CINXE.COM

Nanomaterial-related hemoglobin-based oxygen carriers, with emphasis on liposome and nano-capsules, for biomedical applications: current status and future perspectives - PMC

<!DOCTYPE html> <html lang="en" > <head > <meta charset="UTF-8" /> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta name="HandheldFriendly" content="True" /> <meta name="MobileOptimized" content="320" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <link rel="stylesheet" href="/static/assets/style-70b9163a.css" /> <script type="module" crossorigin="" src="/static/assets/base_style-ec2bc71e.js"></script> <link rel="stylesheet" href="/static/assets/style-ef962842.css" /> <link rel="stylesheet" href="/static/assets/style-3ade8b5c.css" /> <script type="module" crossorigin="" src="/static/assets/article_style-d757a0dd.js"></script> <style> @media screen and (min-width: 64em) { div.pmc-wm { background: repeat-y; background-image: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' width='20' height='350' xmlns:xlink='http://www.w3.org/1999/xlink'%3E%3Cdefs%3E%3Cfilter x='-.02' y='0' width='1.05' height='1' id='c'%3E%3CfeFlood flood-color='%23FFF'/%3E%3CfeComposite in='SourceGraphic'/%3E%3C/filter%3E%3Ctext id='b' font-family='Helvetica' font-size='11pt' style='opacity:1;fill:%23005ea2;stroke:none;text-anchor:middle' x='175' y='14'%3E%3C/text%3E%3Cpath id='a' style='fill:%23005ea2' d='M0 8h350v3H0z'/%3E%3C/defs%3E%3Cuse xlink:href='%23a' transform='rotate(90 10 10)'/%3E%3Cuse xlink:href='%23b' transform='rotate(90 10 10)' filter='url(%23c)'/%3E%3C/svg%3E"); padding-left: 3rem; } } </style> <link rel="apple-touch-icon" sizes="180x180" href="/static/img/favicons/apple-touch-icon.png" /> <link rel="icon" type="image/png" sizes="48x48" href="/static/img/favicons/favicon-48x48.png" /> <link rel="icon" type="image/png" sizes="32x32" href="/static/img/favicons/favicon-32x32.png" /> <link rel="icon" type="image/png" sizes="16x16" href="/static/img/favicons/favicon-16x16.png" /> <link rel="manifest" href="/static/img/favicons/site.webmanifest" /> <link rel="mask-icon" href="/static/img/favicons/safari-pinned-tab.svg" color="#0071bc" /> <meta name="msapplication-config" content="/static/img/favicons/browserconfig.xml" /> <meta name="theme-color" content="#ffffff" /> <title> Nanomaterial-related hemoglobin-based oxygen carriers, with emphasis on liposome and nano-capsules, for biomedical applications: current status and future perspectives - PMC </title> <!-- Logging params: Pinger defaults --> <meta name="ncbi_app" content="cloudpmc-viewer" /> <meta name="ncbi_db" content="pmc" /> <meta name="ncbi_phid" content="E5FD73F4741E4DA30373F40027AEC325.m_1" /> <!-- Logging params: Pinger custom --> <meta name="ncbi_pdid" content="article" /> <link rel="preconnect" href="https://www.google-analytics.com" /> <link rel="dns-prefetch" href="https://cdn.ncbi.nlm.nih.gov" /> <link rel="preconnect" href="https://code.jquery.com" /> <meta name="ncbi_domain" content="nanobio"> <meta name="ncbi_type" content="fulltext"> <meta name="ncbi_pcid" content="journal"> <meta name="ncbi_feature" content="associated_data"> <link rel="canonical" href="https://pmc.ncbi.nlm.nih.gov/articles/PMC11180412/"> <meta name="robots" content="INDEX,NOFOLLOW,NOARCHIVE"> <meta name="citation_journal_title" content="Journal of Nanobiotechnology"> <meta name="citation_title" content="Nanomaterial-related hemoglobin-based oxygen carriers, with emphasis on liposome and nano-capsules, for biomedical applications: current status and future perspectives"> <meta name="citation_author" content="Kai Zhu"> <meta name="citation_author_institution" content="Academy of Military Medical Sciences, Beijing, 100850 China"> <meta name="citation_author" content="Lijun Wang"> <meta name="citation_author_institution" content="Academy of Military Medical Sciences, Beijing, 100850 China"> <meta name="citation_author_institution" content="Department of Morphology Laboratory, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041 China"> <meta name="citation_author" content="Yao Xiao"> <meta name="citation_author_institution" content="Academy of Military Medical Sciences, Beijing, 100850 China"> <meta name="citation_author" content="Xiaoyong Zhang"> <meta name="citation_author_institution" content="Academy of Military Medical Sciences, Beijing, 100850 China"> <meta name="citation_author" content="Guoxing You"> <meta name="citation_author_institution" content="Academy of Military Medical Sciences, Beijing, 100850 China"> <meta name="citation_author" content="Yuzhi Chen"> <meta name="citation_author_institution" content="Academy of Military Medical Sciences, Beijing, 100850 China"> <meta name="citation_author" content="Quan Wang"> <meta name="citation_author_institution" content="Academy of Military Medical Sciences, Beijing, 100850 China"> <meta name="citation_author" content="Lian Zhao"> <meta name="citation_author_institution" content="Academy of Military Medical Sciences, Beijing, 100850 China"> <meta name="citation_author" content="Hong Zhou"> <meta name="citation_author_institution" content="Academy of Military Medical Sciences, Beijing, 100850 China"> <meta name="citation_author" content="Gan Chen"> <meta name="citation_author_institution" content="Academy of Military Medical Sciences, Beijing, 100850 China"> <meta name="citation_publication_date" content="2024 Jun 16"> <meta name="citation_volume" content="22"> <meta name="citation_firstpage" content="336"> <meta name="citation_doi" content="10.1186/s12951-024-02606-1"> <meta name="citation_pmid" content="38880905"> <meta name="citation_abstract_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC11180412/"> <meta name="citation_fulltext_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC11180412/"> <meta name="citation_pdf_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC11180412/pdf/12951_2024_Article_2606.pdf"> <meta name="description" content="Oxygen is necessary for life and plays a key pivotal in maintaining normal physiological functions and treat of diseases. Hemoglobin-based oxygen carriers (HBOCs) have been studied and developed as a replacement for red blood cells (RBCs) in oxygen ..."> <meta name="og:title" content="Nanomaterial-related hemoglobin-based oxygen carriers, with emphasis on liposome and nano-capsules, for biomedical applications: current status and future perspectives"> <meta name="og:type" content="article"> <meta name="og:site_name" content="PubMed Central (PMC)"> <meta name="og:description" content="Oxygen is necessary for life and plays a key pivotal in maintaining normal physiological functions and treat of diseases. Hemoglobin-based oxygen carriers (HBOCs) have been studied and developed as a replacement for red blood cells (RBCs) in oxygen ..."> <meta name="og:url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC11180412/"> <meta name="og:image" content="https://cdn.ncbi.nlm.nih.gov/pmc/cms/images/pmc-card-share.jpg?_=0"> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@ncbi"> </head> <body > <a class="usa-skipnav " href="#main-content"> Skip to main content </a> <section class="usa-banner " aria-label="Official website of the United States government" > <div class="usa-accordion"> <header class="usa-banner__header"> <div class="usa-banner__inner"> <div class="grid-col-auto"> <img aria-hidden="true" class="usa-banner__header-flag" src="/static/img/us_flag.svg" alt="" /> </div> <div class="grid-col-fill tablet:grid-col-auto" aria-hidden="true"> <p class="usa-banner__header-text"> An official website of the United States government </p> <span class="usa-banner__header-action">Here's how you know</span> </div> <button type="button" class="usa-accordion__button usa-banner__button " aria-expanded="false" aria-controls="gov-banner-default" data-testid="storybook-django-banner" > <span class="usa-banner__button-text">Here's how you know</span> </button> </div> </header> <div class="usa-banner__content usa-accordion__content" id="gov-banner-default" hidden> <div class="grid-row grid-gap-lg"> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-dot-gov.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Official websites use .gov</strong> <br /> A <strong>.gov</strong> website belongs to an official government organization in the United States. </p> </div> </div> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-https.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Secure .gov websites use HTTPS</strong> <br /> A <strong>lock</strong> ( <span class="icon-lock"> <svg xmlns="http://www.w3.org/2000/svg" width="52" height="64" viewBox="0 0 52 64" class="usa-banner__lock-image" role="graphics-symbol" aria-labelledby="banner-lock-description" focusable="false"> <title id="banner-lock-title">Lock</title> <desc id="banner-lock-description"> Locked padlock icon </desc> <path fill="#000000" fill-rule="evenodd" d="M26 0c10.493 0 19 8.507 19 19v9h3a4 4 0 0 1 4 4v28a4 4 0 0 1-4 4H4a4 4 0 0 1-4-4V32a4 4 0 0 1 4-4h3v-9C7 8.507 15.507 0 26 0zm0 8c-5.979 0-10.843 4.77-10.996 10.712L15 19v9h22v-9c0-6.075-4.925-11-11-11z" /> </svg> </span>) or <strong>https://</strong> means you've safely connected to the .gov website. Share sensitive information only on official, secure websites. </p> </div> </div> </div> </div> </div> </section> <div class="usa-overlay"> </div> <header class="usa-header usa-header--extended usa-header--wide" data-testid="header" data-header > <div class="ncbi-header"> <div class="ncbi-header__container"> <a class="ncbi-header__logo-container" href="/"> <img alt=" PMC home page " class="ncbi-header__logo-image" src="/static/img/ncbi-logos/nih-nlm-ncbi--white.svg" /> </a> <!-- Mobile menu hamburger button --> <button type="button" class="usa-menu-btn ncbi-header__hamburger-button " aria-label="Show menu" data-testid="navMenuButton" > <svg aria-hidden="true" class="ncbi-hamburger-icon" fill="none" focusable="false" height="21" viewBox="0 0 31 21" width="31" xmlns="http://www.w3.org/2000/svg"> <path clip-rule="evenodd" d="M0.125 20.75H30.875V17.3333H0.125V20.75ZM0.125 12.2083H30.875V8.79167H0.125V12.2083ZM0.125 0.25V3.66667H30.875V0.25H0.125Z" fill="#F1F1F1" fill-rule="evenodd" /> </svg> </button> <!-- Desktop buttons--> <div class="ncbi-header__desktop-buttons"> <!-- Desktop search button --> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button " aria-expanded="false" aria-controls="search-field-desktop-navigation" aria-label="Show search overlay" data-testid="toggleSearchPanelButton" data-toggle-search-panel-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#search" /> </svg> Search </button> <!-- Desktop login dropdown --> <div class="ncbi-header__login-dropdown"> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button ncbi-header__login-dropdown-button " aria-expanded="false" aria-controls="login-dropdown-menu" aria-label="Show login menu" data-testid="toggleLoginMenuDropdown" data-desktop-login-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#person" /> </svg> <span data-login-dropdown-text>Log in</span> <!-- Dropdown icon pointing up --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-less ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-up-arrow> <use xlink:href="/static/img/sprite.svg#expand_less" /> </svg> <!-- Dropdown icon pointing down --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-more ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-down-arrow> <use xlink:href="/static/img/sprite.svg#expand_more" /> </svg> </button> <!-- Login dropdown menu --> <ul class="usa-nav__submenu ncbi-header__login-dropdown-menu" id="login-dropdown-menu" data-desktop-login-menu-dropdown hidden> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> <li class="usa-nav__submenu-item"> <button type="button" class="usa-button usa-button--outline ncbi-header__login-dropdown-logout-button " data-testid="desktopLogoutButton" data-desktop-logout-button > Log out </button> </li> </ul> </div> </div> </div> </div> <!-- Search panel --> <div class="ncbi-search-panel ncbi--show-only-at-desktop" data-testid="searchPanel" data-header-search-panel hidden> <div class="ncbi-search-panel__container"> <form action="https://www.ncbi.nlm.nih.gov/search/all/" aria-describedby="search-field-desktop-navigation-help-text" autocomplete="off" class="usa-search usa-search--big ncbi-search-panel__form" data-testid="form" method="GET" role="search"> <label class="usa-sr-only" data-testid="label" for="search-field-desktop-navigation"> Search… </label> <input class="usa-input" data-testid="textInput" id="search-field-desktop-navigation" name="term" placeholder="Search NCBI" type="search" value="" /> <button type="submit" class="usa-button " data-testid="button" > <span class="usa-search__submit-text"> Search NCBI </span> </button> </form> </div> </div> <nav aria-label="Primary navigation" class="usa-nav"> <p class="usa-sr-only" id="primary-navigation-sr-only-title"> Primary site navigation </p> <!-- Mobile menu close button --> <button type="button" class="usa-nav__close ncbi-nav__close-button " aria-label="Close navigation menu" data-testid="navCloseButton" > <img src="/static/img/usa-icons/close.svg" alt="Close" /> </button> <!-- Mobile search component --> <form class="usa-search usa-search--small ncbi--hide-at-desktop margin-top-6" role="search"> <label class="usa-sr-only" for="search-field"> Search </label> <input class="usa-input" id="search-field-mobile-navigation" type="search" placeholder="Search NCBI" name="search" /> <button type="submit" class="usa-button " > <!-- This SVG should be kept inline and not replaced with a link to the icon as otherwise it will render in the wrong color --> <img src="" class="usa-search__submit-icon" alt="Search" /> </button> </form> <!-- Primary navigation menu items --> <!-- This usa-nav__inner wrapper is required to correctly style the navigation items on Desktop --> <div class="ncbi-nav__mobile-login-menu ncbi--hide-at-desktop" data-mobile-login-menu hidden> <p class="ncbi-nav__mobile-login-menu-status"> Logged in as: <strong class="ncbi-nav__mobile-login-menu-email" data-mobile-login-email-text></strong> </p> <ul class="usa-nav__primary usa-accordion"> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> </ul> </div> <button type="button" class="usa-button ncbi-nav__mobile-login-button ncbi--hide-at-desktop " data-testid="mobileLoginButton" data-mobile-login-button > Log in </button> </nav> </header> <section class="pmc-header pmc-header--basic" aria-label="PMC Header with search box"> <div class="pmc-nav-container"> <div class="pmc-header__bar"> <div class="pmc-header__logo"> <a href="/" title="Home" aria-label="PMC Home"></a> </div> <button type="button" class="usa-button usa-button--unstyled pmc-header__search__button" aria-label="Open search" data-ga-category="search" data-ga-action="PMC" data-ga-label="pmc_search_panel_mobile" > <svg class="usa-icon width-4 height-4 pmc-icon__open" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#search"></use> </svg> <svg class="usa-icon width-4 height-4 pmc-icon__close" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="pmc-header__search"> <form class="usa-search usa-search--extra usa-search--article-right-column pmc-header__search__form" autocomplete="off" role="search"> <label class="usa-sr-only" for="pmc-search">Search PMC Full-Text Archive</label> <span class="autoComplete_wrapper flex-1"> <input class="usa-input width-full maxw-none" required="required" placeholder="Search PMC Full-Text Archive" id="pmc-search" type="search" name="term" data-autocomplete-url="/search/autocomplete/"/> </span> <button class="usa-button" type="submit" formaction="https://www.ncbi.nlm.nih.gov/pmc/" data-ga-category="search" data-ga-action="PMC" data-ga-label="PMC_search_button" > <span class="usa-search__submit-text">Search in PMC</span> <img src="/static/img/usa-icons-bg/search--white.svg" class="usa-search__submit-icon" alt="Search" /> </button> </form> <ul class="pmc-header__search__menu"> <li> <a class="usa-link" href="https://www.ncbi.nlm.nih.gov/pmc/advanced/" data-ga-action="featured_link" data-ga-label="advanced_search"> Advanced Search </a> </li> <li> <a class="usa-link" href="/journals/" data-ga-action="featured_link" data-ga-label="journal list"> Journal List </a> </li> <li> <a class="usa-link" href="/about/userguide/" data-ga-action="featured_link" data-ga-label="user guide"> User Guide </a> </li> </ul> </div> </div> </section> <div class="usa-section padding-top-0 desktop:padding-top-6 pmc-article-section" data-article-db="pmc" data-article-id="11180412"> <div class="grid-container pmc-actions-bar" aria-label="Actions bar" role="complementary"> <div class="grid-row"> <div class="grid-col-fill display-flex"> <div class="display-flex"> <ul class="usa-list usa-list--unstyled usa-list--horizontal"> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open resources" data-extra-class="is-visible-resources" data-ga-category="resources_accordion" data-ga-action="click" data-ga-label="mobile_icon" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#more_vert"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <a href="https://doi.org/10.1186/s12951-024-02606-1" class="usa-link display-flex" role="button" target="_blank" rel="noreferrer noopener" aria-label="View on publisher site" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#launch"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <a href="pdf/12951_2024_Article_2606.pdf" class="usa-link display-flex" role="button" aria-label="Download PDF" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button class="usa-button usa-button--unstyled collections-dialog-trigger collections-button display-flex collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_mobile" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC11180412%2F%23open-collections-dialog" data-in-collections="false" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button role="button" class="usa-button usa-button--unstyled citation-dialog-trigger display-flex" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_mobile" data-all-citations-url="/resources/citations/11180412/" data-citation-style="nlm" data-download-format-link="/resources/citations/11180412/export/" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> </button> </li> <li class="pmc-permalink display-flex"> <button type="button" class="usa-button usa-button--unstyled display-flex" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC11180412/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </div> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open article navigation" data-extra-class="is-visible-in-page" data-ga-category="actions" data-ga-action="open" data-ga-label="article_nav_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#list"></use> </svg> </button> </div> </div> </div> <div class="grid-container desktop:padding-left-6"> <div id="article-container" class="grid-row grid-gap"> <div class="grid-col-12 desktop:grid-col-8 order-2 pmc-layout__content"> <div class="grid-container padding-left-0 padding-right-0"> <div class="grid-row desktop:margin-left-neg-6"> <div class="grid-col-12"> <div class="pmc-layout__disclaimer" role="complementary" aria-label="Disclaimer note"> As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.<br/> Learn more: <a class="usa-link" data-ga-category="Link click" data-ga-action="Disclaimer" data-ga-label="New disclaimer box" href="/about/disclaimer/">PMC Disclaimer</a> | <a class="usa-link" data-ga-category="Link click" data-ga-action="PMC Copyright Notice" data-ga-label="New disclaimer box" href="/about/copyright/"> PMC Copyright Notice </a> </div> </div> </div> <div class="grid-row pmc-wm desktop:margin-left-neg-6"> <!-- Main content --> <main id="main-content" class="usa-layout-docs__main usa-layout-docs grid-col-12 pmc-layout pmc-prose padding-0" > <section class="pmc-journal-banner text-center line-height-none" aria-label="Journal banner"><img src="https://cdn.ncbi.nlm.nih.gov/pmc/banners/logo-nanobio.png" alt="Journal of Nanobiotechnology logo" usemap="#pmc-banner-imagemap" width="500" height="75"><map name="pmc-banner-imagemap"><area alt="Link to Journal of Nanobiotechnology" title="Link to Journal of Nanobiotechnology" shape="default" href="https://jnanobiotechnology.biomedcentral.com/" target="_blank" rel="noopener noreferrer"></map></section><article lang="en"><section aria-label="Article citation and metadata"><section class="pmc-layout__citation font-secondary font-xs"><div> <div class="display-inline-block"><button type="button" class="cursor-pointer text-no-underline bg-transparent border-0 padding-0 text-left margin-0 text-normal text-primary" aria-controls="journal_context_menu">J Nanobiotechnology</button></div>. 2024 Jun 16;22:336. doi: <a href="https://doi.org/10.1186/s12951-024-02606-1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">10.1186/s12951-024-02606-1</a> </div> <nav id="journal_context_menu" hidden="hidden"><ul class="menu-list font-family-ui" role="menu"> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/pmc/?term=%22J%20Nanobiotechnology%22%5Bjour%5D" class="usa-link" role="menuitem">Search in PMC</a></li> <li role="presentation"><a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22J%20Nanobiotechnology%22%5Bjour%5D" lang="en" class="usa-link" role="menuitem">Search in PubMed</a></li> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/nlmcatalog?term=%22J%20Nanobiotechnology%22%5BTitle%20Abbreviation%5D" class="usa-link" role="menuitem">View in NLM Catalog</a></li> <li role="presentation"><a href="?term=%22J%20Nanobiotechnology%22%5Bjour%5D" class="usa-link" role="menuitem" data-add-to-search="true">Add to search</a></li> </ul></nav></section><section class="front-matter"><div class="ameta p font-secondary font-xs"> <hgroup><h1>Nanomaterial-related hemoglobin-based oxygen carriers, with emphasis on liposome and nano-capsules, for biomedical applications: current status and future perspectives</h1></hgroup><div class="cg p"> <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Zhu%20K%22%5BAuthor%5D" class="usa-link" aria-describedby="id1"><span class="name western">Kai Zhu</span></a><div hidden="hidden" id="id1"> <h3><span class="name western">Kai Zhu</span></h3> <div class="p"> <sup>1</sup>Academy of Military Medical Sciences, Beijing, 100850 China </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Zhu%20K%22%5BAuthor%5D" class="usa-link"><span class="name western">Kai Zhu</span></a> </div> </div> <sup>1,</sup><sup>#</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Wang%20L%22%5BAuthor%5D" class="usa-link" aria-describedby="id2"><span class="name western">Lijun Wang</span></a><div hidden="hidden" id="id2"> <h3><span class="name western">Lijun Wang</span></h3> <div class="p"> <sup>1</sup>Academy of Military Medical Sciences, Beijing, 100850 China </div> <div class="p"> <sup>2</sup>Department of Morphology Laboratory, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041 China </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Wang%20L%22%5BAuthor%5D" class="usa-link"><span class="name western">Lijun Wang</span></a> </div> </div> <sup>1,</sup><sup>2,</sup><sup>#</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Xiao%20Y%22%5BAuthor%5D" class="usa-link" aria-describedby="id3"><span class="name western">Yao Xiao</span></a><div hidden="hidden" id="id3"> <h3><span class="name western">Yao Xiao</span></h3> <div class="p"> <sup>1</sup>Academy of Military Medical Sciences, Beijing, 100850 China </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Xiao%20Y%22%5BAuthor%5D" class="usa-link"><span class="name western">Yao Xiao</span></a> </div> </div> <sup>1</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Zhang%20X%22%5BAuthor%5D" class="usa-link" aria-describedby="id4"><span class="name western">Xiaoyong Zhang</span></a><div hidden="hidden" id="id4"> <h3><span class="name western">Xiaoyong Zhang</span></h3> <div class="p"> <sup>1</sup>Academy of Military Medical Sciences, Beijing, 100850 China </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Zhang%20X%22%5BAuthor%5D" class="usa-link"><span class="name western">Xiaoyong Zhang</span></a> </div> </div> <sup>1</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22You%20G%22%5BAuthor%5D" class="usa-link" aria-describedby="id5"><span class="name western">Guoxing You</span></a><div hidden="hidden" id="id5"> <h3><span class="name western">Guoxing You</span></h3> <div class="p"> <sup>1</sup>Academy of Military Medical Sciences, Beijing, 100850 China </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22You%20G%22%5BAuthor%5D" class="usa-link"><span class="name western">Guoxing You</span></a> </div> </div> <sup>1</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Chen%20Y%22%5BAuthor%5D" class="usa-link" aria-describedby="id6"><span class="name western">Yuzhi Chen</span></a><div hidden="hidden" id="id6"> <h3><span class="name western">Yuzhi Chen</span></h3> <div class="p"> <sup>1</sup>Academy of Military Medical Sciences, Beijing, 100850 China </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Chen%20Y%22%5BAuthor%5D" class="usa-link"><span class="name western">Yuzhi Chen</span></a> </div> </div> <sup>1</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Wang%20Q%22%5BAuthor%5D" class="usa-link" aria-describedby="id7"><span class="name western">Quan Wang</span></a><div hidden="hidden" id="id7"> <h3><span class="name western">Quan Wang</span></h3> <div class="p"> <sup>1</sup>Academy of Military Medical Sciences, Beijing, 100850 China </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Wang%20Q%22%5BAuthor%5D" class="usa-link"><span class="name western">Quan Wang</span></a> </div> </div> <sup>1</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Zhao%20L%22%5BAuthor%5D" class="usa-link" aria-describedby="id8"><span class="name western">Lian Zhao</span></a><div hidden="hidden" id="id8"> <h3><span class="name western">Lian Zhao</span></h3> <div class="p"> <sup>1</sup>Academy of Military Medical Sciences, Beijing, 100850 China </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Zhao%20L%22%5BAuthor%5D" class="usa-link"><span class="name western">Lian Zhao</span></a> </div> </div> <sup>1,</sup><sup>✉</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Zhou%20H%22%5BAuthor%5D" class="usa-link" aria-describedby="id9"><span class="name western">Hong Zhou</span></a><div hidden="hidden" id="id9"> <h3><span class="name western">Hong Zhou</span></h3> <div class="p"> <sup>1</sup>Academy of Military Medical Sciences, Beijing, 100850 China </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Zhou%20H%22%5BAuthor%5D" class="usa-link"><span class="name western">Hong Zhou</span></a> </div> </div> <sup>1,</sup><sup>✉</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Chen%20G%22%5BAuthor%5D" class="usa-link" aria-describedby="id10"><span class="name western">Gan Chen</span></a><div hidden="hidden" id="id10"> <h3><span class="name western">Gan Chen</span></h3> <div class="p"> <sup>1</sup>Academy of Military Medical Sciences, Beijing, 100850 China </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Chen%20G%22%5BAuthor%5D" class="usa-link"><span class="name western">Gan Chen</span></a> </div> </div> <sup>1,</sup><sup>✉</sup> </div> <ul class="d-buttons inline-list"> <li><button class="d-button" aria-controls="aip_a" aria-expanded="false">Author information</button></li> <li><button class="d-button" aria-controls="anp_a" aria-expanded="false">Article notes</button></li> <li><button class="d-button" aria-controls="clp_a" aria-expanded="false">Copyright and License information</button></li> </ul> <div class="d-panels font-secondary-light"> <div id="aip_a" class="d-panel p" style="display: none"> <div class="p" id="Aff1"> <sup>1</sup>Academy of Military Medical Sciences, Beijing, 100850 China </div> <div id="Aff2"> <sup>2</sup>Department of Morphology Laboratory, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041 China </div> <div class="author-notes p"> <div class="fn" id="_fncrsp93pmc__"> <sup>✉</sup><p class="display-inline">Corresponding author.</p> </div> <div class="fn" id="_eqcntrb93pmc__"> <sup>#</sup><p class="display-inline">Contributed equally.</p> </div> </div> </div> <div id="anp_a" class="d-panel p" style="display: none"><div class="notes p"><section id="historyarticle-meta1" class="history"><p>Received 2024 Mar 3; Accepted 2024 May 30; Collection date 2024.</p></section></div></div> <div id="clp_a" class="d-panel p" style="display: none"> <div>© The Author(s) 2024</div> <p><strong>Open Access</strong> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href="https://creativecommons.org/licenses/by/4.0/" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">http://creativecommons.org/licenses/by/4.0/</a>. The Creative Commons Public Domain Dedication waiver (<a href="https://creativecommons.org/publicdomain/zero/1.0/" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">http://creativecommons.org/publicdomain/zero/1.0/</a>) applies to the data made available in this article, unless otherwise stated in a credit line to the data.</p> <div class="p"><a href="/about/copyright/" class="usa-link">PMC Copyright notice</a></div> </div> </div> <div>PMCID: PMC11180412  PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/38880905/" class="usa-link">38880905</a> </div> </div></section></section><section aria-label="Article content"><section class="body main-article-body"><section class="abstract" id="Abs1"><h2>Abstract</h2> <p id="Par1">Oxygen is necessary for life and plays a key pivotal in maintaining normal physiological functions and treat of diseases. Hemoglobin-based oxygen carriers (HBOCs) have been studied and developed as a replacement for red blood cells (RBCs) in oxygen transport due to their similar oxygen-carrying capacities. However, applications of HBOCs are hindered by vasoactivity, oxidative toxicity, and a relatively short circulatory half-life. With advancements in nanotechnology, Hb encapsulation, absorption, bioconjugation, entrapment, and attachment to nanomaterials have been used to prepare nanomaterial-related HBOCs to address these challenges and pend their application in several biomedical and therapeutic contexts. This review focuses on the progress of this class of nanomaterial-related HBOCs in the fields of hemorrhagic shock, ischemic stroke, cancer, and wound healing, and speculates on future research directions. The advancements in nanomaterial-related HBOCs are expected to lead significant breakthroughs in blood substitutes, enabling their widespread use in the treatment of clinical diseases.</p> <section id="sec1"><h3 class="pmc_sec_title">Graphical Abstract</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=11180412_12951_2024_2606_Figa_HTML.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d96e/11180412/ea150135f30b/12951_2024_2606_Figa_HTML.jpg" loading="lazy" id="MO1" height="795" width="797" alt="graphic file with name 12951_2024_2606_Figa_HTML.jpg"></a></p></section><section id="kwd-group1" lang="en" class="kwd-group"><p><strong>Keywords:</strong> Oxygen transport, Hemoglobin-based oxygen carriers (HBOCs), Nanomaterials, Hemorrhagic shock, Cancer</p></section></section><section id="Sec1"><h2 class="pmc_sec_title">Introduction</h2> <p id="Par73">Oxygen (O<sub>2</sub>) is essential for life [<a href="#CR1" class="usa-link" aria-describedby="CR1">1</a>] and physiological processes such as cell growth, differentiation, metabolism, and tissue homeostasis [<a href="#CR2" class="usa-link" aria-describedby="CR2">2</a>, <a href="#CR3" class="usa-link" aria-describedby="CR3">3</a>]. Factors such as trauma [<a href="#CR4" class="usa-link" aria-describedby="CR4">4</a>], blood loss [<a href="#CR5" class="usa-link" aria-describedby="CR5">5</a>], pernicious anemia [<a href="#CR6" class="usa-link" aria-describedby="CR6">6</a>] and ischemic cerebrovascular disease [<a href="#CR7" class="usa-link" aria-describedby="CR7">7</a>, <a href="#CR8" class="usa-link" aria-describedby="CR8">8</a>] can decrease tissue oxygen content, lead to hypoxia [<a href="#CR9" class="usa-link" aria-describedby="CR9">9</a>]. This, in turn, can induce organ dysfunction, particularly in the brain [<a href="#CR10" class="usa-link" aria-describedby="CR10">10</a>], heart [<a href="#CR11" class="usa-link" aria-describedby="CR11">11</a>] and kidney [<a href="#CR12" class="usa-link" aria-describedby="CR12">12</a>] and leading to irreversible damage and/ or death [<a href="#CR13" class="usa-link" aria-describedby="CR13">13</a>]. Besides, the hypoxic microenvironment of tumor tissues can decrease the sensitivity of malignant tumors to antitumor drugs and enhance the invasion and metastasis abilities of tumor cells [<a href="#CR14" class="usa-link" aria-describedby="CR14">14</a>–<a href="#CR16" class="usa-link" aria-describedby="CR16">16</a>]. Thus, maintaining an adequate O<sub>2</sub> supply to tissues and organs, is essential for maintaining the physiological functions of the body, and it is critical for disease treatment [<a href="#CR17" class="usa-link" aria-describedby="CR17">17</a>].