='html-italic'>44</span>, 453001. [<a href="https://scholar.google.com/scholar_lookup?title=Contact+electrification+of+insulating+materials&author=Lacks,+D.J.&author=Sankaran,+R.M.&publication_year=2011&journal=J.+Phys.+D-Appl.+Phys.&volume=44&pages=453001&doi=10.1088/0022-3727/44/45/453001" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1088/0022-3727/44/45/453001" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B76-nanomaterials-14-01885' class='html-xx' data-content='76.'>Wang, Z.L. Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors. <span class='html-italic'>Acs Nano</span> <b>2013</b>, <span class='html-italic'>7</span>, 9533–9557. [<a href="https://scholar.google.com/scholar_lookup?title=Triboelectric+Nanogenerators+as+New+Energy+Technology+for+Self-Powered+Systems+and+as+Active+Mechanical+and+Chemical+Sensors&author=Wang,+Z.L.&publication_year=2013&journal=Acs+Nano&volume=7&pages=9533%E2%80%939557&doi=10.1021/nn404614z&pmid=24079963" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/nn404614z" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/24079963" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B77-nanomaterials-14-01885' class='html-xx' data-content='77.'>Wang, Z.L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. <span class='html-italic'>Faraday Discuss.</span> <b>2014</b>, <span class='html-italic'>176</span>, 447–458. [<a href="https://scholar.google.com/scholar_lookup?title=Triboelectric+nanogenerators+as+new+energy+technology+and+self-powered+sensors%E2%80%94Principles,+problems+and+perspectives&author=Wang,+Z.L.&publication_year=2014&journal=Faraday+Discuss.&volume=176&pages=447%E2%80%93458&doi=10.1039/C4FD00159A" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/C4FD00159A" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B78-nanomaterials-14-01885' class='html-xx' data-content='78.'>Thomas, S.W.; Vella, S.L.; Kaufman, G.K.; Whitesides, G.M. Patterns of electrostatic charge and discharge in contact electrification. <span class='html-italic'>Angew. Chem.-Int. Ed.</span> <b>2008</b>, <span class='html-italic'>47</span>, 6654–6656. [<a href="https://scholar.google.com/scholar_lookup?title=Patterns+of+electrostatic+charge+and+discharge+in+contact+electrification&author=Thomas,+S.W.&author=Vella,+S.L.&author=Kaufman,+G.K.&author=Whitesides,+G.M.&publication_year=2008&journal=Angew.+Chem.-Int.+Ed.&volume=47&pages=6654%E2%80%936656&doi=10.1002/anie.200802062" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/anie.200802062" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B79-nanomaterials-14-01885' class='html-xx' data-content='79.'>Wang, S.H.; Lin, L.; Wang, Z.L. Triboelectric nanogenerators as self-powered active sensors. <span class='html-italic'>Nano Energy</span> <b>2015</b>, <span class='html-italic'>11</span>, 436–462. [<a href="https://scholar.google.com/scholar_lookup?title=Triboelectric+nanogenerators+as+self-powered+active+sensors&author=Wang,+S.H.&author=Lin,+L.&author=Wang,+Z.L.&publication_year=2015&journal=Nano+Energy&volume=11&pages=436%E2%80%93462&doi=10.1016/j.nanoen.2014.10.034" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2014.10.034" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B80-nanomaterials-14-01885' class='html-xx' data-content='80.'>Wen, Z.; Shen, Q.Q.; Sun, X.H. Nanogenerators for Self-Powered Gas Sensing. <span class='html-italic'>Nano-Micro Lett.</span> <b>2017</b>, <span class='html-italic'>9</span>, 45. [<a href="https://scholar.google.com/scholar_lookup?title=Nanogenerators+for+Self-Powered+Gas+Sensing&author=Wen,+Z.&author=Shen,+Q.Q.&author=Sun,+X.H.&publication_year=2017&journal=Nano-Micro+Lett.&volume=9&pages=45&doi=10.1007/s40820-017-0146-4" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s40820-017-0146-4" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B81-nanomaterials-14-01885' class='html-xx' data-content='81.'>Askari, H.; Hashemi, E.; Khajepour, A.; Khamesee, M.B.; Wang, Z.L. Towards self-powered sensing using nanogenerators for automotive systems. <span class='html-italic'>Nano Energy</span> <b>2018</b>, <span class='html-italic'>53</span>, 1003–1019. [<a href="https://scholar.google.com/scholar_lookup?title=Towards+self-powered+sensing+using+nanogenerators+for+automotive+systems&author=Askari,+H.&author=Hashemi,+E.&author=Khajepour,+A.&author=Khamesee,+M.B.&author=Wang,+Z.L.&publication_year=2018&journal=Nano+Energy&volume=53&pages=1003%E2%80%931019&doi=10.1016/j.nanoen.2018.09.032" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2018.09.032" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B82-nanomaterials-14-01885' class='html-xx' data-content='82.'>Kim, W.G.; Kim, D.W.; Tcho, I.W.; Kim, J.K.; Kim, M.S.; Choi, Y.K. Triboelectric Nanogenerator: Structure, Mechanism, and Applications. <span class='html-italic'>Acs Nano</span> <b>2021</b>, <span class='html-italic'>15</span>, 258–287. [<a href="https://scholar.google.com/scholar_lookup?title=Triboelectric+Nanogenerator:+Structure,+Mechanism,+and+Applications&author=Kim,+W.G.&author=Kim,+D.W.&author=Tcho,+I.W.&author=Kim,+J.K.&author=Kim,+M.S.&author=Choi,+Y.K.&publication_year=2021&journal=Acs+Nano&volume=15&pages=258%E2%80%93287&doi=10.1021/acsnano.0c09803&pmid=33427457" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsnano.0c09803" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/33427457" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B83-nanomaterials-14-01885' class='html-xx' data-content='83.'>Zhang, Z.; Zhang, Q.L.; Zhou, Z.; Wang, J.; Kuang, H.Z.; Shen, Q.H.; Yang, H. High-power triboelectric nanogenerators by using in-situ carbon dispersion method for energy harvesting and self-powered wireless control. <span class='html-italic'>Nano Energy</span> <b>2022</b>, <span class='html-italic'>101</span>, 107561. [<a href="https://scholar.google.com/scholar_lookup?title=High-power+triboelectric+nanogenerators+by+using+in-situ+carbon+dispersion+method+for+energy+harvesting+and+self-powered+wireless+control&author=Zhang,+Z.&author=Zhang,+Q.L.&author=Zhou,+Z.&author=Wang,+J.&author=Kuang,+H.Z.&author=Shen,+Q.H.&author=Yang,+H.&publication_year=2022&journal=Nano+Energy&volume=101&pages=107561&doi=10.1016/j.nanoen.2022.107561" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2022.107561" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B84-nanomaterials-14-01885' class='html-xx' data-content='84.'>Wang, S.H.; Lin, L.; Xie, Y.N.; Jing, Q.S.; Niu, S.M.; Wang, Z.L. Sliding-Triboelectric Nanogenerators Based on In-Plane Charge-Separation Mechanism. <span class='html-italic'>Nano Lett.</span> <b>2013</b>, <span class='html-italic'>13</span>, 2226–2233. [<a href="https://scholar.google.com/scholar_lookup?title=Sliding-Triboelectric+Nanogenerators+Based+on+In-Plane+Charge-Separation+Mechanism&author=Wang,+S.H.&author=Lin,+L.&author=Xie,+Y.N.&author=Jing,+Q.S.&author=Niu,+S.M.&author=Wang,+Z.L.&publication_year=2013&journal=Nano+Lett.&volume=13&pages=2226%E2%80%932233&doi=10.1021/nl400738p&pmid=23581714" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/nl400738p" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/23581714" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B85-nanomaterials-14-01885' class='html-xx' data-content='85.'>Li, Y.; Zheng, W.; Zhang, H.D.; Wang, H.Q.; Cai, H.; Zhang, Y.X.; Yang, Z.Q. Electron transfer mechanism of graphene/Cu heterostructure for improving the stability of triboelectric nanogenerators. <span class='html-italic'>Nano Energy</span> <b>2020</b>, <span class='html-italic'>70</span>, 104540. [<a href="https://scholar.google.com/scholar_lookup?title=Electron+transfer+mechanism+of+graphene/Cu+heterostructure+for+improving+the+stability+of+triboelectric+nanogenerators&author=Li,+Y.&author=Zheng,+W.&author=Zhang,+H.D.&author=Wang,+H.Q.&author=Cai,+H.&author=Zhang,+Y.X.&author=Yang,+Z.Q.&publication_year=2020&journal=Nano+Energy&volume=70&pages=104540&doi=10.1016/j.nanoen.2020.104540" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2020.104540" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B86-nanomaterials-14-01885' class='html-xx' data-content='86.'>Sun, H.L.; Zhao, Y.; Jiao, S.L.; Wang, C.F.; Jia, Y.P.; Dai, K.; Zheng, G.Q.; Liu, C.T.; Wan, P.B.; Shen, C.Y. Environment Tolerant Conductive Nanocomposite Organohydrogels as Flexible Strain Sensors and Power Sources for Sustainable Electronics. <span class='html-italic'>Adv. Funct. Mater.</span> <b>2021</b>, <span class='html-italic'>31</span>, 2101696. [<a href="https://scholar.google.com/scholar_lookup?title=Environment+Tolerant+Conductive+Nanocomposite+Organohydrogels+as+Flexible+Strain+Sensors+and+Power+Sources+for+Sustainable+Electronics&author=Sun,+H.L.&author=Zhao,+Y.&author=Jiao,+S.L.&author=Wang,+C.F.&author=Jia,+Y.P.&author=Dai,+K.&author=Zheng,+G.Q.&author=Liu,+C.T.&author=Wan,+P.B.&author=Shen,+C.Y.&publication_year=2021&journal=Adv.+Funct.+Mater.&volume=31&pages=2101696&doi=10.1002/adfm.202101696" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adfm.202101696" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B87-nanomaterials-14-01885' class='html-xx' data-content='87.'>Wang, S.H.; Xie, Y.N.; Niu, S.M.; Lin, L.; Wang, Z.L. Freestanding Triboelectric-Layer-Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non-contact Modes. <span class='html-italic'>Adv. Mater.</span> <b>2014</b>, <span class='html-italic'>26</span>, 2818–2824. [<a href="https://scholar.google.com/scholar_lookup?title=Freestanding+Triboelectric-Layer-Based+Nanogenerators+for+Harvesting+Energy+from+a+Moving+Object+or+Human+Motion+in+Contact+and+Non-contact+Modes&author=Wang,+S.H.&author=Xie,+Y.N.&author=Niu,+S.M.&author=Lin,+L.&author=Wang,+Z.L.&publication_year=2014&journal=Adv.+Mater.&volume=26&pages=2818%E2%80%932824&doi=10.1002/adma.201305303" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adma.201305303" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B88-nanomaterials-14-01885' class='html-xx' data-content='88.'>Cheng, J.; Ding, W.B.; Zi, Y.L.; Lu, Y.J.; Ji, L.H.; Liu, F.; Wu, C.S.; Wang, Z.L. Triboelectric microplasma powered by mechanical stimuli. <span class='html-italic'>Nat. Commun.</span> <b>2018</b>, <span class='html-italic'>9</span>, 3733. [<a href="https://scholar.google.com/scholar_lookup?title=Triboelectric+microplasma+powered+by+mechanical+stimuli&author=Cheng,+J.&author=Ding,+W.B.&author=Zi,+Y.L.&author=Lu,+Y.J.&author=Ji,+L.H.&author=Liu,+F.&author=Wu,+C.S.&author=Wang,+Z.L.&publication_year=2018&journal=Nat.+Commun.&volume=9&pages=3733&doi=10.1038/s41467-018-06198-x&pmid=30213932" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41467-018-06198-x" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/30213932" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B89-nanomaterials-14-01885' class='html-xx' data-content='89.'>Bhatta, T.; Sharma, S.; Shrestha, K.; Shin, Y.; Seonu, S.; Lee, S.; Kim, D.; Sharifuzzaman, M.; Rana, S.M.S.; Park, J.Y. Siloxene/PVDF Composite Nanofibrous Membrane for High-Performance Triboelectric Nanogenerator and Self-Powered Static and Dynamic Pressure Sensing Applications. <span class='html-italic'>Adv. Funct. Mater.</span> <b>2022</b>, <span class='html-italic'>32</span>, 2202145. [<a href="https://scholar.google.com/scholar_lookup?title=Siloxene/PVDF+Composite+Nanofibrous+Membrane+for+High-Performance+Triboelectric+Nanogenerator+and+Self-Powered+Static+and+Dynamic+Pressure+Sensing+Applications&author=Bhatta,+T.&author=Sharma,+S.&author=Shrestha,+K.&author=Shin,+Y.&author=Seonu,+S.&author=Lee,+S.&author=Kim,+D.&author=Sharifuzzaman,+M.&author=Rana,+S.M.S.&author=Park,+J.Y.&publication_year=2022&journal=Adv.+Funct.+Mater.&volume=32&pages=2202145&doi=10.1002/adfm.202202145" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adfm.202202145" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B90-nanomaterials-14-01885' class='html-xx' data-content='90.'>Hao, Y.J.; Yang, J.Y.; Niu, Z.H.; Wang, M.Q.; Liu, H.P.; Qin, Y.; Zhang, C.G.; Li, X.H. High-output triboelectric nanogenerator based on L-cystine/nylon composite nanofiber for human bio-mechanical energy harvesting. <span class='html-italic'>Nano Energy</span> <b>2023</b>, <span class='html-italic'>118</span>, 108964. [<a href="https://scholar.google.com/scholar_lookup?title=High-output+triboelectric+nanogenerator+based+on+L-cystine/nylon+composite+nanofiber+for+human+bio-mechanical+energy+harvesting&author=Hao,+Y.J.&author=Yang,+J.Y.&author=Niu,+Z.H.&author=Wang,+M.Q.&author=Liu,+H.P.&author=Qin,+Y.&author=Zhang,+C.G.&author=Li,+X.H.&publication_year=2023&journal=Nano+Energy&volume=118&pages=108964&doi=10.1016/j.nanoen.2023.108964" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2023.108964" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B91-nanomaterials-14-01885' class='html-xx' data-content='91.'>Wu, Y.H.; Luo, Y.; Qu, J.K.; Daoud, W.A.; Qi, T. Nanogap and Environmentally Stable Triboelectric Nanogenerators Based on Surface Self-Modified Sustainable Films. <span class='html-italic'>ACS Appl. Mater. Interfaces</span> <b>2020</b>, <span class='html-italic'>12</span>, 55444–55452. [<a href="https://scholar.google.com/scholar_lookup?title=Nanogap+and+Environmentally+Stable+Triboelectric+Nanogenerators+Based+on+Surface+Self-Modified+Sustainable+Films&author=Wu,+Y.H.&author=Luo,+Y.&author=Qu,+J.K.&author=Daoud,+W.A.&author=Qi,+T.&publication_year=2020&journal=ACS+Appl.+Mater.+Interfaces&volume=12&pages=55444%E2%80%9355452&doi=10.1021/acsami.0c16671" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsami.0c16671" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B92-nanomaterials-14-01885' class='html-xx' data-content='92.'>Kim, H.; Choi, S.; Hong, Y.; Chung, J.; Choi, J.; Choi, W.K.; Park, I.W.; Park, S.H.; Park, H.; Chung, W.J.; et al. Biocompatible and biodegradable triboelectric nanogenerators based on hyaluronic acid hydrogel film. <span class='html-italic'>Appl. Mater. Today</span> <b>2021</b>, <span class='html-italic'>22</span>, 100920. [<a href="https://scholar.google.com/scholar_lookup?title=Biocompatible+and+biodegradable+triboelectric+nanogenerators+based+on+hyaluronic+acid+hydrogel+film&author=Kim,+H.&author=Choi,+S.&author=Hong,+Y.&author=Chung,+J.&author=Choi,+J.&author=Choi,+W.K.&author=Park,+I.W.&author=Park,+S.H.&author=Park,+H.&author=Chung,+W.J.&publication_year=2021&journal=Appl.+Mater.+Today&volume=22&pages=100920&doi=10.1016/j.apmt.2020.100920" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.apmt.2020.100920" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B93-nanomaterials-14-01885' class='html-xx' data-content='93.'>Duan, Z.Y.; Cai, F.; Chen, Y.X.; Chen, T.Y.; Lu, P. Advanced Applications of Porous Materials in Triboelectric Nanogenerator Self-Powered Sensors. <span class='html-italic'>Sensors</span> <b>2024</b>, <span class='html-italic'>24</span>, 3812. [<a href="https://scholar.google.com/scholar_lookup?title=Advanced+Applications+of+Porous+Materials+in+Triboelectric+Nanogenerator+Self-Powered+Sensors&author=Duan,+Z.Y.&author=Cai,+F.&author=Chen,+Y.X.&author=Chen,+T.Y.&author=Lu,+P.&publication_year=2024&journal=Sensors&volume=24&pages=3812&doi=10.3390/s24123812" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/s24123812" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B94-nanomaterials-14-01885' class='html-xx' data-content='94.'>Zhang, P.; Zhang, W.K.; Deng, L.; Zhang, H.H. A triboelectric nanogenerator based on temperature-stable high dielectric BaTiO<sub>3</sub>-based ceramic powder for energy harvesting. <span class='html-italic'>Nano Energy</span> <b>2021</b>, <span class='html-italic'>87</span>, 106176. [<a href="https://scholar.google.com/scholar_lookup?title=A+triboelectric+nanogenerator+based+on+temperature-stable+high+dielectric+BaTiO3-based+ceramic+powder+for+energy+harvesting&author=Zhang,+P.&author=Zhang,+W.K.&author=Deng,+L.&author=Zhang,+H.H.&publication_year=2021&journal=Nano+Energy&volume=87&pages=106176&doi=10.1016/j.nanoen.2021.106176" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2021.106176" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B95-nanomaterials-14-01885' class='html-xx' data-content='95.'>Shao, Z.C.; Chen, J.S.; Xie, Q.; Mi, L.W. Functional metal/covalent organic framework materials for triboelectric nanogenerator. <span class='html-italic'>Coord. Chem. Rev.</span> <b>2023</b>, <span class='html-italic'>486</span>, 215118. [<a href="https://scholar.google.com/scholar_lookup?title=Functional+metal/covalent+organic+framework+materials+for+triboelectric+nanogenerator&author=Shao,+Z.C.&author=Chen,+J.S.&author=Xie,+Q.&author=Mi,+L.W.&publication_year=2023&journal=Coord.+Chem.+Rev.&volume=486&pages=215118&doi=10.1016/j.ccr.2023.215118" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ccr.2023.215118" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B96-nanomaterials-14-01885' class='html-xx' data-content='96.'>Yu, H.R.; Kong, J.L.; Mao, M.R.; Ge, X.H.; Sun, Y.T.; Liu, J.W.; Ye, J.X.; Wang, Y. Self-powered biodegradable and antibacterial MoS2-based triboelectric nanogenerators for the acceleration of wound healing in diabetes. <span class='html-italic'>Nano Energy</span> <b>2024</b>, <span class='html-italic'>121</span>, 109225. [<a href="https://scholar.google.com/scholar_lookup?title=Self-powered+biodegradable+and+antibacterial+MoS2-based+triboelectric+nanogenerators+for+the+acceleration+of+wound+healing+in+diabetes&author=Yu,+H.R.&author=Kong,+J.L.&author=Mao,+M.R.&author=Ge,+X.H.&author=Sun,+Y.T.&author=Liu,+J.W.&author=Ye,+J.X.&author=Wang,+Y.&publication_year=2024&journal=Nano+Energy&volume=121&pages=109225&doi=10.1016/j.nanoen.2023.109225" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2023.109225" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B97-nanomaterials-14-01885' class='html-xx' data-content='97.'>Kanokpaka, P.; Chang, Y.H.; Chang, C.C.; Rinawati, M.; Wang, P.C.; Chang, L.Y.; Yeh, M.H. Enabling glucose adaptive self-healing hydrogel based triboelectric biosensor for tracking a human perspiration. <span class='html-italic'>Nano Energy</span> <b>2023</b>, <span class='html-italic'>112</span>, 108513. [<a href="https://scholar.google.com/scholar_lookup?title=Enabling+glucose+adaptive+self-healing+hydrogel+based+triboelectric+biosensor+for+tracking+a+human+perspiration&author=Kanokpaka,+P.&author=Chang,+Y.H.&author=Chang,+C.C.&author=Rinawati,+M.&author=Wang,+P.C.&author=Chang,+L.Y.&author=Yeh,+M.H.&publication_year=2023&journal=Nano+Energy&volume=112&pages=108513&doi=10.1016/j.nanoen.2023.108513" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2023.108513" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B98-nanomaterials-14-01885' class='html-xx' data-content='98.'>Sun, Q.Z.; Wang, L.; Yue, X.P.; Zhang, L.R.; Ren, G.Z.; Li, D.H.; Wang, H.C.; Han, Y.J.; Xiao, L.L.; Lu, G.; et al. Fully sustainable and high-performance fish gelatin-based triboelectric nanogenerator for wearable movement sensing and human-machine interaction. <span class='html-italic'>Nano Energy</span> <b>2021</b>, <span class='html-italic'>89</span>, 106329. [<a href="https://scholar.google.com/scholar_lookup?title=Fully+sustainable+and+high-performance+fish+gelatin-based+triboelectric+nanogenerator+for+wearable+movement+sensing+and+human-machine+interaction&author=Sun,+Q.Z.&author=Wang,+L.&author=Yue,+X.P.&author=Zhang,+L.R.&author=Ren,+G.Z.&author=Li,+D.H.&author=Wang,+H.C.&author=Han,+Y.J.&author=Xiao,+L.L.&author=Lu,+G.&publication_year=2021&journal=Nano+Energy&volume=89&pages=106329&doi=10.1016/j.nanoen.2021.106329" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2021.106329" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B99-nanomaterials-14-01885' class='html-xx' data-content='99.'>Xu, Z.J.; Qiu, W.; Fan, X.W.; Shi, Y.T.; Gong, H.; Huang, J.N.; Patil, A.; Li, X.Y.; Wang, S.T.; Lin, H.B.; et al. Stretchable, Stable, and Degradable Silk Fibroin Enabled by Mesoscopic Doping for Finger Motion Triggered Color/Transmittance Adjustment. <span class='html-italic'>Acs Nano</span> <b>2021</b>, <span class='html-italic'>15</span>, 12429–12437. [<a href="https://scholar.google.com/scholar_lookup?title=Stretchable,+Stable,+and+Degradable+Silk+Fibroin+Enabled+by+Mesoscopic+Doping+for+Finger+Motion+Triggered+Color/Transmittance+Adjustment&author=Xu,+Z.J.&author=Qiu,+W.&author=Fan,+X.W.&author=Shi,+Y.T.&author=Gong,+H.&author=Huang,+J.N.&author=Patil,+A.&author=Li,+X.Y.&author=Wang,+S.T.&author=Lin,+H.B.&publication_year=2021&journal=Acs+Nano&volume=15&pages=12429%E2%80%9312437&doi=10.1021/acsnano.1c05257" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsnano.1c05257" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B100-nanomaterials-14-01885' class='html-xxx' data-content='100.'>Zhu, M.L.; Shi, Q.F.; He, T.Y.Y.; Yi, Z.R.; Ma, Y.M.; Yang, B.; Chen, T.; Lee, C. Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring. <span class='html-italic'>Acs Nano</span> <b>2019</b>, <span class='html-italic'>13</span>, 1940–1952. [<a href="https://scholar.google.com/scholar_lookup?title=Self-Powered+and+Self-Functional+Cotton+Sock+Using+Piezoelectric+and+Triboelectric+Hybrid+Mechanism+for+Healthcare+and+Sports+Monitoring&author=Zhu,+M.L.&author=Shi,+Q.F.&author=He,+T.Y.Y.&author=Yi,+Z.R.&author=Ma,+Y.M.&author=Yang,+B.&author=Chen,+T.&author=Lee,+C.&publication_year=2019&journal=Acs+Nano&volume=13&pages=1940%E2%80%931952&doi=10.1021/acsnano.8b08329" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsnano.8b08329" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B101-nanomaterials-14-01885' class='html-xxx' data-content='101.'>Chen, X.; Wang, F.; Zhao, Y.; Wu, P.; Gao, L.; Ouyang, C.; Yang, Y.; Mu, X. Surface Plasmon Effect Dominated High-Performance Triboelectric Nanogenerator for Traditional Chinese Medicine Acupuncture. <span class='html-italic'>Research</span> <b>2022</b>, <span class='html-italic'>2022</span>, 9765634. [<a href="https://scholar.google.com/scholar_lookup?title=Surface+Plasmon+Effect+Dominated+High-Performance+Triboelectric+Nanogenerator+for+Traditional+Chinese+Medicine+Acupuncture&author=Chen,+X.&author=Wang,+F.&author=Zhao,+Y.&author=Wu,+P.&author=Gao,+L.&author=Ouyang,+C.&author=Yang,+Y.&author=Mu,+X.&publication_year=2022&journal=Research&volume=2022&pages=9765634&doi=10.34133/2022/9765634" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.34133/2022/9765634" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B102-nanomaterials-14-01885' class='html-xxx' data-content='102.'>Li, W.J.; Lu, L.Q.; Kottapalli, A.G.P.; Pei, Y.T. Bioinspired sweat-resistant wearable triboelectric nanogenerator for movement monitoring during exercise. <span class='html-italic'>Nano Energy</span> <b>2022</b>, <span class='html-italic'>95</span>, 107018. [<a href="https://scholar.google.com/scholar_lookup?title=Bioinspired+sweat-resistant+wearable+triboelectric+nanogenerator+for+movement+monitoring+during+exercise&author=Li,+W.J.&author=Lu,+L.Q.&author=Kottapalli,+A.G.P.&author=Pei,+Y.T.&publication_year=2022&journal=Nano+Energy&volume=95&pages=107018&doi=10.1016/j.nanoen.2022.107018" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2022.107018" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B103-nanomaterials-14-01885' class='html-xxx' data-content='103.'>Vázquez-López, A.; Saez, J.S.D.; de la Vega, J.; Ao, X.; Wang, D.Y. All-Fabric Triboelectric Nanogenerator (AF-TENG) Smart Face Mask: Remote Long-Rate Breathing Monitoring and Apnea Alarm. <span class='html-italic'>Acs Sens.</span> <b>2023</b>, <span class='html-italic'>8</span>, 1684–1692. [<a href="https://scholar.google.com/scholar_lookup?title=All-Fabric+Triboelectric+Nanogenerator+(AF-TENG)+Smart+Face+Mask:+Remote+Long-Rate+Breathing+Monitoring+and+Apnea+Alarm&author=V%C3%A1zquez-L%C3%B3pez,+A.&author=Saez,+J.S.D.&author=de+la+Vega,+J.&author=Ao,+X.&author=Wang,+D.Y.&publication_year=2023&journal=Acs+Sens.&volume=8&pages=1684%E2%80%931692&doi=10.1021/acssensors.2c02825&pmid=36976959" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acssensors.2c02825" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/36976959" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B104-nanomaterials-14-01885' class='html-xxx' data-content='104.'>Tan, X.Q.; Wang, S.T.; You, Z.Y.; Zheng, J.M.; Liu, Y. High Performance Porous Triboelectric Nanogenerator Based on Silk Fibroin@MXene Composite Aerogel and PDMS Sponge. <span class='html-italic'>Acs Mater. Lett.</span> <b>2023</b>, <span class='html-italic'>5</span>, 1929–1937. [<a href="https://scholar.google.com/scholar_lookup?title=High+Performance+Porous+Triboelectric+Nanogenerator+Based+on+Silk+Fibroin@MXene+Composite+Aerogel+and+PDMS+Sponge&author=Tan,+X.Q.&author=Wang,+S.T.&author=You,+Z.Y.&author=Zheng,+J.M.&author=Liu,+Y.&publication_year=2023&journal=Acs+Mater.+Lett.&volume=5&pages=1929%E2%80%931937&doi=10.1021/acsmaterialslett.3c00273" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsmaterialslett.3c00273" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B105-nanomaterials-14-01885' class='html-xxx' data-content='105.'>Lou, M.N.; Abdalla, I.; Zhu, M.M.; Yu, J.Y.; Li, Z.L.; Ding, B. Hierarchically Rough Structured and Self-Powered Pressure Sensor Textile for Motion Sensing and Pulse Monitoring. <span class='html-italic'>ACS Appl. Mater. Interfaces</span> <b>2020</b>, <span class='html-italic'>12</span>, 1597–1605. [<a href="https://scholar.google.com/scholar_lookup?title=Hierarchically+Rough+Structured+and+Self-Powered+Pressure+Sensor+Textile+for+Motion+Sensing+and+Pulse+Monitoring&author=Lou,+M.N.&author=Abdalla,+I.&author=Zhu,+M.M.&author=Yu,+J.Y.&author=Li,+Z.L.&author=Ding,+B.&publication_year=2020&journal=ACS+Appl.+Mater.+Interfaces&volume=12&pages=1597%E2%80%931605&doi=10.1021/acsami.9b19238" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsami.9b19238" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B106-nanomaterials-14-01885' class='html-xxx' data-content='106.'>Fernández-García, J.C.; Gálvez-Fernández, I.; Mercadé-Melé, P.; Gavala-González, J. Longitudinal Study of Body Composition and Energy Expenditure in Overweight or Obese Young Adults. <span class='html-italic'>Sci. Rep.</span> <b>2020</b>, <span class='html-italic'>10</span>, 5305. [<a href="https://scholar.google.com/scholar_lookup?title=Longitudinal+Study+of+Body+Composition+and+Energy+Expenditure+in+Overweight+or+Obese+Young+Adults&author=Fern%C3%A1ndez-Garc%C3%ADa,+J.C.&author=G%C3%A1lvez-Fern%C3%A1ndez,+I.&author=Mercad%C3%A9-Mel%C3%A9,+P.&author=Gavala-Gonz%C3%A1lez,+J.&publication_year=2020&journal=Sci.+Rep.&volume=10&pages=5305&doi=10.1038/s41598-020-62249-8" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41598-020-62249-8" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B107-nanomaterials-14-01885' class='html-xxx' data-content='107.'>Mintz, E.L.; Passipieri, J.A.; Franklin, I.R.; Toscano, V.M.; Afferton, E.C.; Sharma, P.R.; Christ, G.J. Long-Term Evaluation of Functional Outcomes Following Rat Volumetric Muscle Loss Injury and Repair. <span class='html-italic'>Tissue Eng. Part A</span> <b>2020</b>, <span class='html-italic'>26</span>, 140–156. [<a href="https://scholar.google.com/scholar_lookup?title=Long-Term+Evaluation+of+Functional+Outcomes+Following+Rat+Volumetric+Muscle+Loss+Injury+and+Repair&author=Mintz,+E.L.&author=Passipieri,+J.A.&author=Franklin,+I.R.&author=Toscano,+V.M.&author=Afferton,+E.C.&author=Sharma,+P.R.&author=Christ,+G.J.&publication_year=2020&journal=Tissue+Eng.+Part+A&volume=26&pages=140%E2%80%93156&doi=10.1089/ten.tea.2019.0126" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1089/ten.tea.2019.0126" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B108-nanomaterials-14-01885' class='html-xxx' data-content='108.'>Bincy, T.S.; Prasanna, A.P.S.; Balaji, A.S.; Sivasankar, K.J.; Thiruvadigal, D.J.; Anithkumar, M.; Kim, S.J. Computational analysis of starch for sustainable power generation towards integrated wearable IoT. <span class='html-italic'>Appl. Energy</span> <b>2024</b>, <span class='html-italic'>370</span>, 123590. [<a href="https://scholar.google.com/scholar_lookup?title=Computational+analysis+of+starch+for+sustainable+power+generation+towards+integrated+wearable+IoT&author=Bincy,+T.S.&author=Prasanna,+A.P.S.&author=Balaji,+A.S.&author=Sivasankar,+K.J.&author=Thiruvadigal,+D.J.&author=Anithkumar,+M.&author=Kim,+S.J.&publication_year=2024&journal=Appl.+Energy&volume=370&pages=123590&doi=10.1016/j.apenergy.2024.123590" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.apenergy.2024.123590" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B109-nanomaterials-14-01885' class='html-xxx' data-content='109.'>Wang, Z.Y.; Bu, M.M.; Xiu, K.H.; Sun, J.Y.; Hu, N.; Zhao, L.B.; Gao, L.X.; Kong, F.Z.; Zhu, H.; Song, J.G.; et al. A flexible, stretchable and triboelectric smart sensor based on graphene oxide and polyacrylamide hydrogel for high precision gait recognition in Parkinsonian and hemiplegic patients. <span class='html-italic'>Nano Energy</span> <b>2022</b>, <span class='html-italic'>104</span>, 107978. [<a href="https://scholar.google.com/scholar_lookup?title=A+flexible,+stretchable+and+triboelectric+smart+sensor+based+on+graphene+oxide+and+polyacrylamide+hydrogel+for+high+precision+gait+recognition+in+Parkinsonian+and+hemiplegic+patients&author=Wang,+Z.Y.&author=Bu,+M.M.&author=Xiu,+K.H.&author=Sun,+J.Y.&author=Hu,+N.&author=Zhao,+L.B.&author=Gao,+L.X.&author=Kong,+F.Z.&author=Zhu,+H.&author=Song,+J.G.&publication_year=2022&journal=Nano+Energy&volume=104&pages=107978&doi=10.1016/j.nanoen.2022.107978" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2022.107978" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B110-nanomaterials-14-01885' class='html-xxx' data-content='110.'>Panda, S.; Hajra, S.; Kim, H.G.; Jeong, H.; Achary, P.G.R.; Hong, S.K.; Dudem, B.; Silva, S.R.P.; Vivekananthan, V.; Kim, H.J. Carbohydrate-protein interaction-based detection of pathogenic bacteria using a biodegradable self-powered biosensor. <span class='html-italic'>J. Mater. Chem. B</span> <b>2023</b>, <span class='html-italic'>11</span>, 10147–10157. [<a href="https://scholar.google.com/scholar_lookup?title=Carbohydrate-protein+interaction-based+detection+of+pathogenic+bacteria+using+a+biodegradable+self-powered+biosensor&author=Panda,+S.&author=Hajra,+S.&author=Kim,+H.G.&author=Jeong,+H.&author=Achary,+P.G.R.&author=Hong,+S.K.&author=Dudem,+B.&author=Silva,+S.R.P.&author=Vivekananthan,+V.&author=Kim,+H.J.&publication_year=2023&journal=J.+Mater.+Chem.+B&volume=11&pages=10147%E2%80%9310157&doi=10.1039/D3TB01820B" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/D3TB01820B" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B111-nanomaterials-14-01885' class='html-xxx' data-content='111.'>Wang, C.Y.; Wang, P.; Chen, J.H.; Zhu, L.Y.; Zhang, D.; Wan, Y.; Ai, S.Y. Self-powered biosensing system driven by triboelectric nanogenerator for specific detection of Gram-positive bacteria. <span class='html-italic'>Nano Energy</span> <b>2022</b>, <span class='html-italic'>93</span>, 106828. [<a href="https://scholar.google.com/scholar_lookup?title=Self-powered+biosensing+system+driven+by+triboelectric+nanogenerator+for+specific+detection+of+Gram-positive+bacteria&author=Wang,+C.Y.&author=Wang,+P.&author=Chen,+J.H.&author=Zhu,+L.Y.&author=Zhang,+D.&author=Wan,+Y.&author=Ai,+S.Y.&publication_year=2022&journal=Nano+Energy&volume=93&pages=106828&doi=10.1016/j.nanoen.2021.106828" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2021.106828" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B112-nanomaterials-14-01885' class='html-xxx' data-content='112.'>Shi, R.; Zhang, J.S.; Tian, J.J.; Zhao, C.C.; Li, Z.; Zhang, Y.Z.; Li, Y.S.; Wu, C.G.; Tian, W.; Li, Z. An effective self-powered strategy to endow titanium implant surface with associated activity of anti-biofilm and osteogenesis. <span class='html-italic'>Nano Energy</span> <b>2020</b>, <span class='html-italic'>77</span>, 105201. [<a href="https://scholar.google.com/scholar_lookup?title=An+effective+self-powered+strategy+to+endow+titanium+implant+surface+with+associated+activity+of+anti-biofilm+and+osteogenesis&author=Shi,+R.&author=Zhang,+J.S.&author=Tian,+J.J.&author=Zhao,+C.C.&author=Li,+Z.&author=Zhang,+Y.Z.&author=Li,+Y.S.&author=Wu,+C.G.&author=Tian,+W.&author=Li,+Z.&publication_year=2020&journal=Nano+Energy&volume=77&pages=105201&doi=10.1016/j.nanoen.2020.105201" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nanoen.2020.105201" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B113-nanomaterials-14-01885' class='html-xxx' data-content='113.'>Lin, C.M.; Chen, D.; Hua, Z.F.; Wang, J.; Cao, S.L.; Ma, X.J. Cellulose Paper Modified by a Zinc Oxide Nanosheet Using a ZnCl<sub>2</sub>-Urea Eutectic Solvent for Novel Applications. <span class='html-italic'>Nanomaterials</span> <b>2021</b>, <span class='html-italic'>11</span>, 1111. [<a href="https://scholar.google.com/scholar_lookup?title=Cellulose+Paper+Modified+by+a+Zinc+Oxide+Nanosheet+Using+a+ZnCl<sub>2</sub>-Urea+Eutectic+Solvent+for+Novel+Applications&author=Lin,+C.M.&author=Chen,+D.&author=Hua,+Z.F.&author=Wang,+J.&author=Cao,+S.L.&author=Ma,+X.J.&publication_year=2021&journal=Nanomaterials&volume=11&pages=1111&doi=10.3390/nano11051111&pmid=33923021" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/nano11051111" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/33923021" class='cross-ref pub_med' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B114-nanomaterials-14-01885' class='html-xxx' data-content='114.'>Lu, Y.R.; Xiang, H.J.; Jie, Y.; Cao, X.; Wang, Z.L. Antibacterial Triboelectric Nanogenerator for Mite Removal and Intelligent Human Monitoring. <span class='html-italic'>Adv. Mater. Technol.</span> <b>2023</b>, <span class='html-italic'>8</span>, 2300192. [<a href="https://scholar.google.com/scholar_lookup?title=Antibacterial+Triboelectric+Nanogenerator+for+Mite+Removal+and+Intelligent+Human+Monitoring&author=Lu,+Y.R.&author=Xiang,+H.J.&author=Jie,+Y.&author=Cao,+X.&author=Wang,+Z.L.&publication_year=2023&journal=Adv.+Mater.+Technol.&volume=8&pages=2300192&doi=10.1002/admt.202300192" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/admt.202300192" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B115-nanomaterials-14-01885' class='html-xxx' data-content='115.'>Zhu, Q.L.; Wu, T.; Sun, E.Q.; Meng, S.C.; Zhao, Z.Q.; Wang, Y.F.; Zhang, L.; Ma, Z.M.; Shoaib, M.; Rehman, H.U.; et al. Triboelectrically active and wettability-swichable magnetic textile for self-powered intelligent marine conservation. <span class='html-italic'>Chem. Eng. J.</span> <b>2024</b>, <span class='html-italic'>498</span>, 154739. [<a href="https://scholar.google.com/scholar_lookup?title=Triboelectrically+active+and+wettability-swichable+magnetic+textile+for+self-powered+intelligent+marine+conservation&author=Zhu,+Q.L.&author=Wu,+T.&author=Sun,+E.Q.&author=Meng,+S.C.&author=Zhao,+Z.Q.&author=Wang,+Y.F.&author=Zhang,+L.&author=Ma,+Z.M.&author=Shoaib,+M.&author=Rehman,+H.U.&publication_year=2024&journal=Chem.+Eng.+J.&volume=498&pages=154739&doi=10.1016/j.cej.2024.154739" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.cej.2024.154739" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B116-nanomaterials-14-01885' class='html-xxx' data-content='116.'>Zhu, Q.L.; Wu, T.; Wang, N. From Piezoelectric Nanogenerator to Non-Invasive Medical Sensor: A Review. <span class='html-italic'>Biosensors</span> <b>2023</b>, <span class='html-italic'>13</span>, 113. [<a href="https://scholar.google.com/scholar_lookup?title=From+Piezoelectric+Nanogenerator+to+Non-Invasive+Medical+Sensor:+A+Review&author=Zhu,+Q.L.&author=Wu,+T.&author=Wang,+N.&publication_year=2023&journal=Biosensors&volume=13&pages=113&doi=10.3390/bios13010113" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/bios13010113" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B117-nanomaterials-14-01885' class='html-xxx' data-content='117.'>Dong, K.; Wang, Y.C.; Deng, J.N.; Dai, Y.J.; Zhang, S.L.; Zou, H.Y.; Gu, B.H.; Sun, B.Z.; Wang, Z.L. A Highly Stretchable and Washable All-Yarn-Based Self-Charging Knitting Power Textile Composed of Fiber Triboelectric Nanogenerators and Supercapacitors. <span class='html-italic'>Acs Nano</span> <b>2017</b>, <span class='html-italic'>11</span>, 9490–9499. [<a href="https://scholar.google.com/scholar_lookup?title=A+Highly+Stretchable+and+Washable+All-Yarn-Based+Self-Charging+Knitting+Power+Textile+Composed+of+Fiber+Triboelectric+Nanogenerators+and+Supercapacitors&author=Dong,+K.&author=Wang,+Y.C.&author=Deng,+J.N.&author=Dai,+Y.J.&author=Zhang,+S.L.&author=Zou,+H.Y.&author=Gu,+B.H.&author=Sun,+B.Z.&author=Wang,+Z.L.&publication_year=2017&journal=Acs+Nano&volume=11&pages=9490%E2%80%939499&doi=10.1021/acsnano.7b05317" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsnano.7b05317" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B118-nanomaterials-14-01885' class='html-xxx' data-content='118.'>Jiang, Y.; Dong, K.; Li, X.; An, J.; Wu, D.Q.; Peng, X.; Yi, J.; Ning, C.; Cheng, R.W.; Yu, P.T.; et al. Stretchable, Washable, and Ultrathin Triboelectric Nanogenerators as Skin-Like Highly Sensitive Self-Powered Haptic Sensors. <span class='html-italic'>Adv. Funct. Mater.</span> <b>2021</b>, <span class='html-italic'>31</span>, 2005584. [<a href="https://scholar.google.com/scholar_lookup?title=Stretchable,+Washable,+and+Ultrathin+Triboelectric+Nanogenerators+as+Skin-Like+Highly+Sensitive+Self-Powered+Haptic+Sensors&author=Jiang,+Y.&author=Dong,+K.&author=Li,+X.&author=An,+J.&author=Wu,+D.Q.&author=Peng,+X.&author=Yi,+J.&author=Ning,+C.&author=Cheng,+R.W.&author=Yu,+P.T.&publication_year=2021&journal=Adv.+Funct.+Mater.&volume=31&pages=2005584&doi=10.1002/adfm.202005584" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/adfm.202005584" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B119-nanomaterials-14-01885' class='html-xxx' data-content='119.'>Zhu, Q.L.; Cao, X.; Wang, N. Triboelectric Nanogenerators in Sustainable Chemical Sensors. <span class='html-italic'>Chemosensors</span> <b>2022</b>, <span class='html-italic'>10</span>, 484. [<a href="https://scholar.google.com/scholar_lookup?title=Triboelectric+Nanogenerators+in+Sustainable+Chemical+Sensors&author=Zhu,+Q.L.&author=Cao,+X.&author=Wang,+N.&publication_year=2022&journal=Chemosensors&volume=10&pages=484&doi=10.3390/chemosensors10110484" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/chemosensors10110484" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li></ol></section><section id='FiguresandTables' type='display-objects'><div class="html-fig-wrap" id="nanomaterials-14-01885-f001"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#fig_body_display_nanomaterials-14-01885-f001"> <img data-large="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g001.png" data-original="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g001.png" alt="Nanomaterials 14 01885 g001" data-lsrc="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g001-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#fig_body_display_nanomaterials-14-01885-f001"></a> </div> </div> <div class="html-fig_description"> <b>Figure 1.</b> Recent progress of TENG based on biomaterials including biomaterials like silk; reprinted with permission from Ref. [<a href="#B53-nanomaterials-14-01885" class="html-bibr">53</a>]. Copyright 2023, Elsevier; rice gluten and its application as blood vessel and sweat monitoring; reprinted with permission from Ref. [<a href="#B54-nanomaterials-14-01885" class="html-bibr">54</a>]. Copyright 2022, Elsevier; Cellulose; reprinted with permission from Ref. [<a href="#B55-nanomaterials-14-01885" class="html-bibr">55</a>]. Copyright 2022, Elsevier; Bionic tentacle; reprinted with permission from Ref. [<a href="#B56-nanomaterials-14-01885" class="html-bibr">56</a>]. Copyright 2024, Elsevier; Air permeability; reprinted with permission from Ref. [<a href="#B57-nanomaterials-14-01885" class="html-bibr">57</a>]. Copyright 2022, Elsevier; Self-healing; reprinted with permission from Ref. [<a href="#B58-nanomaterials-14-01885" class="html-bibr">58</a>]. Copyright 2021, Elsevier; Stretchability; reprinted with permission from Ref. [<a href="#B59-nanomaterials-14-01885" class="html-bibr">59</a>]. Copyright 2021, Wiley Online Library; Real-time monitoring of Parkinson’s disease; reprinted with permission from Ref. [<a href="#B60-nanomaterials-14-01885" class="html-bibr">60</a>]. Copyright 2021, Elsevier; Cardiac diagnosis; reprinted with permission from Ref. [<a href="#B61-nanomaterials-14-01885" class="html-bibr">61</a>]. Copyright 2023, ACS Publications; Pulse diagnosis; reprinted with permission from Ref. [<a href="#B62-nanomaterials-14-01885" class="html-bibr">62</a>]. Copyright 2023, Elsevier; Exercise Monitoring; reprinted with permission from Ref. [<a href="#B63-nanomaterials-14-01885" class="html-bibr">63</a>]. Copyright 2022, ACS Publications; In vivo monitoring; reprinted with permission from Ref. [<a href="#B64-nanomaterials-14-01885" class="html-bibr">64</a>]. Copyright 2020, Elsevier; Breath monitoring; reprinted with permission from Ref. [<a href="#B65-nanomaterials-14-01885" class="html-bibr">65</a>]. Copyright 2020, ACS Publications. <!-- <p><a class="html-figpopup" href="#fig_body_display_nanomaterials-14-01885-f001"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_nanomaterials-14-01885-f001"> <div class="html-caption"> <b>Figure 1.