</p> <p id="Par74">As natural oxygen carriers, red blood cells (RBCs) can bind to O<sub>2</sub> in the lungs and deliver throughout to the body. This process is essential to meet the metabolic demands of the body [<a href="#CR18" class="usa-link" aria-describedby="CR18">18</a>, <a href="#CR19" class="usa-link" aria-describedby="CR19">19</a>] and ensure normal organ function [<a href="#CR20" class="usa-link" aria-describedby="CR20">20</a>]. Hemoglobin (Hb), the main O<sub>2</sub> carrier in RBCs, facilitates O<sub>2</sub> delivery via its well-known oxygen-carrying function [<a href="#CR21" class="usa-link" aria-describedby="CR21">21</a>]. In adults, Hb consist of four subunits (α1, β1, α2, and β2) that form a tetrameric protein containing a central ferrous heme, enabling it to transport O<sub>2</sub> by binding reversibly to O<sub>2</sub> [<a href="#CR22" class="usa-link" aria-describedby="CR22">22</a>, <a href="#CR23" class="usa-link" aria-describedby="CR23">23</a>].</p> <p id="Par75">Numerous factors, such as trauma, blood loss, and pernicious anemia [<a href="#CR24" class="usa-link" aria-describedby="CR24">24</a>, <a href="#CR25" class="usa-link" aria-describedby="CR25">25</a>], can potentially cause decrease in RBCs and Hb levels in the bloodstream. Timely transfusion of RBCs, restoration of blood volume in the body, and ensuring adequate of O<sub>2</sub> supply are essential for saving lives [<a href="#CR26" class="usa-link" aria-describedby="CR26">26</a>–<a href="#CR28" class="usa-link" aria-describedby="CR28">28</a>]. Indeed, these measures are widely practiced in clinical and military rescue scenarios [<a href="#CR29" class="usa-link" aria-describedby="CR29">29</a>]. However, the demand for natural blood often outpaces supply [<a href="#CR30" class="usa-link" aria-describedby="CR30">30</a>, <a href="#CR31" class="usa-link" aria-describedby="CR31">31</a>]. Natural blood has a limited preservation period (&lt; 42 d), requires special storage and transportation conditions [<a href="#CR32" class="usa-link" aria-describedby="CR32">32</a>], and is susceptible to damage and adverse reactions when infused [<a href="#CR33" class="usa-link" aria-describedby="CR33">33</a>, <a href="#CR34" class="usa-link" aria-describedby="CR34">34</a>]. Natural blood transfusion also carriers risk of infectious diseases, requires associated, time-consuming, cross-matching [<a href="#CR35" class="usa-link" aria-describedby="CR35">35</a>, <a href="#CR36" class="usa-link" aria-describedby="CR36">36</a>] and may conflict with religious beliefs [<a href="#CR37" class="usa-link" aria-describedby="CR37">37</a>, <a href="#CR38" class="usa-link" aria-describedby="CR38">38</a>]. Therefore, blood substitutes that can fully and completely or partially replace the oxygen-carrying functions of RBCs have emerged. These substitutes can be classified into perfluorocarbons (PFCs) and hemoglobin-based oxygen carriers (HBOCs) [<a href="#CR39" class="usa-link" aria-describedby="CR39">39</a>, <a href="#CR40" class="usa-link" aria-describedby="CR40">40</a>].</p> <p id="Par76">Perfluorocarbon emulsions, which physically solubilize O<sub>2</sub> and CO<sub>2</sub>, were the first blood substitutes to be tested as oxygen carriers [<a href="#CR41" class="usa-link" aria-describedby="CR41">41</a>]. However, the biosafety and stability concerns of PFCs limit their potential for clinical use. The first-generation products, Fluosol-DA®, was originally approved by the United States of America Food and Drug Administration (FDA) for coronary transluminal angioplasty; however, it was withdrawn from the market due to O<sub>2</sub> delivery capacity, poor stability, and complement activation [<a href="#CR42" class="usa-link" aria-describedby="CR42">42</a>]. The second-generation product, Oxygent™, was also discontinued during phase III clinical trials in the USA because of an increased incidence of instroke and heart diseases in patients undergoing coronary artery bypass surgery [<a href="#CR42" class="usa-link" aria-describedby="CR42">42</a>–<a href="#CR44" class="usa-link" aria-describedby="CR44">44</a>].</p> <p id="Par77">HBOCs are a class of blood substitutes that are based on natural hemoglobin obtained through polymerization, cross-linking, and modification with polymer. HBOCs have gradually become the primary research focus for artificial oxygen carriers because they closely resemble the natural oxygen-carrying/-releasing characteristics of Hb [<a href="#CR40" class="usa-link" aria-describedby="CR40">40</a>, <a href="#CR45" class="usa-link" aria-describedby="CR45">45</a>]. HBOCs development progressed after decades of laboratory and clinical research. However, only a few HBOCs have received worldwide approved for clinical use. Glutaraldehyde-polymerized bovine hemoglobin (HBOC-201, BioPure company), was approved for the treatment of acute pernicious anemia in South Africa and Russia in 2001 and 2010, respectively [<a href="#CR46" class="usa-link" aria-describedby="CR46">46</a>, <a href="#CR47" class="usa-link" aria-describedby="CR47">47</a>]. PEGylated carboxyhemoglobin bovine (Sanguinate, Prolong Pharmaceuticals, USA), was registered in 2015 under the FDA classification as an “orphan drug” for the treatment of sickle cell anemia; it is currently in phase III clinical trials [<a href="#CR48" class="usa-link" aria-describedby="CR48">48</a>]. Despite these advancement, HBOCs development is also complicated by issues such as vasoactivity caused by nitric oxide (NO) scavenging [<a href="#CR49" class="usa-link" aria-describedby="CR49">49</a>], nephrotoxicity from dissociated dimers [<a href="#CR50" class="usa-link" aria-describedby="CR50">50</a>], oxidative toxicity of hemoglobin [<a href="#CR51" class="usa-link" aria-describedby="CR51">51</a>], and short circulation time [<a href="#CR52" class="usa-link" aria-describedby="CR52">52</a>], resulting in many HBOCs varieties being discontinued or excluded from further research due to safety concerns. Thus far, researchers have focused on addressing the safety concerns of HBOCs by improving strategies such as the cross-linking technique, and the preparation process of Hb, as well as infusion methods. For instance, preventing the dissociation of hemoglobin tetramer and reducing nephrotoxicity [<a href="#CR53" class="usa-link" aria-describedby="CR53">53</a>, <a href="#CR54" class="usa-link" aria-describedby="CR54">54</a>] by optimizing the molecular weight of the polymer [<a href="#CR55" class="usa-link" aria-describedby="CR55">55</a>]. Hb oxidation is reduced by co-cross-linking Hb with internal biological enzymes such as superoxide dismutase (SOD) and catalase (CAT) [<a href="#CR56" class="usa-link" aria-describedby="CR56">56</a>–<a href="#CR58" class="usa-link" aria-describedby="CR58">58</a>]. While these technical strategies have reduced the safety concerns of HBOCs to extent; they are still in the preclinical research stage.</p> <p id="Par78">The role of nanomaterials in drug delivery and disease treatment has received increased research attention due to the rapid development of nanotechnology [<a href="#CR59" class="usa-link" aria-describedby="CR59">59</a>, <a href="#CR60" class="usa-link" aria-describedby="CR60">60</a>], which provides new opportunities for developing HBOCs. Nanomaterial-related HBOCs (Nano-HBOCs) are prepared by organically conjugating of nanomaterials with hemoglobin through encapsulation, self-assembly, bioconjugation, entrapment, and attachment [<a href="#CR61" class="usa-link" aria-describedby="CR61">61</a>–<a href="#CR63" class="usa-link" aria-describedby="CR63">63</a>]. This approach not only closely mimics the physiological structure of natural RBCs but also offers more advantages, such as reduced the vasoactivity, improved circulation time [<a href="#CR64" class="usa-link" aria-describedby="CR64">64</a>–<a href="#CR66" class="usa-link" aria-describedby="CR66">66</a>], and enhanced biological safety [<a href="#CR67" class="usa-link" aria-describedby="CR67">67</a>] (Table <a href="#Tab1" class="usa-link">1</a>).</p> <section class="tw xbox font-sm" id="Tab1"><h3 class="obj_head">Table 1.</h3> <div class="caption p"><p>Several advantages of Nano-HBOCs, classified into seven categories, with information related to their formulations, Hb source, and references</p></div> <div class="tbl-box p" tabindex="0"><table class="content" frame="hsides" rules="groups"> <thead><tr> <th align="left" colspan="1" rowspan="1">Properties</th> <th align="left" colspan="1" rowspan="1">Categories</th> <th align="left" colspan="1" rowspan="1">Formulations</th> <th align="left" colspan="1" rowspan="1">Hb source</th> <th align="left" colspan="1" rowspan="1">References</th> </tr></thead> <tbody> <tr> <td align="left" colspan="1" rowspan="1">Reducing the vasoactivity</td> <td align="left" colspan="1" rowspan="1">TRM-645</td> <td align="left" colspan="1" rowspan="1">Encapsulating purified Hb in liposomes mimicking the RBCs membrane</td> <td align="left" colspan="1" rowspan="1">Human</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR69" class="usa-link" aria-describedby="CR69">69</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">Raising biological safety</td> <td align="left" colspan="1" rowspan="1"> <p>LEH</p> <p>HbPs</p> <p>HbTcMs</p> <p>O<sub>2</sub>@Hb@ZIF-8</p> </td> <td align="left" colspan="1" rowspan="1"> <p>Employment of liposomes to encapsulate intact Hb molecules</p> <p>Hb encapsulated mPEG-PLGA using the double emulsion technique</p> <p>Hemoglobin-polymer conjugate formation, completion of Hb and PS co-loading</p> <p>Hb encapsulated in ZIF-8</p> </td> <td align="left" colspan="1" rowspan="1"> <p>Human</p> <p>Bovine</p> <p>Bovine</p> <p>Human</p> </td> <td align="left" colspan="1" rowspan="1">[<a href="#CR65" class="usa-link" aria-describedby="CR65">65</a>, <a href="#CR70" class="usa-link" aria-describedby="CR70">70</a>–<a href="#CR72" class="usa-link" aria-describedby="CR72">72</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">Improving blood circulation time</td> <td align="left" colspan="1" rowspan="1"> <p>PDA − LtEc</p> <p>ZIF-8@Hb</p> <p>Hb@AuNCs</p> <p>PFRT-RBCS</p> </td> <td align="left" colspan="1" rowspan="1"> <p><em>Lumbricus terrestris</em> with PDA surface-coating</p> <p>Hb encapsulated in MOFs</p> <p>Hb and Au nanoparticles, combined and incorporated into the reported MOFs</p> <p>A large amount of ZnF16Pc tethered to the RBCs surface</p> </td> <td align="left" colspan="1" rowspan="1"> <p>Worm</p> <p>Bovine</p> <p>Bovine</p> <p>Human</p> </td> <td align="left" colspan="1" rowspan="1">[<a href="#CR73" class="usa-link" aria-describedby="CR73">73</a>–<a href="#CR76" class="usa-link" aria-describedby="CR76">76</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">Enhancing antioxidant capacity</td> <td align="left" colspan="1" rowspan="1"> <p>Hb-PDA</p> <p>PtNP</p> <p>MXene@PDA NSs</p> </td> <td align="left" colspan="1" rowspan="1"> <p>Combination of Hb and PDA using a template-based co-precipitation technique</p> <p>Platinum nanoparticles with SOD and CAT-mimetic enzyme activities</p> <p>combined with HSA on the outer layer</p> <p>Coupling of hyaluronic acid and PDA catalyzed by H<sub>2</sub>O<sub>2</sub>/HbO<sub>2</sub> to encapsulated Ti<sub>3</sub>C<sub>2</sub>MXene nanosheets</p> </td> <td align="left" colspan="1" rowspan="1"> <p>Bovine</p> <p>Human</p> </td> <td align="left" colspan="1" rowspan="1">[<a href="#CR77" class="usa-link" aria-describedby="CR77">77</a>–<a href="#CR79" class="usa-link" aria-describedby="CR79">79</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">Mimicking physiology of RBCs</td> <td align="left" colspan="1" rowspan="1">ErythroMer</td> <td align="left" colspan="1" rowspan="1">Hb Encapsulated in deformable, hybrid peptidic-lipid nanoparticles</td> <td align="left" colspan="1" rowspan="1">Human</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR80" class="usa-link" aria-describedby="CR80">80</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">Empowering O<sub>2</sub> targetingly</td> <td align="left" colspan="1" rowspan="1"> <p>CPTK@PMH</p> <p>HCM</p> <p>DHCNPNPs</p> <p>V(Hb)@DOX</p> <p>Au-Hb@ PLT NPs</p> </td> <td align="left" colspan="1" rowspan="1"> <p>Introducing PDA to noncovalently engage Hb and methoxatin to form PMH, and connecting to a specific fibrin-binding peptide</p> <p>Linking GLUT1, and bounding to the micelles</p> <p>via a condensation reaction to form Hb-conjugated micelles</p> <p>Hb and DOX encapsulated in PLGA</p> <p>Utilizing Hb via coupling ε-Caprolactone self assembles to form hollow V(Hb), and loading DOX into V(Hb)</p> <p>Coating Au-Hb NPs with PLT membrane</p> </td> <td align="left" colspan="1" rowspan="1"> <p>Human</p> <p>Bovine</p> <p>Human</p> <p>Bovine</p> <p>Human</p> </td> <td align="left" colspan="1" rowspan="1">[<a href="#CR81" class="usa-link" aria-describedby="CR81">81</a>–<a href="#CR85" class="usa-link" aria-describedby="CR85">85</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">Releasing O<sub>2</sub> controllably</td> <td align="left" colspan="1" rowspan="1">MN</td> <td align="left" colspan="1" rowspan="1">Loading with black phosphorus and Hb</td> <td align="left" colspan="1" rowspan="1">Bovine</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR86" class="usa-link" aria-describedby="CR86">86</a>]</td> </tr> </tbody> </table></div> <div class="p text-right font-secondary"><a href="table/Tab1/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div></section><p id="Par79">Although some excellent reviews have discussed Nano-HBOCs [<a href="#CR35" class="usa-link" aria-describedby="CR35">35</a>, <a href="#CR45" class="usa-link" aria-describedby="CR45">45</a>, <a href="#CR65" class="usa-link" aria-describedby="CR65">65</a>–<a href="#CR68" class="usa-link" aria-describedby="CR68">68</a>], there is a lack of detailed and systematic introductions, which, coupled with the rapid progress in the research of Nano-HBOCs applications, has resulted in a lack of reviews on the latest advances in the preparation and application of Nano-HBOCs. In this review, we introduce the specific research on Nano-HBOCs in biomedical fields over decade. We focus on the applications of Nano-HBOCs in hemorrhagic shock, ischemic stroke, cancer therapy, and wound healing (Fig. <a href="#Fig1" class="usa-link">1</a>). Additionally, we systematically summarize the research progress, current challenges and future prospects.</p> <figure class="fig xbox font-sm" id="Fig1"><h3 class="obj_head">Fig. 1.</h3> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=11180412_12951_2024_2606_Fig1_HTML.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d96e/11180412/bc10bd888b95/12951_2024_2606_Fig1_HTML.jpg" loading="lazy" id="MO01" height="795" width="797" alt="Fig. 1"></a></p> <div class="p text-right font-secondary"><a href="figure/Fig1/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>Schematic representation of the application of Nano-HBOCs in hemorrhagic shock, ischemic stroke, cancer, wound healing, and other disease treatment</p></figcaption></figure></section><section id="Sec2"><h2 class="pmc_sec_title">Nano-HBOCs for hemorrhagic shock therapy</h2> <p id="Par80">Hemorrhagic shock (HS) is a complex condition caused by a reduction in the effective circulating blood volume [<a href="#CR87" class="usa-link" aria-describedby="CR87">87</a>, <a href="#CR88" class="usa-link" aria-describedby="CR88">88</a>], resulting in irreversible tissue hypoxia [<a href="#CR89" class="usa-link" aria-describedby="CR89">89</a>], eventually triggers circulatory failure [<a href="#CR90" class="usa-link" aria-describedby="CR90">90</a>]. Increasing the oxygen-carrying capacity to restore O<sub>2</sub> supply to the tissue is a necessary approach to treating HS [<a href="#CR88" class="usa-link" aria-describedby="CR88">88</a>, <a href="#CR91" class="usa-link" aria-describedby="CR91">91</a>] and perverting circulatory failure.</p> <section id="Sec3"><h3 class="pmc_sec_title">Restoring oxygen supply</h3> <p id="Par81">Liposome-encapsulated human hemoglobin (LEH) is a type of HBOCs prepared by encapsulating intact Hb molecules in liposomes, also known to as hemoglobin vesicles (HbV) [<a href="#CR65" class="usa-link" aria-describedby="CR65">65</a>]. LEH has been extensively researched as a potential treatment for HS in animal models [<a href="#CR92" class="usa-link" aria-describedby="CR92">92</a>–<a href="#CR95" class="usa-link" aria-describedby="CR95">95</a>]. Studies have shown that LEH has excellent biocompatibility [<a href="#CR96" class="usa-link" aria-describedby="CR96">96</a>], high biological safety [<a href="#CR97" class="usa-link" aria-describedby="CR97">97</a>–<a href="#CR99" class="usa-link" aria-describedby="CR99">99</a>], easy metabolism and excretion [<a href="#CR100" class="usa-link" aria-describedby="CR100">100</a>, <a href="#CR101" class="usa-link" aria-describedby="CR101">101</a>], and low vasoactivity [<a href="#CR102" class="usa-link" aria-describedby="CR102">102</a>]. Researchers at the Terumo Research and Development Center [<a href="#CR69" class="usa-link" aria-describedby="CR69">69</a>] (Terumo Co., Tokyo, Japan) used a high-speed emulsification method to encapsulate purified human Hb in liposomes that mimic RBCs membranes. They modified the lipid membrane surface with PEG to form a nanoscale liposomal oxygen carrier (namely TRM-645). In a mouse hypohemoglobinemic shock model, the intravenous infusion of TRM-645 rapidly restored mean arterial pressure (MPA) from 30 to 70 mmHg; its effect on restoring and maintaining MAP was comparable to that of native RBCs. The intracavitary infusion of TRM-645 significantly improved overall survival [<a href="#CR103" class="usa-link" aria-describedby="CR103">103</a>] in a murine of HS induced by sustained massive hemorrhage, with a better treatment effect RBCs. TRM-645, due to its smaller size, is more likely to enter the circulatory system from the bone marrow cavity, rendering it an effective method for critical scenarios and pre-hospital emergency care. Vivek et al. [<a href="#CR104" class="usa-link" aria-describedby="CR104">104</a>] utilized non-phospholipid anionic lipid conjugated PEG containing hexadecyl carbamoyl methyl hexadecanoate (HDAS) to modify the surface of LEH. This modification improved the host’s tolerance to the immune response against LEH [<a href="#CR105" class="usa-link" aria-describedby="CR105">105</a>, <a href="#CR106" class="usa-link" aria-describedby="CR106">106</a>], delayed its phagocytic clearance by monocytes, and increased the mean residence time in circulation. In a rat model of HS, LEH infusion restored blood volume, improved tissue oxygenation capacity, and ameliorated HS-induced systemic inflammation and multiple organ failure, suggesting that this modified LEH is a potential treatment for HS.</p> <p id="Par82">To address the critical need for a transportable, and temperature-stable blood substitute, a bio-synthetic, nano-artificial erythrocyte called Erythromer (EM) [<a href="#CR107" class="usa-link" aria-describedby="CR107">107</a>] has been developed. EM encapsulates human Hb within deformable, hybrid peptidic-lipid nanoparticles. This design, allows for a true physiological correlation between O<sub>2</sub> affinity and tissue respiration. EM employs a novel shuttle, a small molecule allosteric effector, which adjusts P<sub>50</sub> in response to pH changes, influencing Hb ~ O2 affinity. The use of EM allows for the mimicry of key physiological properties of natural RBCs, offering a promising solution to address the aforementioned critical need. Compared to the use of hydroxyethyl starch for resuscitation, EM maintains hemodynamics stability, increases arterial oxygen partial pressure, and improves acidosis in the HS rat and hemodilution mouse models [<a href="#CR80" class="usa-link" aria-describedby="CR80">80</a>]. Okamoto et al. [<a href="#CR108" class="usa-link" aria-describedby="CR108">108</a>] demonstrated that the combination of bovine hemoglobin (bHb) and human serum albumin (HSA) forms a core–shell protein called HbX-HSA<sub>3</sub>, which has high oxygen affinity. HbX-HSA<sub>3</sub> facilitates O<sub>2</sub> delivery to hypoxic tissues during HS. In the rat HS model, HbX-HSA<sub>3</sub> effectively restores and maintains basic life indicators such as blood pressure, blood oxygen, respiration, and body temperature. It also reduces body lactate levels; and improve the survival rate of HS. Lu et al. [<a href="#CR70" class="usa-link" aria-describedby="CR70">70</a>] used methoxy polyethylene glycol-poly (D, L-lactide-co-glycolide) and mPEG-PLGA to encapsulate bHb using the double emulsion (w/o/w) technique for preparing hemoglobin-loaded nanoparticles (HbPs). This was based on the good biodegradability and biocompatibility characteristics of PLGA, which had a uniform particle size with stable oxygen-carrying function and excellent blood compatibility. In a controlled hemorrhage mouse model, HbPs maintained MAP, improved venous oxygen partial pressure, and restored tissue oxygen supply, demonstrating a promising application potential.</p> <p id="Par83">Polydopamine (PDA) has excellent biocompatibility and antioxidant capacity [<a href="#CR109" class="usa-link" aria-describedby="CR109">109</a>]. It can easily and efficiently adhere to the surface of various substrate materials [<a href="#CR110" class="usa-link" aria-describedby="CR110">110</a>], suggesting that PDA has the potential to serve as a universal modification platform for Hb. This can help address the issue of oxidative toxicity in HBOCs. Wang et al. [<a href="#CR77" class="usa-link" aria-describedby="CR77">77</a>] harnessed the unique characteristics of PDA to modify bHb and prepare Hb-PDA, which does not cause platelet aggregation or significant hemolysis. These novel Nano-HBOCs demonstrated outstanding oxygen affinity (P<sub>50</sub> = 13.86 mmHg). Hu et al. [<a href="#CR78" class="usa-link" aria-describedby="CR78">78</a>] combined a template-based co-precipitation technique to develop Nano-oxygen carriers, (named Hb-PDA), which displayed uniform size and high biocompatibility. In vitro and in vivo experiments showed that Hb-PDA enhanced the antioxidant properties of Hb, alleviated the toxicity of free Hb, and maintained the O<sub>2</sub> delivery capacity. Further, the resuscitation efficacy of Hb-PDA was investigated using in rat HS model. The results revealed that Hb-PDA maintained the stability of the blood pressure for a longer time relative to using saline alone. Baidukova et al. [<a href="#CR111" class="usa-link" aria-describedby="CR111">111</a>] modified bHb with PDA to synthesize morphologically homogeneous PD-HbMPs. These novel HBOCs showed antioxidant activity and enhanced Hb oxygen-binding capacity. Further, PD-HbMPs exhibited a high ability to scavenge free radical including H<sub>2</sub>O<sub>2</sub>, indicating their potential as practical HBOCs. Ethan et al. [<a href="#CR73" class="usa-link" aria-describedby="CR73">73</a>] proposed a photocatalytic method to synthesize the oxygen therapy agent PDA-LtEc using cell-free hemoglobin (Ec) from the PDA surface-coated worm <em>Lumbricus terrestris</em> (Lt). This method increased the oxidative protection of Ec during circulation, thereby making PDA-LtEc a promising oxygen therapy.</p> <p id="Par84">Recently, metal–organic frameworks (MOFs; ZIF-8) have been widely used as protective coatings for functional biomacromolecules [<a href="#CR112" class="usa-link" aria-describedby="CR112">112</a>, <a href="#CR113" class="usa-link" aria-describedby="CR113">113</a>] (such as DNA, proteins, and enzymes). This is because of their flexible topology and favorable physicochemical properties that improve stability during storage and manipulation [<a href="#CR114" class="usa-link" aria-describedby="CR114">114</a>–<a href="#CR119" class="usa-link" aria-describedby="CR119">119</a>]. Peng et al. [<a href="#CR74" class="usa-link" aria-describedby="CR74">74</a>] used MOFs to encapsulate bHb and created an oxygen-carrier platform with nanoporous coatings, ZIF-8@Hb. In vitro studies showed that the neutral charge state of the surface of ZIF-8@Hb surface significantly enhanced stability in alkaline, oxidative, elevated temperature, or enzymatic environments, which is favorable for long-term blood circulation (as the study found that the blood circulation half-life (t1/2) of ZIF-8@Hb was 13.9 h, compared to 1.4 and 5.1 h for ZIF-8 and Hb, respectively). Animal studies showed that intravenous injection of ZIF-8@Hb significantly prolonged the survival time of mice in an HS model. This study provides a highly stable and long-circulating oxygen-carrier platform for Nano-HBOCs (Fig. <a href="#Fig2" class="usa-link">2</a>).</p> <figure class="fig xbox font-sm" id="Fig2"><h4 class="obj_head">Fig. 2.</h4> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=11180412_12951_2024_2606_Fig2_HTML.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d96e/11180412/1d318e977bd8/12951_2024_2606_Fig2_HTML.jpg" loading="lazy" id="MO2" height="329" width="784" alt="Fig. 2"></a></p> <div class="p text-right font-secondary"><a href="figure/Fig2/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>A</strong> Nanoparticle preparation, stability behavior, blood circulation, and oxygen supplying of ZIF-8@Hb are shown in figure. <strong>B</strong> Survival curves of mice with hemorrhagic shock following intravenous injection of PBS, Hb, ZIF-8, and ZIF-8@Hb. <strong>C</strong> Oxygen dissociation curves of Hb and ZIF-8@Hb. <strong>D</strong> Biodistribution of Hb, ZIF-8, and ZIF-8@Hb after intravenous injection for 12 h. <strong>E</strong> Biodistribution of Hb, ZIF-8, and ZIF-8@Hb after intravenous injection for 24 h. <strong>A–E</strong> Reproduced with permission [<a href="#CR76" class="usa-link" aria-describedby="CR76">76</a>]. </p> <p>Copyright 2019, American Chemical Society</p></figcaption></figure><p id="Par85">HS is an important application scenario for Nano-HBOCs. It is worth noting that HS treatment often requires large doses, and multiple intravenous infusion of Nano-HBOCs. Therefore, the safety requirements for Nano-HBOCs are extremely high. However, most current HS studies tend to focus only on the therapeutic effect and do not adequately evaluating biocompatibility, especially in the case of multiple and massive administrations. In this regard, a research group, from Denmark, developed the concept of “stealth properties” [<a href="#CR120" class="usa-link" aria-describedby="CR120">120</a>] of Nano-HBOCs, which may provide new ideas for the treatment of HS usig Nano-HOBCs.</p></section></section><section id="Sec4"><h2 class="pmc_sec_title">Nano-HBOCs for ischemic stroke therapy</h2> <p id="Par86">Ischemic stroke is a clinical syndrome that refers to the disruption of blood supply in the brain caused by different cerebrovascular diseases, which eventually lead to local brain tissue ischemia, hypoxic necrosis, and corresponding neurological deficits [<a href="#CR121" class="usa-link" aria-describedby="CR121">121</a>]. Ischemic strokes are typically associated with varying degrees of cerebral infarcts and, in recent years, have become one of the leading causes of human mortality [<a href="#CR122" class="usa-link" aria-describedby="CR122">122</a>, <a href="#CR123" class="usa-link" aria-describedby="CR123">123</a>] due to their increasing incidence and lethality. Ischemia and hypoxia in brain tissue cause impaired oxygen metabolism, which rapidly triggers brain tissue edema, focal neuronal cell function defects, and even necrosis [<a href="#CR124" class="usa-link" aria-describedby="CR124">124</a>, <a href="#CR125" class="usa-link" aria-describedby="CR125">125</a>]. Following ischemia stroke, the blood flow in the tissue is typically restored within a short period, however, an excess of reactive oxygen species (ROS) and secondary inflammatory responses are generated in the body during ischemia stroke [<a href="#CR126" class="usa-link" aria-describedby="CR126">126</a>, <a href="#CR127" class="usa-link" aria-describedby="CR127">127</a>]. These molecules cause tissue organ reperfusion injury [<a href="#CR128" class="usa-link" aria-describedby="CR128">128</a>], further exacerbating the ischemic stroke condition. Currently, several studies have indicated that early improvement in the hypoxic state of the infarct site can benefit ischemia stroke treatment [<a href="#CR129" class="usa-link" aria-describedby="CR129">129</a>, <a href="#CR130" class="usa-link" aria-describedby="CR130">130</a>].</p> <section id="Sec5"><h3 class="pmc_sec_title">Relieving cerebral infarction</h3> <p id="Par87">HBOCs possess adjustable oxygen-carrying/-releasing capabilities and have a small particle size. These characteristics, which can enhance microvascular perfusion and collateral blood flow, lead to continuous improvement in oxygen supply to the ischemic area. As a result, they can effectively reduce cerebral infarct size [<a href="#CR131" class="usa-link" aria-describedby="CR131">131</a>, <a href="#CR132" class="usa-link" aria-describedby="CR132">132</a>], providing a new choice for acute ischemic stroke treatment. Besides, Nano-HBOCs can inhibit glycolysis and lactic acid accumulation, which offers obvious advantages in reducing ischemic stroke injury and a significant protective effect on ischemic stroke tissue organs [<a href="#CR133" class="usa-link" aria-describedby="CR133">133</a>–<a href="#CR136" class="usa-link" aria-describedby="CR136">136</a>]. Komatsu et al. [<a href="#CR137" class="usa-link" aria-describedby="CR137">137</a>] established a rat middle cerebral artery occlusion (MCAO) model and an arachidonic acid (AA)-induced stroke models to evaluate the therapeutic effect of HbV. HbV treatment immediately after MCAO significantly reduced the infarct size (34.7%) in rats; the effect, was comparable to tthat of intravenous thrombolysis with a tissue plasminogen activator (tPA) in a thromboembolic model (34% reduction). The intravenous infusion of HbV reduced brain edema in an AA-induced thromboembolic stroke model. Kawaguchi [<a href="#CR138" class="usa-link" aria-describedby="CR138">138</a>, <a href="#CR139" class="usa-link" aria-describedby="CR139">139</a>] et al. found that encapsulating Hb in liposomes prevented extravasation in rat stroke models; LEH significantly improved oxygen supply to the ischemic area and reduced cortical infarct size. Daiki Tomita [<a href="#CR140" class="usa-link" aria-describedby="CR140">140</a>] et al. covalently combined purified bHb and HSA to design a completely new oxygen-carrier platform with a core–shell structure to minimize the vascular leakage of HBOCs and increase circulation time in vivo (possibly through the effect of net surface charge)<em>.</em> This platform, known as HbX-HSA<sub>m</sub>, exhibits a high O<sub>2</sub> affinity (P<sub>50</sub> = 11.3 mmHg). Gekka [<a href="#CR141" class="usa-link" aria-describedby="CR141">141</a>] et al. covalently conjugated one Hb molecule with three human serum albumin (Hb1-HSA<sub>3</sub>) form HemoAct with a core–shell structure. In rat model of a transient MCAO (tMCAO), a significant increase in microvascular perfusion in the cortical penumbra and tissue oxygen partial pressure in the cortical penumbra were observed. Additionally, the treatment reduced liposome peroxidation, edema, and cerebral infarct size; while exerting potent neuroprotective effects in the treatment of transient ischemic injury encephalopathy via intravenous infusion. These studies suggest that improvement in the oxygen supply at the infarct site using infused Nano-HBOCs infusion effectively attenuates stroke injury.</p> <p id="Par88">Nano-HBOCs can be used in multifunctional composites in combination with other functional materials boost their therapeutic efficacy. Hosaka [<a href="#CR142" class="usa-link" aria-describedby="CR142">142</a>] et al. synthesized covalent core–shell structural protein clusters called Hb-HSA based on purified bHb and HSA. Next, platinum nanoparticles with SOD and CAT-mimetic enzyme activities were combined with HSA on the outer layer of protein clusters to form Hb-HSA<sub>3</sub> (PtNP) with antioxidant capacity. Based on the pathological microenvironment characteristic of stroke, Liu [<a href="#CR81" class="usa-link" aria-describedby="CR81">81</a>] et al. introduced PDA to noncovalently engage Hb and methoxatin (M) to form PMH, whose surface-coated ROS-sensitive linker (thioketal, termed TK linker) connects to a specific fibrin-binding peptide (CREKA, termed C-peptide), and they developed a bioinspired nanoerythrocyte (C-peptide-PRG-TK linker @PDA-Methoxatin Hb, referred to as CPTK@PMH). The half-life of free fluorescence labeled Hb was measured use a microplate reader, and the pharmacokinetic results showed that CPTK@PMH could significantly prolong Hb half-life from 12.045 ± 1.251 h to about 35 h. In a murine MCAO model, CPTK@PMH was shown to target the thrombus and ischemic site, release O<sub>2</sub> in response to hypoxic signals, regulate the metabolic microenvironment, inhibit the oxidative stress injury, and reduce the cerebral infarct size during reperfusion, which ultimately protecting neurons from acute injury and improving neurological function after cerebral ischemia (Fig. <a href="#Fig3" class="usa-link">3</a>).</p> <figure class="fig xbox font-sm" id="Fig3"><h4 class="obj_head">Fig. 3.</h4> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=11180412_12951_2024_2606_Fig3_HTML.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d96e/11180412/d4b0de4b09ef/12951_2024_2606_Fig3_HTML.jpg" loading="lazy" id="MO3" height="717" width="783" alt="Fig. 3"></a></p> <div class="p text-right font-secondary"><a href="figure/Fig3/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>A</strong> Illustration of the CPTK@PMH nanoerythrocyte formation and metabolic microenvironment modulation in ischemic brain: nanoerythrocyte accumulation in ischemic core via microthrombus binding and uptake by neurovascular unit after blood brain barrier penetration; <strong>B</strong> hypoxia-responsive oxygen release to relieve necroptosis; <strong>C</strong> oxygen balance regulation to alleviate acute reperfusion injury via oxygen enrichment, ROS scavenging and microglia polarization; <strong>D</strong> repair promotion achieved by metabolic microenvironment modulation via energy and glucose metabolism activation and blood brain barrier protection. <strong>A–D</strong> Reproduced with permission [<a href="#CR83" class="usa-link" aria-describedby="CR83">83</a>]. </p> <p>Copyright 2019, Nano Today.</p></figcaption></figure></section><section id="Sec6"><h3 class="pmc_sec_title">Inhibiting an inflammatory reaction</h3> <p id="Par89">An inflammatory response is a key factor in the development and outcome of an ischemic stroke [<a href="#CR143" class="usa-link" aria-describedby="CR143">143</a>]. A series of inflammatory cascades are triggered after an ischemic stroke. Among these, microglial activation in brain tissue and neutrophil infiltration from peripheral blood into brain tissue are the hallmarks underlying microglial transformation from the M1 to M2 type. In particular, these processes inhibit neutrophil infiltration, which is a potential direction for treating cerebral ischemic injury [<a href="#CR144" class="usa-link" aria-describedby="CR144">144</a>]. Yin et al. [<a href="#CR145" class="usa-link" aria-describedby="CR145">145</a>] modified MG1 and RVG29 peptide chains based on erythrocyte-derived nanovesicles to prepare engineered nanoerythrocytes (NEMR) to promote microglial reprogramming. In an MCAO model, NEMR targeted the cerebral infarct site to attenuate tissue damage by delivering/-releasing oxygen, while inducing the overexpression of heme oxygenase-1 and CO production thriugh the Hb metabolism. This promotes microglial transformation into the M2 type, ultimately improving therapeutic outcomes in ischemic stroke. Furthermore, the modifications of MG1 and RVG29 peptides effectively prevented NEMR uptake immune cells in the bloodstream (including mononuclear macrophages), and improved the immune escape ability of NEMR. In addition, Shimbo et al. [<a href="#CR146" class="usa-link" aria-describedby="CR146">146</a>, <a href="#CR147" class="usa-link" aria-describedby="CR147">147</a>] found that LEH inhibited neutrophil infiltration, matrix metalloproteinase-9 (MMP-9) [<a href="#CR148" class="usa-link" aria-describedby="CR148">148</a>] expression, and oxygen-free radical production, reduced cerebral infarct size and edema volume, and improved neurological indices in a rat MCAO model.</p> <p id="Par90">Although few studies have reported the applications of Nano-HBOCs in ischemic stroke, current research confirms that Nano-HBOCs can serve as an effective therapeutic option by targeting drug delivery and easily passing through the damaged blood–brain barrier, et al. However, stroke is a complex disease, and the unique advantages of Nano-HBOCs include their ability to relieve the ischemic and hypoxic state of brain tissues, co-load drugs, and ultimately achieve comprehensive treatment by combining thrombolysis, anti-inflammation and neuron protection. This approach also promotes rehabilitation, providing a diversified platform for treating of ischemic stroke.</p></section></section><section id="Sec7"><h2 class="pmc_sec_title">Nano-HBOCs for cancer therapy</h2> <p id="Par91">Hypoxia is a common feature of most malignant tumors. Cancer cells proliferate in a disorderly manner and consume large amounts of oxygen [<a href="#CR149" class="usa-link" aria-describedby="CR149">149</a>, <a href="#CR150" class="usa-link" aria-describedby="CR150">150</a>], which results in a tumor microenvironment (TME) [<a href="#CR151" class="usa-link" aria-describedby="CR151">151</a>–<a href="#CR153" class="usa-link" aria-describedby="CR153">153</a>] that is characterized by hypoxia accompanied by weak acids and high levels of H<sub>2</sub>O<sub>2</sub>, and it directly contributes to cancer cell metastasis, invasion, and angiogenesis [<a href="#CR154" class="usa-link" aria-describedby="CR154">154</a>, <a href="#CR155" class="usa-link" aria-describedby="CR155">155</a>]. Hypoxic TME decreases the antitumor efficacy of chemotherapy, radiation therapy (RT), photodynamic therapy (PDT), and sonodynamic therapy (SDT) [<a href="#CR156" class="usa-link" aria-describedby="CR156">156</a>–<a href="#CR160" class="usa-link" aria-describedby="CR160">160</a>]. As oxygen carriers, Nano-HBOCs showed excellent stability and oxygen supply capacity, improved O<sub>2</sub> delivery efficiency in hypoxic regions [<a href="#CR161" class="usa-link" aria-describedby="CR161">161</a>], alleviated the hypoxic state of tumors, and enhanced antitumor efficacy.</p> <section id="Sec8"><h3 class="pmc_sec_title">Increasing drug sensitivity</h3> <p id="Par92">The increased expression of hypoxia-inducible factor-1α (HIF-1α) in TME facilitates the adaptation of tumor cells to hypoxia [<a href="#CR162" class="usa-link" aria-describedby="CR162">162</a>, <a href="#CR163" class="usa-link" aria-describedby="CR163">163</a>]. This is attributed to the development of chemical resistance that promotes the expression of p-glycoprotein (P-gp), which leads to chemotherapy failure [<a href="#CR164" class="usa-link" aria-describedby="CR164">164</a>, <a href="#CR165" class="usa-link" aria-describedby="CR165">165</a>]. Therefore, improving the hypoxic environment of tumors is important to enhance the efficacy of chemotherapy. Kawaguchi et al. [<a href="#CR166" class="usa-link" aria-describedby="CR166">166</a>] reported that liposomes encapsulating hemoglobin (h-LEH) with high O<sub>2</sub> affinity improved the oxygenation capacity of tumor cells in a mouse rectal cancer (Colon26) model. h-LEH combined with chemotherapeutic drugs by inhibiting HIF-1α activity, which prevented angiogenesis and inhibited tumor growth and metastasis. Human organic cation transporter 2 (OCT2) abnormalities confer renal cell carcinoma (RCC) increased resistance to chemotherapeutic agents such as oxaliplatin (OXA) and decitabine (DAC) under hypoxic conditions [<a href="#CR167" class="usa-link" aria-describedby="CR167">167</a>, <a href="#CR168" class="usa-link" aria-describedby="CR168">168</a>]. To tackle this issue, Chen [<a href="#CR169" class="usa-link" aria-describedby="CR169">169</a>] et al. developed a simple and efficient oxygen nanocarrier based on Hb (H-NPs) combined with DAC. The H-NPs increased the oxygen content of the RCC tissue, alleviated hypoxia-induced loss of DAC activity, and enhanced the sensitivity of RCC cells to the combined treatment with DAC and OXA.</p> <section id="Sec9"><h4 class="pmc_sec_title">Targeted drug releasing</h4> <p id="Par93">A hypoxic environment causes the overexpression of glucose transporter isoform 1 (GLUT1) [<a href="#CR170" class="usa-link" aria-describedby="CR170">170</a>] on the surface of cancer cells, and nanocarriers modified with glucose can identify cancer cells via GLUT1. Thus, Bu et al. [<a href="#CR171" class="usa-link" aria-describedby="CR171">171</a>] designed Nano-HBOC with both oxygen-carrying capacity and cancer cell-specific recognition. The synthesis of the triblock copolymer poly [2-(methacrylamido) glucopyranose]-b-poly (methacrylic acid) -b-poly (butyl methacrylate) (PMAG-b-PMAA-b-PBMA) micelles indicated that Hb was bound to the micelles via a condensation reaction to form Hb-conjugated micelles (HCM). PMAG-linked GLUT1 specifically recognizes cancer cells, and HCM can bind O<sub>2</sub>. Meanwhile, the uptake of DOX-loaded HCM by tumor cells was increased in a model of human cervical cancer cells (HeLa), and Nano-HBOCs were confirmed to target cancer cell recognition and reduce tumor drug resistance, ultimately improving therapeutic efficacy. Tian et al. [<a href="#CR83" class="usa-link" aria-describedby="CR83">83</a>] designed and constructed camouflaged biomimetic nanocomposites (DHCNPNPs) based on PLGA encapsulated with Hb and DOX. They modified the surface of the cancer cell membrane to realize homologous recognition. The DHCNPNPs exhibited strong self-recognition ability, affinity for homologous cancer cells in a model of human breast cancer cells (MCF-7 cells), and minimal toxicity to normal tissues. DHCNPNPs achieved O<sub>2</sub>-independent conditions and high target selectivity in the TME by inhibiting HIF-1α, down-regulating the expression of multidrug resistance gene 1 (MDR1) and P-gp, and increasing chemosensitivity, which improved the overall therapeutic efficacy (Fig. <a href="#Fig4" class="usa-link">4</a>). Yang et al. [<a href="#CR172" class="usa-link" aria-describedby="CR172">172</a>] designed a multifunctional liposome, DOX-Hb-lipo (DHL), which was simultaneously loaded with human hemoglobin (hHb) and DOX. They showed that DHL could precisely release DOX and deliver O<sub>2</sub> to specific hypoxic sites, thereby alleviating hypoxia-induced chemoresistance. DHL inhibited tumor growth in mouse breast cancer models (4T1) and mouse colon cancer models (CT-26), achieving in situ O<sub>2</sub> release and relieving the hypoxic state of the TME, thereby providing an effective alternative for cancer treatment. Wang et al. [<a href="#CR84" class="usa-link" aria-describedby="CR84">84</a>] engineered an endogenous Nano-HBOCs called V(Hb)@DOX, which self-assembled resulting DOX-loaded biomimetic into hollow nanovesicles. In the acidic intertumoral environment, V(Hb)@DOX targeted M2-type macrophages and released DOX, thereby effectively suppressing of tumor growth and metastasis. V(Hb)@DOX prolonged the survival of mice bearing 4T1 orthotopic breast tumors and achieved long-lasting specific immunity in a murine colon cancer CT26 model.</p> <figure class="fig xbox font-sm" id="Fig4"><h5 class="obj_head">Fig. 4.</h5> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=11180412_12951_2024_2606_Fig4_HTML.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d96e/11180412/533332970e13/12951_2024_2606_Fig4_HTML.jpg" loading="lazy" id="MO4" height="726" width="708" alt="Fig. 4"></a></p> <div class="p text-right font-secondary"><a href="figure/Fig4/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>The design and function of DOX/Hb loaded PLGA-cancer cell membrane nanoparticles (DHCNPs) for homologous targeting and O2 interference. <strong>A</strong> Synthesis of oxy-DHCNPs. DHCNPs were prepared by extrusion with preformed DOX/Hb-PLGA NPs, DSPE-PEG, and MCF-7 cancer cell membrane, and then were oxygenated to obtain oxy-DHCNPs. <strong>B</strong> Cellular functions of DHCNPs, including homologous targeting, downregulation of predictive markers (HIF-1α, MDR1, and P-gp), and inhibited DOX export. (<strong>C</strong>): MCF-7 tumor growth curves of different treated groups (scale bar 50 µm). (<strong>D</strong>): Survival rates of tumor-bearing mice in various groups. <strong>A–D</strong> Reproduced with permission [<a href="#CR85" class="usa-link" aria-describedby="CR85">85</a>]. </p> <p>Copyright 2017, Advanced Functional Materials.</p></figcaption></figure></section></section><section id="Sec10"><h3 class="pmc_sec_title">Promoting ROS generation</h3> <p id="Par94">ROS are derived from O<sub>2</sub> and are formed through oxidative reactions or electron excitation, they mainly consist of hydroxyl radicals (•OH), superoxide anion (•O-2) and singlet oxygen (<sup>1</sup>O<sub>2</sub>) [<a href="#CR173" class="usa-link" aria-describedby="CR173">173</a>]. When the levels of ROS exceed a certain threshold, they can disrupt the cellular structure and thus be used to inhibit tumor growth [<a href="#CR174" class="usa-link" aria-describedby="CR174">174</a>]. Nano-HBOCs can promote ROS production in three ways. Firstly, Nano-HBOCs can provides sufficient O<sub>2</sub> as a feedstock for ROS production [<a href="#CR175" class="usa-link" aria-describedby="CR175">175</a>], while improving the TME. Furthermore, in the presence of ferrous ions (derived from Hb), high levels of H<sub>2</sub>O<sub>2</sub> in the TME undergo a Fenton and Haber–Weiss reaction, which continuously produce highly toxic •OH [<a href="#CR176" class="usa-link" aria-describedby="CR176">176</a>]. Additionally, Hb can mimic horseradish peroxidase (HRP), which also produce •OH from H<sub>2</sub>O<sub>2</sub> [<a href="#CR177" class="usa-link" aria-describedby="CR177">177</a>].</p> <section id="Sec11"><h4 class="pmc_sec_title">Application of Nano-HBOCs in RT</h4> <p id="Par95">RT, a common method for cancer treatment, damages DNA using X-rays and generates ROS to inhibit tumor growth; its therapeutic effect is directly related to the O<sub>2</sub> content in the TME [<a href="#CR178" class="usa-link" aria-describedby="CR178">178</a>, <a href="#CR179" class="usa-link" aria-describedby="CR179">179</a>]. Sang et al. [<a href="#CR180" class="usa-link" aria-describedby="CR180">180</a>] developed an oxygen-enriched X-ray nanoprocessor (Hb@Hf-Ce6 NPs) based on metal-phenolic coordination to modulate the oxygen balance in the TME and revere immunosuppression for cancer eradication and metastasis inhibition. In the nanoprocessor, the radiosensitizer hafnium (Hf) coordinated with chlorin e6 (Ce6) nanocomplexes and encapsulated Hb to deliver O<sub>2</sub>. Under X-ray irradiation, Hf emitted radioluminescence to activate Ce6 for ROS generation, and Hb@Hf-Ce6 NPs released O<sub>2</sub> at the tumor site. This promoted T cell-mediated systemic immunity to exert long-range antitumor effects on tumors and enhance RT efficacy, thereby exhibiting superior antitumor efficacy in a bilateral tumor model and a lung metastatic model of 4T1 breast cancer. (Fig. <a href="#Fig5" class="usa-link">5</a>). Xia et al. [<a href="#CR85" class="usa-link" aria-describedby="CR85">85</a>] combined a Hb oxygen carrier with gold nanoparticles (Au) radiosensitizer to prepare Au-Hb NPs. Inspired by the fact that P-selectin on the surface of platelets (PLT) can specifically bind to CD44 on the surface of cancer cells [<a href="#CR181" class="usa-link" aria-describedby="CR181">181</a>], platelet-coated oxygen-carrying nanoparticles (Au-Hb@ PLT NPs) were synthesized by coating Au-Hb NPs with PLT membrane. Au-Hb@PLT NPs could deliver sufficient O<sub>2</sub> deep into the tumor tissue, relieve hypoxia, and improve the effect of RT. Au acts as a sensitizer, which enhances the sensitivity of tumor cells to X-rays and their therapeutic effects, showing good tumor-therapeutic efficiency and a few side effects in the HeLa cell model. Of note, a clear boundary between the normal parenchyma and dead cancer cells was confirmed using the hematoxylin and eosin staining (H&amp;E), suggesting that Au-Hb@PLT + RT (2 Gy) killed tumor cells while causing relatively less damage to healthy tissue.</p> <figure class="fig xbox font-sm" id="Fig5"><h5 class="obj_head">Fig. 5.</h5> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=11180412_12951_2024_2606_Fig5_HTML.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d96e/11180412/68d934dd76bb/12951_2024_2606_Fig5_HTML.jpg" loading="lazy" id="MO5" height="722" width="784" alt="Fig. 5"></a></p> <div class="p text-right font-secondary"><a href="figure/Fig5/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>A</strong> Schematic illustration showed the Hb@Hf-Ce6 nanoparticles-mediated X-ray induced radiotherapy-radiodynamic therapy-immunotherapy for the eradication of both primary and distant tumors. Hb was encapsulated in the Hf-phenolic coordination nanoplatform for oxygen delivery through self-assembly. <strong>B</strong> The oxygen release behavior of hemoglobin (Hb) and Hb@Hf-Ce6 NPs (NP) with/without X-ray irradiation was evaluated by Ru(bpy)<sub>3</sub>Cl<sub>2</sub> probe. Hb and NP were oxygenated previously. <strong>C</strong> Tumor volume growth curves for primary tumors. <strong>D</strong> Tumor volume growth curves for distant tumors. <strong>A–D</strong> Reproduced with permission [<a href="#CR184" class="usa-link" aria-describedby="CR184">184</a>]. </p> <p>Copyright 2021, Advanced Science.</p></figcaption></figure></section><section id="Sec12"><h4 class="pmc_sec_title">Application of Nano-HBOCs in PDT</h4> <p id="Par96">Photodynamic therapy (PDT), a clinically recognized and minimally invasive tumor treatment, has become an alternative to chemotherapy [<a href="#CR182" class="usa-link" aria-describedby="CR182">182</a>, <a href="#CR183" class="usa-link" aria-describedby="CR183">183</a>]. PDT includes a photosensitizer (PS), a light source, and sufficient O<sub>2</sub>. Under PS catalysis, O<sub>2</sub> is activated to ROS, such as •OH and <sup>1</sup>O<sub>2</sub>, which in turn induce tumor vascular injury, thereby leading to tumor cell death [<a href="#CR184" class="usa-link" aria-describedby="CR184">184</a>–<a href="#CR186" class="usa-link" aria-describedby="CR186">186</a>]. However, the hypoxic state of the TME impairs PDT efficacy [<a href="#CR187" class="usa-link" aria-describedby="CR187">187</a>], which can be effectively reversed by increasing the O<sub>2</sub> content of the tumor [<a href="#CR188" class="usa-link" aria-describedby="CR188">188</a>, <a href="#CR189" class="usa-link" aria-describedby="CR189">189</a>]. Wang et al. [<a href="#CR190" class="usa-link" aria-describedby="CR190">190</a>] developed a new PDT therapy based on the concept of O<sub>2</sub> “self-compensation ability,” which was synthesized by chemically conjugating Hb with polymeric micelles formed by triblock copolymers of poly (ethylene glycol)-block-poly (acrylic acid)-block-polystyrene (PEG-b-PAA-b-PS). They used Hb as a PS zinc phthalocyanine (ZnPc) carrier, which endowed the Hb-conjugated ZnPc PS carrier with good oxygen-binding capacity, antioxidant activity, and the ability to produce abundant <sup>1</sup>O<sub>2</sub>, thereby exhibiting robust photocytotoxicity in an in vitro HeLa cell assay.</p> <p id="Par97">To address the low O<sub>2</sub> levels in tumor and enhance PDT efficacy, Tang et al. [<a href="#CR76" class="usa-link" aria-describedby="CR76">76</a>] used ferritin, a protein-based nanocage, to tether a large amount of PS (such as ZnF16Pc) to the surface of RBCs. They utilized Hb as a PS carrier to provide O<sub>2</sub>, loaded ZnF16Pc at ferritin molar ratio (1:40) to form P-FRT, and simultaneously produced PFRT-RBCS nanoparticles by coupling RBCs. PFRT-RBCS prolonged the circulation half-life of Ps, which were labelled with IRDye800 that exhibited a high fluorescence in the blood (7.6 ± 2.1%ID g<sup>−1</sup> at 1 h), and the signal remained strong for 24 h (3.2 ± 0.4%ID g<sup>−1</sup> at 24 h). P-FRT-RBCs achieved continuous oxygen supply under hypoxia in the TME, thereby enhancing the ability of PDT to kill cancer cells in a U87MG tumor-bearing mouse model (human brain astroblastoma cells). Luo et al. [<a href="#CR191" class="usa-link" aria-describedby="CR191">191</a>] developed a biomimetic lipid-polymer nanoparticle loaded with PS (indocyanine green, ICG) and oxygen carrier (Hb). Nanoscale artificial RBCs (I-ARCs) were prepared by encapsulating Hb/ICG complexes in a PEG-modified lipid layer. In an MCF-7 human breast cancer model, the I-ARC provided sufficient O<sub>2</sub>, and ICG in the I-ARC efficiently converted O<sub>2</sub> to ROS under near-infrared (NIR) laser irradiation, thereby triggering sustained damage to tumor cells. Furthermore, I-ARC serves as an ideal fluorescence imaging probe to dynamically monitor the biodistribution of nanoparticles and oxygen levels. The dynamic PDT process can be self-monitored through ICG, while serving as a diagnostic platform for self-monitoring therapy integration. Xu et al. [<a href="#CR71" class="usa-link" aria-describedby="CR71">71</a>] prepared a novel hemoglobin-polymer conjugate (HbTcMs) with high biocompatibility and stability as a carrier for both O<sub>2</sub> and PS to provide additional O<sub>2</sub> to enhance PDT efficacy. Compared with free Hb, HbTcMs not only retained the Hb oxygen-binding capacity but also exhibited higher stability against oxidation and trypsin digestion. In a 4T1 cell model, HbTcMs produced numerous oxygen-derived <sup>1</sup>O<sub>2</sub> molecules and exerted enhanced phototoxicity by utilizing the oxygen supply ability of Hb. Cao et al. [<a href="#CR192" class="usa-link" aria-describedby="CR192">192</a>] constructed the BP@RB-Hb nanoparticles by assembling Hb into nanocomplexes with novel two-photon species: bis(pyrene) (BP) and traditional PS (RB). Hb acts as an O<sub>2</sub> donor to provide additional O<sub>2</sub> resistance to the TME at the tumor site through NP targeting. Simultaneously, the resonance energy transfer effect (FRET) inside the nanoparticles indirectly stimulated PS under irradiation with a two-photon laser, thereby improving the treatment depth. In a tumor-bearing mouse model, the material showed excellent oxygen-carrying performance and penetration depth, greatly enhancing PDT efficiency. In tumor-bearing mouse models, BP@RB-Hb nanoparticles exhibited excellent penetration depth and oxygen-carrying properties, which greatly improved PDT treatment efficiency. Chen et al. [<a href="#CR193" class="usa-link" aria-describedby="CR193">193</a>] proposed a protein hybridization method for combining HSA and Hb to develop a bioinspired hybrid protein oxygen nanocarrier (C@HPOC) loaded with photosensitizer e6 (Ce6), which overcomes tumor hypoxia via co-delivery of tumor-targeted O<sub>2</sub> and PS and improves PDT efficacy by generating a large amount of <sup>1</sup>O<sub>2</sub>. C@HPOC stimulated robust systemic antitumor immunity and elicited potent antitumor metastatic and abscopal effects in a murine triple-negative breast cancer (4T1-mTNBC) model [<a href="#CR194" class="usa-link" aria-describedby="CR194">194</a>] (Fig. <a href="#Fig6" class="usa-link">6</a>). Tian et al. [<a href="#CR195" class="usa-link" aria-describedby="CR195">195</a>] connected Hb to Ce6 to load sorafenib (SRF, an iron death promoter) and built a nanoplatform SRF@Hb-Ce6. Hb not only provides O<sub>2</sub> and increases PDT efficacy, but it also synergizes with SPF, significantly increases the generation of lipid peroxides, downregulates GPX4 expression, and increases tumor cell iron death [<a href="#CR196" class="usa-link" aria-describedby="CR196">196</a>]. This platform shows promise as a nanoplatform for combination cancer therapy.</p> <figure class="fig xbox font-sm" id="Fig6"><h5 class="obj_head">Fig. 6.</h5> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=11180412_12951_2024_2606_Fig6_HTML.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d96e/11180412/88070ac99a3a/12951_2024_2606_Fig6_HTML.jpg" loading="lazy" id="MO6" height="716" width="784" alt="Fig. 6"></a></p> <div class="p text-right font-secondary"><a href="figure/Fig6/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>A</strong> Schematic depiction of oxygen-augmented immunogenic PDT with C@HPOC for eliciting the anti-metastatic and abscopal effect. Human serum albumin (HSA) was hybridized with oxygen carrying hemoglobin (Hb) via intermolecular disulfide bonds to form a hybrid protein oxygen nanocarrier with Ce6 loaded (C@HPOC). Under laser irradiation, oxygen self-supplied nanoparticles (C@HPOC) elevated the generation of cytotoxic <sup>1</sup>O<sub>2</sub> and moreover triggered immunogenic cell death (ICD). C@HPOC-mediated PDT not only destroyed the primary tumors but also inhibited the distant tumors and lung metastasis by systemic anti-tumor immune responses. <strong>B</strong> Confocal images of cellular uptake and ROS generation in 4T1 tumor cells.<strong> C</strong> Growth curves of primary tumor on mice after various treatments. <strong>D</strong> Growth curves of distant tumor on mice in different treated groups. <strong>E</strong> Immunofluorescence staining detection of CD8 T cells (red) in tumor tissues. <strong>A–E</strong> Reproduced with permission [<a href="#CR197" class="usa-link" aria-describedby="CR197">197</a>]. </p> <p>Copyright 2018, American Chemical Society Nanomaterials.</p></figcaption></figure></section><section id="Sec13"><h4 class="pmc_sec_title">Application of Nano-HBOCs in SDT</h4> <p id="Par98">SDT is an emerging cancer therapy that triggers ROS generation from abundant <sup>1</sup>O<sub>2</sub> using ultrasound (US), which leads to oxidative damage in tumor cells and enhanced therapeutic efficacy [<a href="#CR197" class="usa-link" aria-describedby="CR197">197</a>]. Its advantages include superior tissue penetration ability, minimal damage to surrounding healthy tissues, and lower skin sensitivity. The process of ROS generation using US irradiation of sonosensitizers during SDT requires the participation of O<sub>2</sub>, which is similarly limited by hypoxia in the TME [<a href="#CR198" class="usa-link" aria-describedby="CR198">198</a>]. In this context, Yin et al. [<a href="#CR199" class="usa-link" aria-describedby="CR199">199</a>] designed a novel intensified oxygen supply sonosensitizer system (MnPcS@HPO) by reconstituting bHb and HSA through disulfide bonds and loading the sonosensitizer Mn-phthalocyanine (MnPcs). This system combines the oxygen-carrying capacity of Hb and the tumor-targeting properties of HSA. MnPcS@HPO was enriched in the hypoxic area of the tumor, effectively alleviating the hypoxic state of the tumor. Simultaneously, MnPcS produces a large amount of <sup>1</sup>O<sub>2</sub> under US irradiation, effectively inhibiting tumor growth. Yuan et al. [<a href="#CR72" class="usa-link" aria-describedby="CR72">72</a>] constructed O<sub>2</sub>@Hb@ZIF-8 (OHZ) nanoparticles formed from ZIF-8 encapsulated Hb, which not only provided abundant O<sub>2</sub> for US-induced ROS generation, but also showed excellent biocompatibility, as evidenced by cell viability evaluation and imagine (H&amp;E) of major organs. ZIF-8 was used as a drug carrier for improving the Hb packaging rate, achieving pH-responsive Hb/O<sub>2</sub> release, generating a large amount of O<sub>2</sub> in the acidic TME, and relieving tumor hypoxia, thereby providing a source of O<sub>2</sub> for US-triggered ROS generation. In 4T1 tumor-bearing mice, OHZ nanoparticles could not only inhibit the growth of subcutaneous tumors but also have an excellent inhibitory effect on the growth of deep-seated tumors, which helped achieve the SDT treatment of tumors at different depths. Pan et al. [<a href="#CR200" class="usa-link" aria-describedby="CR200">200</a>] synthesized ZIF-90 in water under mild conditions to encapsulate bHb and prepare an oxygen carrier, ZIF-90@Hb. The dynamics of oxygen consumption showed that the initial current of ZIF-90@Hb fanged from 9.15 μA to 4.18 μA, while that of free Hb was 2.78 μA and dropped to 0.55 μA within 100 s. This observation indicated that ZIF-90@Hb demonstrated better oxygen carrying/releasing abilities than free Hb. Furthermore, Cun et al. [<a href="#CR75" class="usa-link" aria-describedby="CR75">75</a>] similarly combined bHb and Au nanoparticles to synthesize ultrasmall protein metal clusters (MNCs) to develop a novel HBOC. They combined the complexes of Hb@AuNCs incorporated into the reported MOFs, which increased their antioxidant capacity to inhibit the formation of methemoglobin (the fluorescence intensity of hydrogen peroxide decreased sharply by 70%, with a remarkable 39% decrease in methemoglobin). Overall, these studies suggest that the utilization of the ZIF metal framework in oxygen carriers [<a href="#CR74" class="usa-link" aria-describedby="CR74">74</a>] provides a multifunctional platform for the development of blood substitutes in the near future. Liang et al. [<a href="#CR201" class="usa-link" aria-describedby="CR201">201</a>] encapsulated PtIV, a platinum (Pt) prodrug, with Hb to prepare a multimodal nanoparticle for tumor-targeted US radiation-triggered cancer therapy, harnessing the good solubility of Hb as a sonosensitizer. These nanoparticles can treat large volumes of deeply located tumors and provide new ideas for cancer treatment.</p> <p id="Par99">Hypoxia is a hallmark of TME in solid cancers [<a href="#CR202" class="usa-link" aria-describedby="CR202">202</a>]. It not only promotes tumor growth, but also reduces the effectiveness of treatment. Nano-HBOCs have been reported to have the ability to enhance synergistic therapy with stable O<sub>2</sub> supply and can be loaded with drugs targeting tumor cells. Numerous studies have investigated the use of Nano-HBOCs in tumor therapy, and significant therapeutic effects have been observed in vitro and in vivo. By combining Nano-HBOCs with drugs and enhancing their abilities, we can potentially make a breakthrough in the clinical treatment of tumor.</p></section></section></section><section id="Sec14"><h2 class="pmc_sec_title">Nano-HBOCs for wound healing</h2> <p id="Par100">O<sub>2</sub> plays a key role in wound healing [<a href="#CR203" class="usa-link" aria-describedby="CR203">203</a>] by promoting cell proliferation, accelerating angiogenesis, reducing infection, and increasing collagen synthesis [<a href="#CR204" class="usa-link" aria-describedby="CR204">204</a>, <a href="#CR205" class="usa-link" aria-describedby="CR205">205</a>]. The oxygenation level in the wound microenvironment is a key rate-limiting factor for wound healing [<a href="#CR206" class="usa-link" aria-describedby="CR206">206</a>, <a href="#CR207" class="usa-link" aria-describedby="CR207">207</a>]. Long-term hypoxic conditions lead to impaired neovascularization and limited wound healing [<a href="#CR208" class="usa-link" aria-describedby="CR208">208</a>], whereas a hypoxic environment promotes wound healing [<a href="#CR209" class="usa-link" aria-describedby="CR209">209</a>]. Therefore, in situ oxygen production, oxygen carriers, and various strategies to enhance oxygen supply have been used to relieve the hypoxic state of wounds, promote angiogenesis, and enhance collagen remodeling, ultimately accelerating wound healing [<a href="#CR210" class="usa-link" aria-describedby="CR210">210</a>–<a href="#CR213" class="usa-link" aria-describedby="CR213">213</a>].</p> <section id="Sec15"><h3 class="pmc_sec_title">Reducing oxidative stress</h3> <p id="Par101">Diabetes mellitus (DM) is a chronic disease that affects millions of humans. Further, in more than 25% of patients with DM, factors such as uncontrollable bacterial infections [<a href="#CR214" class="usa-link" aria-describedby="CR214">214</a>], persistent inflammation [<a href="#CR215" class="usa-link" aria-describedby="CR215">215</a>], and hypoxia [<a href="#CR216" class="usa-link" aria-describedby="CR216">216</a>] can cause foot ulcers, which, in severe cases, can lead to amputation [<a href="#CR217" class="usa-link" aria-describedby="CR217">217</a>, <a href="#CR218" class="usa-link" aria-describedby="CR218">218</a>]. According to previous studies, the long-term exposure of diabetic patients to a high glucose environment can functionally impair the of HIF-1α/ VEGF axis, resulting in reduced abilities to reverse and regulate the ischemic hypoxic state of the wound tissue [<a href="#CR207" class="usa-link" aria-describedby="CR207">207</a>, <a href="#CR219" class="usa-link" aria-describedby="CR219">219</a>] to promote wound healing. Fukui [<a href="#CR220" class="usa-link" aria-describedby="CR220">220</a>] et al. suggested that LEH has the advantages of small particle size and high oxygen affinity, effectively perfusing obstructed blood vessels and improving the oxygen supply to the wound. Studies based on a diabetic mouse (dB/ dB) skin defect model have shown that h-LEH significantly increased the oxygen supply level of the wound microenvironment and inhibited the inflammatory cascade [<a href="#CR221" class="usa-link" aria-describedby="CR221">221</a>] while effectively improving the microcirculation and accelerating diabetic wound healing. MXene is a two-dimensional material with ultrathin layer topology and good biocompatibility [<a href="#CR222" class="usa-link" aria-describedby="CR222">222</a>]. Li et al. [<a href="#CR79" class="usa-link" aria-describedby="CR79">79</a>] used a system of H<sub>2</sub>O<sub>2</sub>/HbO<sub>2</sub> to catalyze the oxidative coupling of dopamine-grafted hyaluronic acid and PDA with encapsulated Ti<sub>3</sub>C<sub>2</sub>MXene nanosheets to form injectable hydrogels (Ti<sub>3</sub>C<sub>2</sub>@PDA or MXene@PDA NSs). HbO<sub>2</sub> exert HRP-like enzyme activity for catalyzing gel formation, whereas MXene scavenge excess free radicals, reduce oxidative damage, and maintain oxidative homeostasis while exerting a bacteriostatic effect [<a href="#CR223" class="usa-link" aria-describedby="CR223">223</a>]. Further, MXene and PDA have excellent photothermal conversion features that can generate heat to elevate temperature under 808 nm NIR irradiation, thereby achieving a Hb-reversible oxygen release in the wound microenvironment. In the dB/dB wound model, the hydrogel oxygen carrier continuously relieved the hypoxic state of the wound tissue, reduced oxidative stress, regulated macrophage polarization, promoted angiogenesis, and accelerated the healing of diabetic wounds.