</b> Recent progress of TENG based on biomaterials including biomaterials like silk; reprinted with permission from Ref. [<a href="#B53-nanomaterials-14-01885" class="html-bibr">53</a>]. Copyright 2023, Elsevier; rice gluten and its application as blood vessel and sweat monitoring; reprinted with permission from Ref. [<a href="#B54-nanomaterials-14-01885" class="html-bibr">54</a>]. Copyright 2022, Elsevier; Cellulose; reprinted with permission from Ref. [<a href="#B55-nanomaterials-14-01885" class="html-bibr">55</a>]. Copyright 2022, Elsevier; Bionic tentacle; reprinted with permission from Ref. [<a href="#B56-nanomaterials-14-01885" class="html-bibr">56</a>]. Copyright 2024, Elsevier; Air permeability; reprinted with permission from Ref. [<a href="#B57-nanomaterials-14-01885" class="html-bibr">57</a>]. Copyright 2022, Elsevier; Self-healing; reprinted with permission from Ref. [<a href="#B58-nanomaterials-14-01885" class="html-bibr">58</a>]. Copyright 2021, Elsevier; Stretchability; reprinted with permission from Ref. [<a href="#B59-nanomaterials-14-01885" class="html-bibr">59</a>]. Copyright 2021, Wiley Online Library; Real-time monitoring of Parkinson’s disease; reprinted with permission from Ref. [<a href="#B60-nanomaterials-14-01885" class="html-bibr">60</a>]. Copyright 2021, Elsevier; Cardiac diagnosis; reprinted with permission from Ref. [<a href="#B61-nanomaterials-14-01885" class="html-bibr">61</a>]. Copyright 2023, ACS Publications; Pulse diagnosis; reprinted with permission from Ref. [<a href="#B62-nanomaterials-14-01885" class="html-bibr">62</a>]. Copyright 2023, Elsevier; Exercise Monitoring; reprinted with permission from Ref. [<a href="#B63-nanomaterials-14-01885" class="html-bibr">63</a>]. Copyright 2022, ACS Publications; In vivo monitoring; reprinted with permission from Ref. [<a href="#B64-nanomaterials-14-01885" class="html-bibr">64</a>]. Copyright 2020, Elsevier; Breath monitoring; reprinted with permission from Ref. [<a href="#B65-nanomaterials-14-01885" class="html-bibr">65</a>]. Copyright 2020, ACS Publications.</div> <div class="html-img"><img data-large="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g001.png" data-original="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g001.png" alt="Nanomaterials 14 01885 g001" data-lsrc="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g001.png" /></div> </div> <div class="html-fig-wrap" id="nanomaterials-14-01885-f002"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#fig_body_display_nanomaterials-14-01885-f002"> <img data-large="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g002.png" data-original="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g002.png" alt="Nanomaterials 14 01885 g002" data-lsrc="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g002-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#fig_body_display_nanomaterials-14-01885-f002"></a> </div> </div> <div class="html-fig_description"> <b>Figure 2.</b> The four primary working modes of TENG are (<b>a</b>) vertical contact–separation mode, (<b>b</b>) lateral-sliding mode, (<b>c</b>) single-electrode mode, and (<b>d</b>) freestanding triboelectric-layer mode. <!-- <p><a class="html-figpopup" href="#fig_body_display_nanomaterials-14-01885-f002"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_nanomaterials-14-01885-f002"> <div class="html-caption"> <b>Figure 2.</b> The four primary working modes of TENG are (<b>a</b>) vertical contact–separation mode, (<b>b</b>) lateral-sliding mode, (<b>c</b>) single-electrode mode, and (<b>d</b>) freestanding triboelectric-layer mode.</div> <div class="html-img"><img data-large="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g002.png" data-original="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g002.png" alt="Nanomaterials 14 01885 g002" data-lsrc="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g002.png" /></div> </div> <div class="html-fig-wrap" id="nanomaterials-14-01885-f003"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#fig_body_display_nanomaterials-14-01885-f003"> <img data-large="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g003.png" data-original="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g003.png" alt="Nanomaterials 14 01885 g003" data-lsrc="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g003-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#fig_body_display_nanomaterials-14-01885-f003"></a> </div> </div> <div class="html-fig_description"> <b>Figure 3.</b> (<b>a</b>) Structure of HM-TENG: the upper part represents the simulation and SEM of L-cystine and the original nylon 6; the lower part represents the power density of the HM-TENG at different external resistances, with the charge curve of different capacitors. Reprinted with permission from Ref. [<a href="#B90-nanomaterials-14-01885" class="html-bibr">90</a>]. Copyright 2023, Elsevier. (<b>b</b>) Structure and output of nano-gap TENG: right shows its output current density and the voltage signal used to monitor the pulse. Reprinted with permission from Ref. [<a href="#B91-nanomaterials-14-01885" class="html-bibr">91</a>]. Copyright 2020, ACS Publications. (<b>c</b>) Structure design of SNR-TENG and its application in medical monitoring. Reprinted with permission from Ref. [<a href="#B64-nanomaterials-14-01885" class="html-bibr">64</a>]. Copyright 2020, Elsevier. (<b>d</b>) Top shows the preparation process of HA, middle shows the results of the cell viability assay of MC3T3-E1 after being treated with HA membrane for 24 h, and bottom shows the triboelectric outputs of the TENG based on HA and PTFE films under various external resistances. Reprinted with permission from Ref. [<a href="#B92-nanomaterials-14-01885" class="html-bibr">92</a>]. Copyright 2020, Elsevier. <!-- <p><a class="html-figpopup" href="#fig_body_display_nanomaterials-14-01885-f003"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_nanomaterials-14-01885-f003"> <div class="html-caption"> <b>Figure 3.</b> (<b>a</b>) Structure of HM-TENG: the upper part represents the simulation and SEM of L-cystine and the original nylon 6; the lower part represents the power density of the HM-TENG at different external resistances, with the charge curve of different capacitors. Reprinted with permission from Ref. [<a href="#B90-nanomaterials-14-01885" class="html-bibr">90</a>]. Copyright 2023, Elsevier. (<b>b</b>) Structure and output of nano-gap TENG: right shows its output current density and the voltage signal used to monitor the pulse. Reprinted with permission from Ref. [<a href="#B91-nanomaterials-14-01885" class="html-bibr">91</a>]. Copyright 2020, ACS Publications. (<b>c</b>) Structure design of SNR-TENG and its application in medical monitoring. Reprinted with permission from Ref. [<a href="#B64-nanomaterials-14-01885" class="html-bibr">64</a>]. Copyright 2020, Elsevier. (<b>d</b>) Top shows the preparation process of HA, middle shows the results of the cell viability assay of MC3T3-E1 after being treated with HA membrane for 24 h, and bottom shows the triboelectric outputs of the TENG based on HA and PTFE films under various external resistances. Reprinted with permission from Ref. [<a href="#B92-nanomaterials-14-01885" class="html-bibr">92</a>]. Copyright 2020, Elsevier.</div> <div class="html-img"><img data-large="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g003.png" data-original="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g003.png" alt="Nanomaterials 14 01885 g003" data-lsrc="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g003.png" /></div> </div> <div class="html-fig-wrap" id="nanomaterials-14-01885-f004"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#fig_body_display_nanomaterials-14-01885-f004"> <img data-large="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g004.png" data-original="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g004.png" alt="Nanomaterials 14 01885 g004" data-lsrc="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g004-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#fig_body_display_nanomaterials-14-01885-f004"></a> </div> </div> <div class="html-fig_description"> <b>Figure 4.</b> (<b>a</b>) Source of wood fiber and schematic diagram of the TENG device based on wood fiber substrate. Reprinted with permission from Ref. [<a href="#B55-nanomaterials-14-01885" class="html-bibr">55</a>]. Copyright 2022, Elsevier. (<b>b</b>) Rice gluten films were prepared by the traditional method using NaOH (as shown in the upper diagram) and then fabricated into biocompatible and environmentally friendly triboelectric materials according to structural engineering (as shown in the lower diagram). Reprinted with permission from Ref. [<a href="#B54-nanomaterials-14-01885" class="html-bibr">54</a>]. Copyright 2022, Elsevier. (<b>c</b>) Preparation of CS–glycerin composite film, its output performance as a TENG, and its application in medical health. Reprinted with permission from Ref. [<a href="#B62-nanomaterials-14-01885" class="html-bibr">62</a>]. Copyright 2023, Elsevier. (<b>d</b>) Schematic of the structure of the PVA/SF-based TENG. Reprinted with permission from Ref. [<a href="#B53-nanomaterials-14-01885" class="html-bibr">53</a>]. Copyright 2023, Elsevier. (<b>e</b>) Schematic of the MoS2-based TENG patch for accelerating wound healing. Reprinted with permission from Ref. [<a href="#B96-nanomaterials-14-01885" class="html-bibr">96</a>]. Copyright 2024, Elsevier. (<b>f</b>) Schematic of the GAH-TES for sweat monitoring. TENG voltage response when detecting 0–500 μM glucose in artificial sweat and calibration curve for repeated glucose detection. Reprinted with permission from Ref. [<a href="#B97-nanomaterials-14-01885" class="html-bibr">97</a>]. Copyright 2023, Elsevier. (<b>g</b>) Schematic diagrams of the structure of CZL hydrogel, SEM (Scanning Electron Microscopy), pulse monitoring, and energy harvesting. Reprinted with permission from Ref. [<a href="#B56-nanomaterials-14-01885" class="html-bibr">56</a>]. Copyright 2024, Elsevier. <!-- <p><a class="html-figpopup" href="#fig_body_display_nanomaterials-14-01885-f004"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_nanomaterials-14-01885-f004"> <div class="html-caption"> <b>Figure 4.</b> (<b>a</b>) Source of wood fiber and schematic diagram of the TENG device based on wood fiber substrate. Reprinted with permission from Ref. [<a href="#B55-nanomaterials-14-01885" class="html-bibr">55</a>]. Copyright 2022, Elsevier. (<b>b</b>) Rice gluten films were prepared by the traditional method using NaOH (as shown in the upper diagram) and then fabricated into biocompatible and environmentally friendly triboelectric materials according to structural engineering (as shown in the lower diagram). Reprinted with permission from Ref. [<a href="#B54-nanomaterials-14-01885" class="html-bibr">54</a>]. Copyright 2022, Elsevier. (<b>c</b>) Preparation of CS–glycerin composite film, its output performance as a TENG, and its application in medical health. Reprinted with permission from Ref. [<a href="#B62-nanomaterials-14-01885" class="html-bibr">62</a>]. Copyright 2023, Elsevier. (<b>d</b>) Schematic of the structure of the PVA/SF-based TENG. Reprinted with permission from Ref. [<a href="#B53-nanomaterials-14-01885" class="html-bibr">53</a>]. Copyright 2023, Elsevier. (<b>e</b>) Schematic of the MoS2-based TENG patch for accelerating wound healing. Reprinted with permission from Ref. [<a href="#B96-nanomaterials-14-01885" class="html-bibr">96</a>]. Copyright 2024, Elsevier. (<b>f</b>) Schematic of the GAH-TES for sweat monitoring. TENG voltage response when detecting 0–500 μM glucose in artificial sweat and calibration curve for repeated glucose detection. Reprinted with permission from Ref. [<a href="#B97-nanomaterials-14-01885" class="html-bibr">97</a>]. Copyright 2023, Elsevier. (<b>g</b>) Schematic diagrams of the structure of CZL hydrogel, SEM (Scanning Electron Microscopy), pulse monitoring, and energy harvesting. Reprinted with permission from Ref. [<a href="#B56-nanomaterials-14-01885" class="html-bibr">56</a>]. Copyright 2024, Elsevier.</div> <div class="html-img"><img data-large="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g004.png" data-original="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g004.png" alt="Nanomaterials 14 01885 g004" data-lsrc="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g004.png" /></div> </div> <div class="html-fig-wrap" id="nanomaterials-14-01885-f005"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#fig_body_display_nanomaterials-14-01885-f005"> <img data-large="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g005.png" data-original="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g005.png" alt="Nanomaterials 14 01885 g005" data-lsrc="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g005-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#fig_body_display_nanomaterials-14-01885-f005"></a> </div> </div> <div class="html-fig_description"> <b>Figure 5.</b> (<b>a</b>) Schematic diagrams of the manufacturing process of DF-CNF-based TENG and the self-powered biocompatible smart mask for human respiratory sensing and health monitoring. Reprinted with permission from Ref. [<a href="#B65-nanomaterials-14-01885" class="html-bibr">65</a>]. Copyright 2020, ACS Publications. (<b>b</b>) AF-TENG fabricated mask for patient respiratory detection via Wi-Fi and LoRa. Reprinted with permission from Ref. [<a href="#B103-nanomaterials-14-01885" class="html-bibr">103</a>]. Copyright 2023, ACS Publications. (<b>c</b>) Left shows the structure of SF@MXene-TENG and right shows the air permeability of common textile materials and SF@MXene-TENG as well as their corresponding error bars. Structure of SF@MXene-TENG mask fabricated for diagnosing asthma symptoms. Reprinted with permission from Ref. [<a href="#B104-nanomaterials-14-01885" class="html-bibr">104</a>]. Copyright 2023, ACS Publications. (<b>d</b>) SF/CNF scaffold for cardiac motion energy and iPSCs images captured over 14 days. Reprinted with permission from Ref. [<a href="#B61-nanomaterials-14-01885" class="html-bibr">61</a>]. Copyright 2023, ACS Publications. (<b>e</b>) Manufacturing process and structure of NFM-TENG and respiratory monitoring. Reprinted with permission from Ref. [<a href="#B105-nanomaterials-14-01885" class="html-bibr">105</a>]. Copyright 2019, ACS Publications. <!-- <p><a class="html-figpopup" href="#fig_body_display_nanomaterials-14-01885-f005"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_nanomaterials-14-01885-f005"> <div class="html-caption"> <b>Figure 5.</b> (<b>a</b>) Schematic diagrams of the manufacturing process of DF-CNF-based TENG and the self-powered biocompatible smart mask for human respiratory sensing and health monitoring. Reprinted with permission from Ref. [<a href="#B65-nanomaterials-14-01885" class="html-bibr">65</a>]. Copyright 2020, ACS Publications. (<b>b</b>) AF-TENG fabricated mask for patient respiratory detection via Wi-Fi and LoRa. Reprinted with permission from Ref. [<a href="#B103-nanomaterials-14-01885" class="html-bibr">103</a>]. Copyright 2023, ACS Publications. (<b>c</b>) Left shows the structure of SF@MXene-TENG and right shows the air permeability of common textile materials and SF@MXene-TENG as well as their corresponding error bars. Structure of SF@MXene-TENG mask fabricated for diagnosing asthma symptoms. Reprinted with permission from Ref. [<a href="#B104-nanomaterials-14-01885" class="html-bibr">104</a>]. Copyright 2023, ACS Publications. (<b>d</b>) SF/CNF scaffold for cardiac motion energy and iPSCs images captured over 14 days. Reprinted with permission from Ref. [<a href="#B61-nanomaterials-14-01885" class="html-bibr">61</a>]. Copyright 2023, ACS Publications. (<b>e</b>) Manufacturing process and structure of NFM-TENG and respiratory monitoring. Reprinted with permission from Ref. [<a href="#B105-nanomaterials-14-01885" class="html-bibr">105</a>]. Copyright 2019, ACS Publications.</div> <div class="html-img"><img data-large="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g005.png" data-original="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g005.png" alt="Nanomaterials 14 01885 g005" data-lsrc="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g005.png" /></div> </div> <div class="html-fig-wrap" id="nanomaterials-14-01885-f006"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#fig_body_display_nanomaterials-14-01885-f006"> <img data-large="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g006.png" data-original="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g006.png" alt="Nanomaterials 14 01885 g006" data-lsrc="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g006-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#fig_body_display_nanomaterials-14-01885-f006"></a> </div> </div> <div class="html-fig_description"> <b>Figure 6.</b> (<b>a</b>) Schematic diagram of WPHM connected to the human body via arc-shaped CS-TENG and its wireless monitoring application. Reprinted with permission from Ref. [<a href="#B108-nanomaterials-14-01885" class="html-bibr">108</a>]. Copyright 2024, Elsevier. (<b>b</b>) Concept and structural schematic of OFS-TENG implanted in the human body. Reprinted with permission from Ref. [<a href="#B63-nanomaterials-14-01885" class="html-bibr">63</a>]. Copyright 2022, ACS Publications. (<b>c</b>) Structural schematic of CCDHG-TENG and real-time monitoring of typical symptoms of Parkinson’s disease. Reprinted with permission from Ref. [<a href="#B60-nanomaterials-14-01885" class="html-bibr">60</a>]. Copyright 2021, Elsevier. (<b>d</b>) Self-powered strain sensor based on GO-PAM hydrogel for monitoring human motion. Reprinted with permission from Ref. [<a href="#B109-nanomaterials-14-01885" class="html-bibr">109</a>]. Copyright 2022, Elsevier. <!-- <p><a class="html-figpopup" href="#fig_body_display_nanomaterials-14-01885-f006"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_nanomaterials-14-01885-f006"> <div class="html-caption"> <b>Figure 6.</b> (<b>a</b>) Schematic diagram of WPHM connected to the human body via arc-shaped CS-TENG and its wireless monitoring application. Reprinted with permission from Ref. [<a href="#B108-nanomaterials-14-01885" class="html-bibr">108</a>]. Copyright 2024, Elsevier. (<b>b</b>) Concept and structural schematic of OFS-TENG implanted in the human body. Reprinted with permission from Ref. [<a href="#B63-nanomaterials-14-01885" class="html-bibr">63</a>]. Copyright 2022, ACS Publications. (<b>c</b>) Structural schematic of CCDHG-TENG and real-time monitoring of typical symptoms of Parkinson’s disease. Reprinted with permission from Ref. [<a href="#B60-nanomaterials-14-01885" class="html-bibr">60</a>]. Copyright 2021, Elsevier. (<b>d</b>) Self-powered strain sensor based on GO-PAM hydrogel for monitoring human motion. Reprinted with permission from Ref. [<a href="#B109-nanomaterials-14-01885" class="html-bibr">109</a>]. Copyright 2022, Elsevier.</div> <div class="html-img"><img data-large="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g006.png" data-original="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g006.png" alt="Nanomaterials 14 01885 g006" data-lsrc="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g006.png" /></div> </div> <div class="html-fig-wrap" id="nanomaterials-14-01885-f007"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#fig_body_display_nanomaterials-14-01885-f007"> <img data-large="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g007.png" data-original="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g007.png" alt="Nanomaterials 14 01885 g007" data-lsrc="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g007-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#fig_body_display_nanomaterials-14-01885-f007"></a> </div> </div> <div class="html-fig_description"> <b>Figure 7.</b> (<b>a</b>) Schematic diagrams of the structure of the PLA-TENG self-powered sensor system and the current signals obtained by monitoring the concentration of bacteria. Reprinted with permission from Ref. [<a href="#B110-nanomaterials-14-01885" class="html-bibr">110</a>]. Copyright 2023, ACS Publications. (<b>b</b>) CNT-Arg-based TENG measures Gram-positive bacteria through voltage measurement. Reprinted with permission from Ref. [<a href="#B111-nanomaterials-14-01885" class="html-bibr">111</a>]. Copyright 2022, Elsevier. (<b>c</b>) Top shows the structure of TENG and the surface morphology of Ti orthopedic implants after anodization. Bottom shows the mechanism of action in the antibacterial and osteogenesis-promoting surfaces of the TENG. Reprinted with permission from Ref. [<a href="#B112-nanomaterials-14-01885" class="html-bibr">112</a>]. Copyright 2020, Elsevier. (<b>d</b>) Left shows the structure and working principle of P-TENG and its function as an antibacterial pressure sensor for monitoring human motions; right shows the preparation process of ZnO@paper. Schematic of antimicrobial pressure sensor based on P-TENG for monitoring human motion. Reprinted with permission from Ref. [<a href="#B113-nanomaterials-14-01885" class="html-bibr">113</a>]. Copyright 2021, MDPI. <!-- <p><a class="html-figpopup" href="#fig_body_display_nanomaterials-14-01885-f007"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_nanomaterials-14-01885-f007"> <div class="html-caption"> <b>Figure 7.</b> (<b>a</b>) Schematic diagrams of the structure of the PLA-TENG self-powered sensor system and the current signals obtained by monitoring the concentration of bacteria. Reprinted with permission from Ref. [<a href="#B110-nanomaterials-14-01885" class="html-bibr">110</a>]. Copyright 2023, ACS Publications. (<b>b</b>) CNT-Arg-based TENG measures Gram-positive bacteria through voltage measurement. Reprinted with permission from Ref. [<a href="#B111-nanomaterials-14-01885" class="html-bibr">111</a>]. Copyright 2022, Elsevier. (<b>c</b>) Top shows the structure of TENG and the surface morphology of Ti orthopedic implants after anodization. Bottom shows the mechanism of action in the antibacterial and osteogenesis-promoting surfaces of the TENG. Reprinted with permission from Ref. [<a href="#B112-nanomaterials-14-01885" class="html-bibr">112</a>]. Copyright 2020, Elsevier. (<b>d</b>) Left shows the structure and working principle of P-TENG and its function as an antibacterial pressure sensor for monitoring human motions; right shows the preparation process of ZnO@paper. Schematic of antimicrobial pressure sensor based on P-TENG for monitoring human motion. Reprinted with permission from Ref. [<a href="#B113-nanomaterials-14-01885" class="html-bibr">113</a>]. Copyright 2021, MDPI.</div> <div class="html-img"><img data-large="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g007.png" data-original="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g007.png" alt="Nanomaterials 14 01885 g007" data-lsrc="/nanomaterials/nanomaterials-14-01885/article_deploy/html/images/nanomaterials-14-01885-g007.png" /></div> </div> <div class="html-table-wrap" id="nanomaterials-14-01885-t001"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href='#table_body_display_nanomaterials-14-01885-t001'> <img data-lsrc="https://pub.mdpi-res.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#table_body_display_nanomaterials-14-01885-t001"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 1.</b> Summary of TENGs with different types of biomaterials used in the biomedical field. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_nanomaterials-14-01885-t001"> <div class="html-caption"><b>Table 1.</b> Summary of TENGs with different types of biomaterials used in the biomedical field.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Material</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Type</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Size</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Output</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Energy Source</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Ref.</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >Lignin</td><td align='center' valign='middle' class='html-align-center' >Natural material</td><td align='center' valign='middle' class='html-align-center' >4.5 × 4.5 cm<sup>2</sup></td><td align='center' valign='middle' class='html-align-center' >700 V/95 μA</td><td align='center' valign='middle' class='html-align-center' >Hand slapping</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B55-nanomaterials-14-01885" class="html-bibr">55</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >Rice glutelin</td><td align='center' valign='middle' class='html-align-center' >Natural material</td><td align='center' valign='middle' class='html-align-center' >6 cm diameter</td><td align='center' valign='middle' class='html-align-center' >170 V/14 μA</td><td align='center' valign='middle' class='html-align-center' >Oscillating force</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B54-nanomaterials-14-01885" class="html-bibr">54</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >Fish gelatin</td><td align='center' valign='middle' class='html-align-center' >Natural material</td><td align='center' valign='middle' class='html-align-center' >3 × 3 cm<sup>2</sup></td><td align='center' valign='middle' class='html-align-center' >500 V</td><td align='center' valign='middle' class='html-align-center' >Joint movement</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B98-nanomaterials-14-01885" class="html-bibr">98</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >CS/glycerol</td><td align='center' valign='middle' class='html-align-center' >Biocomposites</td><td align='center' valign='middle' class='html-align-center' >0.6 × 2 × 1.5 mm<sup>3</sup></td><td align='center' valign='middle' class='html-align-center' >127 V</td><td align='center' valign='middle' class='html-align-center' >Pulse</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B62-nanomaterials-14-01885" class="html-bibr">62</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >PVA/silk</td><td align='center' valign='middle' class='html-align-center' >Biocomposites</td><td align='center' valign='middle' class='html-align-center' >4 × 7 cm<sup>2</sup></td><td align='center' valign='middle' class='html-align-center' >172 V/8.5 μA</td><td align='center' valign='middle' class='html-align-center' >Oscillating force</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B53-nanomaterials-14-01885" class="html-bibr">53</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >MoS<sub>2</sub>/gelatin-methacryloyl</td><td align='center' valign='middle' class='html-align-center' >Hydrogel</td><td align='center' valign='middle' class='html-align-center' >2 × 2 × 1 mm<sup>3</sup></td><td align='center' valign='middle' class='html-align-center' >48.8 V/0.57 μA</td><td align='center' valign='middle' class='html-align-center' >Finger curvature</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B96-nanomaterials-14-01885" class="html-bibr">96</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >β-Cyclodextrin/PVA</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hydrogel</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2 × 2 cm<sup>2</sup></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >65 V/3.5 μA</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Movement</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B97-nanomaterials-14-01885" class="html-bibr">97</a>]</td></tr></tbody> </table> </div> <div class="html-table-wrap" id="nanomaterials-14-01885-t002"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href='#table_body_display_nanomaterials-14-01885-t002'> <img data-lsrc="https://pub.mdpi-res.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2079-4991/14/23/1885/display" href="#table_body_display_nanomaterials-14-01885-t002"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 2.</b> Summary of the performance and application of BP-TENG with different biomaterials. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_nanomaterials-14-01885-t002"> <div class="html-caption"><b>Table 2.</b> Summary of the performance and application of BP-TENG with different biomaterials.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Material</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Position</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Size</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Electrical Output</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Application</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Ref.</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >CNF/DFs</td><td align='center' valign='middle' class='html-align-center' >Mouth</td><td align='center' valign='middle' class='html-align-center' >35 × 25 × 12 mm<sup>3</sup></td><td align='center' valign='middle' class='html-align-center' >388 V/18.6 μA</td><td align='center' valign='middle' class='html-align-center' >Respiratory diagnosis</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B65-nanomaterials-14-01885" class="html-bibr">65</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >Cotton/UHMWPE</td><td align='center' valign='middle' class='html-align-center' >Mouth</td><td align='center' valign='middle' class='html-align-center' >4 × 4 cm<sup>2</sup></td><td align='center' valign='middle' class='html-align-center' >∼20 V</td><td align='center' valign='middle' class='html-align-center' >Respiratory diagnosis</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B103-nanomaterials-14-01885" class="html-bibr">103</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >SF/MXene</td><td align='center' valign='middle' class='html-align-center' >Mouth</td><td align='center' valign='middle' class='html-align-center' >2 × 2 cm<sup>2</sup></td><td align='center' valign='middle' class='html-align-center' >545 V/16.13 μA</td><td align='center' valign='middle' class='html-align-center' >Asthma diagnosis</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B104-nanomaterials-14-01885" class="html-bibr">104</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >SF/CNF</td><td align='center' valign='middle' class='html-align-center' >Cardiomyogenic</td><td align='center' valign='middle' class='html-align-center' >1 × 5 cm<sup>2</sup></td><td align='center' valign='middle' class='html-align-center' >0.46 V/4.5 nA</td><td align='center' valign='middle' class='html-align-center' >Cardiac diagnosis</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B61-nanomaterials-14-01885" class="html-bibr">61</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >ZIF-8@loofah</td><td align='center' valign='middle' class='html-align-center' >Elbow</td><td align='center' valign='middle' class='html-align-center' >—</td><td align='center' valign='middle' class='html-align-center' >54.2 V/309 nA</td><td align='center' valign='middle' class='html-align-center' >Pulse diagnosis</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B56-nanomaterials-14-01885" class="html-bibr">56</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >Cornstarch</td><td align='center' valign='middle' class='html-align-center' >Hand/Feet</td><td align='center' valign='middle' class='html-align-center' >4 × 3 cm<sup>2</sup></td><td align='center' valign='middle' class='html-align-center' >266 V/0.49 μA</td><td align='center' valign='middle' class='html-align-center' >Exercise monitoring</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B108-nanomaterials-14-01885" class="html-bibr">108</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >Organogel/silicone</td><td align='center' valign='middle' class='html-align-center' >Ligament</td><td align='center' valign='middle' class='html-align-center' >1.8 × 0.5 mm<sup>2</sup> × 3 cm</td><td align='center' valign='middle' class='html-align-center' >0.7 V</td><td align='center' valign='middle' class='html-align-center' >Exercise monitoring</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B63-nanomaterials-14-01885" class="html-bibr">63</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >GO-PAM</td><td align='center' valign='middle' class='html-align-center' >Feet</td><td align='center' valign='middle' class='html-align-center' >5 × 5 cm<sup>2</sup> × 1 mm</td><td align='center' valign='middle' class='html-align-center' >990 V/63.84 μA</td><td align='center' valign='middle' class='html-align-center' >Parkinson’s diagnosis</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B109-nanomaterials-14-01885" class="html-bibr">109</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >D-mannose/PLA</td><td align='center' valign='middle' class='html-align-center' >Water/milk</td><td align='center' valign='middle' class='html-align-center' >2 × 2 cm<sup>2</sup></td><td align='center' valign='middle' class='html-align-center' >70 V/800 nA</td><td align='center' valign='middle' class='html-align-center' >Bacterial diagnostics</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B110-nanomaterials-14-01885" class="html-bibr">110</a>]</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >Titanium oxide</td><td align='center' valign='middle' class='html-align-center' >Bone/tooth</td><td align='center' valign='middle' class='html-align-center' >1.6 × 1 cm<sup>2</sup></td><td align='center' valign='middle' class='html-align-center' >12 V/0.15 μA</td><td align='center' valign='middle' class='html-align-center' >Antibacterial</td><td align='center' valign='middle' class='html-align-center' >[<a href="#B112-nanomaterials-14-01885" class="html-bibr">112</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ZnO@paper</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Hand</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >6 × 6 cm<sup>2</sup></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >77 V/0.17 μA</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Antibacterial</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B113-nanomaterials-14-01885" class="html-bibr">113</a>]</td></tr></tbody> </table> <div class='html-table_foot html-p'><div class='html-p' style='text-indent:0em;'><span class='html-fn-content'>a “—” in the table indicates that the data were not documented in the research.</span></div><div style='clear:both;'></div></div> </div> </section><section class='html-fn_group'><table><tr id=''><td></td><td><div class='html-p'><b>Disclaimer/Publisher’s Note:</b> The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.</div></td></tr></table></section> <section id="html-copyright"><br>© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" rel="noopener noreferrer">https://creativecommons.org/licenses/by/4.0/</a>).</section> </div> </div> <div class="additional-content"> <h2><a name="cite"></a>Share and Cite</h2> <div class="social-media-links" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#6f50490e021f541c1a0d050a0c1b52291d00024a5d5f222b3f264a5c2e4a5d5f4a5d5d2d0600020e1b0a1d060e034a5d5f3f1d0002001b0a1c4a5d5f3b1d060d000a030a0c1b1d060c4a5d5f210e0100080a010a1d0e1b001d4a5d5f09001d4a5d5f270a0e031b074a5d5f2b060e0801001c1b060c1c4a5d5f0e010b4a5d5f2c030601060c0e034a5d5f2e1f1f03060c0e1b060001491e1a001b54490e021f540d000b1652071b1b1f1c55404018181841020b1f06410c0002405c5f5a5a595c5b4a5c2e4a5f2e4a5f2e2d0600020e1b0a1d060e034a5d5f3f1d0002001b0a1c4a5d5f3b1d060d000a030a0c1b1d060c4a5d5f210e0100080a010a1d0e1b001d4a5d5f09001d4a5d5f270a0e031b074a5d5f2b060e0801001c1b060c1c4a5d5f0e010b4a5d5f2c030601060c0e034a5d5f2e1f1f03060c0e1b0600014a5f2e4a5f2e2e0d1c1b1d0e0c1b4a5c2e4a5d5f38061b074a5d5f1b070a4a5d5f081d00180601084a5d5f0b0a020e010b4a5d5f09001d4a5d5f1f0a1d1c00010e0306150a0b4a5d5f070a0e031b070c0e1d0a4a5d5f1c0a1d19060c0a1c4a5d2c4a5d5f0d0600020e1b0a1d060e03420d0e1c0a0b4a5d5f1b1d060d000a030a0c1b1d060c4a5d5f010e0100080a010a1d0e1b001d1c4a5d5f4a5d572d22423b2a21281c4a5d564a5d5f070e190a4a5d5f080e06010a0b4a5d5f18060b0a1c1f1d0a0e0b4a5d5f0e1b1b0a011b0600014a5d5f0b1a0a4a5d5f1b004a5d5f1b070a061d4a5d5f010001421b0017060c061b164a5d2c4a5d5f0d06000c00021f0e1b060d0603061b164a5d2c4a5d5f0e010b4a5d5f0d06000b0a081d0e0b0e0d0603061b16414a5d5f3b07061c4a5d5f1d0a19060a184a5d5f1c161c1b0a020e1b060c0e0303164a5d5f0a170e0206010a1c4a5d5f1b070a4a5d5f18001d040601084a5d5f1f1d06010c061f030a1c4a5d2c4a5d5f020e1b0a1d060e034a5d5f0c0700060c0a1c4a5d2c4a5d5f0d06000206020a1b060c4a5d5f0b0a1c0608011c4a5d2c4a5d5f0e010b4a5d5f0c030601060c0e034a5d5f0e1f1f03060c0e1b0600014a5d5f1c0c0a010e1d06001c4a5d5f00094a5d5f2d22423b2a21281c4a5d2c4a5d5f18061b074a5d5f0e4a5d5f09000c1a1c4a5d5f00014a5d5f1b070a4a5d5f1a1c0a4a5d5f00094a5d5f010e1b1a1d0e034a5d5f0d0600020e1b0a1d060e031c4a5d2c4a5d5f0d06000c00021f001c061b0a1c4a5d2c4a5d5f07160b1d00080a031c4a5d2c4a5d5f0e010b4a5d5f001b070a1d4a5d5f020e1b0a1d060e031c4a5d5f06014a5d5f070a0e031b074a5d5f0b060e0801001c1b060c1c414a5d5f2d0600020e1b0a1d060e031c4a5d5f1c0700184a5d5f1c0608010609060c0e011b4a5d5f1f001b0a011b060e034a5d5f06014a5d5f0a01070e010c0601084a5d5f3b2a21284a5d5f1f0a1d09001d020e010c0a4a5d2c4a5d5f06021f1d00190601084a5d5f0b0a19060c0a4a5d5f09030a17060d0603061b164a5d2c4a5d5f0e010b4a5d5f0a171f0e010b0601084a5d5f0e1f1f03060c0e1b0600014a5d5f1d0e01080a1c4a5d2c4a5d5f0a1c1f0a0c060e0303164a5d5f06014a5d5f0a0e1d03164a5d5f0b061c0a0e1c0a4a5d5f0b0a1b0a0c1b0600014a5d2c4a5d5f070a0e031b074a5d5f020001061b001d0601084a5d2c4a5d5f0e010b4a5d5f1c0a0309421f00180a1d0a0b4a5d5f1c0a011c0601084a5d5f0b0a19060c0a1c414a5d5f3b07061c4a5d5f1f0e1f0a1d4a5d5f0e031c004a5d5f0e0b0b1d0a1c1c0a1c4a5d5f1b070a4a5d5f0c1a1d1d0a011b4a5d5f0c070e03030a01080a1c4a5d5f090e0c0a0b4a5d5f0d164a5d5f2d22423b2a21284a5d5f1b0a0c070100030008164a5d2c4a5d5f06010c031a0b0601084a5d5f1f0a1d09001d020e010c0a4a5d5f001f1b060206150e1b0600014a5d2c4a5d5f0d06000c00021f0e1b060d0603061b164a5d2c4a5d5f0e010b4a5d5f0b0a19060c0a4a5d5f0b1a1d0e0d0603061b16414a5d5f2d164a5d5f06011b0a081d0e1b0601084a5d5f0a17061c1b0601084a5d5f1d0a1c0a0e1d0c074a5d5f0e010b4a5d5f1b0a0c070100030008060c0e034a5d5f0e0b190e010c0a020a011b1c4a5d2c4a5d5f1b07061c4a5d5f1d0a19060a184a5d5f0e06021c4a5d5f1b004a5d5f0b0a0a1f03164a5d5f0e010e0316150a4a5d5f1b070a4a5d5f0b0a190a03001f020a011b4a5d5f00094a5d5f2d22423b2a21284a5d5f1b0a0c070100030008164a5d2c4a5d5f1f1d001f001c0a4a5d5f0c001d1d0a1c1f00010b0601084a5d5f1c00031a1b0600011c4a5d2c4a5d5f0e010b4a5d5f0a171f03001d0a4a5d5f061b1c4a5d5f1f1d0e0c1b060c0e034a5d5f0e1f1f03060c0e1b0600014a5d5f1f1d001c1f0a0c1b1c4a5d5f06014a5d5f1b070a4a5d5f020a0b060c0e034a5d5f09060a030b41" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Biomaterial+Promotes+Triboelectric+Nanogenerator+for+Health+Diagnostics+and+Clinical+Application&hashtags=mdpinanomaterials&url=https%3A%2F%2Fwww.mdpi.com%2F3055634&via=nano_mdpi" onclick="windowOpen(this.href,600,800); return false" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.mdpi.com%2F3055634&title=Biomaterial%20Promotes%20Triboelectric%20Nanogenerator%20for%20Health%20Diagnostics%20and%20Clinical%20Application%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DWith%20the%20growing%20demand%20for%20personalized%20healthcare%20services%2C%20biomaterial-based%20triboelectric%20nanogenerators%20%28BM-TENGs%29%20have%20gained%20widespread%20attention%20due%20to%20their%20non-toxicity%2C%20biocompatibility%2C%20and%20biodegradability.%20This%20review%20systematically%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/3055634" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/3055634" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/3055634" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> </div> <div class="in-tab" style="padding-top: 0px!important; margin-top: 15px;"> <div><b>MDPI and ACS Style</b></div> <p> Zhu, Q.; Sun, E.; Sun, Y.; Cao, X.; Wang, N. Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application. <em>Nanomaterials</em> <b>2024</b>, <em>14</em>, 1885. https://doi.org/10.3390/nano14231885 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Zhu Q, Sun E, Sun Y, Cao X, Wang N. Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application. <em>Nanomaterials</em>. 2024; 14(23):1885. https://doi.org/10.3390/nano14231885 </p> <b>Chicago/Turabian Style</b><br> <p> Zhu, Qiliang, Enqi Sun, Yuchen Sun, Xia Cao, and Ning Wang. 2024. "Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application" <em>Nanomaterials</em> 14, no. 23: 1885. https://doi.org/10.3390/nano14231885 </p> <b>APA Style</b><br> <p> Zhu, Q., Sun, E., Sun, Y., Cao, X., & Wang, N. (2024). Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application. <em>Nanomaterials</em>, <em>14</em>(23), 1885. https://doi.org/10.3390/nano14231885 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> <h2><a name="metrics"></a>Article Metrics</h2> <div class="row"> <div class="small-12 columns"> <div id="loaded_cite_count" style="display:none">No</div> <div id="framed_div_cited_count" class="in-tab" style="display: none; overflow: auto;"></div> <div id="loaded" style="display:none">No</div> <div id="framed_div" class="in-tab" style="display: none; margin-top: 10px;"></div> </div> <div class="small-12 columns"> <div id="article_stats_div" style="display: none; margin-bottom: 1em;"> <h3>Article Access Statistics</h3> <div id="article_stats_swf" ></div> For more information on the journal statistics, click <a href="/journal/nanomaterials/stats">here</a>. <div class="info-box"> Multiple requests from the same IP address are counted as one view. </div> </div> </div> </div> </div> </div> </article> </div> </div></div> <div class="webpymol-controls webpymol-controls-template" style="margin-top: 10px; display: none;"> <a class="bzoom">Zoom</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="borient"> Orient </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="blines"> As Lines </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsticks"> As Sticks </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bcartoon"> As Cartoon </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsurface"> As Surface </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bprevscene">Previous Scene</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bnextscene">Next Scene</a> </div> <div id="scifeed-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="recommended-articles-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="author-biographies-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="cite-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Cite</h2> </div> <div class="small-12 columns"> <!