</p></section><section id="Sec16"><h3 class="pmc_sec_title">Promoting tissue repair</h3> <p id="Par102">O<sub>2</sub> promotes tissue formation and repair, thereby accelerating wound healing [<a href="#CR224" class="usa-link" aria-describedby="CR224">224</a>, <a href="#CR225" class="usa-link" aria-describedby="CR225">225</a>]. Currently, the development of miniature, universal, and customizable O<sub>2</sub> carries is progressing rapidly [<a href="#CR226" class="usa-link" aria-describedby="CR226">226</a>, <a href="#CR227" class="usa-link" aria-describedby="CR227">227</a>] and holds great potential for applications in the field of wound healing. Liu et al. [<a href="#CR228" class="usa-link" aria-describedby="CR228">228</a>] combined molybdenum disulfide quantum dot-blended gelatin methacryloyl (GelMa) to produce inverse opal microparticles as microcarriers for preparing NIR-triggered porous controllable oxygen carriers by coupling amide bonds with bHb for tissue repair. Based on a typical abdominal wall defect rat model, this oxygen carrier was found to improve the oxygen supply and play a role in supporting cell growth, thereby stimulating extracellular matrix secretion, promoting collagen and angiogenesis, accelerating granulation tissue formation, and promoting the repair of abdominal wall defects. The characteristics of oxygen carriers in tissue repair render them useful for wound healing and tissue engineering (Fig. <a href="#Fig7" class="usa-link">7</a>).</p> <figure class="fig xbox font-sm" id="Fig7"><h4 class="obj_head">Fig. 7.</h4> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=11180412_12951_2024_2606_Fig7_HTML.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d96e/11180412/af2914754c1e/12951_2024_2606_Fig7_HTML.jpg" loading="lazy" id="MO7" height="524" width="783" alt="Fig. 7"></a></p> <div class="p text-right font-secondary"><a href="figure/Fig7/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>A</strong> The schematic illustration of the light-responsive MoS2 QDs integrated inverse opal microcarriers for controllable oxygen delivery and tissue repair. The H&amp;E staining of <strong>B–D</strong> repaired samples after implantation for 2 weeks. Vessels in the samples are indicated with grey arrowheads. <strong>B</strong> Control, <strong>C</strong> Experimental I, <strong>D</strong> Experimental II. The Masson staining of <strong>E–G</strong> repaired samples after implantation for 2 weeks. Granulation tissue thickness in the samples are indicated with black arrowheads. <strong>E</strong> Control, <strong>F</strong> Experimental I, <strong>G</strong> Experimental II. <strong>B–G</strong> The scale bar is 200 µm. <strong>A–G</strong> Reproduced with permission [<a href="#CR233" class="usa-link" aria-describedby="CR233">233</a>]. [<a href="#CR88" class="usa-link" aria-describedby="CR88">88</a>]. Copyright 2020, American Chemical Society Nanomaterials.</p> <p>Copyright 2019, small. <strong>H</strong> Schematic illustrations of wound healing using NIR responsive separable MNs which encapsulate BP QDs and oxygen-carrying Hb. <strong>I</strong> Corresponding double immunofluorescent staining of CD31 and α-SMA on day 9. The arrows indicate the vascular ducts. The scale bars are 100 μm. <strong>J</strong> Corresponding quantitative analysis of the blood vessel density on day 9. The scale bars are 50 μm. <strong>H–J</strong> Reproduced with permission</p></figcaption></figure><p id="Par103">Zhang et al. [<a href="#CR86" class="usa-link" aria-describedby="CR86">86</a>] constructed responsive microneedles (MNs) simultaneously loaded with black phosphorus (BP) and hHb to overcome the limitation that most oxygen carriers can only contact the surface area of the wound without reaching the inner tissue. These responsive MNs could penetrate the epidermal layer to the interior of wound tissue in a painless, noninvasive, and sterile manner [<a href="#CR229" class="usa-link" aria-describedby="CR229">229</a>, <a href="#CR230" class="usa-link" aria-describedby="CR230">230</a>], thereby achieving controllable delivery of O<sub>2</sub> and promoting wound healing. Further, a NIR controllable O<sub>2</sub> releasing carrier was fabricated using GelMA as a synthetic material for responsive MNS, which helped improve the mechanical strength and penetration ability of MNs loaded with quantum dots of BP and Hb. In a full-thickness cutaneous wound type I diabetes rat model, the treatment group exhibited the smallest wound area, narrowest wound bed, thickest regenerated epithelial tissue, and densest neovascular state, indicating excellent healing capacity compared to the control groups. These results suggest that this responsive MN oxygen carrier proposed by this research group has an ideal therapeutic effect on wound healing.</p> <p id="Par104">Currently, there are only a limited number of studies on the application of Nano-HBOCs to wound healing, and the main forms of drug delivery primarily involve hydrogels and microneedles. By expanding the options for administration, such as through spraying, we believe that Nano-HBOCs will be able to better meet the clinical requirements of wound healing and become an effective therapeutic method.</p></section></section><section id="Sec17"><h2 class="pmc_sec_title">Nano-HBOCs for other biomedical applications</h2> <p id="Par105">Nano-HBOCs have also been used in other disease therapies, as discussed below.</p> <p id="Par106">Port-wine staining (PWS) is a non-neoplastic malformation caused by telangiectasia at birth [<a href="#CR231" class="usa-link" aria-describedby="CR231">231</a>] that mostly occurs in the head and neck region and severely affects patient penetrance and self-confidence [<a href="#CR232" class="usa-link" aria-describedby="CR232">232</a>, <a href="#CR233" class="usa-link" aria-describedby="CR233">233</a>]. PWS grows modularly, tends to bleed [<a href="#CR234" class="usa-link" aria-describedby="CR234">234</a>], and forms fibrous scars on the skin surface, which become more pronounced after puberty [<a href="#CR235" class="usa-link" aria-describedby="CR235">235</a>]. Currently, PDT is a primary treatment strategy for PWS [<a href="#CR236" class="usa-link" aria-describedby="CR236">236</a>]. HbVs are smaller (250 nm) than RBCs and 1/40 the diameter of RBCs; further, they are inclined to flow in the marginal zone of microvessels in the blood [<a href="#CR237" class="usa-link" aria-describedby="CR237">237</a>] and increase the hemoglobin concentration in microvessels, enabling a more efficient conversion of light energy into heat energy. Rikihisa et al. [<a href="#CR238" class="usa-link" aria-describedby="CR238">238</a>] applied a laser as a treatment for PS in PWS (at a wavelength of 595 nm) using the oxygen-carrying capacity of HbVs (or LEHs). An oxygen-rich environment enhanced the PDT effect, generated a large amount of ROS, damaged the vessel wall, treated PWS, and achieved a better therapeutic effect in an animal model with chicken wattle as PWS.</p> <p id="Par107">Pre-eclampsia (PE) can lead to pre-term birth in pregnant women and is a leading cause of maternal and fetal death [<a href="#CR239" class="usa-link" aria-describedby="CR239">239</a>–<a href="#CR241" class="usa-link" aria-describedby="CR241">241</a>]. Studies have shown that inadequate trophoblast invasion in the placenta leads to the narrowing of the spiral arteries of the placenta, thereby causing placental ischemia/ hypoxia and limiting gas and nutrient exchange between the mother and fetus, which ultimately causes intrauterine growth restriction, maternal hypertension, and organ damage [<a href="#CR242" class="usa-link" aria-describedby="CR242">242</a>–<a href="#CR246" class="usa-link" aria-describedby="CR246">246</a>]. HbV, which is a type of Nano-HBOC with a nanoscale size and no blood group antigens, can pass through narrow placental spiral arteries and capillaries to provide an efficient O<sub>2</sub> supply to the placenta [<a href="#CR247" class="usa-link" aria-describedby="CR247">247</a>, <a href="#CR248" class="usa-link" aria-describedby="CR248">248</a>]. Ohta et al. [<a href="#CR249" class="usa-link" aria-describedby="CR249">249</a>] intravenously injected HbV into a rat preeclampsia model. The results showed that HbV alleviated fetal hypoxia by supplying oxygen while improving fetal growth restriction in a murine model of preeclamptic pregnancy. This study suggests that HbV is an effective treatment modality for fetal hypoxia caused by placental dysfunction during pregnancy.</p> <p id="Par108"><em>Porphyromonas gingivalis</em>, a gram-negative anaerobic bacterium, is one of the main pathogens causing oral infections (including gingivitis, periodontitis, and oral ulcers) [<a href="#CR250" class="usa-link" aria-describedby="CR250">250</a>]. Traditional broad-spectrum antibiotic therapies often lack selectivity and can lead to oral flora dysbiosis [<a href="#CR251" class="usa-link" aria-describedby="CR251">251</a>]. Previous studies have shown that <em>P. gingivalis</em> can bind to and acquire porphyrin molecules from Hb; therefore, Hb can be used as a specific drug delivery vehicle to treat <em>P.gingivalis</em> infection [<a href="#CR252" class="usa-link" aria-describedby="CR252">252</a>]. Based on this idea, Bai et al. [<a href="#CR253" class="usa-link" aria-describedby="CR253">253</a>] complexed rat oxyhemoglobin (oxyHb) with an anionic amphiphilic PS (IR820) to produce a stable nano-photosensitizer oxyHb@IR820. oxyHb@IR820 targets <em>P.gingivalis</em>, mediating the synergistic antibacterial effects of photothermal therapy and PDT [<a href="#CR254" class="usa-link" aria-describedby="CR254">254</a>–<a href="#CR256" class="usa-link" aria-describedby="CR256">256</a>] and providing a new therapeutic strategy against a <em>P.gingivalis</em> infection. In an oral infection model of <em>P.gingivalis</em> in rats, oxyHb@IR820 supplied exogenous O<sub>2</sub> and addressed the limitation caused by the poor effectiveness of PDT on anaerobic bacterial infection in hypoxic environments. Meanwhile, the specific uptake of P<em>.gingivalis</em> oxyHb@IR820, which improved the photodynamic and photothermal conversion efficiencies, significantly inhibited bacterial growth and reduced the oral ulcer area.</p> <p id="Par109">Further, Nano-HBOCs showed great application prospects in other tissue engineering scenarios. For example, Paciello et al. [<a href="#CR257" class="usa-link" aria-describedby="CR257">257</a>] developed a novel smart cyclic oxygen-releasing biomaterial called G-HbOD, which demonstrated superior biocompatibility and oxygen supply capability for maintaining cell viability under hypoxia in 3D cell culture tests.</p> <p id="Par110">Vasosuppression [<a href="#CR258" class="usa-link" aria-describedby="CR258">258</a>] and oxidative stress [<a href="#CR259" class="usa-link" aria-describedby="CR259">259</a>] resulting from hypoxia are major obstacles to bioartificial islet (BAP) transplantation [<a href="#CR260" class="usa-link" aria-describedby="CR260">260</a>]. To address this issue in human islet allotransplantation, Mouré et al. [<a href="#CR261" class="usa-link" aria-describedby="CR261">261</a>], encapsulated marine worms (HEMOXCell) Hb [<a href="#CR262" class="usa-link" aria-describedby="CR262">262</a>], via alginate and silicone calcium peroxide, creating a compound that produced, carried, and released O<sub>2</sub>, increasing the O<sub>2</sub> concentration in BPA. This strategy effectively addressed the lack of O<sub>2</sub> within the graft in a closed environment, and promoting neovascularization. This novel technology provides innovative solutions for tissue and bioengineering O<sub>2</sub> supply. Enzyme biofuel cells (EBFC) are widely used as implanted biomedical devices in cardiac pacemakers [<a href="#CR263" class="usa-link" aria-describedby="CR263">263</a>], electrical sensors [<a href="#CR264" class="usa-link" aria-describedby="CR264">264</a>], and biosensors for physiological parameters [<a href="#CR265" class="usa-link" aria-describedby="CR265">265</a>]. However, the current catalysts for EBFC have very low catalytic performance and poor adhesion on the electrode surface. Chen et al. [<a href="#CR266" class="usa-link" aria-describedby="CR266">266</a>] anchored Hb on exogenous Ca<sup>2+</sup> and PO3-4 to generate hydroxyapatite (Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>, HAP) nanodots and reported a novel EBFC constructed from nanoengineered RBCs (NERBCs). Given its strong oxygen adsorption capacity, NERBCs exhibits excellent catalytic reduction capacity, biocompatibility, high selectivity, and lifespan when used as an EBFC-negative catalyst, thereby pointing to a new direction for fabricating bio-nanobatteries.</p></section><section id="Sec18"><h2 class="pmc_sec_title">Conclusions and perspectives</h2> <p id="Par111">O<sub>2</sub> plays a vital role in life activities, and Hb is a natural carrier of oxygen in the body. The timely transfusion of RBCs can effectively restore blood volume and maintain tissue oxygen supply in both clinical and military treatment scenarios. HBOCs have become the main focus for artificial oxygen carriers due to their advantages of being closer to natural Hb and providing an effective method to solve the inherent problems of natural blood transfusion. The rapid development of nanotechnology and nanomaterials has opened new possibilities for HBOCs.</p> <p id="Par112">Nano-HBOCs are a new type of hemoglobin-based oxygen carriers developed using nanotechnology combined with nanomaterials. This combination, has helped improve the application scenarios of Hb and has shown certain advantages in enhancing the stability of the molecular structure of Hb, reducing vasoactivity, prolonging half-life, and improving biocompatibility. Furthermore, Nano-HBOCs have broad application prospects (Table <a href="#Tab2" class="usa-link">2</a>), and have attracted increasing attention from the medical, material, chemical, biological, and engineering research attention. Despite the rapid development of Nano-HBOCs in the field of biomedical research, there are still several limitations associated Nano-HBOCs, which are listed below: Nano-HBOCs require complicated preparation processes and are associated with prohibitive costs. The development of simple, safe, and cost-effective preparation methods will be the focus of future studies.</p> <ol class="list" style="list-style-type:decimal"> <li><p id="Par113">Constructing Nano-HBOCs with characteristics and functions similar to those of natural RBCs is difficult; more in-depth systematic research and technological progress are required to achieve a complete biomimetic replacement of natural RBCs.</p></li> <li><p id="Par114">Clinical transformation and applications are significantly challenging. Currently, the vast majority of Nano-HBOCs are in the laboratory research stage, and relevant clinical research is yet to be conducted. Therefore, it is necessary to conduct strict and systematic safety and perform effective evaluations for diverse application scenarios to meet the regulatory requirements.</p></li> <li><p id="Par115">Non-functional methemoglobin poses a significant challenge in the development of Nano-HBOCs. However, existing studies have not sufficiently addressed the control of Hb oxidation and lacked molecular characterization. In our review, we emphasize the need to pay attention to methemoglobin production. Furthermore, we propose various approaches to address this issue, including low-temperature operation, reducing the reaction time, adding antioxidants, and employing carbon-bonding techniques etc. in the further, we hope to develop simpler and more efficient methods for controlling and detecting methemoglobin to explore more simple and efficient methods for the control and detection of methemoglobin.</p></li> <li><p id="Par116">Biosafety is crucial in development of Nano-HBOCs for use in the treatment of various diseases. This is particularly important in scenarios involving high doses and multiple infusions, where in vivo metabolism, transportation, toxicity evaluation, and clearance of by-products of Nano-HBOCs are major concerns. However, there is a lack of standardized evaluation methods for hemoglobin biocompatibility, especially in tests such as antigenicity and complementation experiments. Therefore, a comprehensive and systematic standardized evaluation of Nano-HBOCs biocompatibility is essential for complete replacement of natural erythrocytes.</p></li> </ol> <section class="tw xbox font-sm" id="Tab2"><h3 class="obj_head">Table 2.</h3> <div class="caption p"><p>The key points of Nano-HBOCs, including approaches to fabrication, targeted fields and references</p></div> <div class="tbl-box p" tabindex="0"><table class="content" frame="hsides" rules="groups"> <thead><tr> <th align="left" colspan="1" rowspan="1">Key Points</th> <th align="left" colspan="1" rowspan="1">Categories</th> <th align="left" colspan="1" rowspan="1">Approaches</th> <th align="left" colspan="1" rowspan="1">Targeted Fields</th> <th align="left" colspan="1" rowspan="1">References</th> </tr></thead> <tbody> <tr> <td align="left" rowspan="4" colspan="1">Liposome-encapsulated</td> <td align="left" colspan="1" rowspan="1">TRM-645</td> <td align="left" colspan="1" rowspan="1">PEG modify liposomes which mimicking the RBCs membrane</td> <td align="left" rowspan="3" colspan="1">Hemorrhagic shock</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR69" class="usa-link" aria-describedby="CR69">69</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">Erythromer (EM)</td> <td align="left" colspan="1" rowspan="1">A novel shuttle, which adjust P<sub>50</sub> in response to pH changes</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR107" class="usa-link" aria-describedby="CR107">107</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">HbPs</td> <td align="left" colspan="1" rowspan="1">Hb encapsulated mPEG-PLGA through double emulsion technique</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR70" class="usa-link" aria-describedby="CR70">70</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">LHE/HbV</td> <td align="left" colspan="1" rowspan="1">Hb encapsulated by different type of vesicles</td> <td align="left" colspan="1" rowspan="1"> <p>Hemorrhagic shock</p> <p>Ischemic stroke</p> <p>Cancer</p> <p>Wound healing</p> <p>PWS</p> <p>PE</p> </td> <td align="left" colspan="1" rowspan="1">[<a href="#CR104" class="usa-link" aria-describedby="CR104">104</a>, <a href="#CR137" class="usa-link" aria-describedby="CR137">137</a>, <a href="#CR166" class="usa-link" aria-describedby="CR166">166</a>, <a href="#CR220" class="usa-link" aria-describedby="CR220">220</a>, <a href="#CR249" class="usa-link" aria-describedby="CR249">249</a>, <a href="#CR267" class="usa-link" aria-describedby="CR267">267</a>]</td> </tr> <tr> <td align="left" rowspan="4" colspan="1">PDA surface-coated</td> <td align="left" colspan="1" rowspan="1">Hb-PDA</td> <td align="left" colspan="1" rowspan="1">Using a template-based co-precipitation technique</td> <td align="left" colspan="1" rowspan="1">Hemorrhagic shock</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR77" class="usa-link" aria-describedby="CR77">77</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">PDA − LtEc</td> <td align="left" colspan="1" rowspan="1">A photocatalytic method</td> <td align="left" colspan="1" rowspan="1"></td> <td align="left" colspan="1" rowspan="1">[<a href="#CR73" class="usa-link" aria-describedby="CR73">73</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">CPTK@PMH</td> <td align="left" colspan="1" rowspan="1">Engaging Hb and M to form PMH, connecting to a specific fibrin-binding peptide</td> <td align="left" colspan="1" rowspan="1">Ischemic stroke</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR81" class="usa-link" aria-describedby="CR81">81</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">MXene@PDA</td> <td align="left" colspan="1" rowspan="1">Hyaluronic acid and PDA catalyzed by H<sub>2</sub>O<sub>2</sub>/HbO<sub>2</sub> to encapsulated Ti<sub>3</sub>C<sub>2</sub>MXene</td> <td align="left" colspan="1" rowspan="1">Wound healing</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR79" class="usa-link" aria-describedby="CR79">79</a>]</td> </tr> <tr> <td align="left" rowspan="3" colspan="1">ZIF-8</td> <td align="left" colspan="1" rowspan="1">ZIF-8@Hb</td> <td align="left" colspan="1" rowspan="1">MOFs</td> <td align="left" colspan="1" rowspan="1">Ischemic stroke</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR74" class="usa-link" aria-describedby="CR74">74</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">Hb@AuNCs</td> <td align="left" colspan="1" rowspan="1">Synthesizing ultrasmall protein metal clusters</td> <td align="left" rowspan="2" colspan="1">Cancer</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR75" class="usa-link" aria-describedby="CR75">75</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">O<sub>2</sub>@Hb@ZIF-8</td> <td align="left" colspan="1" rowspan="1">MOFs</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR72" class="usa-link" aria-describedby="CR72">72</a>]</td> </tr> <tr> <td align="left" rowspan="4" colspan="1">Core–shell structural</td> <td align="left" colspan="1" rowspan="1">HemoAct</td> <td align="left" colspan="1" rowspan="1">Conjugating one Hb molecule with three HSA</td> <td align="left" rowspan="2" colspan="1">Ischemic stroke</td> <td align="left" rowspan="3" colspan="1"> <p>[<a href="#CR140" class="usa-link" aria-describedby="CR140">140</a>]</p> <p>[<a href="#CR142" class="usa-link" aria-describedby="CR142">142</a>]</p> </td> </tr> <tr> <td align="left" colspan="1" rowspan="1">Hb-HSA<sub>3</sub>(PtNP)</td> <td align="left" colspan="1" rowspan="1">Combining platinum nanoparticles with HSA</td> </tr> <tr> <td align="left" rowspan="2" colspan="1">C@HPOC</td> <td align="left" rowspan="2" colspan="1">Protein hybridization</td> <td align="left" rowspan="2" colspan="1">Cancer</td> </tr> <tr><td align="left" colspan="1" rowspan="1">[<a href="#CR193" class="usa-link" aria-describedby="CR193">193</a>]</td></tr> <tr> <td align="left" rowspan="11" colspan="1">Others</td> <td align="left" colspan="1" rowspan="1">H-NPs</td> <td align="left" colspan="1" rowspan="1">Combining Hb with DAC</td> <td align="left" colspan="1" rowspan="1">RCC</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR169" class="usa-link" aria-describedby="CR169">169</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">V(Hb)@DOX</td> <td align="left" colspan="1" rowspan="1">Coupling PCL self assembles to form hollow Nanovesicles</td> <td align="left" rowspan="6" colspan="1">Cancer</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR84" class="usa-link" aria-describedby="CR84">84</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">HCM</td> <td align="left" colspan="1" rowspan="1">PMAG linking GLUT1</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR82" class="usa-link" aria-describedby="CR82">82</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">DHCNPNPs</td> <td align="left" colspan="1" rowspan="1">Hb and DOX encapsulated in PLGA</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR83" class="usa-link" aria-describedby="CR83">83</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">Au-Hb@PLT</td> <td align="left" colspan="1" rowspan="1">Synthesized by coating Au-Hb NPs with PLT membrane</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR85" class="usa-link" aria-describedby="CR85">85</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">P-FRT-RBC</td> <td align="left" colspan="1" rowspan="1">Ferritin, a protein-based nanocage</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR76" class="usa-link" aria-describedby="CR76">76</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">BP@RB-Hb</td> <td align="left" colspan="1" rowspan="1">Assembling Hb into nanocomplexes with BP and PS</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR192" class="usa-link" aria-describedby="CR192">192</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">OxyHb@IR820</td> <td align="left" colspan="1" rowspan="1">oxyHb complexed with an anionic amphiphilic PS</td> <td align="left" colspan="1" rowspan="1">P. gingivalis</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR253" class="usa-link" aria-describedby="CR253">253</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">MN</td> <td align="left" colspan="1" rowspan="1">Loading with black phosphorus</td> <td align="left" colspan="1" rowspan="1">Wound healing</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR86" class="usa-link" aria-describedby="CR86">86</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">G-HbOD</td> <td align="left" colspan="1" rowspan="1">Conjugating human Hb to the surface of gelatin microspheres</td> <td align="left" colspan="1" rowspan="1">3D cell culture</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR257" class="usa-link" aria-describedby="CR257">257</a>]</td> </tr> <tr> <td align="left" colspan="1" rowspan="1">NERBC</td> <td align="left" colspan="1" rowspan="1">Anchoring Hb on exogenous Ca<sup>2+</sup> and PO<sub>4</sub><sup>3-</sup> </td> <td align="left" colspan="1" rowspan="1">Bio-nanobatteries</td> <td align="left" colspan="1" rowspan="1">[<a href="#CR266" class="usa-link" aria-describedby="CR266">266</a>]</td> </tr> </tbody> </table></div> <div class="p text-right font-secondary"><a href="table/Tab2/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div></section><p id="Par117">We firmly believe that further research on Nano-HBOCs holds immense potential for novel advancements and significant breakthroughs in multiple fields. This promising area of study not only exhibits great prospects for practical applications but also demonstrates the potential to revolutionize clinical practical and significantly enhance human health.</p></section><section id="ack1" class="ack"><h2 class="pmc_sec_title">Acknowledgements</h2> <p>We are all thankful to all the researchers who are dedicated to Hemoglobin-based oxygen carriers and nano-material research.</p></section><section id="glossary1" class="glossary"><h2 class="pmc_sec_title">Abbreviations</h2> <dl class="def-list"> <dt>AA</dt> <dd><p id="Par02">Arachidonic acid</p></dd> <dt>BAP</dt> <dd><p id="Par3">Bioartificial islet transplantation</p></dd> <dt>BP</dt> <dd><p id="Par4">Black phosphorus</p></dd> <dt>bHb</dt> <dd><p id="Par5">Bovine hemoglobin</p></dd> <dt>DHCNPNPs</dt> <dd><p id="Par6">Camouflaged biomimetic nanocomposites</p></dd> <dt>CAT</dt> <dd><p id="Par7">Catalase</p></dd> <dt>Ec</dt> <dd><p id="Par8">Cell-free hemoglobin</p></dd> <dt>DAC</dt> <dd><p id="Par9">Decitabine</p></dd> <dt>DHL</dt> <dd><p id="Par10">DOX-Hb-lipo</p></dd> <dt>DM</dt> <dd><p id="Par11">Diabetes mellitus</p></dd> <dt>EBFC</dt> <dd><p id="Par12">Enzyme biofuel cells</p></dd> <dt>EM</dt> <dd><p id="Par13">Erythromer</p></dd> <dt>FDA</dt> <dd><p id="Par14">Food and drug administration</p></dd> <dt>G-HbOD</dt> <dd><p id="Par15">Gelatin hemoglobin depot</p></dd> <dt>GelMa</dt> <dd><p id="Par16">Gelatin methacryloyl</p></dd> <dt>GM</dt> <dd><p id="Par17">Gelatin microspheres</p></dd> <dt>GLUT1</dt> <dd><p id="Par18">Glucose transporter isoform 1</p></dd> <dt>HCM</dt> <dd><p id="Par19">Hb-conjugated micelles</p></dd> <dt>Hb</dt> <dd><p id="Par20">Hemoglobin</p></dd> <dt>HbV</dt> <dd><p id="Par21">Hemoglobin vesicles</p></dd> <dt>HBOCs</dt> <dd><p id="Par22">Hemoglobin-based oxygen carriers</p></dd> <dt>HbPs</dt> <dd><p id="Par23">Hemoglobin-loaded nanoparticles</p></dd> <dt>HbTcMs</dt> <dd><p id="Par24">Hemoglobin-polymer conjugate</p></dd> <dt>HS</dt> <dd><p id="Par25">Hemorrhagic shock</p></dd> <dt>HDAS</dt> <dd><p id="Par26">Hexadecyl carbamoyl methyl hexadecanoate</p></dd> <dt>V(Hb)</dt> <dd><p id="Par27">Hollow nanovesicles</p></dd> <dt>HeLa</dt> <dd><p id="Par28">Human cervical cancer cells</p></dd> <dt>hHb</dt> <dd><p id="Par29">Human hemoglobin</p></dd> <dt>HSA</dt> <dd><p id="Par30">Human serum albumin</p></dd> <dt>HIF-1α</dt> <dd><p id="Par31">Hypoxia inducible factor-1α</p></dd> <dt>HRP</dt> <dd><p id="Par32">Horseradish peroxidase</p></dd> <dt>ICG</dt> <dd><p id="Par33">Indocyanine green</p></dd> <dt>LEH</dt> <dd><p id="Par34">Liposome-encapsulated human hemoglobin</p></dd> <dt>h-LEH</dt> <dd><p id="Par35">Liposomes encapsulating hemoglobin</p></dd> <dt>RCC</dt> <dd><p id="Par36">Renal cell carcinoma</p></dd> <dt>Lt</dt> <dd><p id="Par37"> <em>Lumbricus terrestris</em> </p></dd> <dt>MMP-9</dt> <dd><p id="Par38">Matrix metalloproteinase-9</p></dd> <dt>MPA</dt> <dd><p id="Par39">Mean arterial pressure</p></dd> <dt>MOFs</dt> <dd><p id="Par40">Metal–organic frameworks</p></dd> <dt>MNs</dt> <dd><p id="Par41">Microneedles</p></dd> <dt>MCAO</dt> <dd><p id="Par42">Middle cerebral artery occlusion</p></dd> <dt>MnPcs</dt> <dd><p id="Par43">Mn-phthalocyanine</p></dd> <dt>CT-26</dt> <dd><p id="Par44">Mouse colon cancer models</p></dd> <dt>MDR1</dt> <dd><p id="Par45">Multidrug resistance gene 1</p></dd> <dt>NERBCS</dt> <dd><p id="Par46">Nanoengineered red blood cells</p></dd> <dt>NEMR</dt> <dd><p id="Par47">Nanoerythrocytes</p></dd> <dt>Nano-HBOCs</dt> <dd><p id="Par48">Nanomaterial-related HBOCs</p></dd> <dt>I-ARCs</dt> <dd><p id="Par49">Nanoscale artificial blood cells</p></dd> <dt>NIR</dt> <dd><p id="Par50">Near-infrared</p></dd> <dt>OHZ</dt> <dd><p id="Par51">O<sub>2</sub>@Hb@ZIF-8</p></dd> <dt>OXA</dt> <dd><p id="Par52">Oxaliplatin</p></dd> <dt>oxyHb</dt> <dd><p id="Par53">Oxyhemoglobin</p></dd> <dt>PFCs</dt> <dd><p id="Par54">Perfluorocarbons</p></dd> <dt>P-gp</dt> <dd><p id="Par55">P-glycoprotein</p></dd> <dt>PDT</dt> <dd><p id="Par56">Photodynamic therapy</p></dd> <dt>PDT</dt> <dd><p id="Par57">Photodynamic therapy</p></dd> <dt>PS</dt> <dd><p id="Par58">Photosensitizer</p></dd> <dt>PLT</dt> <dd><p id="Par59">Platelets</p></dd> <dt>PDA</dt> <dd><p id="Par60">Polydopamine</p></dd> <dt>PWS</dt> <dd><p id="Par61">Port-wine staining</p></dd> <dt>PE</dt> <dd><p id="Par62">Pre-eclampsia</p></dd> <dt>RT</dt> <dd><p id="Par63">Radiation therapy</p></dd> <dt>ROS</dt> <dd><p id="Par64">Reactive oxygen species</p></dd> <dt>RBCs</dt> <dd><p id="Par65">Red blood cells</p></dd> <dt>FRET</dt> <dd><p id="Par66">Resonance energy transfer effect</p></dd> <dt>SDT</dt> <dd><p id="Par67">Sonodynamic therapy</p></dd> <dt>SOD</dt> <dd><p id="Par68">Superoxide dismutase</p></dd> <dt>tMCAO</dt> <dd><p id="Par69">Transient MCAO</p></dd> <dt>TME</dt> <dd><p id="Par70">Tumor microenvironment</p></dd> <dt>TAM</dt> <dd><p id="Par71">Tumor-associated macrophage</p></dd> <dt>ZnPc</dt> <dd><p id="Par72">Zinc phthalocyanine</p></dd> </dl></section><section id="notes1"><h2 class="pmc_sec_title">Author contributions</h2> <p>K.Z. and L.J.W. analyzed the data and drafted the manuscript. Y.X., X.Y.Z., G.X.Y., Y.Z.C. and Q.W. contributed to the data collection and interpretation. L.Z., H.Z., and G.C. designed this work and critically commented on the manuscript. All authors contributed to the development of the manuscript and approved the final draft.</p></section><section id="notes2"><h2 class="pmc_sec_title">Funding</h2> <p>Financial support was supported by the National Natural Science Foundation of China (No. 82170229).</p></section><section id="notes3"><h2 class="pmc_sec_title">Availability of data and materials</h2> <p>Not applicable.</p></section><section id="notes4"><h2 class="pmc_sec_title">Declarations</h2> <section id="FPar1"><h3 class="pmc_sec_title">Ethics approval and consent to participate</h3> <p id="Par118">Not applicable.