-- BibTeX --> <form style="margin:0; padding:0; display:inline;" name="export-bibtex" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="1527817"> <input type="hidden" name="export_format_top" value="bibtex"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- EndNote --> <form style="margin:0; padding:0; display:inline;" name="export-endnote" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="1527817"> <input type="hidden" name="export_format_top" value="endnote_no_abstract"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- RIS --> <form style="margin:0; padding:0; display:inline;" name="export-ris" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="1527817"> <input type="hidden" name="export_format_top" value="ris"> <input type="hidden" name="export_submit_top" value=""> </form> <div> Export citation file: <a href="javascript:window.document.forms['export-bibtex'].submit()">BibTeX</a> | <a href="javascript:window.document.forms['export-endnote'].submit()">EndNote</a> | <a href="javascript:window.document.forms['export-ris'].submit()">RIS</a> </div> </div> <div class="small-12 columns"> <div class="in-tab"> <div><b>MDPI and ACS Style</b></div> <p> Zhu, Q.; Sun, E.; Sun, Y.; Cao, X.; Wang, N. Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application. <em>Nanomaterials</em> <b>2024</b>, <em>14</em>, 1885. https://doi.org/10.3390/nano14231885 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Zhu Q, Sun E, Sun Y, Cao X, Wang N. Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application. <em>Nanomaterials</em>. 2024; 14(23):1885. https://doi.org/10.3390/nano14231885 </p> <b>Chicago/Turabian Style</b><br> <p> Zhu, Qiliang, Enqi Sun, Yuchen Sun, Xia Cao, and Ning Wang. 2024. "Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application" <em>Nanomaterials</em> 14, no. 23: 1885. https://doi.org/10.3390/nano14231885 </p> <b>APA Style</b><br> <p> Zhu, Q., Sun, E., Sun, Y., Cao, X., & Wang, N. (2024). Biomaterial Promotes Triboelectric Nanogenerator for Health Diagnostics and Clinical Application. <em>Nanomaterials</em>, <em>14</em>(23), 1885. https://doi.org/10.3390/nano14231885 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> </div> </div> </div> </section> <div id="footer"> <div class="journal-info"> <span> <em><a class="Var_JournalInfo" href="/journal/nanomaterials">Nanomaterials</a></em>, EISSN 2079-4991, Published by MDPI </span> <div class="large-right"> <span> <a href="/rss/journal/nanomaterials" class="rss-link">RSS</a> </span> <span> <a href="/journal/nanomaterials/toc-alert">Content Alert</a> </span> </div> </div> <div class="row full-width footer-links" data-equalizer="footer" data-equalizer-mq="small"> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Further Information </h3> <a href="/apc"> Article Processing Charges </a> <a href="/about/payment"> Pay an Invoice </a> <a href="/openaccess"> Open Access Policy </a> <a href="/about/contact"> Contact MDPI </a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Jobs at MDPI </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Guidelines </h3> <a href="/authors"> For Authors </a> <a href="/reviewers"> For Reviewers </a> <a href="/editors"> For Editors </a> <a href="/librarians"> For Librarians </a> <a href="/publishing_services"> For Publishers </a> <a href="/societies"> For Societies </a> <a href="/conference_organizers"> For Conference Organizers </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns"> <h3> MDPI Initiatives </h3> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> <a href="https://sciprofiles.com?utm_source=mpdi.com&utm_medium=bottom_menu&utm_campaign=initiative" target="_blank" rel="noopener noreferrer"> SciProfiles </a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> <a href="/about/proceedings"> Proceedings Series </a> </div> <div class="large-2 large-push-4 medium-3 small-6 right-border-large-without columns UA_FooterFollowMDPI"> <h3> Follow MDPI </h3> <a href="https://www.linkedin.com/company/mdpi" target="_blank" rel="noopener noreferrer"> LinkedIn </a> <a href="https://www.facebook.com/MDPIOpenAccessPublishing" target="_blank" rel="noopener noreferrer"> Facebook </a> <a href="https://twitter.com/MDPIOpenAccess" target="_blank" rel="noopener noreferrer"> Twitter </a> </div> <div id="footer-subscribe" class="large-4 large-pull-8 medium-12 small-12 left-border-large columns"> <div class="footer-subscribe__container"> <img class="show-for-large-up" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-white-small.png?71d18e5f805839ab?1732286508" alt="MDPI" title="MDPI Open Access Journals" style="height: 50px; margin-bottom: 10px;"> <form id="newsletter" method="POST" action="/subscribe"> <p> Subscribe to receive issue release notifications and newsletters from MDPI journals </p> <select multiple id="newsletter-journal" class="foundation-select" name="journals[]"> <option value="acoustics">Acoustics</option> <option value="amh">Acta Microbiologica Hellenica</option> <option value="actuators">Actuators</option> <option value="admsci">Administrative Sciences</option> <option value="adolescents">Adolescents</option> <option value="arm">Advances in Respiratory Medicine</option> <option value="aerobiology">Aerobiology</option> <option value="aerospace">Aerospace</option> <option value="agriculture">Agriculture</option> <option value="agriengineering">AgriEngineering</option> <option value="agrochemicals">Agrochemicals</option> <option value="agronomy">Agronomy</option> <option value="ai">AI</option> <option value="air">Air</option> <option value="algorithms">Algorithms</option> <option value="allergies">Allergies</option> <option value="alloys">Alloys</option> <option value="analytica">Analytica</option> <option value="analytics">Analytics</option> <option value="anatomia">Anatomia</option> <option value="anesthres">Anesthesia Research</option> <option value="animals">Animals</option> <option value="antibiotics">Antibiotics</option> <option value="antibodies">Antibodies</option> <option value="antioxidants">Antioxidants</option> <option value="applbiosci">Applied Biosciences</option> <option value="applmech">Applied Mechanics</option> <option value="applmicrobiol">Applied Microbiology</option> <option value="applnano">Applied Nano</option> <option value="applsci">Applied Sciences</option> <option value="asi">Applied System Innovation</option> <option value="appliedchem">AppliedChem</option> <option value="appliedmath">AppliedMath</option> <option value="aquacj">Aquaculture Journal</option> <option value="architecture">Architecture</option> <option value="arthropoda">Arthropoda</option> <option value="arts">Arts</option> <option value="astronomy">Astronomy</option> <option value="atmosphere">Atmosphere</option> <option value="atoms">Atoms</option> <option value="audiolres">Audiology Research</option> <option value="automation">Automation</option> <option value="axioms">Axioms</option> <option value="bacteria">Bacteria</option> <option value="batteries">Batteries</option> <option value="behavsci">Behavioral Sciences</option> <option value="beverages">Beverages</option> <option value="BDCC">Big Data and Cognitive Computing</option> <option value="biochem">BioChem</option> <option value="bioengineering">Bioengineering</option> <option value="biologics">Biologics</option> <option value="biology">Biology</option> <option value="blsf">Biology and Life Sciences Forum</option> <option value="biomass">Biomass</option> <option value="biomechanics">Biomechanics</option> <option value="biomed">BioMed</option> <option value="biomedicines">Biomedicines</option> <option value="biomedinformatics">BioMedInformatics</option> <option value="biomimetics">Biomimetics</option> <option value="biomolecules">Biomolecules</option> <option value="biophysica">Biophysica</option> <option value="biosensors">Biosensors</option> <option value="biotech">BioTech</option> <option value="birds">Birds</option> <option value="blockchains">Blockchains</option> <option value="brainsci">Brain Sciences</option> <option value="buildings">Buildings</option> <option value="businesses">Businesses</option> <option value="carbon">C</option> <option value="cancers">Cancers</option> <option value="cardiogenetics">Cardiogenetics</option> <option value="catalysts">Catalysts</option> <option value="cells">Cells</option> <option value="ceramics">Ceramics</option> <option value="challenges">Challenges</option> <option value="ChemEngineering">ChemEngineering</option> <option value="chemistry">Chemistry</option> <option value="chemproc">Chemistry Proceedings</option> <option value="chemosensors">Chemosensors</option> <option value="children">Children</option> <option value="chips">Chips</option> <option value="civileng">CivilEng</option> <option value="cleantechnol">Clean Technologies</option> <option value="climate">Climate</option> <option value="ctn">Clinical and Translational Neuroscience</option> <option value="clinbioenerg">Clinical Bioenergetics</option> <option value="clinpract">Clinics and Practice</option> <option value="clockssleep">Clocks & Sleep</option> <option value="coasts">Coasts</option> <option value="coatings">Coatings</option> <option value="colloids">Colloids and Interfaces</option> <option value="colorants">Colorants</option> <option value="commodities">Commodities</option> <option value="complications">Complications</option> <option value="compounds">Compounds</option> <option value="computation">Computation</option> <option value="csmf">Computer Sciences & Mathematics Forum</option> <option value="computers">Computers</option> <option value="condensedmatter">Condensed Matter</option> <option value="conservation">Conservation</option> <option value="constrmater">Construction Materials</option> <option value="cmd">Corrosion and Materials Degradation</option> <option value="cosmetics">Cosmetics</option> <option value="covid">COVID</option> <option value="crops">Crops</option> <option value="cryo">Cryo</option> <option value="cryptography">Cryptography</option> <option value="crystals">Crystals</option> <option value="cimb">Current Issues in Molecular Biology</option> <option value="curroncol">Current Oncology</option> <option value="dairy">Dairy</option> <option value="data">Data</option> <option value="dentistry">Dentistry Journal</option> <option value="dermato">Dermato</option> <option value="dermatopathology">Dermatopathology</option> <option value="designs">Designs</option> <option value="diabetology">Diabetology</option> <option value="diagnostics">Diagnostics</option> <option value="dietetics">Dietetics</option> <option value="digital">Digital</option> <option value="disabilities">Disabilities</option> <option value="diseases">Diseases</option> <option value="diversity">Diversity</option> <option value="dna">DNA</option> <option value="drones">Drones</option> <option value="ddc">Drugs and Drug Candidates</option> <option value="dynamics">Dynamics</option> <option value="earth">Earth</option> <option value="ecologies">Ecologies</option> <option value="econometrics">Econometrics</option> <option value="economies">Economies</option> <option value="education">Education Sciences</option> <option value="electricity">Electricity</option> <option value="electrochem">Electrochem</option> <option value="electronicmat">Electronic Materials</option> <option value="electronics">Electronics</option> <option value="ecm">Emergency Care and Medicine</option> <option value="encyclopedia">Encyclopedia</option> <option value="endocrines">Endocrines</option> <option value="energies">Energies</option> <option value="esa">Energy Storage and Applications</option> <option value="eng">Eng</option> <option value="engproc">Engineering Proceedings</option> <option value="entropy">Entropy</option> <option value="environsciproc">Environmental Sciences Proceedings</option> <option value="environments">Environments</option> <option value="epidemiologia">Epidemiologia</option> <option value="epigenomes">Epigenomes</option> <option value="ebj">European Burn Journal</option> <option value="ejihpe">European Journal of Investigation in Health, Psychology and Education</option> <option value="fermentation">Fermentation</option> <option value="fibers">Fibers</option> <option value="fintech">FinTech</option> <option value="fire">Fire</option> <option value="fishes">Fishes</option> <option value="fluids">Fluids</option> <option value="foods">Foods</option> <option value="forecasting">Forecasting</option> <option value="forensicsci">Forensic Sciences</option> <option value="forests">Forests</option> <option value="fossstud">Fossil Studies</option> <option value="foundations">Foundations</option> <option value="fractalfract">Fractal and Fractional</option> <option value="fuels">Fuels</option> <option value="future">Future</option> <option value="futureinternet">Future Internet</option> <option value="futurepharmacol">Future Pharmacology</option> <option value="futuretransp">Future Transportation</option> <option value="galaxies">Galaxies</option> <option value="games">Games</option> <option value="gases">Gases</option> <option value="gastroent">Gastroenterology Insights</option> <option value="gastrointestdisord">Gastrointestinal Disorders</option> <option value="gastronomy">Gastronomy</option> <option value="gels">Gels</option> <option value="genealogy">Genealogy</option> <option value="genes">Genes</option> <option value="geographies">Geographies</option> <option value="geohazards">GeoHazards</option> <option value="geomatics">Geomatics</option> <option value="geometry">Geometry</option> <option value="geosciences">Geosciences</option> <option value="geotechnics">Geotechnics</option> <option value="geriatrics">Geriatrics</option> <option value="glacies">Glacies</option> <option value="gucdd">Gout, Urate, and Crystal Deposition Disease</option> <option value="grasses">Grasses</option> <option value="hardware">Hardware</option> <option value="healthcare">Healthcare</option> <option value="hearts">Hearts</option> <option value="hemato">Hemato</option> <option value="hematolrep">Hematology Reports</option> <option value="heritage">Heritage</option> <option value="histories">Histories</option> <option value="horticulturae">Horticulturae</option> <option value="hospitals">Hospitals</option> <option value="humanities">Humanities</option> <option value="humans">Humans</option> <option value="hydrobiology">Hydrobiology</option> <option value="hydrogen">Hydrogen</option> <option value="hydrology">Hydrology</option> <option value="hygiene">Hygiene</option> <option value="immuno">Immuno</option> <option value="idr">Infectious Disease Reports</option> <option value="informatics">Informatics</option> <option value="information">Information</option> <option value="infrastructures">Infrastructures</option> <option value="inorganics">Inorganics</option> <option value="insects">Insects</option> <option value="instruments">Instruments</option> <option value="iic">Intelligent Infrastructure and Construction</option> <option value="ijerph">International Journal of Environmental Research and Public Health</option> <option value="ijfs">International Journal of Financial Studies</option> <option value="ijms">International Journal of Molecular Sciences</option> <option value="IJNS">International Journal of Neonatal Screening</option> <option value="ijpb">International Journal of Plant Biology</option> <option value="ijt">International Journal of Topology</option> <option value="ijtm">International Journal of Translational Medicine</option> <option value="ijtpp">International Journal of Turbomachinery, Propulsion and Power</option> <option value="ime">International Medical Education</option> <option value="inventions">Inventions</option> <option value="IoT">IoT</option> <option value="ijgi">ISPRS International Journal of Geo-Information</option> <option value="J">J</option> <option value="jal">Journal of Ageing and Longevity</option> <option value="jcdd">Journal of Cardiovascular Development and Disease</option> <option value="jcto">Journal of Clinical & Translational Ophthalmology</option> <option value="jcm">Journal of Clinical Medicine</option> <option value="jcs">Journal of Composites Science</option> <option value="jcp">Journal of Cybersecurity and Privacy</option> <option value="jdad">Journal of Dementia and Alzheimer's Disease</option> <option value="jdb">Journal of Developmental Biology</option> <option value="jeta">Journal of Experimental and Theoretical Analyses</option> <option value="jfb">Journal of Functional Biomaterials</option> <option value="jfmk">Journal of Functional Morphology and Kinesiology</option> <option value="jof">Journal of Fungi</option> <option value="jimaging">Journal of Imaging</option> <option value="jintelligence">Journal of Intelligence</option> <option value="jlpea">Journal of Low Power Electronics and Applications</option> <option value="jmmp">Journal of Manufacturing and Materials Processing</option> <option value="jmse">Journal of Marine Science and Engineering</option> <option value="jmahp">Journal of Market Access & Health Policy</option> <option value="jmp">Journal of Molecular Pathology</option> <option value="jnt">Journal of Nanotheranostics</option> <option value="jne">Journal of Nuclear Engineering</option> <option value="ohbm">Journal of Otorhinolaryngology, Hearing and Balance Medicine</option> <option value="jop">Journal of Parks</option> <option value="jpm">Journal of Personalized Medicine</option> <option value="jpbi">Journal of Pharmaceutical and BioTech Industry</option> <option value="jor">Journal of Respiration</option> <option value="jrfm">Journal of Risk and Financial Management</option> <option value="jsan">Journal of Sensor and Actuator Networks</option> <option value="joma">Journal of the Oman Medical Association</option> <option value="jtaer">Journal of Theoretical and Applied Electronic Commerce Research</option> <option value="jvd">Journal of Vascular Diseases</option> <option value="jox">Journal of Xenobiotics</option> <option value="jzbg">Journal of Zoological and Botanical Gardens</option> <option value="journalmedia">Journalism and Media</option> <option value="kidneydial">Kidney and Dialysis</option> <option value="kinasesphosphatases">Kinases and Phosphatases</option> <option value="knowledge">Knowledge</option> <option value="labmed">LabMed</option> <option value="laboratories">Laboratories</option> <option value="land">Land</option> <option value="languages">Languages</option> <option value="laws">Laws</option> <option value="life">Life</option> <option value="limnolrev">Limnological Review</option> <option value="lipidology">Lipidology</option> <option value="liquids">Liquids</option> <option value="literature">Literature</option> <option value="livers">Livers</option> <option value="logics">Logics</option> <option value="logistics">Logistics</option> <option value="lubricants">Lubricants</option> <option value="lymphatics">Lymphatics</option> <option value="make">Machine Learning and Knowledge Extraction</option> <option value="machines">Machines</option> <option value="macromol">Macromol</option> <option value="magnetism">Magnetism</option> <option value="magnetochemistry">Magnetochemistry</option> <option value="marinedrugs">Marine Drugs</option> <option value="materials">Materials</option> <option value="materproc">Materials Proceedings</option> <option value="mca">Mathematical and Computational Applications</option> <option value="mathematics">Mathematics</option> <option value="medsci">Medical Sciences</option> <option value="msf">Medical Sciences Forum</option> <option value="medicina">Medicina</option> <option value="medicines">Medicines</option> <option value="membranes">Membranes</option> <option value="merits">Merits</option> <option value="metabolites">Metabolites</option> <option value="metals">Metals</option> <option value="meteorology">Meteorology</option> <option value="methane">Methane</option> <option value="mps">Methods and Protocols</option> <option value="metrics">Metrics</option> <option value="metrology">Metrology</option> <option value="micro">Micro</option> <option value="microbiolres">Microbiology Research</option> <option value="micromachines">Micromachines</option> <option value="microorganisms">Microorganisms</option> <option value="microplastics">Microplastics</option> <option value="minerals">Minerals</option> <option