</p></section><section id="FPar2"><h3 class="pmc_sec_title">Consent for publication</h3> <p id="Par119">Not applicable.</p></section><section id="FPar3"><h3 class="pmc_sec_title">Competing interests</h3> <p id="Par120">The authors declare that they have no competing interests.</p></section></section><section id="fn-group1" class="fn-group"><h2 class="pmc_sec_title">Footnotes</h2> <div class="fn-group p font-secondary-light font-sm"> <div class="fn p" id="fn1"> <p><strong>Publisher's Note</strong></p> <p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p> </div> <div class="fn p" id="fn2"><p>Kai Zhu and Lijun Wang contributed equally to this work.</p></div> </div></section><section id="_ci93_" lang="en" class="contrib-info"><h2 class="pmc_sec_title">Contributor Information</h2> <p>Lian Zhao, Email: zhaolian@bmi.ac.cn.</p> <p>Hong Zhou, Email: zhouhtt1966@163.com.</p> <p>Gan Chen, Email: chenlzu2005@163.com.</p></section><section id="Bib1" class="ref-list"><h2 class="pmc_sec_title">References</h2> <section id="Bib1_sec2"><ul class="ref-list font-sm" style="list-style-type:none"> <li id="CR1"> <span class="label">1.</span><cite>Motealleh A, Kehr NS. Injectable oxygen-generating nanocomposite hydrogels with prolonged oxygen delivery for enhanced cell proliferation under hypoxic and normoxic conditions. J Mater Chem B. 2020;8(19):4195–4201. doi: 10.1039/D0TB00885K.</cite> [<a href="https://doi.org/10.1039/D0TB00885K" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32393933/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Mater%20Chem%20B&amp;title=Injectable%20oxygen-generating%20nanocomposite%20hydrogels%20with%20prolonged%20oxygen%20delivery%20for%20enhanced%20cell%20proliferation%20under%20hypoxic%20and%20normoxic%20conditions&amp;author=A%20Motealleh&amp;author=NS%20Kehr&amp;volume=8&amp;issue=19&amp;publication_year=2020&amp;pages=4195-4201&amp;pmid=32393933&amp;doi=10.1039/D0TB00885K&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR2"> <span class="label">2.</span><cite>Ashammakhi N, et al. Advances in controlled oxygen generating biomaterials for tissue engineering and regenerative therapy. Biomacromol. 2020;21(1):56–72. doi: 10.1021/acs.biomac.9b00546.</cite> [<a href="https://doi.org/10.1021/acs.biomac.9b00546" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31271024/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomacromol&amp;title=Advances%20in%20controlled%20oxygen%20generating%20biomaterials%20for%20tissue%20engineering%20and%20regenerative%20therapy&amp;author=N%20Ashammakhi&amp;volume=21&amp;issue=1&amp;publication_year=2020&amp;pages=56-72&amp;pmid=31271024&amp;doi=10.1021/acs.biomac.9b00546&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR3"> <span class="label">3.</span><cite>Biro GP. Oxygen and ATP: the Energy Economy of the Cell. In: Liu H, Kaye AD, Jahr JS, editors. Blood substitutes and oxygen biotherapeutics. Cham: Springer International Publishing; 2022. pp. 21–32.</cite> [<a href="https://scholar.google.com/scholar_lookup?title=Blood%20substitutes%20and%20oxygen%20biotherapeutics&amp;author=GP%20Biro&amp;publication_year=2022&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR4"> <span class="label">4.</span><cite>Werner M, et al. Femoral blood gas analysis, another tool to assess hemorrhage severity following trauma: an exploratory prospective study. Scand J Trauma Resusc Emerg Med. 2023;31(1):31. doi: 10.1186/s13049-023-01095-9.</cite> [<a href="https://doi.org/10.1186/s13049-023-01095-9" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC10280927/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37340485/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Scand%20J%20Trauma%20Resusc%20Emerg%20Med&amp;title=Femoral%20blood%20gas%20analysis,%20another%20tool%20to%20assess%20hemorrhage%20severity%20following%20trauma:%20an%20exploratory%20prospective%20study&amp;author=M%20Werner&amp;volume=31&amp;issue=1&amp;publication_year=2023&amp;pages=31&amp;pmid=37340485&amp;doi=10.1186/s13049-023-01095-9&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR5"> <span class="label">5.</span><cite>Dyer WB, et al. Recovery of organ-specific tissue oxygen delivery at restrictive transfusion thresholds after fluid treatment in ovine haemorrhagic shock. Intensive Care Med Exp. 2022;10(1):12. doi: 10.1186/s40635-022-00439-6.</cite> [<a href="https://doi.org/10.1186/s40635-022-00439-6" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8980119/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35377109/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Intensive%20Care%20Med%20Exp&amp;title=Recovery%20of%20organ-specific%20tissue%20oxygen%20delivery%20at%20restrictive%20transfusion%20thresholds%20after%20fluid%20treatment%20in%20ovine%20haemorrhagic%20shock&amp;author=WB%20Dyer&amp;volume=10&amp;issue=1&amp;publication_year=2022&amp;pages=12&amp;pmid=35377109&amp;doi=10.1186/s40635-022-00439-6&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR6"> <span class="label">6.</span><cite>Chen WR, Chou CC, Wang CC. Phthalides serve as potent modulators to boost fetal hemoglobin induction therapy for β-hemoglobinopathies. Blood Adv. 2019;3(9):1493–1498. doi: 10.1182/bloodadvances.2019031120.</cite> [<a href="https://doi.org/10.1182/bloodadvances.2019031120" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6517670/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31072835/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Blood%20Adv&amp;title=Phthalides%20serve%20as%20potent%20modulators%20to%20boost%20fetal%20hemoglobin%20induction%20therapy%20for%20%CE%B2-hemoglobinopathies&amp;author=WR%20Chen&amp;author=CC%20Chou&amp;author=CC%20Wang&amp;volume=3&amp;issue=9&amp;publication_year=2019&amp;pages=1493-1498&amp;pmid=31072835&amp;doi=10.1182/bloodadvances.2019031120&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR7"> <span class="label">7.</span><cite>Hönemann JN, et al. Hypoxia and cardiac function in patients with prior myocardial infarction. Circ Res. 2023;132(9):1165–1167. doi: 10.1161/CIRCRESAHA.122.322334.</cite> [<a href="https://doi.org/10.1161/CIRCRESAHA.122.322334" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37009742/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Circ%20Res&amp;title=Hypoxia%20and%20cardiac%20function%20in%20patients%20with%20prior%20myocardial%20infarction&amp;author=JN%20H%C3%B6nemann&amp;volume=132&amp;issue=9&amp;publication_year=2023&amp;pages=1165-1167&amp;pmid=37009742&amp;doi=10.1161/CIRCRESAHA.122.322334&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR8"> <span class="label">8.</span><cite>Kabra R, et al. Hidden mystery behind unilateral cerebellar infarction in hanging: a case report. Cureus. 2022;14(11):e31115. doi: 10.7759/cureus.31115.</cite> [<a href="https://doi.org/10.7759/cureus.31115" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC9720415/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36479406/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cureus&amp;title=Hidden%20mystery%20behind%20unilateral%20cerebellar%20infarction%20in%20hanging:%20a%20case%20report&amp;author=R%20Kabra&amp;volume=14&amp;issue=11&amp;publication_year=2022&amp;pages=e31115&amp;pmid=36479406&amp;doi=10.7759/cureus.31115&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR9"> <span class="label">9.</span><cite>Köhler D, et al. Hypoxic, anemic and cardiac hypoxemia: When does tissue hypoxia begin? Dtsch Med Wochenschr. 2023;148(8):475–482. doi: 10.1055/a-2007-5450.</cite> [<a href="https://doi.org/10.1055/a-2007-5450" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36990120/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Dtsch%20Med%20Wochenschr&amp;title=Hypoxic,%20anemic%20and%20cardiac%20hypoxemia:%20When%20does%20tissue%20hypoxia%20begin?&amp;author=D%20K%C3%B6hler&amp;volume=148&amp;issue=8&amp;publication_year=2023&amp;pages=475-482&amp;pmid=36990120&amp;doi=10.1055/a-2007-5450&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR10"> <span class="label">10.</span><cite>Godoy DA, et al. Avoiding brain hypoxia in severe traumatic brain injury in settings with limited resources—a pathophysiological guide. J Crit Care. 2023;75:154260. doi: 10.1016/j.jcrc.2023.154260.</cite> [<a href="https://doi.org/10.1016/j.jcrc.2023.154260" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36773368/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Crit%20Care&amp;title=Avoiding%20brain%20hypoxia%20in%20severe%20traumatic%20brain%20injury%20in%20settings%20with%20limited%20resources%E2%80%94a%20pathophysiological%20guide&amp;author=DA%20Godoy&amp;volume=75&amp;publication_year=2023&amp;pages=154260&amp;pmid=36773368&amp;doi=10.1016/j.jcrc.2023.154260&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR11"> <span class="label">11.</span><cite>Haddon A, et al. Cardiorespiratory responses to voluntary hyperventilation during normobaric hypoxia. Aerosp Med Hum Perform. 2023;94(2):59–65. doi: 10.3357/AMHP.6163.2023.</cite> [<a href="https://doi.org/10.3357/AMHP.6163.2023" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36755012/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Aerosp%20Med%20Hum%20Perform&amp;title=Cardiorespiratory%20responses%20to%20voluntary%20hyperventilation%20during%20normobaric%20hypoxia&amp;author=A%20Haddon&amp;volume=94&amp;issue=2&amp;publication_year=2023&amp;pages=59-65&amp;pmid=36755012&amp;doi=10.3357/AMHP.6163.2023&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR12"> <span class="label">12.</span><cite>Wang L, et al. Shen Shuai II recipe inhibits hypoxia-induced glycolysis by preserving mitochondrial dynamics to attenuate kidney fibrosis. J Ethnopharmacol. 2023;308:116271. doi: 10.1016/j.jep.2023.116271.</cite> [<a href="https://doi.org/10.1016/j.jep.2023.116271" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36806483/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Ethnopharmacol&amp;title=Shen%20Shuai%20II%20recipe%20inhibits%20hypoxia-induced%20glycolysis%20by%20preserving%20mitochondrial%20dynamics%20to%20attenuate%20kidney%20fibrosis&amp;author=L%20Wang&amp;volume=308&amp;publication_year=2023&amp;pages=116271&amp;pmid=36806483&amp;doi=10.1016/j.jep.2023.116271&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR13"> <span class="label">13.</span><cite>Biro GP. Erythrocyte transfusion: brief history and current practice. In: Liu H, Kaye AD, Jahr JS, editors. Blood substitutes and oxygen biotherapeutics. Cham: Springer International Publishing; 2022. pp. 3–19.</cite> [<a href="https://scholar.google.com/scholar_lookup?title=Blood%20substitutes%20and%20oxygen%20biotherapeutics&amp;author=GP%20Biro&amp;publication_year=2022&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR14"> <span class="label">14.</span><cite>Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21(5):268–283. doi: 10.1038/s41580-020-0227-y.</cite> [<a href="https://doi.org/10.1038/s41580-020-0227-y" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7222024/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32144406/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Mol%20Cell%20Biol&amp;title=Cellular%20adaptation%20to%20hypoxia%20through%20hypoxia%20inducible%20factors%20and%20beyond&amp;author=P%20Lee&amp;author=NS%20Chandel&amp;author=MC%20Simon&amp;volume=21&amp;issue=5&amp;publication_year=2020&amp;pages=268-283&amp;pmid=32144406&amp;doi=10.1038/s41580-020-0227-y&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR15"> <span class="label">15.</span><cite>Chen Z, et al. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023;8(1):70. doi: 10.1038/s41392-023-01332-8.</cite> [<a href="https://doi.org/10.1038/s41392-023-01332-8" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC9935926/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36797231/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Signal%20Transduct%20Target%20Ther&amp;title=Hypoxic%20microenvironment%20in%20cancer:%20molecular%20mechanisms%20and%20therapeutic%20interventions&amp;author=Z%20Chen&amp;volume=8&amp;issue=1&amp;publication_year=2023&amp;pages=70&amp;pmid=36797231&amp;doi=10.1038/s41392-023-01332-8&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR16"> <span class="label">16.</span><cite>Li B, et al. PEG-conjugated bovine haemoglobin enhances efficiency of chemotherapeutic agent doxorubicin with alleviating DOX-induced splenocardiac toxicity in the breast cancer. Artif Cells Nanomed Biotechnol. 2023;51(1):120–130. doi: 10.1080/21691401.2023.2176865.</cite> [<a href="https://doi.org/10.1080/21691401.2023.2176865" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36905212/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Cells%20Nanomed%20Biotechnol&amp;title=PEG-conjugated%20bovine%20haemoglobin%20enhances%20efficiency%20of%20chemotherapeutic%20agent%20doxorubicin%20with%20alleviating%20DOX-induced%20splenocardiac%20toxicity%20in%20the%20breast%20cancer&amp;author=B%20Li&amp;volume=51&amp;issue=1&amp;publication_year=2023&amp;pages=120-130&amp;pmid=36905212&amp;doi=10.1080/21691401.2023.2176865&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR17"> <span class="label">17.</span><cite>Luo Z, et al. Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther. 2022;7(1):218. doi: 10.1038/s41392-022-01080-1.</cite> [<a href="https://doi.org/10.1038/s41392-022-01080-1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC9261907/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35798726/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Signal%20Transduct%20Target%20Ther&amp;title=Hypoxia%20signaling%20in%20human%20health%20and%20diseases:%20implications%20and%20prospects%20for%20therapeutics&amp;author=Z%20Luo&amp;volume=7&amp;issue=1&amp;publication_year=2022&amp;pages=218&amp;pmid=35798726&amp;doi=10.1038/s41392-022-01080-1&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR18"> <span class="label">18.</span><cite>Cherian VT. Physiological functions of blood. In: Liu H, Kaye AD, Jahr JS, editors. Blood substitutes and oxygen biotherapeutics. Cham: Springer International Publishing; 2022. pp. 33–43.</cite> [<a href="https://scholar.google.com/scholar_lookup?title=Blood%20substitutes%20and%20oxygen%20biotherapeutics&amp;author=VT%20Cherian&amp;publication_year=2022&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR19"> <span class="label">19.</span><cite>Cohn EJ. Blood: a brief survey of its chemical components and of their natural functions and clinical uses. Blood. 2015;126(24):2531. doi: 10.1182/blood-2015-10-676718.</cite> [<a href="https://doi.org/10.1182/blood-2015-10-676718" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26635404/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Blood&amp;title=Blood:%20a%20brief%20survey%20of%20its%20chemical%20components%20and%20of%20their%20natural%20functions%20and%20clinical%20uses&amp;author=EJ%20Cohn&amp;volume=126&amp;issue=24&amp;publication_year=2015&amp;pages=2531&amp;pmid=26635404&amp;doi=10.1182/blood-2015-10-676718&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR20"> <span class="label">20.</span><cite>Mohanto N, Park YJ, Jee JP. Current perspectives of artificial oxygen carriers as red blood cell substitutes: a review of old to cutting-edge technologies using in vitro and in vivo assessments. J Pharm Investig. 2023;53(1):153–190. doi: 10.1007/s40005-022-00590-y.</cite> [<a href="https://doi.org/10.1007/s40005-022-00590-y" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC9344254/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35935469/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Pharm%20Investig&amp;title=Current%20perspectives%20of%20artificial%20oxygen%20carriers%20as%20red%20blood%20cell%20substitutes:%20a%20review%20of%20old%20to%20cutting-edge%20technologies%20using%20in%20vitro%20and%20in%20vivo%20assessments&amp;author=N%20Mohanto&amp;author=YJ%20Park&amp;author=JP%20Jee&amp;volume=53&amp;issue=1&amp;publication_year=2023&amp;pages=153-190&amp;pmid=35935469&amp;doi=10.1007/s40005-022-00590-y&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR21"> <span class="label">21.</span><cite>Ahmed MH, Ghatge MS, Safo MK. Hemoglobin: structure, function and allostery. In: Hoeger U, Harris JR, editors. Vertebrate and invertebrate respiratory proteins, lipoproteins and other body fluid proteins. Cham: Springer International Publishing; 2020. pp. 345–382.</cite> [<a href="https://scholar.google.com/scholar_lookup?title=Vertebrate%20and%20invertebrate%20respiratory%20proteins,%20lipoproteins%20and%20other%20body%20fluid%20proteins&amp;author=MH%20Ahmed&amp;author=MS%20Ghatge&amp;author=MK%20Safo&amp;publication_year=2020&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR22"> <span class="label">22.</span><cite>Shu P, et al. Cefmetazole sodium as an allosteric effector that regulates the oxygen supply efficiency of adult hemoglobin. J Biomol Struct Dyn. 2023 doi: 10.1080/07391102.2023.2245043.</cite> [<a href="https://doi.org/10.1080/07391102.2023.2245043" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37555593/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Biomol%20Struct%20Dyn&amp;title=Cefmetazole%20sodium%20as%20an%20allosteric%20effector%20that%20regulates%20the%20oxygen%20supply%20efficiency%20of%20adult%20hemoglobin&amp;author=P%20Shu&amp;publication_year=2023&amp;pmid=37555593&amp;doi=10.1080/07391102.2023.2245043&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR23"> <span class="label">23.</span><cite>Yu S. Hemoglobin: physiology and hemoglobinopathy. In: Liu H, Kaye AD, Jahr JS, editors. Blood substitutes and oxygen biotherapeutics. Cham: Springer International Publishing; 2022. pp. 45–51.</cite> [<a href="https://scholar.google.com/scholar_lookup?title=Blood%20substitutes%20and%20oxygen%20biotherapeutics&amp;author=S%20Yu&amp;publication_year=2022&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR24"> <span class="label">24.</span><cite>Liu WL, et al. Aggressive man-made red blood cells for hypoxia-resistant photodynamic therapy. Adv Mater. 2018;30(35):e1802006. doi: 10.1002/adma.201802006.</cite> [<a href="https://doi.org/10.1002/adma.201802006" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30015997/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv%20Mater&amp;title=Aggressive%20man-made%20red%20blood%20cells%20for%20hypoxia-resistant%20photodynamic%20therapy&amp;author=WL%20Liu&amp;volume=30&amp;issue=35&amp;publication_year=2018&amp;pages=e1802006&amp;pmid=30015997&amp;doi=10.1002/adma.201802006&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR25"> <span class="label">25.</span><cite>Zujalovic B, Hafner S. Damage control resuscitation: identification and treatment of life-threatening hemorrhage. Anesth Analg. 2020;130(5):e141–e142. doi: 10.1213/ANE.0000000000004724.</cite> [<a href="https://doi.org/10.1213/ANE.0000000000004724" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Anesth%20Analg&amp;title=Damage%20control%20resuscitation:%20identification%20and%20treatment%20of%20life-threatening%20hemorrhage&amp;author=B%20Zujalovic&amp;author=S%20Hafner&amp;volume=130&amp;issue=5&amp;publication_year=2020&amp;pages=e141-e142&amp;doi=10.1213/ANE.0000000000004724&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR26"> <span class="label">26.</span><cite>Carreau A, et al. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med. 2011;15(6):1239–1253. doi: 10.1111/j.1582-4934.2011.01258.x.</cite> [<a href="https://doi.org/10.1111/j.1582-4934.2011.01258.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4373326/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21251211/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Cell%20Mol%20Med&amp;title=Why%20is%20the%20partial%20oxygen%20pressure%20of%20human%20tissues%20a%20crucial%20parameter?%20Small%20molecules%20and%20hypoxia&amp;author=A%20Carreau&amp;volume=15&amp;issue=6&amp;publication_year=2011&amp;pages=1239-1253&amp;pmid=21251211&amp;doi=10.1111/j.1582-4934.2011.01258.x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR27"> <span class="label">27.</span><cite>Haque N, et al. Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. Sci World J. 2013;2013:632972. doi: 10.1155/2013/632972.</cite> [<a href="https://doi.org/10.1155/2013/632972" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3771429/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24068884/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci%20World%20J&amp;title=Hypoxic%20culture%20conditions%20as%20a%20solution%20for%20mesenchymal%20stem%20cell%20based%20regenerative%20therapy&amp;author=N%20Haque&amp;volume=2013&amp;publication_year=2013&amp;pages=632972&amp;pmid=24068884&amp;doi=10.1155/2013/632972&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR28"> <span class="label">28.</span><cite>Khan F, Singh K, Friedman MT. Artificial blood: the history and current perspectives of blood substitutes. Discoveries (Craiova) 2020;8(1):e104. doi: 10.15190/d.2020.1.</cite> [<a href="https://doi.org/10.15190/d.2020.1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7086064/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32309621/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Discoveries%20(Craiova)&amp;title=Artificial%20blood:%20the%20history%20and%20current%20perspectives%20of%20blood%20substitutes&amp;author=F%20Khan&amp;author=K%20Singh&amp;author=MT%20Friedman&amp;volume=8&amp;issue=1&amp;publication_year=2020&amp;pages=e104&amp;pmid=32309621&amp;doi=10.15190/d.2020.1&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR29"> <span class="label">29.</span><cite>Bialas C, Moser C, Sims CA. Artificial oxygen carriers and red blood cell substitutes: A historic overview and recent developments toward military and clinical relevance. J Trauma Acute Care Surg. 2019;87(1S):S48–s58. doi: 10.1097/TA.0000000000002250.</cite> [<a href="https://doi.org/10.1097/TA.0000000000002250" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31246907/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Trauma%20Acute%20Care%20Surg&amp;title=Artificial%20oxygen%20carriers%20and%20red%20blood%20cell%20substitutes:%20A%20historic%20overview%20and%20recent%20developments%20toward%20military%20and%20clinical%20relevance&amp;author=C%20Bialas&amp;author=C%20Moser&amp;author=CA%20Sims&amp;volume=87&amp;issue=1S&amp;publication_year=2019&amp;pages=S48-s58&amp;pmid=31246907&amp;doi=10.1097/TA.0000000000002250&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR30"> <span class="label">30.</span><cite>Stanworth SJ, et al. Effects of the COVID-19 pandemic on supply and use of blood for transfusion. Lancet Haematol. 2020;7(10):e756–e764. doi: 10.1016/S2352-3026(20)30186-1.</cite> [<a href="https://doi.org/10.1016/S2352-3026(20)30186-1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7333996/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32628911/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Lancet%20Haematol&amp;title=Effects%20of%20the%20COVID-19%20pandemic%20on%20supply%20and%20use%20of%20blood%20for%20transfusion&amp;author=SJ%20Stanworth&amp;volume=7&amp;issue=10&amp;publication_year=2020&amp;pages=e756-e764&amp;pmid=32628911&amp;doi=10.1016/S2352-3026(20)30186-1&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR31"> <span class="label">31.</span><cite>Coll-Satue C, et al. Stepping stones to the future of haemoglobin-based blood products: clinical, preclinical and innovative examples. Biomater Sci. 2021;9(4):1135–1152. doi: 10.1039/D0BM01767A.</cite> [<a href="https://doi.org/10.1039/D0BM01767A" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33350411/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomater%20Sci&amp;title=Stepping%20stones%20to%20the%20future%20of%20haemoglobin-based%20blood%20products:%20clinical,%20preclinical%20and%20innovative%20examples&amp;author=C%20Coll-Satue&amp;volume=9&amp;issue=4&amp;publication_year=2021&amp;pages=1135-1152&amp;pmid=33350411&amp;doi=10.1039/D0BM01767A&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR32"> <span class="label">32.</span><cite>Dumont LJ, et al. Overnight, room temperature hold of whole blood followed by 42-day storage of red blood cells in additive solution-7. Transfusion. 2015;55(3):485–490. doi: 10.1111/trf.12868.</cite> [<a href="https://doi.org/10.1111/trf.12868" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25234026/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Transfusion&amp;title=Overnight,%20room%20temperature%20hold%20of%20whole%20blood%20followed%20by%2042-day%20storage%20of%20red%20blood%20cells%20in%20additive%20solution-7&amp;author=LJ%20Dumont&amp;volume=55&amp;issue=3&amp;publication_year=2015&amp;pages=485-490&amp;pmid=25234026&amp;doi=10.1111/trf.12868&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR33"> <span class="label">33.</span><cite>Brand A. Immunological complications of blood transfusions. Presse Med. 2016;45(7–8 Pt 2):e313–e324. doi: 10.1016/j.lpm.2016.06.024.</cite> [<a href="https://doi.org/10.1016/j.lpm.2016.06.024" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27499223/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Presse%20Med&amp;title=Immunological%20complications%20of%20blood%20transfusions&amp;author=A%20Brand&amp;volume=45&amp;issue=7%E2%80%938%20Pt%202&amp;publication_year=2016&amp;pages=e313-e324&amp;pmid=27499223&amp;doi=10.1016/j.lpm.2016.06.024&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR34"> <span class="label">34.</span><cite>Xia S, et al. Addition of sodium pyruvate to stored red blood cells attenuates liver injury in a murine transfusion model. Mediators Inflamm. 2016;2016:3549207. doi: 10.1155/2016/3549207.</cite> [<a href="https://doi.org/10.1155/2016/3549207" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5056311/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27746589/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mediators%20Inflamm&amp;title=Addition%20of%20sodium%20pyruvate%20to%20stored%20red%20blood%20cells%20attenuates%20liver%20injury%20in%20a%20murine%20transfusion%20model&amp;author=S%20Xia&amp;volume=2016&amp;publication_year=2016&amp;pages=3549207&amp;pmid=27746589&amp;doi=10.1155/2016/3549207&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR35"> <span class="label">35.</span><cite>Charbe NB, et al. A new era in oxygen therapeutics? From perfluorocarbon systems to haemoglobin-based oxygen carriers. Blood Rev. 2022;54:100927. doi: 10.1016/j.blre.2022.100927.</cite> [<a href="https://doi.org/10.1016/j.blre.2022.100927" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35094845/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Blood%20Rev&amp;title=A%20new%20era%20in%20oxygen%20therapeutics?%20From%20perfluorocarbon%20systems%20to%20haemoglobin-based%20oxygen%20carriers&amp;author=NB%20Charbe&amp;volume=54&amp;publication_year=2022&amp;pages=100927&amp;pmid=35094845&amp;doi=10.1016/j.blre.2022.100927&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR36"> <span class="label">36.</span><cite>Rangayasami A, et al. Influence of nanotechnology to combat against COVID-19 for global health emergency: a review. Sensors International. 2021;2:100079. doi: 10.1016/j.sintl.2020.100079.</cite> [<a href="https://doi.org/10.1016/j.sintl.2020.100079" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7836225/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34766049/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sensors%20International&amp;title=Influence%20of%20nanotechnology%20to%20combat%20against%20COVID-19%20for%20global%20health%20emergency:%20a%20review&amp;author=A%20Rangayasami&amp;volume=2&amp;publication_year=2021&amp;pages=100079&amp;pmid=34766049&amp;doi=10.1016/j.sintl.2020.100079&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR37"> <span class="label">37.</span><cite>Berg L, et al. Obstetric outcomes in Jehovah's Witnesses: case series over nine years in a London teaching hospital. Arch Gynecol Obstet. 2023 doi: 10.1007/s00404-023-06940-x.</cite> [<a href="https://doi.org/10.1007/s00404-023-06940-x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36735030/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Arch%20Gynecol%20Obstet&amp;title=Obstetric%20outcomes%20in%20Jehovah's%20Witnesses:%20case%20series%20over%20nine%20years%20in%20a%20London%20teaching%20hospital&amp;author=L%20Berg&amp;publication_year=2023&amp;pmid=36735030&amp;doi=10.1007/s00404-023-06940-x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR38"> <span class="label">38.</span><cite>Naicker YD, Ahmed N, Davids R. Damage control surgery of the critical Jehovah's Witness patient—a narrative review. S Afr J Surg. 2023;61(1):39–44. doi: 10.36303/SAJS.3874.</cite> [<a href="https://doi.org/10.36303/SAJS.3874" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37052274/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=S%20Afr%20J%20Surg&amp;title=Damage%20control%20surgery%20of%20the%20critical%20Jehovah's%20Witness%20patient%E2%80%94a%20narrative%20review&amp;author=YD%20Naicker&amp;author=N%20Ahmed&amp;author=R%20Davids&amp;volume=61&amp;issue=1&amp;publication_year=2023&amp;pages=39-44&amp;pmid=37052274&amp;doi=10.36303/SAJS.3874&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR39"> <span class="label">39.</span><cite>Liu H, et al. Classifications of blood substitutes. In: Liu H, Kaye AD, Jahr JS, et al., editors. Blood substitutes and oxygen biotherapeutics. Cham: Springer International Publishing; 2022. pp. 119–129.</cite> [<a href="https://scholar.google.com/scholar_lookup?title=Blood%20substitutes%20and%20oxygen%20biotherapeutics&amp;author=H%20Liu&amp;publication_year=2022&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR40"> <span class="label">40.</span><cite>Jahr JS, et al. Blood substitutes and oxygen therapeutics: a review. Anesth Analg. 2021;132(1):119–129. doi: 10.1213/ANE.0000000000003957.</cite> [<a href="https://doi.org/10.1213/ANE.0000000000003957" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30925560/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Anesth%20Analg&amp;title=Blood%20substitutes%20and%20oxygen%20therapeutics:%20a%20review&amp;author=JS%20Jahr&amp;volume=132&amp;issue=1&amp;publication_year=2021&amp;pages=119-129&amp;pmid=30925560&amp;doi=10.1213/ANE.0000000000003957&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR41"> <span class="label">41.</span><cite>Wu L, et al. Perfluorocarbons-based (19)F magnetic resonance imaging in biomedicine. Int J Nanomed. 2020;15:7377–7395. doi: 10.2147/IJN.S255084.</cite> [<a href="https://doi.org/10.2147/IJN.S255084" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7537992/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33061385/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Int%20J%20Nanomed&amp;title=Perfluorocarbons-based%20(19)F%20magnetic%20resonance%20imaging%20in%20biomedicine&amp;author=L%20Wu&amp;volume=15&amp;publication_year=2020&amp;pages=7377-7395&amp;pmid=33061385&amp;doi=10.2147/IJN.S255084&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR42"> <span class="label">42.</span><cite>Castro CI, Briceno JC. Perfluorocarbon-based oxygen carriers: review of products and trials. Artif Organs. 2010;34(8):622–634. doi: 10.1111/j.1525-1594.2009.00944.x.</cite> [<a href="https://doi.org/10.1111/j.1525-1594.2009.00944.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20698841/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Organs&amp;title=Perfluorocarbon-based%20oxygen%20carriers:%20review%20of%20products%20and%20trials&amp;author=CI%20Castro&amp;author=JC%20Briceno&amp;volume=34&amp;issue=8&amp;publication_year=2010&amp;pages=622-634&amp;pmid=20698841&amp;doi=10.1111/j.1525-1594.2009.00944.x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR43"> <span class="label">43.</span><cite>Park KM, Gerecht S. Hypoxia-inducible hydrogels. Nat Commun. 2014;5:4075. doi: 10.1038/ncomms5075.</cite> [<a href="https://doi.org/10.1038/ncomms5075" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4161608/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24909742/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Commun&amp;title=Hypoxia-inducible%20hydrogels&amp;author=KM%20Park&amp;author=S%20Gerecht&amp;volume=5&amp;publication_year=2014&amp;pages=4075&amp;pmid=24909742&amp;doi=10.1038/ncomms5075&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR44"> <span class="label">44.</span><cite>Spahn DR, Kocian R. Artificial O2 carriers: status in 2005. Curr Pharm Des. 2005;11(31):4099–4114. doi: 10.2174/138161205774913354.</cite> [<a href="https://doi.org/10.2174/138161205774913354" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16378514/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Curr%20Pharm%20Des&amp;title=Artificial%20O2%20carriers:%20status%20in%202005&amp;author=DR%20Spahn&amp;author=R%20Kocian&amp;volume=11&amp;issue=31&amp;publication_year=2005&amp;pages=4099-4114&amp;pmid=16378514&amp;doi=10.2174/138161205774913354&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR45"> <span class="label">45.</span><cite>Chen L, Yang Z, Liu H. Hemoglobin-based oxygen carriers: where are we now in 2023? Med (Kaunas) 2023 doi: 10.3390/medicina59020396.</cite> [<a href="https://doi.org/10.3390/medicina59020396" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC9962799/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36837597/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Med%20(Kaunas)&amp;title=Hemoglobin-based%20oxygen%20carriers:%20where%20are%20we%20now%20in%202023?&amp;author=L%20Chen&amp;author=Z%20Yang&amp;author=H%20Liu&amp;publication_year=2023&amp;pmid=36837597&amp;doi=10.3390/medicina59020396&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR46"> <span class="label">46.</span><cite>Mer M, et al. Hemoglobin glutamer-250 (bovine) in South Africa: consensus usage guidelines from clinician experts who have treated patients. Transfusion. 2016;56(10):2631–2636. doi: 10.1111/trf.13726.</cite> [<a href="https://doi.org/10.1111/trf.13726" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27658499/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Transfusion&amp;title=Hemoglobin%20glutamer-250%20(bovine)%20in%20South%20Africa:%20consensus%20usage%20guidelines%20from%20clinician%20experts%20who%20have%20treated%20patients&amp;author=M%20Mer&amp;volume=56&amp;issue=10&amp;publication_year=2016&amp;pages=2631-2636&amp;pmid=27658499&amp;doi=10.1111/trf.13726&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR47"> <span class="label">47.</span><cite>Cao M, et al. New applications of HBOC-201: a 25-year review of the literature. Front Med (Lausanne) 2021;8:794561. doi: 10.3389/fmed.2021.794561.</cite> [<a href="https://doi.org/10.3389/fmed.2021.794561" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8692657/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34957164/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Med%20(Lausanne)&amp;title=New%20applications%20of%20HBOC-201:%20a%2025-year%20review%20of%20the%20literature&amp;author=M%20Cao&amp;volume=8&amp;publication_year=2021&amp;pages=794561&amp;pmid=34957164&amp;doi=10.3389/fmed.2021.794561&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR48"> <span class="label">48.</span><cite>Romito BT, et al. The effect of SANGUINATE(®) (PEGylated carboxyhemoglobin bovine) on cardiopulmonary bypass functionality using a bovine whole blood model of normovolemic hemodilution. Perfusion. 2020;35(1):19–25. doi: 10.1177/0267659119850681.</cite> [<a href="https://doi.org/10.1177/0267659119850681" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31144581/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Perfusion&amp;title=The%20effect%20of%20SANGUINATE(%C2%AE)%20(PEGylated%20carboxyhemoglobin%20bovine)%20on%20cardiopulmonary%20bypass%20functionality%20using%20a%20bovine%20whole%20blood%20model%20of%20normovolemic%20hemodilution&amp;author=BT%20Romito&amp;volume=35&amp;issue=1&amp;publication_year=2020&amp;pages=19-25&amp;pmid=31144581&amp;doi=10.1177/0267659119850681&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR49"> <span class="label">49.</span><cite>Marrazzo F, et al. Inhaled nitric oxide prevents systemic and pulmonary vasoconstriction due to hemoglobin-based oxygen carrier infusion: A case report. J Crit Care. 2019;51:213–216. doi: 10.1016/j.jcrc.2018.04.008.</cite> [<a href="https://doi.org/10.1016/j.jcrc.2018.04.008" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC10150649/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30709560/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Crit%20Care&amp;title=Inhaled%20nitric%20oxide%20prevents%20systemic%20and%20pulmonary%20vasoconstriction%20due%20to%20hemoglobin-based%20oxygen%20carrier%20infusion:%20A%20case%20report&amp;author=F%20Marrazzo&amp;volume=51&amp;publication_year=2019&amp;pages=213-216&amp;pmid=30709560&amp;doi=10.1016/j.jcrc.2018.04.008&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR50"> <span class="label">50.</span><cite>Wang Y, et al. Structural, functional and physiochemical properties of dextran-bovine hemoglobin conjugate as a hemoglobin-based oxygen carrier. Process Biochem. 2017;60:67–73. doi: 10.1016/j.procbio.2017.05.021.</cite> [<a href="https://doi.org/10.1016/j.procbio.2017.05.021" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Process%20Biochem&amp;title=Structural,%20functional%20and%20physiochemical%20properties%20of%20dextran-bovine%20hemoglobin%20conjugate%20as%20a%20hemoglobin-based%20oxygen%20carrier&amp;author=Y%20Wang&amp;volume=60&amp;publication_year=2017&amp;pages=67-73&amp;doi=10.1016/j.procbio.2017.05.021&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR51"> <span class="label">51.</span><cite>Huo S, et al. Ferrous hemoglobin and hemoglobin-based oxygen carriers acting as a peroxidase can inhibit oxidative damage to endothelial cells caused by hydrogen peroxide. Artif Organs. 2021;45(10):1229–1239. doi: 10.1111/aor.14009.</cite> [<a href="https://doi.org/10.1111/aor.14009" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34101875/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Organs&amp;title=Ferrous%20hemoglobin%20and%20hemoglobin-based%20oxygen%20carriers%20acting%20as%20a%20peroxidase%20can%20inhibit%20oxidative%20damage%20to%20endothelial%20cells%20caused%20by%20hydrogen%20peroxide&amp;author=S%20Huo&amp;volume=45&amp;issue=10&amp;publication_year=2021&amp;pages=1229-1239&amp;pmid=34101875&amp;doi=10.1111/aor.14009&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR52"> <span class="label">52.</span><cite>Li T, Jing X, Huang Y. Polymer/hemoglobin assemblies: biodegradable oxygen carriers for artificial red blood cells. Macromol Biosci. 2011;11(7):865–875. doi: 10.1002/mabi.201000469.</cite> [<a href="https://doi.org/10.1002/mabi.201000469" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21312333/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Macromol%20Biosci&amp;title=Polymer/hemoglobin%20assemblies:%20biodegradable%20oxygen%20carriers%20for%20artificial%20red%20blood%20cells&amp;author=T%20Li&amp;author=X%20Jing&amp;author=Y%20Huang&amp;volume=11&amp;issue=7&amp;publication_year=2011&amp;pages=865-875&amp;pmid=21312333&amp;doi=10.1002/mabi.201000469&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR53"> <span class="label">53.</span><cite>Moradi S, Jahanian-Najafabadi A, Roudkenar MH. Artificial blood substitutes: first steps on the long route to clinical utility. Clin Med Insights Blood Disord. 2016;9:33–41. doi: 10.4137/CMBD.S38461.</cite> [<a href="https://doi.org/10.4137/CMBD.S38461" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5084831/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27812292/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin%20Med%20Insights%20Blood%20Disord&amp;title=Artificial%20blood%20substitutes:%20first%20steps%20on%20the%20long%20route%20to%20clinical%20utility&amp;author=S%20Moradi&amp;author=A%20Jahanian-Najafabadi&amp;author=MH%20Roudkenar&amp;volume=9&amp;publication_year=2016&amp;pages=33-41&amp;pmid=27812292&amp;doi=10.4137/CMBD.S38461&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR54"> <span class="label">54.</span><cite>Sen Gupta A. Hemoglobin-based oxygen carriers: current state-of-the-art and novel molecules. Shock. 2019;52(1S):70–83. doi: 10.1097/SHK.0000000000001009.</cite> [<a href="https://doi.org/10.1097/SHK.0000000000001009" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6874912/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31513123/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Shock&amp;title=Hemoglobin-based%20oxygen%20carriers:%20current%20state-of-the-art%20and%20novel%20molecules&amp;author=A%20Sen%20Gupta&amp;volume=52&amp;issue=1S&amp;publication_year=2019&amp;pages=70-83&amp;pmid=31513123&amp;doi=10.1097/SHK.0000000000001009&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR55"> <span class="label">55.</span><cite>Wang Y, et al. A PEGylated bovine hemoglobin as a potent hemoglobin-based oxygen carrier. Biotechnol Prog. 2017;33(1):252–260. doi: 10.1002/btpr.2380.</cite> [<a href="https://doi.org/10.1002/btpr.2380" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27696787/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biotechnol%20Prog&amp;title=A%20PEGylated%20bovine%20hemoglobin%20as%20a%20potent%20hemoglobin-based%20oxygen%20carrier&amp;author=Y%20Wang&amp;volume=33&amp;issue=1&amp;publication_year=2017&amp;pages=252-260&amp;pmid=27696787&amp;doi=10.1002/btpr.2380&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR56"> <span class="label">56.</span><cite>Bian Y, Chang TM. A novel nanobiotherapeutic poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] with no cardiac toxicity for the resuscitation of a rat model with 90 minutes of sustained severe hemorrhagic shock with loss of 2/3 blood volume. Artif Cells Nanomed Biotechnol. 2015;43(1):1–9. doi: 10.3109/21691401.2014.964554.</cite> [<a href="https://doi.org/10.3109/21691401.2014.964554" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4268802/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25297052/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Cells%20Nanomed%20Biotechnol&amp;title=A%20novel%20nanobiotherapeutic%20poly-%5Bhemoglobin-superoxide%20dismutase-catalase-carbonic%20anhydrase%5D%20with%20no%20cardiac%20toxicity%20for%20the%20resuscitation%20of%20a%20rat%20model%20with%2090%20minutes%20of%20sustained%20severe%20hemorrhagic%20shock%20with%20loss%20of%202/3%20blood%20volume&amp;author=Y%20Bian&amp;author=TM%20Chang&amp;volume=43&amp;issue=1&amp;publication_year=2015&amp;pages=1-9&amp;pmid=25297052&amp;doi=10.3109/21691401.2014.964554&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR57"> <span class="label">57.</span><cite>Chang TM. Blood replacement with nanobiotechnologically engineered hemoglobin and hemoglobin nanocapsules. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(4):418–430. doi: 10.1002/wnan.95.</cite> [<a href="https://doi.org/10.1002/wnan.95" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3518484/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20564467/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Wiley%20Interdiscip%20Rev%20Nanomed%20Nanobiotechnol&amp;title=Blood%20replacement%20with%20nanobiotechnologically%20engineered%20hemoglobin%20and%20hemoglobin%20nanocapsules&amp;author=TM%20Chang&amp;volume=2&amp;issue=4&amp;publication_year=2010&amp;pages=418-430&amp;pmid=20564467&amp;doi=10.1002/wnan.95&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR58"> <span class="label">58.</span><cite>Bian Y, Chang TMS. Nanobiotechnological basis of an oxygen carrier with enhanced carbonic anhydrase for CO(2) transport and enhanced catalase and superoxide dismutase for antioxidant function. Front Bioeng Biotechnol. 2023;11:1188399. doi: 10.3389/fbioe.2023.1188399.</cite> [<a href="https://doi.org/10.3389/fbioe.2023.1188399" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC10140409/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37122869/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Bioeng%20Biotechnol&amp;title=Nanobiotechnological%20basis%20of%20an%20oxygen%20carrier%20with%20enhanced%20carbonic%20anhydrase%20for%20CO(2)%20transport%20and%20enhanced%20catalase%20and%20superoxide%20dismutase%20for%20antioxidant%20function&amp;author=Y%20Bian&amp;author=TMS%20Chang&amp;volume=11&amp;publication_year=2023&amp;pages=1188399&amp;pmid=37122869&amp;doi=10.3389/fbioe.2023.1188399&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR59"> <span class="label">59.</span><cite>Mitchell MJ, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi: 10.1038/s41573-020-0090-8.</cite> [<a href="https://doi.org/10.1038/s41573-020-0090-8" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7717100/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33277608/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Drug%20Discov&amp;title=Engineering%20precision%20nanoparticles%20for%20drug%20delivery&amp;author=MJ%20Mitchell&amp;volume=20&amp;issue=2&amp;publication_year=2021&amp;pages=101-124&amp;pmid=33277608&amp;doi=10.1038/s41573-020-0090-8&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR60"> <span class="label">60.</span><cite>Bäumler H, Xiong Y, Georgieva R. Nanotechnology-based oxygen and drug carriers. In: Liu H, Kaye AD, Jahr JS, editors. Blood substitutes and oxygen biotherapeutics. Cham: Springer International Publishing; 2022. pp. 169–173.</cite> [<a href="https://scholar.google.com/scholar_lookup?title=Blood%20substitutes%20and%20oxygen%20biotherapeutics&amp;author=H%20B%C3%A4umler&amp;author=Y%20Xiong&amp;author=R%20Georgieva&amp;publication_year=2022&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR61"> <span class="label">61.</span><cite>Modery-Pawlowski CL, et al. Synthetic approaches to RBC mimicry and oxygen carrier systems. Biomacromol. 2013;14(4):939–948. doi: 10.1021/bm400074t.</cite> [<a href="https://doi.org/10.1021/bm400074t" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23452431/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomacromol&amp;title=Synthetic%20approaches%20to%20RBC%20mimicry%20and%20oxygen%20carrier%20systems&amp;author=CL%20Modery-Pawlowski&amp;volume=14&amp;issue=4&amp;publication_year=2013&amp;pages=939-948&amp;pmid=23452431&amp;doi=10.1021/bm400074t&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR62"> <span class="label">62.</span><cite>Liu X, et al. Low-fouling electrosprayed hemoglobin nanoparticles with antioxidant protection as promising oxygen carriers. Macromol Biosci. 2020;20(2):e1900293. doi: 10.1002/mabi.201900293.</cite> [<a href="https://doi.org/10.1002/mabi.201900293" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31846219/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Macromol%20Biosci&amp;title=Low-fouling%20electrosprayed%20hemoglobin%20nanoparticles%20with%20antioxidant%20protection%20as%20promising%20oxygen%20carriers&amp;author=X%20Liu&amp;volume=20&amp;issue=2&amp;publication_year=2020&amp;pages=e1900293&amp;pmid=31846219&amp;doi=10.1002/mabi.201900293&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR63"> <span class="label">63.</span><cite>Nadimifar M, et al. Synthesis of bioactive hemoglobin-based oxygen carrier nanoparticles via metal-phenolic complexation. Biomater Adv. 2024;156:213698. doi: 10.1016/j.bioadv.2023.213698.</cite> [<a href="https://doi.org/10.1016/j.bioadv.2023.213698" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/38006785/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomater%20Adv&amp;title=Synthesis%20of%20bioactive%20hemoglobin-based%20oxygen%20carrier%20nanoparticles%20via%20metal-phenolic%20complexation&amp;author=M%20Nadimifar&amp;volume=156&amp;publication_year=2024&amp;pages=213698&amp;pmid=38006785&amp;doi=10.1016/j.bioadv.2023.213698&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR64"> <span class="label">64.</span><cite>Chang TMS. A brief history of the development of nanobiotechnology-based blood substitutes. In: Liu H, Kaye AD, Jahr JS, editors. Blood substitutes and oxygen biotherapeutics. Cham: Springer International Publishing; 2022. pp. 99–115.</cite> [<a href="https://scholar.google.com/scholar_lookup?title=Blood%20substitutes%20and%20oxygen%20biotherapeutics&amp;author=TMS%20Chang&amp;publication_year=2022&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR65"> <span class="label">65.</span><cite>Matsuhira T, Sakai H. Artificial oxygen carriers, from nanometer- to micrometer-sized particles, made of hemoglobin composites substituting for red blood cells. Particuology. 2022;64:43–55. doi: 10.1016/j.partic.2021.08.010.</cite> [<a href="https://doi.org/10.1016/j.partic.2021.08.010" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Particuology&amp;title=Artificial%20oxygen%20carriers,%20from%20nanometer-%20to%20micrometer-sized%20particles,%20made%20of%20hemoglobin%20composites%20substituting%20for%20red%20blood%20cells&amp;author=T%20Matsuhira&amp;author=H%20Sakai&amp;volume=64&amp;publication_year=2022&amp;pages=43-55&amp;doi=10.1016/j.partic.2021.08.010&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR66"> <span class="label">66.</span><cite>Jia Y, Duan L, Li J. Hemoglobin-based nanoarchitectonic assemblies as oxygen carriers. Adv Mater. 2016;28(6):1312–1318. doi: 10.1002/adma.201502581.</cite> [<a href="https://doi.org/10.1002/adma.201502581" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26479864/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv%20Mater&amp;title=Hemoglobin-based%20nanoarchitectonic%20assemblies%20as%20oxygen%20carriers&amp;author=Y%20Jia&amp;author=L%20Duan&amp;author=J%20Li&amp;volume=28&amp;issue=6&amp;publication_year=2016&amp;pages=1312-1318&amp;pmid=26479864&amp;doi=10.1002/adma.201502581&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR67"> <span class="label">67.</span><cite>Tao Z, Ghoroghchian PP. Microparticle, nanoparticle, and stem cell-based oxygen carriers as advanced blood substitutes. Trends Biotechnol. 2014;32(9):466–473. doi: 10.1016/j.tibtech.2014.05.001.</cite> [<a href="https://doi.org/10.1016/j.tibtech.2014.05.001" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24929580/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Trends%20Biotechnol&amp;title=Microparticle,%20nanoparticle,%20and%20stem%20cell-based%20oxygen%20carriers%20as%20advanced%20blood%20substitutes&amp;author=Z%20Tao&amp;author=PP%20Ghoroghchian&amp;volume=32&amp;issue=9&amp;publication_year=2014&amp;pages=466-473&amp;pmid=24929580&amp;doi=10.1016/j.tibtech.2014.05.001&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR68"> <span class="label">68.</span><cite>Jansman MMT, Hosta-Rigau L. Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers. Adv Colloid Interface Sci. 2018;260:65–84. doi: 10.1016/j.cis.2018.08.006.</cite> [<a href="https://doi.org/10.1016/j.cis.2018.08.006" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30177214/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv%20Colloid%20Interface%20Sci&amp;title=Recent%20and%20prominent%20examples%20of%20nano-%20and%20microarchitectures%20as%20hemoglobin-based%20oxygen%20carriers&amp;author=MMT%20Jansman&amp;author=L%20Hosta-Rigau&amp;volume=260&amp;publication_year=2018&amp;pages=65-84&amp;pmid=30177214&amp;doi=10.1016/j.cis.2018.08.006&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR69"> <span class="label">69.</span><cite>Kaneda S, et al. Liposome-encapsulated hemoglobin, TRM-645: current status of the development and important issues for clinical application. Artif Organs. 2009;33(2):146–152. doi: 10.1111/j.1525-1594.2008.00699.x.</cite> [<a href="https://doi.org/10.1111/j.1525-1594.2008.00699.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19178459/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Organs&amp;title=Liposome-encapsulated%20hemoglobin,%20TRM-645:%20current%20status%20of%20the%20development%20and%20important%20issues%20for%20clinical%20application&amp;author=S%20Kaneda&amp;volume=33&amp;issue=2&amp;publication_year=2009&amp;pages=146-152&amp;pmid=19178459&amp;doi=10.1111/j.1525-1594.2008.00699.x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR70"> <span class="label">70.</span><cite>Lu M, et al. Preparation, characterization and in vivo investigation of blood-compatible hemoglobin-loaded nanoparticles as oxygen carriers. Colloid Surf B Biointerfaces. 2016;139:171–179. doi: 10.1016/j.colsurfb.2015.12.012.</cite> [<a href="https://doi.org/10.1016/j.colsurfb.2015.12.012" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26708138/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Colloid%20Surf%20B%20Biointerfaces&amp;title=Preparation,%20characterization%20and%20in%20vivo%20investigation%20of%20blood-compatible%20hemoglobin-loaded%20nanoparticles%20as%20oxygen%20carriers&amp;author=M%20Lu&amp;volume=139&amp;publication_year=2016&amp;pages=171-179&amp;pmid=26708138&amp;doi=10.1016/j.colsurfb.2015.12.012&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR71"> <span class="label">71.</span><cite>Xu X, et al. A photosensitizer loaded hemoglobin-polymer conjugate as a nanocarrier for enhanced photodynamic therapy. J Mater Chem B. 2018;6(12):1825–1833. doi: 10.1039/C7TB03109B.</cite> [<a href="https://doi.org/10.1039/C7TB03109B" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32254254/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Mater%20Chem%20B&amp;title=A%20photosensitizer%20loaded%20hemoglobin-polymer%20conjugate%20as%20a%20nanocarrier%20for%20enhanced%20photodynamic%20therapy&amp;author=X%20Xu&amp;volume=6&amp;issue=12&amp;publication_year=2018&amp;pages=1825-1833&amp;pmid=32254254&amp;doi=10.1039/C7TB03109B&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR72"> <span class="label">72.</span><cite>Yuan M, et al. A robust oxygen-carrying hemoglobin-based natural sonosensitizer for sonodynamic cancer therapy. Nano Lett. 2021;21(14):6042–6050. doi: 10.1021/acs.nanolett.1c01220.</cite> [<a href="https://doi.org/10.1021/acs.nanolett.1c01220" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34254814/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nano%20Lett&amp;title=A%20robust%20oxygen-carrying%20hemoglobin-based%20natural%20sonosensitizer%20for%20sonodynamic%20cancer%20therapy&amp;author=M%20Yuan&amp;volume=21&amp;issue=14&amp;publication_year=2021&amp;pages=6042-6050&amp;pmid=34254814&amp;doi=10.1021/acs.nanolett.1c01220&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR73"> <span class="label">73.</span><cite>Pozy E, Savla C, Palmer AF. Photocatalytic synthesis of a polydopamine-coated acellular mega-hemoglobin as a potential oxygen therapeutic with antioxidant properties. Biomacromol. 2023;24(5):2022–2029. doi: 10.1021/acs.biomac.2c01420.</cite> [<a href="https://doi.org/10.1021/acs.biomac.2c01420" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37027799/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomacromol&amp;title=Photocatalytic%20synthesis%20of%20a%20polydopamine-coated%20acellular%20mega-hemoglobin%20as%20a%20potential%20oxygen%20therapeutic%20with%20antioxidant%20properties&amp;author=E%20Pozy&amp;author=C%20Savla&amp;author=AF%20Palmer&amp;volume=24&amp;issue=5&amp;publication_year=2023&amp;pages=2022-2029&amp;pmid=37027799&amp;doi=10.1021/acs.biomac.2c01420&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR74"> <span class="label">74.</span><cite>Peng S, et al. Metal-organic framework encapsulating hemoglobin as a high-stable and long-circulating oxygen carriers to treat hemorrhagic shock. ACS Appl Mater Interfaces. 2019;11(39):35604–35612. doi: 10.1021/acsami.9b15037.</cite> [<a href="https://doi.org/10.1021/acsami.9b15037" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31495166/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=ACS%20Appl%20Mater%20Interfaces&amp;title=Metal-organic%20framework%20encapsulating%20hemoglobin%20as%20a%20high-stable%20and%20long-circulating%20oxygen%20carriers%20to%20treat%20hemorrhagic%20shock&amp;author=S%20Peng&amp;volume=11&amp;issue=39&amp;publication_year=2019&amp;pages=35604-35612&amp;pmid=31495166&amp;doi=10.1021/acsami.9b15037&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR75"> <span class="label">75.</span><cite>Cun X, et al. Hemoglobin-stabilized gold nanoclusters displaying oxygen transport ability, self-antioxidation, auto-fluorescence properties and long-term storage potential. RSC Adv. 2023;13(23):15540–15553. doi: 10.1039/D3RA00689A.</cite> [<a href="https://doi.org/10.1039/D3RA00689A" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC10203863/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37228685/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=RSC%20Adv&amp;title=Hemoglobin-stabilized%20gold%20nanoclusters%20displaying%20oxygen%20transport%20ability,%20self-antioxidation,%20auto-fluorescence%20properties%20and%20long-term%20storage%20potential&amp;author=X%20Cun&amp;volume=13&amp;issue=23&amp;publication_year=2023&amp;pages=15540-15553&amp;pmid=37228685&amp;doi=10.1039/D3RA00689A&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR76"> <span class="label">76.</span><cite>Tang W, et al. Red blood cell-facilitated photodynamic therapy for cancer treatment. Adv Funct Mater. 2016;26(11):1757–1768. doi: 10.1002/adfm.201504803.</cite> [<a href="https://doi.org/10.1002/adfm.201504803" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6867707/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31749670/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv%20Funct%20Mater&amp;title=Red%20blood%20cell-facilitated%20photodynamic%20therapy%20for%20cancer%20treatment&amp;author=W%20Tang&amp;volume=26&amp;issue=11&amp;publication_year=2016&amp;pages=1757-1768&amp;pmid=31749670&amp;doi=10.1002/adfm.201504803&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR77"> <span class="label">77.</span><cite>Wang Q, et al. Bioinspired polydopamine-coated hemoglobin as potential oxygen carrier with antioxidant properties. Biomacromol. 2017;18(4):1333–1341. doi: 10.1021/acs.biomac.7b00077.</cite> [<a href="https://doi.org/10.1021/acs.biomac.7b00077" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28323418/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomacromol&amp;title=Bioinspired%20polydopamine-coated%20hemoglobin%20as%20potential%20oxygen%20carrier%20with%20antioxidant%20properties&amp;author=Q%20Wang&amp;volume=18&amp;issue=4&amp;publication_year=2017&amp;pages=1333-1341&amp;pmid=28323418&amp;doi=10.1021/acs.biomac.7b00077&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR78"> <span class="label">78.</span><cite>Hu J, et al. Polydopamine-based surface modification of hemoglobin particles for stability enhancement of oxygen carriers. J Colloid Interface Sci. 2020;571:326–336. doi: 10.1016/j.jcis.2020.03.046.</cite> [<a href="https://doi.org/10.1016/j.jcis.2020.03.046" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32208203/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Colloid%20Interface%20Sci&amp;title=Polydopamine-based%20surface%20modification%20of%20hemoglobin%20particles%20for%20stability%20enhancement%20of%20oxygen%20carriers&amp;author=J%20Hu&amp;volume=571&amp;publication_year=2020&amp;pages=326-336&amp;pmid=32208203&amp;doi=10.1016/j.jcis.2020.03.046&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR79"> <span class="label">79.</span><cite>Li Y, et al. Artificial nonenzymatic antioxidant mxene nanosheet-anchored injectable hydrogel as a mild photothermal-controlled oxygen release platform for diabetic wound healing. ACS Nano. 2022;16(5):7486–7502. doi: 10.1021/acsnano.1c10575.</cite> [<a href="https://doi.org/10.1021/acsnano.1c10575" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35533294/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=ACS%20Nano&amp;title=Artificial%20nonenzymatic%20antioxidant%20mxene%20nanosheet-anchored%20injectable%20hydrogel%20as%20a%20mild%20photothermal-controlled%20oxygen%20release%20platform%20for%20diabetic%20wound%20healing&amp;author=Y%20Li&amp;volume=16&amp;issue=5&amp;publication_year=2022&amp;pages=7486-7502&amp;pmid=35533294&amp;doi=10.1021/acsnano.1c10575&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR80"> <span class="label">80.</span><cite>Pan D, et al. Erythromer (EM), a nanoscale bio-synthetic artificial red cell: proof of concept and in vivo efficacy results. Blood. 2016;128(22):1027–1027. doi: 10.1182/blood.V128.22.1027.1027.</cite> [<a href="https://doi.org/10.1182/blood.V128.22.1027.1027" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Blood&amp;title=Erythromer%20(EM),%20a%20nanoscale%20bio-synthetic%20artificial%20red%20cell:%20proof%20of%20concept%20and%20in%20vivo%20efficacy%20results&amp;author=D%20Pan&amp;volume=128&amp;issue=22&amp;publication_year=2016&amp;pages=1027-1027&amp;doi=10.1182/blood.V128.22.1027.1027&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR81"> <span class="label">81.</span><cite>Liu P, et al. Bioinspired nanoerythrocytes for metabolic microenvironment remodeling and long-term prognosis promoting of acute ischemic stroke. Nano Today. 2023;49:101806. doi: 10.1016/j.nantod.2023.101806.</cite> [<a href="https://doi.org/10.1016/j.nantod.2023.101806" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nano%20Today&amp;title=Bioinspired%20nanoerythrocytes%20for%20metabolic%20microenvironment%20remodeling%20and%20long-term%20prognosis%20promoting%20of%20acute%20ischemic%20stroke&amp;author=P%20Liu&amp;volume=49&amp;publication_year=2023&amp;pages=101806&amp;doi=10.1016/j.nantod.2023.101806&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR82"> <span class="label">82.</span><cite>Bu H, et al. Synthesis of a hemoglobin-conjugated triblock copolymer for oxygen carrying and specific recognition of cancer cells. RSC Adv. 2017;7(76):48166–48175. doi: 10.1039/C7RA09747F.</cite> [<a href="https://doi.org/10.1039/C7RA09747F" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=RSC%20Adv&amp;title=Synthesis%20of%20a%20hemoglobin-conjugated%20triblock%20copolymer%20for%20oxygen%20carrying%20and%20specific%20recognition%20of%20cancer%20cells&amp;author=H%20Bu&amp;volume=7&amp;issue=76&amp;publication_year=2017&amp;pages=48166-48175&amp;doi=10.1039/C7RA09747F&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR83"> <span class="label">83.</span><cite>Tian H, et al. Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance. Adv Func Mater. 2017;27(38):1703197. doi: 10.1002/adfm.201703197.</cite> [<a href="https://doi.org/10.1002/adfm.201703197" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv%20Func%20Mater&amp;title=Cancer%20cell%20membrane-biomimetic%20oxygen%20nanocarrier%20for%20breaking%20hypoxia-induced%20chemoresistance&amp;author=H%20Tian&amp;volume=27&amp;issue=38&amp;publication_year=2017&amp;pages=1703197&amp;doi=10.1002/adfm.201703197&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR84"> <span class="label">84.</span><cite>Wang Y, et al. Engineering endogenous tumor-associated macrophage-targeted biomimetic nano-RBC to reprogram tumor immunosuppressive microenvironment for enhanced chemo-immunotherapy. Adv Mater. 2021;33(39):e2103497. doi: 10.1002/adma.202103497.</cite> [<a href="https://doi.org/10.1002/adma.202103497" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34387375/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv%20Mater&amp;title=Engineering%20endogenous%20tumor-associated%20macrophage-targeted%20biomimetic%20nano-RBC%20to%20reprogram%20tumor%20immunosuppressive%20microenvironment%20for%20enhanced%20chemo-immunotherapy&amp;author=Y%20Wang&amp;volume=33&amp;issue=39&amp;publication_year=2021&amp;pages=e2103497&amp;pmid=34387375&amp;doi=10.1002/adma.202103497&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR85"> <span class="label">85.</span><cite>Xia D, et al. Au-hemoglobin loaded platelet alleviating tumor hypoxia and enhancing the radiotherapy effect with low-dose X-ray. ACS Nano. 2020;14(11):15654–15668. doi: 10.1021/acsnano.0c06541.</cite> [<a href="https://doi.org/10.1021/acsnano.0c06541" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33108152/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=ACS%20Nano&amp;title=Au-hemoglobin%20loaded%20platelet%20alleviating%20tumor%20hypoxia%20and%20enhancing%20the%20radiotherapy%20effect%20with%20low-dose%20X-ray&amp;author=D%20Xia&amp;volume=14&amp;issue=11&amp;publication_year=2020&amp;pages=15654-15668&amp;pmid=33108152&amp;doi=10.1021/acsnano.0c06541&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR86"> <span class="label">86.</span><cite>Zhang X, et al. Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing. ACS Nano. 2020;14(5):5901–5908. doi: 10.1021/acsnano.0c01059.</cite> [<a href="https://doi.org/10.1021/acsnano.0c01059" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32315159/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=ACS%20Nano&amp;title=Black%20phosphorus-loaded%20separable%20microneedles%20as%20responsive%20oxygen%20delivery%20carriers%20for%20wound%20healing&amp;author=X%20Zhang&amp;volume=14&amp;issue=5&amp;publication_year=2020&amp;pages=5901-5908&amp;pmid=32315159&amp;doi=10.1021/acsnano.0c01059&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR87"> <span class="label">87.</span><cite>Munoz C, et al. Resuscitation after hemorrhagic shock in the microcirculation: targeting optimal oxygen delivery in the design of artificial blood substitutes. Front Med (Lausanne) 2020;7:585638. doi: 10.3389/fmed.2020.585638.</cite> [<a href="https://doi.org/10.3389/fmed.2020.585638" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7652927/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33195342/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Med%20(Lausanne)&amp;title=Resuscitation%20after%20hemorrhagic%20shock%20in%20the%20microcirculation:%20targeting%20optimal%20oxygen%20delivery%20in%20the%20design%20of%20artificial%20blood%20substitutes&amp;author=C%20Munoz&amp;volume=7&amp;publication_year=2020&amp;pages=585638&amp;pmid=33195342&amp;doi=10.3389/fmed.2020.585638&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR88"> <span class="label">88.