value="mining">Mining</option> <option value="modelling">Modelling</option> <option value="mmphys">Modern Mathematical Physics</option> <option value="molbank">Molbank</option> <option value="molecules">Molecules</option> <option value="mti">Multimodal Technologies and Interaction</option> <option value="muscles">Muscles</option> <option value="nanoenergyadv">Nanoenergy Advances</option> <option value="nanomanufacturing">Nanomanufacturing</option> <option value="nanomaterials">Nanomaterials</option> <option value="ndt">NDT</option> <option value="network">Network</option> <option value="neuroglia">Neuroglia</option> <option value="neurolint">Neurology International</option> <option value="neurosci">NeuroSci</option> <option value="nitrogen">Nitrogen</option> <option value="ncrna">Non-Coding RNA</option> <option value="nursrep">Nursing Reports</option> <option value="nutraceuticals">Nutraceuticals</option> <option value="nutrients">Nutrients</option> <option value="obesities">Obesities</option> <option value="oceans">Oceans</option> <option value="onco">Onco</option> <option value="optics">Optics</option> <option value="oral">Oral</option> <option value="organics">Organics</option> <option value="organoids">Organoids</option> <option value="osteology">Osteology</option> <option value="oxygen">Oxygen</option> <option value="parasitologia">Parasitologia</option> <option value="particles">Particles</option> <option value="pathogens">Pathogens</option> <option value="pathophysiology">Pathophysiology</option> <option value="pediatrrep">Pediatric Reports</option> <option value="pets">Pets</option> <option value="pharmaceuticals">Pharmaceuticals</option> <option value="pharmaceutics">Pharmaceutics</option> <option value="pharmacoepidemiology">Pharmacoepidemiology</option> <option value="pharmacy">Pharmacy</option> <option value="philosophies">Philosophies</option> <option value="photochem">Photochem</option> <option value="photonics">Photonics</option> <option value="phycology">Phycology</option> <option value="physchem">Physchem</option> <option value="psf">Physical Sciences Forum</option> <option value="physics">Physics</option> <option value="physiologia">Physiologia</option> <option value="plants">Plants</option> <option value="plasma">Plasma</option> <option value="platforms">Platforms</option> <option value="pollutants">Pollutants</option> <option value="polymers">Polymers</option> <option value="polysaccharides">Polysaccharides</option> <option value="populations">Populations</option> <option value="poultry">Poultry</option> <option value="powders">Powders</option> <option value="proceedings">Proceedings</option> <option value="processes">Processes</option> <option value="prosthesis">Prosthesis</option> <option value="proteomes">Proteomes</option> <option value="psychiatryint">Psychiatry International</option> <option value="psychoactives">Psychoactives</option> <option value="psycholint">Psychology International</option> <option value="publications">Publications</option> <option value="qubs">Quantum Beam Science</option> <option value="quantumrep">Quantum Reports</option> <option value="quaternary">Quaternary</option> <option value="radiation">Radiation</option> <option value="reactions">Reactions</option> <option value="realestate">Real Estate</option> <option value="receptors">Receptors</option> <option value="recycling">Recycling</option> <option value="rsee">Regional Science and Environmental Economics</option> <option value="religions">Religions</option> <option value="remotesensing">Remote Sensing</option> <option value="reports">Reports</option> <option value="reprodmed">Reproductive Medicine</option> <option value="resources">Resources</option> <option value="rheumato">Rheumato</option> <option value="risks">Risks</option> <option value="robotics">Robotics</option> <option value="ruminants">Ruminants</option> <option value="safety">Safety</option> <option value="sci">Sci</option> <option value="scipharm">Scientia Pharmaceutica</option> <option value="sclerosis">Sclerosis</option> <option value="seeds">Seeds</option> <option value="sensors">Sensors</option> <option value="separations">Separations</option> <option value="sexes">Sexes</option> <option value="signals">Signals</option> <option value="sinusitis">Sinusitis</option> <option value="smartcities">Smart Cities</option> <option value="socsci">Social Sciences</option> <option value="siuj">Société Internationale d’Urologie Journal</option> <option value="societies">Societies</option> <option value="software">Software</option> <option value="soilsystems">Soil Systems</option> <option value="solar">Solar</option> <option value="solids">Solids</option> <option value="spectroscj">Spectroscopy Journal</option> <option value="sports">Sports</option> <option value="standards">Standards</option> <option value="stats">Stats</option> <option value="stresses">Stresses</option> <option value="surfaces">Surfaces</option> <option value="surgeries">Surgeries</option> <option value="std">Surgical Techniques Development</option> <option value="sustainability">Sustainability</option> <option value="suschem">Sustainable Chemistry</option> <option value="symmetry">Symmetry</option> <option value="synbio">SynBio</option> <option value="systems">Systems</option> <option value="targets">Targets</option> <option value="taxonomy">Taxonomy</option> <option value="technologies">Technologies</option> <option value="telecom">Telecom</option> <option value="textiles">Textiles</option> <option value="thalassrep">Thalassemia Reports</option> <option value="therapeutics">Therapeutics</option> <option value="thermo">Thermo</option> <option value="timespace">Time and Space</option> <option value="tomography">Tomography</option> <option value="tourismhosp">Tourism and Hospitality</option> <option value="toxics">Toxics</option> <option value="toxins">Toxins</option> <option value="transplantology">Transplantology</option> <option value="traumacare">Trauma Care</option> <option value="higheredu">Trends in Higher Education</option> <option value="tropicalmed">Tropical Medicine and Infectious Disease</option> <option value="universe">Universe</option> <option value="urbansci">Urban Science</option> <option value="uro">Uro</option> <option value="vaccines">Vaccines</option> <option value="vehicles">Vehicles</option> <option value="venereology">Venereology</option> <option value="vetsci">Veterinary Sciences</option> <option value="vibration">Vibration</option> <option value="virtualworlds">Virtual Worlds</option> <option value="viruses">Viruses</option> <option value="vision">Vision</option> <option value="waste">Waste</option> <option value="water">Water</option> <option value="wild">Wild</option> <option value="wind">Wind</option> <option value="women">Women</option> <option value="world">World</option> <option value="wevj">World Electric Vehicle Journal</option> <option value="youth">Youth</option> <option value="zoonoticdis">Zoonotic Diseases</option> </select> <input name="email" type="email" placeholder="Enter your email address..." required="required" /> <button class="genericCaptcha button button--dark UA_FooterNewsletterSubscribeButton" type="submit">Subscribe</button> </form> </div> </div> </div> <div id="footer-copyright"> <div class="row"> <div class="columns large-6 medium-6 small-12 text-left"> © 1996-2024 MDPI (Basel, Switzerland) unless otherwise stated </div> <div class="columns large-6 medium-6 small-12 small-text-left medium-text-right large-text-right"> <a data-dropdown="drop-view-disclaimer" aria-controls="drop-view-disclaimer" aria-expanded="false" data-options="align:top; is_hover:true; hover_timeout:2000;"> Disclaimer </a> <div id="drop-view-disclaimer" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide text-left" data-dropdown-content aria-hidden="true" tabindex="-1"> Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. </div> <a href="/about/terms-and-conditions"> Terms and Conditions </a> <a href="/about/privacy"> Privacy Policy </a> </div> </div> </div> </div> <div id="cookie-notification" class="js-allow-cookies" style="display: none;"> <div class="columns large-10 medium-10 small-12"> We use cookies on our website to ensure you get the best experience.<br class="show-for-medium-up"/> Read more about our cookies <a href="/about/privacy">here</a>. </div> <div class="columns large-2 medium-2 small-12 small-only-text-left text-right"> <a class="button button--default" href="/accept_cookies">Accept</a> </div> </div> </div> <div id="main-share-modal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Share Link</h2> </div> <div class="small-12 columns"> <div class="social-media-links UA_ShareModalLinks" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#251a034448551e5650474f4046511863574a480017156861756c001664001715001717674c4a48445140574c444900171575574a484a51405600171571574c474a4049404651574c460017156b444b4a42404b405744514a57001715434a570017156d404449514d001715614c44424b4a56514c4656001715444b4100171566494c4b4c464449001715645555494c4644514c4a4b0354504a511e034448551e474a415c184d515155561f0a0a5252520b4841554c0b464a480a16151010131611001664001564001564674c4a48445140574c444900171575574a484a51405600171571574c474a4049404651574c460017156b444b4a42404b405744514a57001715434a570017156d404449514d001715614c44424b4a56514c4656001715444b4100171566494c4b4c464449001715645555494c4644514c4a4b2f2f724c514d001715514d4000171542574a524c4b42001715414048444b41001715434a57001715554057564a4b44494c5f40410017154d404449514d46445740001715564057534c464056001766001715474c4a48445140574c444908474456404100171551574c474a4049404651574c460017154b444b4a42404b405744514a575600171500171d67680871606b625600171c0017154d44534000171542444c4b4041001715524c4140565557404441001715445151404b514c4a4b001715415040001715514a001715514d404c570017154b4a4b08514a5d4c464c515c001766001715474c4a464a485544514c474c494c515c001766001715444b41001715474c4a41404257444144474c494c515c0b001715714d4c560017155740534c4052001715565c5651404844514c464449495c001715405d44484c4b4056001715514d40001715524a574e4c4b4200171555574c4b464c5549405600176600171548445140574c4449001715464d4a4c464056001766001715474c4a484c4840514c460017154140564c424b56001766001715444b4100171546494c4b4c464449001715445555494c4644514c4a4b0017155646404b44574c4a560017154a4300171567680871606b6256001766001715524c514d00171544001715434a4650560017154a4b001715514d400017155056400017154a430017154b445150574449001715474c4a48445140574c444956001766001715474c4a464a48554a564c5140560017660017154d5c41574a42404956001766001715444b410017154a514d405700171548445140574c4449560017154c4b0017154d404449514d001715414c44424b4a56514c46560b001715674c4a48445140574c444956001715564d4a52001715564c424b4c434c46444b51001715554a51404b514c44490017154c4b001715404b4d444b464c4b4200171571606b62001715554057434a5748444b46400017660017154c4855574a534c4b420017154140534c46400017154349405d4c474c494c515c001766001715444b41001715405d55444b414c4b42001715445555494c4644514c4a4b00171557444b42405600176600171540565540464c4449495c0017154c4b001715404457495c001715414c56404456400017154140514046514c4a4b0017660017154d404449514d001715484a4b4c514a574c4b42001766001715444b410017155640494308554a524057404100171556404b564c4b420017154140534c4640560b001715714d4c5600171555445540570017154449564a001715444141574056564056001715514d4000171546505757404b51001715464d444949404b4240560017154344464041001715475c00171567680871606b620017155140464d4b4a494a425c0017660017154c4b464950414c4b42001715554057434a5748444b46400017154a55514c484c5f44514c4a4b001766001715474c4a464a485544514c474c494c515c001766001715444b410017154140534c464000171541505744474c494c515c0b001715675c0017154c4b5140425744514c4b42001715405d4c56514c4b42001715574056404457464d001715444b410017155140464d4b4a494a424c464449001715444153444b464048404b5156001766001715514d4c560017155740534c4052001715444c4856001715514a00171541404055495c001715444b44495c5f40001715514d4000171541405340494a5548404b510017154a4300171567680871606b620017155140464d4b4a494a425c00176600171555574a554a5640001715464a57574056554a4b414c4b42001715564a4950514c4a4b56001766001715444b41001715405d55494a57400017154c515600171555574446514c464449001715445555494c4644514c4a4b00171555574a5655404651560017154c4b001715514d400017154840414c464449001715434c4049410b" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Biomaterial+Promotes+Triboelectric+Nanogenerator+for+Health+Diagnostics+and+Clinical+Application&hashtags=mdpinanomaterials&url=https%3A%2F%2Fwww.mdpi.com%2F3055634&via=nano_mdpi" onclick="windowOpen(this.href,600,800); return false" title="Twitter" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.mdpi.com%2F3055634&title=Biomaterial%20Promotes%20Triboelectric%20Nanogenerator%20for%20Health%20Diagnostics%20and%20Clinical%20Application%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DWith%20the%20growing%20demand%20for%20personalized%20healthcare%20services%2C%20biomaterial-based%20triboelectric%20nanogenerators%20%28BM-TENGs%29%20have%20gained%20widespread%20attention%20due%20to%20their%20non-toxicity%2C%20biocompatibility%2C%20and%20biodegradability.%20This%20review%20systematically%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/3055634" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/3055634" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/3055634" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> <a href="http://www.citeulike.org/posturl?url=https://www.mdpi.com/3055634" title="CiteULike" target="_blank" rel="noopener noreferrer"> <i class="fa fa-citeulike-square" style="font-size: 30px;"></i> </a> </div> </div> <div class="small-9 columns"> <input id="js-clipboard-text" type="text" readonly value="https://www.mdpi.com/3055634" /> </div> <div class="small-3 columns text-left"> <a class="button button--color js-clipboard-copy" data-clipboard-target="#js-clipboard-text">Copy</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="weixin-share-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="weixin-share-modal-title" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="weixin-share-modal-title" style="margin: 0;">Share</h2> </div> <div class="small-12 columns"> <div class="weixin-qr-code-section"> <?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="300" height="300" version="1.1" xmlns="http://www.w3.org/2000/svg"> <desc>https://www.mdpi.com/3055634</desc> <g id="elements" fill="black" stroke="none"> <rect x="0" y="0" width="12" height="12" /> <rect x="12" y="0" width="12" height="12" /> <rect x="24" y="0" width="12" height="12" /> <rect x="36" y="0" width="12" height="12" /> <rect x="48" y="0" width="12" height="12" /> <rect x="60" y="0" width="12" height="12" /> <rect x="72" y="0" width="12" height="12" /> <rect x="120" y="0" width="12" height="12" /> <rect x="168" y="0" width="12" height="12" /> <rect x="180" y="0" width="12" height="12" /> <rect x="216" y="0" width="12" height="12" /> <rect x="228" y="0" width="12" height="12" /> <rect x="240" y="0" width="12" height="12" /> <rect x="252" y="0" width="12" height="12" /> <rect x="264" y="0" width="12" height="12" /> <rect x="276" y="0" width="12" height="12" /> <rect x="288" y="0" width="12" height="12" /> <rect x="0" y="12" width="12" height="12" /> <rect x="72" y="12" width="12" height="12" /> <rect x="96" y="12" width="12" height="12" /> <rect x="108" y="12" width="12" height="12" /> <rect x="120" y="12" width="12" height="12" /> <rect x="156" y="12" width="12" height="12" /> <rect x="180" y="12" width="12" height="12" /> <rect x="192" y="12" width="12" height="12" /> <rect x="216" y="12" width="12" height="12" /> <rect x="288" y="12" width="12" height="12" /> <rect x="0" y="24" width="12" height="12" /> <rect x="24" y="24" width="12" height="12" /> <rect x="36" y="24" width="12" height="12" /> <rect x="48" y="24" width="12" height="12" /> <rect x="72" y="24" width="12" height="12" /> <rect x="96" y="24" width="12" height="12" /> <rect x="168" y="24" width="12" height="12" /> <rect x="180" y="24" width="12" height="12" /> <rect x="216" y="24" width="12" height="12" /> <rect x="240" y="24" width="12" height="12" /> <rect x="252" y="24" width="12" height="12" /> <rect x="264" y="24" width="12" height="12" /> <rect x="288" y="24" width="12" height="12" /> <rect x="0" y="36" width="12" height="12" /> <rect x="24" y="36" width="12" height="12" /> <rect x="36" y="36" width="12" height="12" /> <rect x="48" y="36" width="12" height="12" /> <rect x="72" y="36" width="12" height="12" /> <rect x="108" y="36" width="12" height="12" /> <rect x="168" y="36" width="12" height="12" /> <rect x="216" y="36" width="12" height="12" /> <rect x="240" y="36" width="12" height="12" /> <rect x="252" y="36" width="12" height="12" /> <rect x="264" y="36" width="12" height="12" /> <rect x="288" y="36" width="12" height="12" /> <rect x="0" y="48" width="12" height="12" /> <rect x="24" y="48" width="12" height="12" /> <rect x="36" y="48" width="12" height="12" /> <rect x="48" y="48" width="12" height="12" /> <rect x="72" y="48" width="12" height="12" /> <rect x="96" y="48" width="12" height="12" /> <rect x="108" y="48" width="12" height="12" /> <rect x="120" y="48" width="12" height="12" /> <rect x="144" y="48" width="12" height="12" /> <rect x="168" y="48" width="12" height="12" /> <rect x="180" y="48" width="12" height="12" /> <rect x="216" y="48" width="12" height="12" /> <rect x="240" y="48" width="12" height="12" /> <rect x="252" y="48" width="12" height="12" /> <rect x="264" y="48" width="12" height="12" /> <rect x="288" y="48" width="12" height="12" /> <rect x="0" y="60" width="12" height="12" /> <rect x="72" y="60" width="12" height="12" /> <rect x="96" y="60" width="12" height="12" /> <rect x="120" y="60" width="12" height="12" /> <rect x="180" y="60" width="12" height="12" /> <rect x="192" y="60" width="12" height="12" /> <rect x="216" y="60" width="12" height="12" /> <rect x="288" y="60" width="12" height="12" /> <rect x="0" y="72" width="12" height="12" /> <rect x="12" y="72" width="12" height="12" /> <rect x="24" y="72" width="12" height="12" /> <rect x="36" y="72" width="12" height="12" /> <rect x="48" y="72" width="12" height="12" /> <rect x="60" y="72" width="12" height="12" /> <rect x="72" y="72" width="12" height="12" /> <rect x="96" y="72" width="12" height="12" /> <rect x="120" y="72" width="12" height="12" /> <rect x="144" y="72" width="12" height="12" /> <rect x="168" y="72" width="12" height="12" /> <rect x="192" y="72" width="12" height="12" /> <rect x="216" y="72" width="12" height="12" /> <rect x="228" y="72" width="12" height="12" /> <rect x="240" y="72" width="12" height="12" /> <rect x="252" y="72" width="12" height="12" /> <rect x="264" y="72" width="12" height="12" /> <rect x="276" y="72" width="12" height="12" /> <rect x="288" y="72" width="12" height="12" /> <rect x="96" y="84" width="12" height="12" /> <rect x="120" y="84" width="12" height="12" /> <rect x="132" y="84" width="12" height="12" /> <rect x="168" y="84" width="12" height="12" /> <rect x="180" y="84" width="12" height="12" /> <rect x="192" y="84" width="12" height="12" /> <rect x="0" y="96" width="12" height="12" /> <rect x="12" y="96" width="12" height="12" /> <rect x="36" y="96" width="12" height="12" /> <rect x="72" y="96" width="12" height="12" /> <rect x="84" y="96" width="12" height="12" /> <rect x="132" y="96" width="12" height="12" /> <rect x="144" y="96" width="12" height="12" /> <rect x="156" y="96" width="12" height="12" /> <rect x="168" y="96" width="12" height="12" /> <rect x="180" y="96" width="12" height="12" /> <rect x="192" y="96" width="12" height="12" /> <rect x="216" y="96" width="12" height="12" /> <rect x="228" y="96" width="12" height="12" /> <rect x="240" y="96" width="12" height="12" /> <rect x="264" y="96" width="12" height="12" /> <rect x="276" y="96" width="12" height="12" /> <rect x="0" y="108" width="12" height="12" /> <rect x="12" y="108" width="12" height="12" /> <rect x="96" y="108" width="12" height="12" /> <rect x="108" y="108" width="12" height="12" /> <rect x="132" y="108" width="12" height="12" /> <rect x="192" y="108" width="12" height="12" /> <rect x="216" y="108" width="12" height="12" /> <rect x="288" y="108" width="12" height="12" /> <rect x="60" y="120" width="12" height="12" /> <rect x="72" y="120" width="12" height="12" /> <rect x="132" y="120" width="12" height="12" /> <rect x="156" y="120" width="12" height="12" /> <rect x="204" y="120" width="12" height="12" /> <rect x="216" y="120" width="12" height="12" /> <rect x="276" y="120" width="12" height="12" /> <rect x="288" y="120" width="12" height="12" /> <rect x="0" y="132" width="12" height="12" /> <rect x="12" y="132" width="12" height="12" /> <rect x="36" y="132" width="12" height="12" /> <rect x="48" y="132" width="12" height="12" /> <rect x="60" y="132" width="12" height="12" /> <rect x="84" y="132" width="12" height="12" /> <rect x="108" y="132" width="12" height="12" /> <rect x="120" y="132" width="12" height="12" /> <rect x="144" y="132" width="12" height="12" /> <rect x="156" y="132" width="12" height="12" /> <rect x="180" y="132" width="12" height="12" /> <rect x="204" y="132" width="12" height="12" /> <rect x="216" y="132" width="12" height="12" /> <rect x="240" y="132" width="12" height="12" /> <rect x="36" y="144" width="12" height="12" /> <rect x="48" y="144" width="12" height="12" /> <rect x="60" y="144" width="12" height="12" /> <rect x="72" y="144" width="12" height="12" /> <rect x="120" y="144" width="12" height="12" /> <rect x="144" y="144" width="12" height="12" /> <rect x="156" y="144" width="12" height="12" /> <rect x="168" y="144" width="12" height="12" /> <rect x="204" y="144" width="12" height="12" /> <rect x="216" y="144" width="12" height="12" /> <rect x="228" y="144" width="12" height="12" /> <rect x="252" y="144" width="12" height="12" /> <rect x="276" y="144" width="12" height="12" /> <rect x="288" y="144" width="12" height="12" /> <rect x="12" y="156" width="12" height="12" /> <rect x="84" y="156" width="12" height="12" /> <rect x="132" y="156" width="12" height="12" /> <rect x="144" y="156" width="12" height="12" /> <rect x="216" y="156" width="12" height="12" /> <rect x="228" y="156" width="12" height="12" /> <rect x="252" y="156" width="12" height="12" /> <rect x="264" y="156" width="12" height="12" /> <rect x="288" y="156" width="12" height="12" /> <rect x="0" y="168" width="12" height="12" /> <rect x="24" y="168" width="12" height="12" /> <rect x="60" y="168" width="12" height="12" /> <rect x="72" y="168" width="12" height="12" /> <rect x="96" y="168" width="12" height="12" /> <rect x="108" y="168" width="12" height="12" /> <rect x="132" y="168" width="12" height="12" /> <rect x="144" y="168" width="12" height="12" /> <rect x="192" y="168" width="12" height="12" /> <rect x="216" y="168" width="12" height="12" /> <rect x="228" y="168" width="12" height="12" /> <rect x="240" y="168" width="12" height="12" /> <rect x="264" y="168" width="12" height="12" /> <rect x="288" y="168" width="12" height="12" /> <rect x="12" y="180" width="12" height="12" /> <rect x="48" y="180" width="12" height="12" /> <rect x="132" y="180" width="12" height="12" /> <rect x="144" y="180" width="12" height="12" /> <rect x="156" y="180" width="12" height="12" /> <rect x="180" y="180" width="12" height="12" /> <rect x="192" y="180" width="12" height="12" /> <rect x="216" y="180" width="12" height="12" /> <rect x="240" y="180" width="12" height="12" /> <rect x="276" y="180" width="12" height="12" /> <rect x="0" y="192" width="12" height="12" /> <rect x="12" y="192" width="12" height="12" /> <rect x="36" y="192" width="12" height="12" /> <rect x="48" y="192" width="12" height="12" /> <rect x="60" y="192" width="12" height="12" /> <rect x="72" y="192" width="12" height="12" /> <rect x="84" y="192" width="12" height="12" /> <rect x="96" y="192" width="12" height="12" /> <rect x="108" y="192" width="12" height="12" /> <rect x="132" y="192" width="12" height="12" /> <rect x="156" y="192" width="12" height="12" /> <rect x="192" y="192" width="12" height="12" /> <rect x="204" y="192" width="12" height="12" /> <rect x="216" y="192" width="12" height="12" /> <rect x="228" y="192" width="12" height="12" /> <rect x="240" y="192" width="12" height="12" /> <rect x="252" y="192" width="12" height="12" /> <rect x="264" y="192" width="12" height="12" /> <rect x="96" y="204" width="12" height="12" /> <rect x="120" y="204" width="12" height="12" /> <rect x="156" y="204" width="12" height="12" /> <rect x="168" y="204" width="12" height="12" /> <rect x="180" y="204" width="12" height="12" /> <rect x="192" y="204" width="12" height="12" /> <rect x="240" y="204" width="12" height="12" /> <rect x="252" y="204" width="12" height="12" /> <rect x="288" y="204" width="12" height="12" /> <rect x="0" y="216" width="12" height="12" /> <rect x="12" y="216" width="12" height="12" /> <rect x="24" y="216" width="12" height="12" /> <rect x="36" y="216" width="12" height="12" /> <rect x="48" y="216" width="12" height="12" /> <rect x="60" y="216" width="12" height="12" /> <rect x="72" y="216" width="12" height="12" /> <rect x="96" y="216" width="12" height="12" /> <rect x="108" y="216" width="12" height="12" /> <rect x="120" y="216" width="12" height="12" /> <rect x="132" y="216" width="12" height="12" /> <rect x="156" y="216" width="12" height="12" /> <rect x="180" y="216" width="12" height="12" /> <rect x="192" y="216" width="12" height="12" /> <rect x="216" y="216" width="12" height="12" /> <rect x="240" y="216" width="12" height="12" /> <rect x="252" y="216" width="12" height="12" /> <rect x="276" y="216" width="12" height="12" /> <rect x="288" y="216" width="12" height="12" /> <rect x="0" y="228" width="12" height="12" /> <rect x="72" y="228" width="12" height="12" /> <rect x="108" y="228" width="12" height="12" /> <rect x="156" y="228" width="12" height="12" /> <rect x="168" y="228" width="12" height="12" /> <rect x="192" y="228" width="12" height="12" /> <rect x="240" y="228" width="12" height="12" /> <rect x="252" y="228" width="12" height="12" /> <rect x="264" y="228" width="12" height="12" /> <rect x="276" y="228" width="12" height="12" /> <rect x="0" y="240" width="12" height="12" /> <rect x="24" y="240" width="12" height="12" /> <rect x="36" y="240" width="12" height="12" /> <rect x="48" y="240" width="12" height="12" /> <rect x="72" y="240" width="12" height="12" /> <rect x="120" y="240" width="12" height="12" /> <rect x="132" y="240" width="12" height="12" /> <rect x="144" y="240" width="12" height="12" /> <rect x="192" y="240" width="12" height="12" /> <rect x="204" y="240" width="12" height="12" /> <rect x="216" y="240" width="12" height="12" /> <rect x="228" y="240" width="12" height="12" /> <rect x="240" y="240" width="12" height="12" /> <rect x="252" y="240" width="12" height="12" /> <rect x="288" y="240" width="12" height="12" /> <rect x="0" y="252" width="12" height="12" /> <rect x="24" y="252" width="12" height="12" /> <rect x="36" y="252" width="12" height="12" /> <rect x="48" y="252" width="12" height="12" /> <rect x="72" y="252" width="12" height="12" /> <rect x="96" y="252" width="12" height="12" /> <rect x="120" y="252" width="12" height="12" /> <rect x="156" y="252" width="12" height="12" /> <rect x="168" y="252" width="12" height="12" /> <rect x="204" y="252" width="12" height="12" /> <rect x="228" y="252" width="12" height="12" /> <rect x="240" y="252" width="12" height="12" /> <rect x="252" y="252" width="12" height="12" /> <rect x="264" y="252" width="12" height="12" /> <rect x="0" y="264" width="12" height="12" /> <rect x="24" y="264" width="12" height="12" /> <rect x="36" y="264" width="12" height="12" /> <rect x="48" y="264" width="12" height="12" /> <rect x="72" y="264" width="12" height="12" /> <rect x="120" y="264" width="12" height="12" /> <rect x="132" y="264" width="12" height="12" /> <rect x="144" y="264" width="12" height="12" /> <rect x="168" y="264" width="12" height="12" /> <rect x="180" y="264" width="12" height="12" /> <rect x="192" y="264" width="12" height="12" /> <rect x="228" y="264" width="12" height="12" /> <rect x="240" y="264" width="12" height="12" /> <rect x="264" y="264" width="12" height="12" /> <rect x="288" y="264" width="12" height="12" /> <rect x="0" y="276" width="12" height="12" /> <rect x="72" y="276" width="12" height="12" /> <rect x="96" y="276" width="12" height="12" /> <rect x="120" y="276" width="12" height="12" /> <rect x="156" y="276" width="12" height="12" /> <rect x="168" y="276" width="12" height="12" /> <rect x="180" y="276" width="12" height="12" /> <rect x="192" y="276" width="12" height="12" /> <rect x="204" y="276" width="12" height="12" /> <rect x="216" y="276" width="12" height="12" /> <rect x="252" y="276" width="12" height="12" /> <rect x="0" y="288" width="12" height="12" /> <rect x="12" y="288" width="12" height="12" /> <rect x="24" y="288" width="12" height="12" /> <rect x="36" y="288" width="12" height="12" /> <rect x="48" y="288" width="12" height="12" /> <rect x="60" y="288" width="12" height="12" /> <rect x="72" y="288" width="12" height="12" /> <rect x="96" y="288" width="12" height="12" /> <rect x="108" y="288" width="12" height="12" /> <rect x="120" y="288" width="12" height="12" /> <rect x="144" y="288" width="12" height="12" /> <rect x="168" y="288" width="12" height="12" /> <rect x="180" y="288" width="12" height="12" /> <rect x="192" y="288" width="12" height="12" /> <rect x="228" y="288" width="12" height="12" /> <rect x="276" y="288" width="12" height="12" /> <rect x="288" y="288" width="12" height="12" /> </g> </svg> </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <a href="#" class="back-to-top"><span class="show-for-medium-up">Back to Top</span><span class="show-for-small">Top</span></a> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script src="https://pub.mdpi-res.com/assets/js/modernizr-2.8.3.min.js?5227e0738f7f421d?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery-1.12.4.min.js?4f252523d4af0b47?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.min.js?6b2ec41c18b29054?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.equalizer.min.js?0f6c549b75ec554c?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.multiselect.js?0edd3998731d1091?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.cycle2.min.js?63413052928f97ee?1732286508"></script> <script> // old browser fix - this way the console log rows won't throw (silent) errors in browsers not supporting console log if (!window.console) window.console = {}; if (!window.console.log) window.console.log = function () { }; var currentJournalNameSystem = "nanomaterials"; $(document).ready(function() { $('select.foundation-select').multiselect({ search: true, minHeight: 130, maxHeight: 130, }); $(document).foundation({ orbit: { timer_speed: 4000, }, reveal: { animation: 'fadeAndPop', animation_speed: 100, } }); $(".chosen-select").each(function(element) { var maxSelected = (undefined !== $(this).data('maxselectedoptions') ? $(this).data('maxselectedoptions') : 100); $(this).on('chosen:ready', function(event, data) { var select = $(data.chosen.form_field); if (select.attr('id') === 'journal-browser-volume') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Volume_Options'); } if (select.attr('id') === 'journal-browser-issue') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Issue_Options'); } }).chosen({ display_disabled_options: false, disable_search_threshold: 7, max_selected_options: maxSelected, width: "100%" }); }); $(".toEncode").each(function(e) { var oldHref = $(this).attr("href"); var newHref = oldHref.replace('.botdefense.please.enable.javascript.','@'); $(this).attr("href", newHref); if (!$(this).hasClass("emailCaptcha")) { $(this).html(newHref.replace('mailto:', '')); } $(this).removeClass("visibility-hidden"); }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { $(document).foundation('equalizer', 'reflow'); }); // fix the images that have tag height / width defined // otherwise the default foundation styles overwrite the tag definitions $("img").each(function() { if ($(this).attr('width') != undefined || $(this).attr('height') != undefined) { $(this).addClass("img-fixed"); } }); $("#basic_search, #advanced_search").submit(function(e) { var searchArguments = false; $(this).find("input,select").not("#search,.search-button").each(function() { if (undefined === $(this).val() || "" === $(this).val()) { $(this).attr('name', null); } else { $(this).attr('name'); searchArguments = true; } }); if (!searchArguments) { window.location = $(this).attr('action'); return false; } }); $(".hide-show-desktop-option").click(function(e) { e.preventDefault(); var parentDiv = $(this).closest("div"); $.ajax({ url: $(this).attr('href'), success: function(msg) { parentDiv.removeClass().hide(); } }); }); $(".generic-toggleable-header").click(function(e) { $(this).toggleClass("active"); $(this).next(".generic-toggleable-content").toggleClass("active"); }); /* * handle whole row as a link if the row contains only one visible link */ $("table.new tr").hover(function() { if ($(this).find("td:visible a").length == 1) { $(this).addClass("single-link"); } }, function() { $(this).removeClass("single-link"); }); $("table.new:not(.table-of-tables)").on("click", "tr.single-link", function(e) { var target = $(e.target); if (!e.ctrlKey && !target.is("a")) { $(this).find("td:visible a")[0].click(); } }); $(document).on("click", ".custom-accordion-for-small-screen-link", function(e) { if ($(this).closest("#basic_search").length > 0) { if ($(".search-container__advanced").first().is(":visible")) { openAdvanced() } } if (Foundation.utils.is_small_only()) { if ($(this).hasClass("active")) { $(this).removeClass("active"); $(this).next(".custom-accordion-for-small-screen-content").addClass("show-for-medium-up"); } else { $(this).addClass("active"); $(this).next(".custom-accordion-for-small-screen-content").removeClass("show-for-medium-up"); $(document).foundation('orbit', 'reflow'); } } if (undefined !== $(this).data("callback")) { var customCallback = $(this).data("callback"); func = window[customCallback]; func(); } }); $(document).on("click", ".js-open-small-search", function(e) { e.preventDefault(); $(this).toggleClass("active").closest(".tab-bar").toggleClass("active"); $(".search-container").toggleClass("hide-for-small-down"); }); $(document).on("click", ".js-open-menu", function(e) { $(".search-container").addClass("hide-for-small-down"); }); $(window).on('resize', function() { recalculate_main_browser_position(); recalculate_responsive_moving_containers(); }); updateSearchLabelVisibilities(); recalculate_main_browser_position(); recalculate_responsive_moving_containers(); if (window.document.documentMode == 11) { $("<link/>", { rel: "stylesheet", type: "text/css", href: "https://fonts.googleapis.com/icon?family=Material+Icons"}).appendTo("head"); } }); function recalculate_main_browser_position() { if (Foundation.utils.is_small_only()) { if ($("#js-main-top-container").parent("#js-large-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-small-main-top-container")); } } else { if ($("#js-main-top-container").parent("#js-small-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-large-main-top-container")); } } } function recalculate_responsive_moving_containers() { $(".responsive-moving-container.large").each(function() { var previousParent = $(".responsive-moving-container.active[data-id='"+$(this).data("id")+"']"); var movingContent = previousParent.html(); if (Foundation.utils.is_small_only()) { var currentParent = $(".responsive-moving-container.small[data-id='"+$(this).data("id")+"']"); } else if (Foundation.utils.is_medium_only()) { var currentParent = $(".responsive-moving-container.medium[data-id='"+$(this).data("id")+"']"); } else { var currentParent = $(".responsive-moving-container.large[data-id='"+$(this).data("id")+"']"); } if (previousParent.attr("class") !== currentParent.attr("class")) { currentParent.html(movingContent); previousParent.html(); currentParent.addClass("active"); previousParent.removeClass("active"); } }); } // cookies allowed is checked from a) local storage and b) from server separately so that the footer bar doesn't // get included in the custom page caches function checkCookiesAllowed() { var cookiesEnabled = localStorage.getItem("mdpi_cookies_enabled"); if (null === cookiesEnabled) { $.ajax({ url: "/ajax_cookie_value/mdpi_cookies_accepted", success: function(data) { if (data.value) { localStorage.setItem("mdpi_cookies_enabled", true); checkDisplaySurvey(); } else { $(".js-allow-cookies").show(); } } }); } else { checkDisplaySurvey(); } } function checkDisplaySurvey() { } window.addEventListener('CookiebotOnAccept', function (e) { var CookieDate = new Date; if (Cookiebot.consent.preferences) { CookieDate.setFullYear(CookieDate.getFullYear() + 1); document.cookie = "mdpi_layout_type_v2=mobile; path=/; expires=" + CookieDate.toUTCString() + ";"; $(".js-toggle-desktop-layout-link").css("display", "inline-block"); } }, false); window.addEventListener('CookiebotOnDecline', function (e) { if (!Cookiebot.consent.preferences) { $(".js-toggle-desktop-layout-link").hide(); if ("" === "desktop") { window.location = "/toggle_desktop_layout_cookie"; } } }, false); var hash = $(location).attr('hash'); if ("#share" === hash) { if (1 === $("#main-share-modal").length) { $('#main-share-modal').foundation('reveal', 'open'); } } </script> <script src="https://pub.mdpi-res.com/assets/js/lib.js?f8d3d71b3a772f9d?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/mdpi.js?c267ce58392b15da?1732286508"></script> <script>var banners_url = 'https://serve.mdpi.com';</script> <script type='text/javascript' src='https://pub.mdpi-res.com/assets/js/ifvisible.min.js?c621d19ecb761212?1732286508'></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?ac4ea55275297c15?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/clipboard.min.js?3f3688138a1b9fc4?1732286508"></script> <script type="text/javascript"> $(document).ready(function() { var helpFunctions = $(".middle-column__help__fixed"); var leftColumnAffix = $(".left-column__fixed"); var middleColumn = $("#middle-column"); var clone = null; helpFunctions.affix({ offset: { top: function() { return middleColumn.offset().top - 8 - (Foundation.utils.is_medium_only() ? 30 : 0); }, bottom: function() { return $("#footer").innerHeight() + 74 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); if (leftColumnAffix.length > 0) { clone = leftColumnAffix.clone(); clone.addClass("left-column__fixed__affix"); clone.insertBefore(leftColumnAffix); clone.css('width', leftColumnAffix.outerWidth() + 50); clone.affix({ offset: { top: function() { return leftColumnAffix.offset().top - 30 - (Foundation.utils.is_medium_only() ? 50 : 0); }, bottom: function() { return $("#footer").innerHeight() + 92 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); } $(window).on("resize", function() { if (clone !== null) { clone.css('width', leftColumnAffix.outerWidth() + 50); } }); new ClipboardJS('.js-clipboard-copy'); }); </script> <script src="https://pub.mdpi-res.com/assets/js/jquery-ui-1.13.2.min.js?1e2047978946a1d2?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/slick.min.js?d5a61c749e44e471?1732286508"></script> <script> $(document).ready(function() { $(".link-article-menu").click(function(e) { e.preventDefault(); $(this).find('span').toggle(); $(this).next("div").toggleClass("active"); }); $(".js-similarity-related-articles").click(function(e) { e.preventDefault(); if ('' !== $('#recommended-articles-modal').attr('data-url')) { $('#recommended-articles-modal').foundation('reveal', 'open', $('#recommended-articles-modal').attr('data-url')); } }); $.ajax({ url: "/article/1527817/similarity-related/show-link", success: function(result) { if (result.show) { $('#recommended-articles-modal').attr('data-url', result.link); $('.js-article-similarity-container').show(); } } }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { var modal = $(this); if (modal.attr('id') === "author-biographies-modal") { modal.find('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, draggable: false, }); modal.find('.multiple-items').slick('refresh'); } }); }); </script> <script> $(document).ready(function() { $(document).on('keyup', function (e) { if (e.keyCode == 27) { var hElem = $(this).find(".annotator-adder"); if (hElem.length){ hElem.css({'visibility':'hidden'}); } else { document.querySelector("hypothesis-adder").shadowRoot.querySelector(".annotator-adder").style.visibility = "hidden"; } } }); }); </script> <script> window.hypothesisConfig = function () { return { sidebarAppUrl: 'https://commenting.mdpi.com/app.html', showHighlights: 'whenSidebarOpen' , openSidebar: false , assetRoot: 'https://commentingres.mdpi.com/hypothesis', services: [{ apiUrl: 'https://commenting.mdpi.com/api/', authority: 'mdpi', grantToken: '', doi: '10.3390/nano14231885' }], }; }; </script> <script async id="hypothesis_frame"></script> <script type="text/javascript"> if (-1 !