</span><cite>Chen G, et al. Effects of synthetic colloids on oxidative stress and inflammatory response in hemorrhagic shock: comparison of hydroxyethyl starch 130/0.4, hydroxyethyl starch 200/0.5, and succinylated gelatin. Crit Care. 2013;17(4):R141. doi: 10.1186/cc12820.</cite> [<a href="https://doi.org/10.1186/cc12820" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4056655/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23849347/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Crit%20Care&amp;title=Effects%20of%20synthetic%20colloids%20on%20oxidative%20stress%20and%20inflammatory%20response%20in%20hemorrhagic%20shock:%20comparison%20of%20hydroxyethyl%20starch%20130/0.4,%20hydroxyethyl%20starch%20200/0.5,%20and%20succinylated%20gelatin&amp;author=G%20Chen&amp;volume=17&amp;issue=4&amp;publication_year=2013&amp;pages=R141&amp;pmid=23849347&amp;doi=10.1186/cc12820&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR89"> <span class="label">89.</span><cite>Bragin DE, et al. Addition of drag-reducing polymers to colloid resuscitation fluid enhances cerebral microcirculation and tissue oxygenation after traumatic brain injury complicated by hemorrhagic shock. Adv Exp Med Biol. 2021;1269:283–288. doi: 10.1007/978-3-030-48238-1_45.</cite> [<a href="https://doi.org/10.1007/978-3-030-48238-1_45" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC9126076/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33966231/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv%20Exp%20Med%20Biol&amp;title=Addition%20of%20drag-reducing%20polymers%20to%20colloid%20resuscitation%20fluid%20enhances%20cerebral%20microcirculation%20and%20tissue%20oxygenation%20after%20traumatic%20brain%20injury%20complicated%20by%20hemorrhagic%20shock&amp;author=DE%20Bragin&amp;volume=1269&amp;publication_year=2021&amp;pages=283-288&amp;pmid=33966231&amp;doi=10.1007/978-3-030-48238-1_45&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR90"> <span class="label">90.</span><cite>Dyer WB, et al. An ovine model of hemorrhagic shock and resuscitation, to assess recovery of tissue oxygen delivery and oxygen debt, and inform patient blood management. Shock. 2021;56(6):1080–1091. doi: 10.1097/SHK.0000000000001805.</cite> [<a href="https://doi.org/10.1097/SHK.0000000000001805" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34014886/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Shock&amp;title=An%20ovine%20model%20of%20hemorrhagic%20shock%20and%20resuscitation,%20to%20assess%20recovery%20of%20tissue%20oxygen%20delivery%20and%20oxygen%20debt,%20and%20inform%20patient%20blood%20management&amp;author=WB%20Dyer&amp;volume=56&amp;issue=6&amp;publication_year=2021&amp;pages=1080-1091&amp;pmid=34014886&amp;doi=10.1097/SHK.0000000000001805&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR91"> <span class="label">91.</span><cite>Hallisey SD, Greenwood JC. Beyond mean arterial pressure and lactate: perfusion end points for managing the shocked patient. Emerg Med Clin North Am. 2019;37(3):395–408. doi: 10.1016/j.emc.2019.03.005.</cite> [<a href="https://doi.org/10.1016/j.emc.2019.03.005" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31262411/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Emerg%20Med%20Clin%20North%20Am&amp;title=Beyond%20mean%20arterial%20pressure%20and%20lactate:%20perfusion%20end%20points%20for%20managing%20the%20shocked%20patient&amp;author=SD%20Hallisey&amp;author=JC%20Greenwood&amp;volume=37&amp;issue=3&amp;publication_year=2019&amp;pages=395-408&amp;pmid=31262411&amp;doi=10.1016/j.emc.2019.03.005&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR92"> <span class="label">92.</span><cite>Yamamoto M, et al. Fluid resuscitation of hemorrhagic shock with hemoglobin vesicles in Beagle dogs: pilot study. Artif Cells Blood Substit Immobil Biotechnol. 2012;40(1–2):179–195. doi: 10.3109/10731199.2011.637929.</cite> [<a href="https://doi.org/10.3109/10731199.2011.637929" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22288842/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Cells%20Blood%20Substit%20Immobil%20Biotechnol&amp;title=Fluid%20resuscitation%20of%20hemorrhagic%20shock%20with%20hemoglobin%20vesicles%20in%20Beagle%20dogs:%20pilot%20study&amp;author=M%20Yamamoto&amp;volume=40&amp;issue=1%E2%80%932&amp;publication_year=2012&amp;pages=179-195&amp;pmid=22288842&amp;doi=10.3109/10731199.2011.637929&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR93"> <span class="label">93.</span><cite>Yuki Y, et al. Efficacy of resuscitative infusion with hemoglobin vesicles in rabbits with massive obstetric hemorrhage. Am J Obstet Gynecol. 2021;224(4):398.e1–398.e11. doi: 10.1016/j.ajog.2020.09.010.</cite> [<a href="https://doi.org/10.1016/j.ajog.2020.09.010" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32926859/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am%20J%20Obstet%20Gynecol&amp;title=Efficacy%20of%20resuscitative%20infusion%20with%20hemoglobin%20vesicles%20in%20rabbits%20with%20massive%20obstetric%20hemorrhage&amp;author=Y%20Yuki&amp;volume=224&amp;issue=4&amp;publication_year=2021&amp;pages=398.e1-398.e11&amp;pmid=32926859&amp;doi=10.1016/j.ajog.2020.09.010&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR94"> <span class="label">94.</span><cite>Takase B, et al. Liposome-encapsulated hemoglobin (HbV) transfusion rescues rats undergoing progressive lethal 85% hemorrhage as a result of an anti-arrhythmogenic effect on the myocardium. Artif Organs. 2021;45(11):1391–1404. doi: 10.1111/aor.14033.</cite> [<a href="https://doi.org/10.1111/aor.14033" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34219238/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Organs&amp;title=Liposome-encapsulated%20hemoglobin%20(HbV)%20transfusion%20rescues%20rats%20undergoing%20progressive%20lethal%2085%%20hemorrhage%20as%20a%20result%20of%20an%20anti-arrhythmogenic%20effect%20on%20the%20myocardium&amp;author=B%20Takase&amp;volume=45&amp;issue=11&amp;publication_year=2021&amp;pages=1391-1404&amp;pmid=34219238&amp;doi=10.1111/aor.14033&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR95"> <span class="label">95.</span><cite>Sakai H. Overview of potential clinical applications of hemoglobin vesicles (HbV) as artificial red cells, evidenced by preclinical studies of the academic research consortium. J Funct Biomater. 2017 doi: 10.3390/jfb8010010.</cite> [<a href="https://doi.org/10.3390/jfb8010010" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5371883/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28294960/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Funct%20Biomater&amp;title=Overview%20of%20potential%20clinical%20applications%20of%20hemoglobin%20vesicles%20(HbV)%20as%20artificial%20red%20cells,%20evidenced%20by%20preclinical%20studies%20of%20the%20academic%20research%20consortium&amp;author=H%20Sakai&amp;publication_year=2017&amp;pmid=28294960&amp;doi=10.3390/jfb8010010&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR96"> <span class="label">96.</span><cite>Fujihara M, et al. Primary and secondary immune responses to keyhole limpet hemocyanin in rats after infusion of hemoglobin vesicle, an artificial oxygen carrier. Artif Organs. 2014;38(3):234–238. doi: 10.1111/aor.12148.</cite> [<a href="https://doi.org/10.1111/aor.12148" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24033558/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Organs&amp;title=Primary%20and%20secondary%20immune%20responses%20to%20keyhole%20limpet%20hemocyanin%20in%20rats%20after%20infusion%20of%20hemoglobin%20vesicle,%20an%20artificial%20oxygen%20carrier&amp;author=M%20Fujihara&amp;volume=38&amp;issue=3&amp;publication_year=2014&amp;pages=234-238&amp;pmid=24033558&amp;doi=10.1111/aor.12148&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR97"> <span class="label">97.</span><cite>Sakai H, et al. One-year observation of Wistar rats after intravenous infusion of hemoglobin-vesicles (artificial oxygen carriers) Artif Cells Blood Substit Immobil Biotechnol. 2007;35(1):81–91. doi: 10.1080/10731190600974582.</cite> [<a href="https://doi.org/10.1080/10731190600974582" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17364473/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Cells%20Blood%20Substit%20Immobil%20Biotechnol&amp;title=One-year%20observation%20of%20Wistar%20rats%20after%20intravenous%20infusion%20of%20hemoglobin-vesicles%20(artificial%20oxygen%20carriers)&amp;author=H%20Sakai&amp;volume=35&amp;issue=1&amp;publication_year=2007&amp;pages=81-91&amp;pmid=17364473&amp;doi=10.1080/10731190600974582&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR98"> <span class="label">98.</span><cite>Sakai H, et al. Metabolism of hemoglobin-vesicles (artificial oxygen carriers) and their influence on organ functions in a rat model. Biomaterials. 2004;25(18):4317–4325. doi: 10.1016/j.biomaterials.2003.11.005.</cite> [<a href="https://doi.org/10.1016/j.biomaterials.2003.11.005" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15046922/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomaterials&amp;title=Metabolism%20of%20hemoglobin-vesicles%20(artificial%20oxygen%20carriers)%20and%20their%20influence%20on%20organ%20functions%20in%20a%20rat%20model&amp;author=H%20Sakai&amp;volume=25&amp;issue=18&amp;publication_year=2004&amp;pages=4317-4325&amp;pmid=15046922&amp;doi=10.1016/j.biomaterials.2003.11.005&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR99"> <span class="label">99.</span><cite>Sakai H, et al. Hemoglobin-vesicles as oxygen carriers: influence on phagocytic activity and histopathological changes in reticuloendothelial system. Am J Pathol. 2001;159(3):1079–1088. doi: 10.1016/S0002-9440(10)61783-X.</cite> [<a href="https://doi.org/10.1016/S0002-9440(10)61783-X" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC1850444/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11549600/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am%20J%20Pathol&amp;title=Hemoglobin-vesicles%20as%20oxygen%20carriers:%20influence%20on%20phagocytic%20activity%20and%20histopathological%20changes%20in%20reticuloendothelial%20system&amp;author=H%20Sakai&amp;volume=159&amp;issue=3&amp;publication_year=2001&amp;pages=1079-1088&amp;pmid=11549600&amp;doi=10.1016/S0002-9440(10)61783-X&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR100"> <span class="label">100.</span><cite>Taguchi K, et al. Hepatically-metabolized and -excreted artificial oxygen carrier, hemoglobin vesicles, can be safely used under conditions of hepatic impairment. Toxicol Appl Pharmacol. 2010;248(3):234–241. doi: 10.1016/j.taap.2010.08.006.</cite> [<a href="https://doi.org/10.1016/j.taap.2010.08.006" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20709091/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Toxicol%20Appl%20Pharmacol&amp;title=Hepatically-metabolized%20and%20-excreted%20artificial%20oxygen%20carrier,%20hemoglobin%20vesicles,%20can%20be%20safely%20used%20under%20conditions%20of%20hepatic%20impairment&amp;author=K%20Taguchi&amp;volume=248&amp;issue=3&amp;publication_year=2010&amp;pages=234-241&amp;pmid=20709091&amp;doi=10.1016/j.taap.2010.08.006&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR101"> <span class="label">101.</span><cite>Taguchi K, et al. Biological responsiveness and metabolic performance of liposome-encapsulated hemoglobin (Hemoglobin-Vesicles) in apolipoprotein E-deficient mice after massive intravenous injection. Biol Pharm Bull. 2015;38(10):1606–1616. doi: 10.1248/bpb.b15-00420.</cite> [<a href="https://doi.org/10.1248/bpb.b15-00420" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26424021/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biol%20Pharm%20Bull&amp;title=Biological%20responsiveness%20and%20metabolic%20performance%20of%20liposome-encapsulated%20hemoglobin%20(Hemoglobin-Vesicles)%20in%20apolipoprotein%20E-deficient%20mice%20after%20massive%20intravenous%20injection&amp;author=K%20Taguchi&amp;volume=38&amp;issue=10&amp;publication_year=2015&amp;pages=1606-1616&amp;pmid=26424021&amp;doi=10.1248/bpb.b15-00420&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR102"> <span class="label">102.</span><cite>Shono S, et al. Intraosseous transfusion with liposome-encapsulated hemoglobin improves mouse survival after hypohemoglobinemic shock without scavenging nitric oxide. Shock. 2011;35(1):45–52. doi: 10.1097/SHK.0b013e3181e46e93.</cite> [<a href="https://doi.org/10.1097/SHK.0b013e3181e46e93" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20601932/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Shock&amp;title=Intraosseous%20transfusion%20with%20liposome-encapsulated%20hemoglobin%20improves%20mouse%20survival%20after%20hypohemoglobinemic%20shock%20without%20scavenging%20nitric%20oxide&amp;author=S%20Shono&amp;volume=35&amp;issue=1&amp;publication_year=2011&amp;pages=45-52&amp;pmid=20601932&amp;doi=10.1097/SHK.0b013e3181e46e93&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR103"> <span class="label">103.</span><cite>Eriksson M, et al. The effect of hemorrhagic shock and intraosseous adrenaline injection on the delivery of a subsequently administered drug - an experimental study. Scand J Trauma Resusc Emerg Med. 2019;27(1):29. doi: 10.1186/s13049-018-0569-z.</cite> [<a href="https://doi.org/10.1186/s13049-018-0569-z" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6408834/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30850019/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Scand%20J%20Trauma%20Resusc%20Emerg%20Med&amp;title=The%20effect%20of%20hemorrhagic%20shock%20and%20intraosseous%20adrenaline%20injection%20on%20the%20delivery%20of%20a%20subsequently%20administered%20drug%20-%20an%20experimental%20study&amp;author=M%20Eriksson&amp;volume=27&amp;issue=1&amp;publication_year=2019&amp;pages=29&amp;pmid=30850019&amp;doi=10.1186/s13049-018-0569-z&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR104"> <span class="label">104.</span><cite>Yadav VR, et al. Nanovesicular liposome-encapsulated hemoglobin (LEH) prevents multi-organ injuries in a rat model of hemorrhagic shock. Eur J Pharm Sci. 2016;93:97–106. doi: 10.1016/j.ejps.2016.08.010.</cite> [<a href="https://doi.org/10.1016/j.ejps.2016.08.010" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5035221/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27503458/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Eur%20J%20Pharm%20Sci&amp;title=Nanovesicular%20liposome-encapsulated%20hemoglobin%20(LEH)%20prevents%20multi-organ%20injuries%20in%20a%20rat%20model%20of%20hemorrhagic%20shock&amp;author=VR%20Yadav&amp;volume=93&amp;publication_year=2016&amp;pages=97-106&amp;pmid=27503458&amp;doi=10.1016/j.ejps.2016.08.010&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR105"> <span class="label">105.</span><cite>Nag OK, et al. Post-modification of preformed liposomes with novel non-phospholipid poly(ethylene glycol)-conjugated hexadecylcarbamoylmethyl hexadecanoic acid for enhanced circulation persistence in vivo. Int J Pharm. 2013;446(1–2):119–129. doi: 10.1016/j.ijpharm.2013.02.026.</cite> [<a href="https://doi.org/10.1016/j.ijpharm.2013.02.026" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3635076/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23419666/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Int%20J%20Pharm&amp;title=Post-modification%20of%20preformed%20liposomes%20with%20novel%20non-phospholipid%20poly(ethylene%20glycol)-conjugated%20hexadecylcarbamoylmethyl%20hexadecanoic%20acid%20for%20enhanced%20circulation%20persistence%20in%20vivo&amp;author=OK%20Nag&amp;volume=446&amp;issue=1%E2%80%932&amp;publication_year=2013&amp;pages=119-129&amp;pmid=23419666&amp;doi=10.1016/j.ijpharm.2013.02.026&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR106"> <span class="label">106.</span><cite>Agashe H, et al. Improved formulation of liposome-encapsulated hemoglobin with an anionic non-phospholipid. Colloids Surf B Biointerfaces. 2010;75(2):573–583. doi: 10.1016/j.colsurfb.2009.09.038.</cite> [<a href="https://doi.org/10.1016/j.colsurfb.2009.09.038" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2821743/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19896346/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Colloids%20Surf%20B%20Biointerfaces&amp;title=Improved%20formulation%20of%20liposome-encapsulated%20hemoglobin%20with%20an%20anionic%20non-phospholipid&amp;author=H%20Agashe&amp;volume=75&amp;issue=2&amp;publication_year=2010&amp;pages=573-583&amp;pmid=19896346&amp;doi=10.1016/j.colsurfb.2009.09.038&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR107"> <span class="label">107.</span><cite>Mittal N, et al. Erythromer (EM), a Nanoscale Bio-Synthetic Artificial Red Cell. In: Liu H, Kaye AD, Jahr JS, et al., editors. Blood substitutes and oxygen biotherapeutics. Cham: Springer International Publishing; 2022. pp. 253–265.</cite> [<a href="https://scholar.google.com/scholar_lookup?title=Blood%20substitutes%20and%20oxygen%20biotherapeutics&amp;author=N%20Mittal&amp;publication_year=2022&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR108"> <span class="label">108.</span><cite>Okamoto W, et al. Hemoglobin–albumin clusters as an artificial O2 carrier: Physicochemical properties and resuscitation from hemorrhagic shock in rats. J Biomed Mater Res B Appl Biomater. 2022;110(8):1827–1838. doi: 10.1002/jbm.b.35040.</cite> [<a href="https://doi.org/10.1002/jbm.b.35040" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35191606/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Biomed%20Mater%20Res%20B%20Appl%20Biomater&amp;title=Hemoglobin%E2%80%93albumin%20clusters%20as%20an%20artificial%20O2%20carrier:%20Physicochemical%20properties%20and%20resuscitation%20from%20hemorrhagic%20shock%20in%20rats&amp;author=W%20Okamoto&amp;volume=110&amp;issue=8&amp;publication_year=2022&amp;pages=1827-1838&amp;pmid=35191606&amp;doi=10.1002/jbm.b.35040&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR109"> <span class="label">109.</span><cite>Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014;114(9):5057–5115. doi: 10.1021/cr400407a.</cite> [<a href="https://doi.org/10.1021/cr400407a" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24517847/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Chem%20Rev&amp;title=Polydopamine%20and%20its%20derivative%20materials:%20synthesis%20and%20promising%20applications%20in%20energy,%20environmental,%20and%20biomedical%20fields&amp;author=Y%20Liu&amp;author=K%20Ai&amp;author=L%20Lu&amp;volume=114&amp;issue=9&amp;publication_year=2014&amp;pages=5057-5115&amp;pmid=24517847&amp;doi=10.1021/cr400407a&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR110"> <span class="label">110.</span><cite>Zhao Y, et al. Hollow PDA-Au nanoparticles-enabled signal amplification for sensitive nonenzymatic colorimetric immunodetection of carbohydrate antigen 125. Biosens Bioelectron. 2015;71:200–206. doi: 10.1016/j.bios.2015.04.008.</cite> [<a href="https://doi.org/10.1016/j.bios.2015.04.008" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25909340/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biosens%20Bioelectron&amp;title=Hollow%20PDA-Au%20nanoparticles-enabled%20signal%20amplification%20for%20sensitive%20nonenzymatic%20colorimetric%20immunodetection%20of%20carbohydrate%20antigen%20125&amp;author=Y%20Zhao&amp;volume=71&amp;publication_year=2015&amp;pages=200-206&amp;pmid=25909340&amp;doi=10.1016/j.bios.2015.04.008&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR111"> <span class="label">111.</span><cite>Baidukova O, et al. Antioxidative protection of haemoglobin microparticles (HbMPs) by PolyDopamine. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S693–s701. doi: 10.1080/21691401.2018.1505748.</cite> [<a href="https://doi.org/10.1080/21691401.2018.1505748" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30450978/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Cells%20Nanomed%20Biotechnol&amp;title=Antioxidative%20protection%20of%20haemoglobin%20microparticles%20(HbMPs)%20by%20PolyDopamine&amp;author=O%20Baidukova&amp;volume=46&amp;issue=sup3&amp;publication_year=2018&amp;pages=S693-s701&amp;pmid=30450978&amp;doi=10.1080/21691401.2018.1505748&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR112"> <span class="label">112.</span><cite>Jansman MMT, et al. Hemoglobin-based oxygen carriers incorporating nanozymes for the depletion of reactive oxygen species. ACS Appl Mater Interfaces. 2020;12(45):50275–50286. doi: 10.1021/acsami.0c14822.</cite> [<a href="https://doi.org/10.1021/acsami.0c14822" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33124811/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=ACS%20Appl%20Mater%20Interfaces&amp;title=Hemoglobin-based%20oxygen%20carriers%20incorporating%20nanozymes%20for%20the%20depletion%20of%20reactive%20oxygen%20species&amp;author=MMT%20Jansman&amp;volume=12&amp;issue=45&amp;publication_year=2020&amp;pages=50275-50286&amp;pmid=33124811&amp;doi=10.1021/acsami.0c14822&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR113"> <span class="label">113.</span><cite>Liu X, et al. Metal-organic framework-based oxygen carriers with antioxidant activity resulting from the incorporation of gold nanozymes. Biomater Sci. 2023;11(7):2551–2565. doi: 10.1039/D2BM01405J.</cite> [<a href="https://doi.org/10.1039/D2BM01405J" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36786283/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomater%20Sci&amp;title=Metal-organic%20framework-based%20oxygen%20carriers%20with%20antioxidant%20activity%20resulting%20from%20the%20incorporation%20of%20gold%20nanozymes&amp;author=X%20Liu&amp;volume=11&amp;issue=7&amp;publication_year=2023&amp;pages=2551-2565&amp;pmid=36786283&amp;doi=10.1039/D2BM01405J&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR114"> <span class="label">114.</span><cite>Lian X, et al. Enzyme-MOF (metal-organic framework) composites. Chem Soc Rev. 2017;46(11):3386–3401. doi: 10.1039/C7CS00058H.</cite> [<a href="https://doi.org/10.1039/C7CS00058H" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28451673/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Chem%20Soc%20Rev&amp;title=Enzyme-MOF%20(metal-organic%20framework)%20composites&amp;author=X%20Lian&amp;volume=46&amp;issue=11&amp;publication_year=2017&amp;pages=3386-3401&amp;pmid=28451673&amp;doi=10.1039/C7CS00058H&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR115"> <span class="label">115.</span><cite>Chen Y, et al. Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: protein encapsulation, protection, and release. J Am Chem Soc. 2018;140(17):5678–5681. doi: 10.1021/jacs.8b02089.</cite> [<a href="https://doi.org/10.1021/jacs.8b02089" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29641892/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Am%20Chem%20Soc&amp;title=Acid-resistant%20mesoporous%20metal-organic%20framework%20toward%20oral%20insulin%20delivery:%20protein%20encapsulation,%20protection,%20and%20release&amp;author=Y%20Chen&amp;volume=140&amp;issue=17&amp;publication_year=2018&amp;pages=5678-5681&amp;pmid=29641892&amp;doi=10.1021/jacs.8b02089&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR116"> <span class="label">116.</span><cite>Wang S, et al. DNA-functionalized metal-organic framework nanoparticles for intracellular delivery of proteins. J Am Chem Soc. 2019;141(6):2215–2219. doi: 10.1021/jacs.8b12705.</cite> [<a href="https://doi.org/10.1021/jacs.8b12705" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8212418/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30669839/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Am%20Chem%20Soc&amp;title=DNA-functionalized%20metal-organic%20framework%20nanoparticles%20for%20intracellular%20delivery%20of%20proteins&amp;author=S%20Wang&amp;volume=141&amp;issue=6&amp;publication_year=2019&amp;pages=2215-2219&amp;pmid=30669839&amp;doi=10.1021/jacs.8b12705&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR117"> <span class="label">117.</span><cite>Liang K, et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun. 2015;6:7240. doi: 10.1038/ncomms8240.</cite> [<a href="https://doi.org/10.1038/ncomms8240" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4468859/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26041070/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Commun&amp;title=Biomimetic%20mineralization%20of%20metal-organic%20frameworks%20as%20protective%20coatings%20for%20biomacromolecules&amp;author=K%20Liang&amp;volume=6&amp;publication_year=2015&amp;pages=7240&amp;pmid=26041070&amp;doi=10.1038/ncomms8240&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR118"> <span class="label">118.</span><cite>Chen G, et al. A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal-organic frameworks. Angew Chem Int Ed Engl. 2019;58(5):1463–1467. doi: 10.1002/anie.201813060.</cite> [<a href="https://doi.org/10.1002/anie.201813060" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30536782/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Angew%20Chem%20Int%20Ed%20Engl&amp;title=A%20convenient%20and%20versatile%20amino-acid-boosted%20biomimetic%20strategy%20for%20the%20nondestructive%20encapsulation%20of%20biomacromolecules%20within%20metal-organic%20frameworks&amp;author=G%20Chen&amp;volume=58&amp;issue=5&amp;publication_year=2019&amp;pages=1463-1467&amp;pmid=30536782&amp;doi=10.1002/anie.201813060&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR119"> <span class="label">119.</span><cite>Poddar A, et al. Encapsulation, visualization and expression of genes with biomimetically mineralized zeolitic imidazolate framework-8 (ZIF-8) Small. 2019;15(36):e1902268. doi: 10.1002/smll.201902268.</cite> [<a href="https://doi.org/10.1002/smll.201902268" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31259481/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Small&amp;title=Encapsulation,%20visualization%20and%20expression%20of%20genes%20with%20biomimetically%20mineralized%20zeolitic%20imidazolate%20framework-8%20(ZIF-8)&amp;author=A%20Poddar&amp;volume=15&amp;issue=36&amp;publication_year=2019&amp;pages=e1902268&amp;pmid=31259481&amp;doi=10.1002/smll.201902268&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR120"> <span class="label">120.</span><cite>Jansman MMT, et al. Hemoglobin-based oxygen carriers camouflaged with membranes extracted from red blood cells: optimization and assessment of functionality. Biomater Adv. 2022;134:112691. doi: 10.1016/j.msec.2022.112691.</cite> [<a href="https://doi.org/10.1016/j.msec.2022.112691" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35581082/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomater%20Adv&amp;title=Hemoglobin-based%20oxygen%20carriers%20camouflaged%20with%20membranes%20extracted%20from%20red%20blood%20cells:%20optimization%20and%20assessment%20of%20functionality&amp;author=MMT%20Jansman&amp;volume=134&amp;publication_year=2022&amp;pages=112691&amp;pmid=35581082&amp;doi=10.1016/j.msec.2022.112691&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR121"> <span class="label">121.</span><cite>Sun H, et al. Real-time model-based cerebral perfusion calculation for ischemic stroke. Comput Methods Programs Biomed. 2024;243:107916. doi: 10.1016/j.cmpb.2023.107916.</cite> [<a href="https://doi.org/10.1016/j.cmpb.2023.107916" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37976610/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Comput%20Methods%20Programs%20Biomed&amp;title=Real-time%20model-based%20cerebral%20perfusion%20calculation%20for%20ischemic%20stroke&amp;author=H%20Sun&amp;volume=243&amp;publication_year=2024&amp;pages=107916&amp;pmid=37976610&amp;doi=10.1016/j.cmpb.2023.107916&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR122"> <span class="label">122.</span><cite>Demyanenko S, Dzreyan V, Sharifulina S. Histone deacetylases and their isoform-specific inhibitors in ischemic stroke. Biomedicines. 2021;9(10):1445. doi: 10.3390/biomedicines9101445.</cite> [<a href="https://doi.org/10.3390/biomedicines9101445" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8533589/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34680562/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomedicines&amp;title=Histone%20deacetylases%20and%20their%20isoform-specific%20inhibitors%20in%20ischemic%20stroke&amp;author=S%20Demyanenko&amp;author=V%20Dzreyan&amp;author=S%20Sharifulina&amp;volume=9&amp;issue=10&amp;publication_year=2021&amp;pages=1445&amp;pmid=34680562&amp;doi=10.3390/biomedicines9101445&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR123"> <span class="label">123.</span><cite>Hurd MD, et al. Current status of ischemic stroke treatment: from thrombolysis to potential regenerative medicine. Regenerat Ther. 2021;18:408–417. doi: 10.1016/j.reth.2021.09.009.</cite> [<a href="https://doi.org/10.1016/j.reth.2021.09.009" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8517544/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34722837/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Regenerat%20Ther&amp;title=Current%20status%20of%20ischemic%20stroke%20treatment:%20from%20thrombolysis%20to%20potential%20regenerative%20medicine&amp;author=MD%20Hurd&amp;volume=18&amp;publication_year=2021&amp;pages=408-417&amp;pmid=34722837&amp;doi=10.1016/j.reth.2021.09.009&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR124"> <span class="label">124.</span><cite>Wu DM, et al. Immune pathway activation in neurons triggers neural damage after stroke. Cell Rep. 2023;42(11):113368. doi: 10.1016/j.celrep.2023.113368.</cite> [<a href="https://doi.org/10.1016/j.celrep.2023.113368" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37917581/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell%20Rep&amp;title=Immune%20pathway%20activation%20in%20neurons%20triggers%20neural%20damage%20after%20stroke&amp;author=DM%20Wu&amp;volume=42&amp;issue=11&amp;publication_year=2023&amp;pages=113368&amp;pmid=37917581&amp;doi=10.1016/j.celrep.2023.113368&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR125"> <span class="label">125.</span><cite>Jun-Long H, et al. Necroptosis signaling pathways in stroke: from mechanisms to therapies. Curr Neuropharmacol. 2018;16(9):1327–1339. doi: 10.2174/1570159X16666180416152243.</cite> [<a href="https://doi.org/10.2174/1570159X16666180416152243" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6251040/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29663889/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Curr%20Neuropharmacol&amp;title=Necroptosis%20signaling%20pathways%20in%20stroke:%20from%20mechanisms%20to%20therapies&amp;author=H%20Jun-Long&amp;volume=16&amp;issue=9&amp;publication_year=2018&amp;pages=1327-1339&amp;pmid=29663889&amp;doi=10.2174/1570159X16666180416152243&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR126"> <span class="label">126.</span><cite>Lin W, Powers WJ. Oxygen metabolism in acute ischemic stroke. J Cereb Blood Flow Metab. 2018;38(9):1481–1499. doi: 10.1177/0271678X17722095.</cite> [<a href="https://doi.org/10.1177/0271678X17722095" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6125969/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28792276/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Cereb%20Blood%20Flow%20Metab&amp;title=Oxygen%20metabolism%20in%20acute%20ischemic%20stroke&amp;author=W%20Lin&amp;author=WJ%20Powers&amp;volume=38&amp;issue=9&amp;publication_year=2018&amp;pages=1481-1499&amp;pmid=28792276&amp;doi=10.1177/0271678X17722095&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR127"> <span class="label">127.</span><cite>Tirapelli CR. Oxidative stress and vascular disease. Curr Hypertens Rev. 2020;16(3):162. doi: 10.2174/157340211603201127142401.</cite> [<a href="https://doi.org/10.2174/157340211603201127142401" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33475055/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Curr%20Hypertens%20Rev&amp;title=Oxidative%20stress%20and%20vascular%20disease&amp;author=CR%20Tirapelli&amp;volume=16&amp;issue=3&amp;publication_year=2020&amp;pages=162&amp;pmid=33475055&amp;doi=10.2174/157340211603201127142401&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR128"> <span class="label">128.</span><cite>Zuluaga Tamayo M, et al. Astaxanthin complexes to attenuate muscle damage after in vivo femoral ischemia-reperfusion. Mar Drugs. 2019 doi: 10.3390/md17060354.</cite> [<a href="https://doi.org/10.3390/md17060354" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6627496/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31207871/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mar%20Drugs&amp;title=Astaxanthin%20complexes%20to%20attenuate%20muscle%20damage%20after%20in%20vivo%20femoral%20ischemia-reperfusion&amp;author=M%20Zuluaga%20Tamayo&amp;publication_year=2019&amp;pmid=31207871&amp;doi=10.3390/md17060354&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR129"> <span class="label">129.