== window.location.href.indexOf("?src=")) { window.history.replaceState({}, '', `${location.pathname}`); } $(document).ready(function() { var scifeedCounter = 0; var search = window.location.search; var mathjaxReady = false; // late image file loading $("img[data-lsrc]").each(function() { $(this).attr("src", $(this).data("lsrc")); }); // late mathjax initialization var head = document.getElementsByTagName("head")[0]; var script = document.createElement("script"); script.type = "text/x-mathjax-config"; script[(window.opera ? "innerHTML" : "text")] = "MathJax.Hub.processSectionDelay = 0;\n" + "MathJax.Hub.Config({\n" + " \"menuSettings\": {\n" + " CHTMLpreview: false\n" + " },\n" + " \"CHTML-preview\":{\n" + " disabled: true\n" + " },\n" + " \"HTML-CSS\": {\n" + " scale: 90,\n" + " availableFonts: [],\n" + " preferredFont: null,\n" + " preferredFonts: null,\n" + " webFont:\"Gyre-Pagella\",\n" + " imageFont:'TeX',\n" + " undefinedFamily:\"'Arial Unicode MS',serif\",\n" + " linebreaks: { automatic: false }\n" + " },\n" + " \"TeX\": {\n" + " extensions: ['noErrors.js'],\n" + " noErrors: {\n" + " inlineDelimiters: [\"\",\"\"],\n" + " multiLine: true,\n" + " style: {\n" + " 'font-size': '90%',\n" + " 'text-align': 'left',\n" + " 'color': 'black',\n" + " 'padding': '1px 3px',\n" + " 'border': '1px solid'\n" + " }\n" + " }\n" + " }\n" + "});\n" + "MathJax.Hub.Register.StartupHook('End', function() {\n" + " refreshMathjaxWidths();\n" + " mathjaxReady = true;\n" + "});\n" + "MathJax.Hub.Startup.signal.Interest(function (message) {\n" + " if (message == 'End') {\n" + " var hypoLink = document.getElementById('hypothesis_frame');\n" + " if (null !== hypoLink) {\n" + " hypoLink.setAttribute('src', 'https://commenting.mdpi.com/embed.js');\n" + " }\n" + " }\n" + "});"; head.appendChild(script); script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://pub.mdpi-res.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; head.appendChild(script); // article version checker if (0 === search.indexOf('?type=check_update&version=')) { $.ajax({ url: "/2079-4991/14/23/1885" + "/versioncheck" + search, success: function(result) { $(".js-check-update-container").html(result); } }); } $('#feed_option').click(function() { // tracker if ($('#scifeed_clicked').length<1) { $(this).append('<span style="display:none" id="scifeed_clicked">done</span>'); } $('#feed_data').toggle('slide', { direction: 'up'}, '1000'); // slideToggle(700); OR toggle(700) $("#scifeed_error_msg").html('').hide(); $("#scifeed_notice_msg").html('').hide(); }); $('#feed_option').click(function(event) { setTimeout(function(){ var captchaSection = $("#captchaSection"); captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); // var img = captchaSection.find('img'); // img.attr('src', img.data('url') + "?" + (new Date()).getTime()); // $(".captcha_reload").trigger("click"); var img = document.getElementById('gregwar_captcha_scifeed'); img.src = '/generate-captcha/gcb_captcha?n=' + (new Date()).getTime(); },800); }); $(document).on('click', '.split_feeds', function() { var name = $( this ).attr('name'); var flag = 1 - ($(this).is(":checked")*1); $('.split_feeds').each(function (index) { if ($( this ).attr('name') !== name) { $(this)[0].checked = flag; } }); }); $(document).on('click', '#scifeed_submit, #scifeed_submit1', function(event) { event.preventDefault(); $(".captcha_reload").trigger("click"); $("#scifeed_error_msg").html(""); $("#scifeed_error_msg").hide(); }); $(document).on('click', '.subscription_toggle', function(event) { if ($(this).val() === 'Create SciFeed' && $('#scifeed_hidden_flag').length>0) { event.preventDefault(); // alert('Here there would be a captcha because user is not logged in'); var captchaSection = $("#captchaSection"); if (captchaSection.hasClass('ui-helper-hidden')) { captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); var img = captchaSection.find('img'); img.attr('src', img.data('url') + "?" + (new Date()).getTime()); $("#reloadCaptcha").trigger("click"); } } }); $(document).on('click', '.scifeed_msg', function(){ $(this).hide(); }); $(document).on('click', '.article-scilit-search', function(e) { e.preventDefault(); var data = $(".article-scilit-search-data").val(); var dataArray = data.split(';').map(function(keyword) { return "(\"" + keyword.trim() + "\")"; }); var searchQuery = dataArray.join(" OR "); var searchUrl = encodeURI("https://www.scilit.net/articles/search?q="+ searchQuery + "&advanced=1&highlight=1"); var win = window.open(searchUrl, '_blank'); if (win) { win.focus(); } else { window.location(searchUrl); } }); display_stats(); citedCount(); follow_goto(); // Select the node that will be observed for mutations const targetNodes = document.getElementsByClassName('hypothesis-count-container'); // Options for the observer (which mutations to observe) const config = { attributes: false, childList: true, subtree: false }; // Callback function to execute when mutations are observed const callback = function(mutationList, observer) { for(const mutation of mutationList) { if (mutation.type === 'childList') { let node = $(mutation.target); if (parseInt(node.html()) > 0) { node.show(); } } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callback); // Start observing the target node for configured mutations for(const targetNode of targetNodes) { observer.observe(targetNode, config); } // Select the node that will be observed for mutations const mathjaxTargetNode = document.getElementById('middle-column'); // Callback function to execute when mutations are observed const mathjaxCallback = function(mutationList, observer) { if (mathjaxReady && typeof(MathJax) !== 'undefined') { refreshMathjaxWidths(); } }; // Create an observer instance linked to the callback function const mathjaxObserver = new ResizeObserver(mathjaxCallback); // Start observing the target node for configured mutations mathjaxObserver.observe(mathjaxTargetNode); }); /* END $(document).ready */ function refreshMathjaxWidths() { let width = ($('.html-body').width()*0.9) + "px"; $('.MathJax_Display').css('max-width', width); $('.MJXc-display').css('max-width', width); } function sendScifeedFrom(form) { if (!$('#scifeed_email').val().trim()) { // empty email alert('Please, provide an email for subscribe to this scifeed'); return false; } else if (!$('#captchaSection').hasClass('ui-helper-hidden') && !$('#captchaSection').find('input').val().trim()) { // empty captcha alert('Please, fill the captcha field.'); return false; } else if( ((($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds:checked').length))<1) || ($('#scifeed_kwd_txt').length < 0 && !$('#scifeed_kwd_txt').val().trim()) || ($('#scifeed_author_txt').length<0 &&!$('#scifeed_author_txt').val().trim()) ) { alert('You did not select anything to subscribe'); return false; } else if(($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds2:checked').length)<1){ alert("You did not select anything to subscribe"); return false; } else { var url = $('#scifeed_subscribe_url').html(); var formData = $(form).serializeArray(); $.post(url, formData).done(function (data) { if (JSON.parse(data)) { $('.scifeed_msg').hide(); var res = JSON.parse(data); var successFeeds = 0; var errorFeeds = 0; if (res) { $('.scifeed_msg').html(''); $.each(res, function (index, val) { if (val) { if (val.error) { errorFeeds++; $("#scifeed_error_msg").append(index+' - '+val.error+'<br>'); } if (val.notice) // for successful feed creation { successFeeds++; // $("#scifeed_notice_msg").append(index+' - '+val.notice+'<br>'); $("#scifeed_notice_msg").append('<li>'+index+'</li>'); } } }); if (successFeeds>0) { text = $('#scifeed_notice_msg').html(); text = 'The following feed'+(successFeeds>1?'s have':' has')+ ' been sucessfully created:<br><ul>'+ text + '</ul>' +($('#scifeed_hidden_flag').length>0 ? 'You are not logged in, so you probably need to validate '+ (successFeeds>1?'them':' it')+'.<br>' :'' ) +'Please check your email'+(successFeeds>1?'s':'')+' for more details.'; //(successFeeds>1?' for each of them':'')+'.<br>'; $("#scifeed_notice_msg").html(text); $("#scifeed_notice_msg").show(); } if (errorFeeds>0) { $("#scifeed_error_msg").show();; } } $("#feed_data").hide(); } }); } } function follow_goto() { var hashStr = location.hash.replace("#",""); if(typeof hashStr !== 'undefined') { if( hashStr == 'supplementary') { document.getElementById('suppl_id').scrollIntoView(); } if( hashStr == 'citedby') { document.getElementById('cited_id').scrollIntoView(); } } } function cited() { $("#framed_div").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded"); if(loaded.innerHTML == "No") { // Load Xref result var container = document.getElementById("framed_div"); // This replace the content container.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1732286508\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; var url = "/citedby/10.3390%252Fnano14231885/105"; $.post(url, function(result) { if (result.success) { container.innerHTML = result.view; } loaded.innerHTML = "Yes"; }); } } return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } function detect_device() { // Added by Bastien (18/08/2014): based on the http://detectmobilebrowsers.com/ detector var check = false; (function(a){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i.test(a)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0,4)))check = true})(navigator.userAgent||navigator.vendor||window.opera); return check; } function display_stats(){ $("#article_stats_div").toggle(); return false; } /* * Cited By Scopus */ function citedCount(){ $("#framed_div_cited_count").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded_cite_count"); // to load only once the result! if(loaded.innerHTML == "No") { // Load Xref result var d = document.getElementById("framed_div_cited_count"); // This replace the content d.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1732286508\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; $.ajax({ method : "POST", url : "/cite-count/10.3390%252Fnano14231885", success : function(data) { if (data.succ) { d.innerHTML = data.view; loaded.innerHTML = "Yes"; follow_goto(); } } }); } } // end else return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } </script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/highcharts.js?bdd06f45e34c33df?1732286508"></script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/modules/exporting.js?944dc938d06de3a8?1732286508"></script><script type="text/javascript" defer="defer"> var advancedStatsData; var selectedStatsType = "abstract"; $(function(){ var countWrapper = $('#counts-wrapper'); $('#author_stats_id #type_links a').on('click', function(e) { e.preventDefault(); selectedStatsType = $(this).data('type'); $('#article_advanced_stats').vectorMap('set', 'values', advancedStatsData[selectedStatsType]); $('#advanced_stats_max').html(advancedStatsData[selectedStatsType].max); $('#type_links a').removeClass('active'); $(this).addClass('active'); }); $.get('/2079-4991/14/23/1885/stats', function (result) { if (!result.success) { return; } // process article metrics part in left column var viewNumber = countWrapper.find(".view-number"); viewNumber.html(result.metrics.views); viewNumber.parent().toggleClass("count-div--grey", result.metrics.views == 0); var downloadNumber = countWrapper.find(".download-number"); downloadNumber.html(result.metrics.downloads); downloadNumber.parent().toggleClass("count-div--grey", result.metrics.downloads == 0); var citationsNumber = countWrapper.find(".citations-number"); citationsNumber.html(result.metrics.citations); citationsNumber.parent().toggleClass("count-div--grey", result.metrics.citations == 0); if (result.metrics.views > 0 || result.metrics.downloads > 0 || result.metrics.citations > 0) { countWrapper.find("#js-counts-wrapper__views, #js-counts-wrapper__downloads").addClass("visible").show(); if (result.metrics.citations > 0) { countWrapper.find('.citations-number').html(result.metrics.citations).show(); countWrapper.find("#js-counts-wrapper__citations").addClass("visible").show(); } else { countWrapper.find("#js-counts-wrapper__citations").remove(); } $("[data-id='article-counters']").removeClass("hidden"); } if (result.metrics.altmetrics_score > 0) { $("#js-altmetrics-donut").show(); } // process view chart in main column var jsondata = result.chart; var series = new Array(); $.each(jsondata.elements, function(i, element) { var dataValues = new Array(); $.each(element.values, function(i, value) { dataValues.push(new Array(value.tip, value.value)); }); series[i] = {name: element.text, data:dataValues}; }); Highcharts.setOptions({ chart: { style: { fontFamily: 'Arial,sans-serif' } } }); $('#article_stats_swf').highcharts({ chart: { type: 'line', width: $("#tabs").width() //* 0.91 }, credits: { enabled: false }, exporting: { enabled: true }, title: { text: jsondata.title.text, x: -20 //center }, xAxis: { categories: jsondata.x_axis.labels.labels, offset: jsondata.x_axis.offset, labels:{ step: jsondata.x_axis.labels.steps, rotation: 30 } }, yAxis: { max: jsondata.y_axis.max, min: jsondata.y_axis.min, offset: jsondata.y_axis.offset, labels: { steps: jsondata.y_axis.steps }, title: { enabled: false } }, tooltip: { formatter: function (){ return this.key.replace("#val#", this.y); } }, legend: { align: 'top', itemDistance: 50 }, series: series }); }); $('#supplement_link').click(function() { document.getElementById('suppl_id').scrollIntoView(); }); $('#stats_link').click(function() { document.getElementById('stats_id').scrollIntoView(); }); // open mol viewer for molbank special supplementary files $('.showJmol').click(function(e) { e.preventDefault(); var jmolModal = $("#jmolModal"); var url = "/article/1527817/jsmol_viewer/__supplementary_id__"; url = url.replace(/__supplementary_id__/g, $(this).data('index')); $('#jsmol-content').attr('src', url); jmolModal.find(".content").html($(this).data('description')); jmolModal.foundation("reveal", "open"); }); }); !function() { "use strict"; function e(e) { try { if ("undefined" == typeof console) return; "error"in console ? console.error(e) : console.log(e) } catch (e) {} } function t(e) { return d.innerHTML = '<a href="' + e.replace(/"/g, """) + '"></a>', d.childNodes[0].getAttribute("href") || "" } function n(n, c) { var o = ""; var k = parseInt(n.substr(c + 4, 2), 16); for (var i = c; i < n.length; i += 2) { if (i != c + 4) { var s = parseInt(n.substr(i, 2), 16) ^ k; o += String.fromCharCode(s); } } try { o = decodeURIComponent(escape(o)); } catch (error) { console.error(error); } return t(o); } function c(t) { for (var r = t.querySelectorAll("a"), c = 0; c < r.length; c++) try { var o = r[c] , a = o.href.indexOf(l); a > -1 && (o.href = "mailto:" + n(o.href, a + l.length)) } catch (i) { e(i) } } function o(t) { for (var r = t.querySelectorAll(u), c = 0; c < r.length; c++) try { var o = r[c] , a = o.parentNode , i = o.getAttribute(f); if (i) { var l = n(i, 0) , d = document.createTextNode(l); a.replaceChild(d, o) } } catch (h) { e(h) } } function a(t) { for (var r = t.querySelectorAll("template"), n = 0; n < r.length; n++) try { i(r[n].content) } catch (c) { e(c) } } function i(t) { try { c(t), o(t), a(t) } catch (r) { e(r) } } var l = "/cnd-cgi/l/email-protection#" , u = ".__cf_email__" , f = "data-cfemail" , d = document.createElement("div"); i(document), function() { var e = document.currentScript || document.scripts[document.scripts.length - 1]; e.parentNode.removeChild(e) }() }(); </script><script type="text/javascript"> function setCookie(cname, cvalue, ctime) { ctime = (typeof ctime === 'undefined') ? 10*365*24*60*60*1000 : ctime; // default => 10 years var d = new Date(); d.setTime(d.getTime() + ctime); // ==> 1 hour = 60*60*1000 var expires = "expires="+d.toUTCString(); document.cookie = cname + "=" + cvalue + "; " + expires +"; path=/"; } function getCookie(cname) { var name = cname + "="; var ca = document.cookie.split(';'); for(var i=0; i<ca.length; i++) { var c = ca[i]; while (c.charAt(0)==' ') c = c.substring(1); if (c.indexOf(name) == 0) return c.substring(name.length, c.length); } return ""; } </script><script type="text/javascript" src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js"></script><script> $(document).ready(function() { if ($("#js-similarity-related-data").length > 0) { $.ajax({ url: '/article/1527817/similarity-related', success: function(response) { $("#js-similarity-related-data").html(response); $("#js-related-articles-menu").show(); $(document).foundation('tab', 'reflow'); MathJax.Hub.Queue(["Typeset", MathJax.Hub]); } }); } }); </script><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732286508"><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732286508"><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/magnific-popup.min.js?2be3d9e7dc569146?1732286508"></script><script> $(function() { $(".js-show-more-academic-editors").on("click", function(e) { e.preventDefault(); $(this).hide(); $(".academic-editor-container").removeClass("hidden"); }); }); </script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/vmap/jqvmap.min.css?126a06688aa11c13?1732286508"> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.min.js?935f68d33bdd88a1?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.world.js?16677403c0e1bef1?1732286508"></script> <script> function updateSlick() { $('.multiple-items').slick('setPosition'); } $(document).ready(function() { $('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, responsive: [ { breakpoint: 1024, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 600, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 480, settings: { slidesToShow: 1, slidesToScroll: 1, } } ] }); $('.multiple-items').show(); $(document).on('click', '.reviewReportSelector', function(e) { let path = $(this).attr('data-path'); handleReviews(path, $(this)); }); $(document).on('click', '.viewReviewReports', function(e) { let versionOne = $('#versionTab_1'); if (!versionOne.hasClass('activeTab')) { let path = $(this).attr('data-path'); handleReviews(path, versionOne); } location.href = "#reviewReports"; }); $(document).on('click', '.reviewersResponse, .authorResponse', function(e) { let version = $(this).attr('data-version'); let targetVersion = $('#versionTab_' + version); if (!targetVersion.hasClass('activeTab')) { let path = targetVersion.attr('data-path'); handleReviews(path, targetVersion); } location.href = $(this).attr('data-link'); }); $(document).on('click', '.tab', function (e) { e.preventDefault(); $('.tab').removeClass('activeTab'); $(this).addClass('activeTab') $('.tab').each(function() { $(this).closest('.tab-title').removeClass('active'); }); $(this).closest('.tab-title').addClass('active') }); }); function handleReviews(path, target) { $.ajax({ url: path, context: this, success: function (data) { $('.activeTab').removeClass('activeTab'); target.addClass('activeTab'); $('#reviewSection').html(data.view); }, error: function (xhr, ajaxOptions, thrownError) { console.log(xhr.status); console.log(thrownError); } }); } </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?v1?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/storage.js?e9b262d3a3476d25?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/jquery-scrollspy.js?09cbaec0dbb35a67?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/magnific-popup.js?4a09c18460afb26c?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/underscore.js?f893e294cde60c24?1732286508"></script> <script type="text/javascript"> $('document').ready(function(){ $("#left-column").addClass("show-for-large-up"); $("#middle-column").removeClass("medium-9").removeClass("left-bordered").addClass("medium-12"); $(window).on('resize scroll', function() { /* if ($('.button--drop-down').isInViewport($(".top-bar").outerHeight())) { */ if ($('.button--drop-down').isInViewport()) { $("#js-button-download").hide(); } else { $("#js-button-download").show(); } }); }); $(document).on('DOMNodeInserted', function(e) { var element = $(e.target); if (element.hasClass('menu') && element.hasClass('html-nav') ) { element.addClass("side-menu-ul"); } }); </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/articles.js?5118449d9ad8913a?1732286508"></script> <script> repositionOpenSideBar = function() { $('#left-column').addClass("show-for-large-up show-for-medium-up").show(); $('#middle-column').removeClass('large-12').removeClass('medium-12'); $('#middle-column').addClass('large-9'); } repositionCloseSideBar = function() { $('#left-column').removeClass("show-for-large-up show-for-medium-up").hide(); $('#middle-column').removeClass('large-9'); $('#middle-column').addClass('large-12').addClass('medium-12'); } </script> <!--[if lt IE 9]> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8.js?6eef8fcbc831f5bd?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/jquery.xdomainrequest.min.js?a945caca315782b0?1732286508"></script> <![endif]--> <!-- Twitter universal website tag code --> <script type="text/plain" data-cookieconsent="marketing"> !function(e,t,n,s,u,a){e.twq||(s=e.twq=function(){s.exe?s.exe.apply(s,arguments):s.queue.push(arguments); },s.version='1.1',s.queue=[],u=t.createElement(n),u.async=!0,u.src='//static.ads-twitter.com/uwt.js', a=t.getElementsByTagName(n)[0],a.parentNode.insertBefore(u,a))}(window,document,'script'); // Insert Twitter Pixel ID and Standard Event data below twq('init','o2pip'); twq('track','PageView'); </script> <!-- End Twitter universal website tag code --> <script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'8e7862348868ce52',t:'MTczMjQ0MDY2MS4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body> </html>