</span><cite>Deuchar GA, et al. Preclinical validation of the therapeutic potential of glasgow oxygen level dependent (GOLD) technology: a theranostic for acute stroke. Transl Stroke Res. 2019;10(5):583–595. doi: 10.1007/s12975-018-0679-y.</cite> [<a href="https://doi.org/10.1007/s12975-018-0679-y" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6733820/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30506268/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Transl%20Stroke%20Res&amp;title=Preclinical%20validation%20of%20the%20therapeutic%20potential%20of%20glasgow%20oxygen%20level%20dependent%20(GOLD)%20technology:%20a%20theranostic%20for%20acute%20stroke&amp;author=GA%20Deuchar&amp;volume=10&amp;issue=5&amp;publication_year=2019&amp;pages=583-595&amp;pmid=30506268&amp;doi=10.1007/s12975-018-0679-y&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR130"> <span class="label">130.</span><cite>Klaus JA, et al. Early treatment of transient focal cerebral ischemia with bovine PEGylated carboxy hemoglobin transfusion. Artificial Cell Blood Substitutes Biotechnol. 2010;38(5):223–229. doi: 10.3109/10731199.2010.488635.</cite> [<a href="https://doi.org/10.3109/10731199.2010.488635" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3121099/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20486873/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artificial%20Cell%20Blood%20Substitutes%20Biotechnol&amp;title=Early%20treatment%20of%20transient%20focal%20cerebral%20ischemia%20with%20bovine%20PEGylated%20carboxy%20hemoglobin%20transfusion&amp;author=JA%20Klaus&amp;volume=38&amp;issue=5&amp;publication_year=2010&amp;pages=223-229&amp;pmid=20486873&amp;doi=10.3109/10731199.2010.488635&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR131"> <span class="label">131.</span><cite>Kakehata J, et al. Therapeutic potentials of an artificial oxygen-carrier, liposome-encapsulated hemoglobin, for ischemia/reperfusion-induced cerebral dysfunction in rats. J Pharmacol Sci. 2010;114(2):189–197. doi: 10.1254/jphs.10115FP.</cite> [<a href="https://doi.org/10.1254/jphs.10115FP" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20838027/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Pharmacol%20Sci&amp;title=Therapeutic%20potentials%20of%20an%20artificial%20oxygen-carrier,%20liposome-encapsulated%20hemoglobin,%20for%20ischemia/reperfusion-induced%20cerebral%20dysfunction%20in%20rats&amp;author=J%20Kakehata&amp;volume=114&amp;issue=2&amp;publication_year=2010&amp;pages=189-197&amp;pmid=20838027&amp;doi=10.1254/jphs.10115FP&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR132"> <span class="label">132.</span><cite>Kaneda S, et al. Efficacy of liposome-encapsulated hemoglobin in a rat model of cerebral ischemia. Artif Organs. 2014;38(8):650–655. doi: 10.1111/aor.12358.</cite> [<a href="https://doi.org/10.1111/aor.12358" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25132081/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Organs&amp;title=Efficacy%20of%20liposome-encapsulated%20hemoglobin%20in%20a%20rat%20model%20of%20cerebral%20ischemia&amp;author=S%20Kaneda&amp;volume=38&amp;issue=8&amp;publication_year=2014&amp;pages=650-655&amp;pmid=25132081&amp;doi=10.1111/aor.12358&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR133"> <span class="label">133.</span><cite>Cipolla MJ, et al. Pharmacologically increasing collateral perfusion during acute stroke using a carboxyhemoglobin gas transfer agent (Sanguinate™) in spontaneously hypertensive rats. J Cereb Blood Flow Metab. 2018;38(5):755–766. doi: 10.1177/0271678X17705567.</cite> [<a href="https://doi.org/10.1177/0271678X17705567" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5987934/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28436705/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Cereb%20Blood%20Flow%20Metab&amp;title=Pharmacologically%20increasing%20collateral%20perfusion%20during%20acute%20stroke%20using%20a%20carboxyhemoglobin%20gas%20transfer%20agent%20(Sanguinate%E2%84%A2)%20in%20spontaneously%20hypertensive%20rats&amp;author=MJ%20Cipolla&amp;volume=38&amp;issue=5&amp;publication_year=2018&amp;pages=755-766&amp;pmid=28436705&amp;doi=10.1177/0271678X17705567&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR134"> <span class="label">134.</span><cite>Powanda DD, Chang TMS. Cross-linked polyhemoglobin-superoxide dismutase-catalase supplies oxygen without causing blood brain barrier disruption or brain edema in a rat model of transient global brain ischemia-reperfusion. Artificial Cell Blood Substitutes Biotechnol. 2002;30(1):23–37. doi: 10.1081/BIO-120002725.</cite> [<a href="https://doi.org/10.1081/BIO-120002725" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12000224/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artificial%20Cell%20Blood%20Substitutes%20Biotechnol&amp;title=Cross-linked%20polyhemoglobin-superoxide%20dismutase-catalase%20supplies%20oxygen%20without%20causing%20blood%20brain%20barrier%20disruption%20or%20brain%20edema%20in%20a%20rat%20model%20of%20transient%20global%20brain%20ischemia-reperfusion&amp;author=DD%20Powanda&amp;author=TMS%20Chang&amp;volume=30&amp;issue=1&amp;publication_year=2002&amp;pages=23-37&amp;pmid=12000224&amp;doi=10.1081/BIO-120002725&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR135"> <span class="label">135.</span><cite>Xie Z, et al. The protective effect of polymerized porcine hemoglobin (pPolyHb) on transient focal cerebral ischemia/reperfusion injury. Artif Cells Nanomed Biotechnol. 2015;43(3):180–185. doi: 10.3109/21691401.2015.1037886.</cite> [<a href="https://doi.org/10.3109/21691401.2015.1037886" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25939745/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Cells%20Nanomed%20Biotechnol&amp;title=The%20protective%20effect%20of%20polymerized%20porcine%20hemoglobin%20(pPolyHb)%20on%20transient%20focal%20cerebral%20ischemia/reperfusion%20injury&amp;author=Z%20Xie&amp;volume=43&amp;issue=3&amp;publication_year=2015&amp;pages=180-185&amp;pmid=25939745&amp;doi=10.3109/21691401.2015.1037886&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR136"> <span class="label">136.</span><cite>Caswell JE, et al. A novel hemoglobin-based blood substitute protects against myocardial reperfusion injury. Am J Physiol-Heart Circulatory Physiol. 2005;288(4):H1796–H1801. doi: 10.1152/ajpheart.00905.2004.</cite> [<a href="https://doi.org/10.1152/ajpheart.00905.2004" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15772335/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am%20J%20Physiol-Heart%20Circulatory%20Physiol&amp;title=A%20novel%20hemoglobin-based%20blood%20substitute%20protects%20against%20myocardial%20reperfusion%20injury&amp;author=JE%20Caswell&amp;volume=288&amp;issue=4&amp;publication_year=2005&amp;pages=H1796-H1801&amp;pmid=15772335&amp;doi=10.1152/ajpheart.00905.2004&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR137"> <span class="label">137.</span><cite>Komatsu H, et al. Effect of hemoglobin vesicle, a cellular-type artificial oxygen carrier, on middle cerebral artery occlusion- and arachidonic acid-induced stroke models in rats. Neurosci Lett. 2007;421(2):121–125. doi: 10.1016/j.neulet.2007.04.080.</cite> [<a href="https://doi.org/10.1016/j.neulet.2007.04.080" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17566655/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neurosci%20Lett&amp;title=Effect%20of%20hemoglobin%20vesicle,%20a%20cellular-type%20artificial%20oxygen%20carrier,%20on%20middle%20cerebral%20artery%20occlusion-%20and%20arachidonic%20acid-induced%20stroke%20models%20in%20rats&amp;author=H%20Komatsu&amp;volume=421&amp;issue=2&amp;publication_year=2007&amp;pages=121-125&amp;pmid=17566655&amp;doi=10.1016/j.neulet.2007.04.080&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR138"> <span class="label">138.</span><cite>Fukumoto D, et al. Liposome-encapsulated hemoglobin reduces the size of cerebral infarction in rats: effect of oxygen affinity. Artif Organs. 2009;33(2):159–163. doi: 10.1111/j.1525-1594.2008.00701.x.</cite> [<a href="https://doi.org/10.1111/j.1525-1594.2008.00701.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19178461/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Organs&amp;title=Liposome-encapsulated%20hemoglobin%20reduces%20the%20size%20of%20cerebral%20infarction%20in%20rats:%20effect%20of%20oxygen%20affinity&amp;author=D%20Fukumoto&amp;volume=33&amp;issue=2&amp;publication_year=2009&amp;pages=159-163&amp;pmid=19178461&amp;doi=10.1111/j.1525-1594.2008.00701.x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR139"> <span class="label">139.</span><cite>Kawaguchi AT, et al. Effect of oxygen affinity of liposome-encapsulated hemoglobin on cerebral ischemia and reperfusion as detected by positron emission tomography in nonhuman primates. Artif Organs. 2017;41(4):336–345. doi: 10.1111/aor.12905.</cite> [<a href="https://doi.org/10.1111/aor.12905" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28397408/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Organs&amp;title=Effect%20of%20oxygen%20affinity%20of%20liposome-encapsulated%20hemoglobin%20on%20cerebral%20ischemia%20and%20reperfusion%20as%20detected%20by%20positron%20emission%20tomography%20in%20nonhuman%20primates&amp;author=AT%20Kawaguchi&amp;volume=41&amp;issue=4&amp;publication_year=2017&amp;pages=336-345&amp;pmid=28397408&amp;doi=10.1111/aor.12905&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR140"> <span class="label">140.</span><cite>Tomita D, et al. Covalent core-shell architecture of hemoglobin and human serum albumin as an artificial O2 carrier. Biomacromol. 2013;14(6):1816–1825. doi: 10.1021/bm400204y.</cite> [<a href="https://doi.org/10.1021/bm400204y" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23675962/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomacromol&amp;title=Covalent%20core-shell%20architecture%20of%20hemoglobin%20and%20human%20serum%20albumin%20as%20an%20artificial%20O2%20carrier&amp;author=D%20Tomita&amp;volume=14&amp;issue=6&amp;publication_year=2013&amp;pages=1816-1825&amp;pmid=23675962&amp;doi=10.1021/bm400204y&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR141"> <span class="label">141.</span><cite>Gekka M, et al. Novel hemoglobin-based oxygen carrier bound with albumin shows neuroprotection with possible antioxidant effects. Stroke. 2018;49(8):1960–1968. doi: 10.1161/STROKEAHA.118.021467.</cite> [<a href="https://doi.org/10.1161/STROKEAHA.118.021467" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29991658/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Stroke&amp;title=Novel%20hemoglobin-based%20oxygen%20carrier%20bound%20with%20albumin%20shows%20neuroprotection%20with%20possible%20antioxidant%20effects&amp;author=M%20Gekka&amp;volume=49&amp;issue=8&amp;publication_year=2018&amp;pages=1960-1968&amp;pmid=29991658&amp;doi=10.1161/STROKEAHA.118.021467&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR142"> <span class="label">142.</span><cite>Hosaka H, et al. Hemoglobin-albumin cluster incorporating a Pt nanoparticle: artificial O2 carrier with antioxidant activities. PLoS ONE. 2014;9(10):e110541. doi: 10.1371/journal.pone.0110541.</cite> [<a href="https://doi.org/10.1371/journal.pone.0110541" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4195732/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25310133/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PLoS%20ONE&amp;title=Hemoglobin-albumin%20cluster%20incorporating%20a%20Pt%20nanoparticle:%20artificial%20O2%20carrier%20with%20antioxidant%20activities&amp;author=H%20Hosaka&amp;volume=9&amp;issue=10&amp;publication_year=2014&amp;pages=e110541&amp;pmid=25310133&amp;doi=10.1371/journal.pone.0110541&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR143"> <span class="label">143.</span><cite>Wang S, et al. Pan-immune-inflammatory value predicts the 3 month outcome in acute ischemic stroke patients after intravenous thrombolysis. Curr Neurovasc Res. 2023 doi: 10.2174/0115672026276427231024045957.</cite> [<a href="https://doi.org/10.2174/0115672026276427231024045957" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC10825792/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37921190/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Curr%20Neurovasc%20Res&amp;title=Pan-immune-inflammatory%20value%20predicts%20the%203%20month%20outcome%20in%20acute%20ischemic%20stroke%20patients%20after%20intravenous%20thrombolysis&amp;author=S%20Wang&amp;publication_year=2023&amp;pmid=37921190&amp;doi=10.2174/0115672026276427231024045957&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR144"> <span class="label">144.</span><cite>Haupt M, et al. Preconditioning concepts for the therapeutic use of extracellular vesicles against stroke. Stem Cells Transl Med. 2023 doi: 10.1093/stcltm/szad055.</cite> [<a href="https://doi.org/10.1093/stcltm/szad055" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC10630075/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37696005/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Stem%20Cells%20Transl%20Med&amp;title=Preconditioning%20concepts%20for%20the%20therapeutic%20use%20of%20extracellular%20vesicles%20against%20stroke&amp;author=M%20Haupt&amp;publication_year=2023&amp;pmid=37696005&amp;doi=10.1093/stcltm/szad055&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR145"> <span class="label">145.</span><cite>Yin N, et al. Engineered nanoerythrocytes alleviate central nervous system inflammation by regulating the polarization of inflammatory microglia. Adv Mater. 2022;34(27):e2201322. doi: 10.1002/adma.202201322.</cite> [<a href="https://doi.org/10.1002/adma.202201322" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35483045/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv%20Mater&amp;title=Engineered%20nanoerythrocytes%20alleviate%20central%20nervous%20system%20inflammation%20by%20regulating%20the%20polarization%20of%20inflammatory%20microglia&amp;author=N%20Yin&amp;volume=34&amp;issue=27&amp;publication_year=2022&amp;pages=e2201322&amp;pmid=35483045&amp;doi=10.1002/adma.202201322&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR146"> <span class="label">146.</span><cite>Shimbo D, et al. Post-ischemic intra-arterial infusion of liposome-encapsulated hemoglobin can reduce ischemia reperfusion injury. Brain Res. 2014;1554:59–66. doi: 10.1016/j.brainres.2014.01.038.</cite> [<a href="https://doi.org/10.1016/j.brainres.2014.01.038" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24486612/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Brain%20Res&amp;title=Post-ischemic%20intra-arterial%20infusion%20of%20liposome-encapsulated%20hemoglobin%20can%20reduce%20ischemia%20reperfusion%20injury&amp;author=D%20Shimbo&amp;volume=1554&amp;publication_year=2014&amp;pages=59-66&amp;pmid=24486612&amp;doi=10.1016/j.brainres.2014.01.038&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR147"> <span class="label">147.</span><cite>Shimbo D, et al. Superior microvascular perfusion of infused liposome-encapsulated hemoglobin prior to reductions in infarctions after transient focal cerebral ischemia. J Stroke Cerebrovasc Dis. 2017;26(12):2994–3003. doi: 10.1016/j.jstrokecerebrovasdis.2017.07.026.</cite> [<a href="https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.07.026" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28843805/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Stroke%20Cerebrovasc%20Dis&amp;title=Superior%20microvascular%20perfusion%20of%20infused%20liposome-encapsulated%20hemoglobin%20prior%20to%20reductions%20in%20infarctions%20after%20transient%20focal%20cerebral%20ischemia&amp;author=D%20Shimbo&amp;volume=26&amp;issue=12&amp;publication_year=2017&amp;pages=2994-3003&amp;pmid=28843805&amp;doi=10.1016/j.jstrokecerebrovasdis.2017.07.026&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR148"> <span class="label">148.</span><cite>Choudhari OK, et al. Matrix metalloproteinase-9 gene polymorphism and its methylation in stroke patients. Malays J Med Sci. 2021;28(6):32–41. doi: 10.21315/mjms2021.28.6.4.</cite> [<a href="https://doi.org/10.21315/mjms2021.28.6.4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8715877/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35002488/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Malays%20J%20Med%20Sci&amp;title=Matrix%20metalloproteinase-9%20gene%20polymorphism%20and%20its%20methylation%20in%20stroke%20patients&amp;author=OK%20Choudhari&amp;volume=28&amp;issue=6&amp;publication_year=2021&amp;pages=32-41&amp;pmid=35002488&amp;doi=10.21315/mjms2021.28.6.4&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR149"> <span class="label">149.</span><cite>Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20(4):409–426. doi: 10.1007/s10456-017-9562-9.</cite> [<a href="https://doi.org/10.1007/s10456-017-9562-9" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28660302/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Angiogenesis&amp;title=Tumor%20angiogenesis%20and%20vascular%20normalization:%20alternative%20therapeutic%20targets&amp;author=C%20Viallard&amp;author=B%20Larriv%C3%A9e&amp;volume=20&amp;issue=4&amp;publication_year=2017&amp;pages=409-426&amp;pmid=28660302&amp;doi=10.1007/s10456-017-9562-9&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR150"> <span class="label">150.</span><cite>Liao C, et al. Tumor hypoxia: from basic knowledge to therapeutic implications. Semin Cancer Biol. 2023;88:172–186. doi: 10.1016/j.semcancer.2022.12.011.</cite> [<a href="https://doi.org/10.1016/j.semcancer.2022.12.011" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC9929926/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36603793/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Semin%20Cancer%20Biol&amp;title=Tumor%20hypoxia:%20from%20basic%20knowledge%20to%20therapeutic%20implications&amp;author=C%20Liao&amp;volume=88&amp;publication_year=2023&amp;pages=172-186&amp;pmid=36603793&amp;doi=10.1016/j.semcancer.2022.12.011&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR151"> <span class="label">151.</span><cite>Dai Y, et al. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev. 2017;46(12):3830–3852. doi: 10.1039/C6CS00592F.</cite> [<a href="https://doi.org/10.1039/C6CS00592F" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5521825/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28516983/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Chem%20Soc%20Rev&amp;title=Nanoparticle%20design%20strategies%20for%20enhanced%20anticancer%20therapy%20by%20exploiting%20the%20tumour%20microenvironment&amp;author=Y%20Dai&amp;volume=46&amp;issue=12&amp;publication_year=2017&amp;pages=3830-3852&amp;pmid=28516983&amp;doi=10.1039/C6CS00592F&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR152"> <span class="label">152.</span><cite>Kwon S, et al. Nanomedicines for reactive oxygen species mediated approach: an emerging paradigm for cancer treatment. Acc Chem Res. 2019;52(7):1771–1782. doi: 10.1021/acs.accounts.9b00136.</cite> [<a href="https://doi.org/10.1021/acs.accounts.9b00136" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31241894/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Acc%20Chem%20Res&amp;title=Nanomedicines%20for%20reactive%20oxygen%20species%20mediated%20approach:%20an%20emerging%20paradigm%20for%20cancer%20treatment&amp;author=S%20Kwon&amp;volume=52&amp;issue=7&amp;publication_year=2019&amp;pages=1771-1782&amp;pmid=31241894&amp;doi=10.1021/acs.accounts.9b00136&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR153"> <span class="label">153.</span><cite>Shi R, Tang YQ, Miao H. Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm. 2020;1(1):47–68. doi: 10.1002/mco2.6.</cite> [<a href="https://doi.org/10.1002/mco2.6" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8489668/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34766109/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=MedComm&amp;title=Metabolism%20in%20tumor%20microenvironment:%20Implications%20for%20cancer%20immunotherapy&amp;author=R%20Shi&amp;author=YQ%20Tang&amp;author=H%20Miao&amp;volume=1&amp;issue=1&amp;publication_year=2020&amp;pages=47-68&amp;pmid=34766109&amp;doi=10.1002/mco2.6&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR154"> <span class="label">154.</span><cite>Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol. 2014;9:47–71. doi: 10.1146/annurev-pathol-012513-104720.</cite> [<a href="https://doi.org/10.1146/annurev-pathol-012513-104720" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23937437/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Annu%20Rev%20Pathol&amp;title=Oxygen%20sensing,%20hypoxia-inducible%20factors,%20and%20disease%20pathophysiology&amp;author=GL%20Semenza&amp;volume=9&amp;publication_year=2014&amp;pages=47-71&amp;pmid=23937437&amp;doi=10.1146/annurev-pathol-012513-104720&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR155"> <span class="label">155.</span><cite>Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer. 2014;14(6):430–439. doi: 10.1038/nrc3726.</cite> [<a href="https://doi.org/10.1038/nrc3726" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4283800/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24827502/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Cancer&amp;title=Hypoxia%20and%20the%20extracellular%20matrix:%20drivers%20of%20tumour%20metastasis&amp;author=DM%20Gilkes&amp;author=GL%20Semenza&amp;author=D%20Wirtz&amp;volume=14&amp;issue=6&amp;publication_year=2014&amp;pages=430-439&amp;pmid=24827502&amp;doi=10.1038/nrc3726&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR156"> <span class="label">156.</span><cite>Yang S, et al. Boosting the anti-tumor performance of disulfiram against glioblastoma by using ultrasmall nanoparticles and HIF-1α inhibitor. Compos B Eng. 2022;243:110117. doi: 10.1016/j.compositesb.2022.110117.</cite> [<a href="https://doi.org/10.1016/j.compositesb.2022.110117" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Compos%20B%20Eng&amp;title=Boosting%20the%20anti-tumor%20performance%20of%20disulfiram%20against%20glioblastoma%20by%20using%20ultrasmall%20nanoparticles%20and%20HIF-1%CE%B1%20inhibitor&amp;author=S%20Yang&amp;volume=243&amp;publication_year=2022&amp;pages=110117&amp;doi=10.1016/j.compositesb.2022.110117&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR157"> <span class="label">157.</span><cite>Liu Y, et al. Modulation of hypoxia and redox in the solid tumor microenvironment with a catalytic nanoplatform to enhance combinational chemodynamic/sonodynamic therapy. Biomater Sci. 2023;11(5):1739–1753. doi: 10.1039/D2BM01251K.</cite> [<a href="https://doi.org/10.1039/D2BM01251K" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36648208/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomater%20Sci&amp;title=Modulation%20of%20hypoxia%20and%20redox%20in%20the%20solid%20tumor%20microenvironment%20with%20a%20catalytic%20nanoplatform%20to%20enhance%20combinational%20chemodynamic/sonodynamic%20therapy&amp;author=Y%20Liu&amp;volume=11&amp;issue=5&amp;publication_year=2023&amp;pages=1739-1753&amp;pmid=36648208&amp;doi=10.1039/D2BM01251K&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR158"> <span class="label">158.</span><cite>Huang J, et al. Oxygen-carrying nanoplatform to reprogram tumor immunosuppressive microenvironment and enhance photothermal-immunotherapy. Mater Today Bio. 2023;19:100555. doi: 10.1016/j.mtbio.2023.100555.</cite> [<a href="https://doi.org/10.1016/j.mtbio.2023.100555" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC9922928/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36793322/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mater%20Today%20Bio&amp;title=Oxygen-carrying%20nanoplatform%20to%20reprogram%20tumor%20immunosuppressive%20microenvironment%20and%20enhance%20photothermal-immunotherapy&amp;author=J%20Huang&amp;volume=19&amp;publication_year=2023&amp;pages=100555&amp;pmid=36793322&amp;doi=10.1016/j.mtbio.2023.100555&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR159"> <span class="label">159.</span><cite>Yuan CS, et al. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: where do we stand? Acta Biomater. 2021;125:1–28. doi: 10.1016/j.actbio.2021.02.030.</cite> [<a href="https://doi.org/10.1016/j.actbio.2021.02.030" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33639310/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Acta%20Biomater&amp;title=Hypoxia-modulatory%20nanomaterials%20to%20relieve%20tumor%20hypoxic%20microenvironment%20and%20enhance%20immunotherapy:%20where%20do%20we%20stand?&amp;author=CS%20Yuan&amp;volume=125&amp;publication_year=2021&amp;pages=1-28&amp;pmid=33639310&amp;doi=10.1016/j.actbio.2021.02.030&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR160"> <span class="label">160.</span><cite>Telarovic I, Wenger RH, Pruschy M. Interfering with tumor hypoxia for radiotherapy optimization. J Exp Clin Cancer Res. 2021;40(1):197. doi: 10.1186/s13046-021-02000-x.</cite> [<a href="https://doi.org/10.1186/s13046-021-02000-x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8215813/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34154610/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Exp%20Clin%20Cancer%20Res&amp;title=Interfering%20with%20tumor%20hypoxia%20for%20radiotherapy%20optimization&amp;author=I%20Telarovic&amp;author=RH%20Wenger&amp;author=M%20Pruschy&amp;volume=40&amp;issue=1&amp;publication_year=2021&amp;pages=197&amp;pmid=34154610&amp;doi=10.1186/s13046-021-02000-x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR161"> <span class="label">161.</span><cite>Zhang J, et al. Nanotechnological strategies to increase the oxygen content of the tumor. Front Pharmacol. 2023;14:1140362. doi: 10.3389/fphar.2023.1140362.</cite> [<a href="https://doi.org/10.3389/fphar.2023.1140362" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC10034070/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36969866/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front%20Pharmacol&amp;title=Nanotechnological%20strategies%20to%20increase%20the%20oxygen%20content%20of%20the%20tumor&amp;author=J%20Zhang&amp;volume=14&amp;publication_year=2023&amp;pages=1140362&amp;pmid=36969866&amp;doi=10.3389/fphar.2023.1140362&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR162"> <span class="label">162.</span><cite>Vaupel P, Multhoff G. Fatal alliance of hypoxia-/HIF-1α-Driven microenvironmental traits promoting cancer progression. Adv Exp Med Biol. 2020;1232:169–176. doi: 10.1007/978-3-030-34461-0_21.</cite> [<a href="https://doi.org/10.1007/978-3-030-34461-0_21" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31893407/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv%20Exp%20Med%20Biol&amp;title=Fatal%20alliance%20of%20hypoxia-/HIF-1%CE%B1-Driven%20microenvironmental%20traits%20promoting%20cancer%20progression&amp;author=P%20Vaupel&amp;author=G%20Multhoff&amp;volume=1232&amp;publication_year=2020&amp;pages=169-176&amp;pmid=31893407&amp;doi=10.1007/978-3-030-34461-0_21&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR163"> <span class="label">163.</span><cite>Mortezaee K, Majidpoor J. The impact of hypoxia on immune state in cancer. Life Sci. 2021;286:120057. doi: 10.1016/j.lfs.2021.120057.</cite> [<a href="https://doi.org/10.1016/j.lfs.2021.120057" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34662552/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Life%20Sci&amp;title=The%20impact%20of%20hypoxia%20on%20immune%20state%20in%20cancer&amp;author=K%20Mortezaee&amp;author=J%20Majidpoor&amp;volume=286&amp;publication_year=2021&amp;pages=120057&amp;pmid=34662552&amp;doi=10.1016/j.lfs.2021.120057&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR164"> <span class="label">164.</span><cite>Doublier S, et al. HIF-1 activation induces doxorubicin resistance in MCF7 3-D spheroids via P-glycoprotein expression: a potential model of the chemo-resistance of invasive micropapillary carcinoma of the breast. BMC Cancer. 2012;12:4. doi: 10.1186/1471-2407-12-4.</cite> [<a href="https://doi.org/10.1186/1471-2407-12-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3262753/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22217342/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=BMC%20Cancer&amp;title=HIF-1%20activation%20induces%20doxorubicin%20resistance%20in%20MCF7%203-D%20spheroids%20via%20P-glycoprotein%20expression:%20a%20potential%20model%20of%20the%20chemo-resistance%20of%20invasive%20micropapillary%20carcinoma%20of%20the%20breast&amp;author=S%20Doublier&amp;volume=12&amp;publication_year=2012&amp;pages=4&amp;pmid=22217342&amp;doi=10.1186/1471-2407-12-4&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR165"> <span class="label">165.</span><cite>Samanta D, et al. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc Natl Acad Sci U S A. 2014;111(50):E5429–E5438. doi: 10.1073/pnas.1421438111.</cite> [<a href="https://doi.org/10.1073/pnas.1421438111" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4273385/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25453096/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Proc%20Natl%20Acad%20Sci%20U%20S%20A&amp;title=Hypoxia-inducible%20factors%20are%20required%20for%20chemotherapy%20resistance%20of%20breast%20cancer%20stem%20cells&amp;author=D%20Samanta&amp;volume=111&amp;issue=50&amp;publication_year=2014&amp;pages=E5429-E5438&amp;pmid=25453096&amp;doi=10.1073/pnas.1421438111&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>] [<a href="/articles/PMC9499550/" class="text-red">Retracted</a>]</li> <li id="CR166"> <span class="label">166.</span><cite>Kawaguchi F, et al. Liposome-encapsulated hemoglobin improves tumor oxygenation as detected by near-infrared spectroscopy in colon carcinoma in mice. Artif Organs. 2017;41(4):327–335. doi: 10.1111/aor.12825.</cite> [<a href="https://doi.org/10.1111/aor.12825" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27873328/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Organs&amp;title=Liposome-encapsulated%20hemoglobin%20improves%20tumor%20oxygenation%20as%20detected%20by%20near-infrared%20spectroscopy%20in%20colon%20carcinoma%20in%20mice&amp;author=F%20Kawaguchi&amp;volume=41&amp;issue=4&amp;publication_year=2017&amp;pages=327-335&amp;pmid=27873328&amp;doi=10.1111/aor.12825&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR167"> <span class="label">167.</span><cite>Liu Y, et al. Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin. Sci Trans Med. 2016;8(348):348ra97–348ra97. doi: 10.1126/scitranslmed.aaf3124.</cite> [<a href="https://doi.org/10.1126/scitranslmed.aaf3124" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27440728/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci%20Trans%20Med&amp;title=Epigenetic%20activation%20of%20the%20drug%20transporter%20OCT2%20sensitizes%20renal%20cell%20carcinoma%20to%20oxaliplatin&amp;author=Y%20Liu&amp;volume=8&amp;issue=348&amp;publication_year=2016&amp;pages=348ra97-348ra97&amp;pmid=27440728&amp;doi=10.1126/scitranslmed.aaf3124&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR168"> <span class="label">168.</span><cite>Zheng X, et al. Response to Comment on “epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin”. Sci Trans Med. 2017;9(391):eaam6298. doi: 10.1126/scitranslmed.aam6298.</cite> [<a href="https://doi.org/10.1126/scitranslmed.aam6298" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28539476/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci%20Trans%20Med&amp;title=Response%20to%20Comment%20on%20%E2%80%9Cepigenetic%20activation%20of%20the%20drug%20transporter%20OCT2%20sensitizes%20renal%20cell%20carcinoma%20to%20oxaliplatin%E2%80%9D&amp;author=X%20Zheng&amp;volume=9&amp;issue=391&amp;publication_year=2017&amp;pages=eaam6298&amp;pmid=28539476&amp;doi=10.1126/scitranslmed.aam6298&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR169"> <span class="label">169.</span><cite>Chen L, et al. The failure of DAC to induce OCT2 expression and its remission by hemoglobin-based nanocarriers under hypoxia in renal cell carcinoma. Theranostics. 2020;10(8):3562–3578. doi: 10.7150/thno.39944.</cite> [<a href="https://doi.org/10.7150/thno.39944" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7069078/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32206108/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Theranostics&amp;title=The%20failure%20of%20DAC%20to%20induce%20OCT2%20expression%20and%20its%20remission%20by%20hemoglobin-based%20nanocarriers%20under%20hypoxia%20in%20renal%20cell%20carcinoma&amp;author=L%20Chen&amp;volume=10&amp;issue=8&amp;publication_year=2020&amp;pages=3562-3578&amp;pmid=32206108&amp;doi=10.7150/thno.39944&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR170"> <span class="label">170.</span><cite>Guo Y, et al. Cell microenvironment-controlled antitumor drug releasing-nanomicelles for GLUT1-targeting hepatocellular carcinoma therapy. ACS Appl Mater Interfaces. 2015;7(9):5444–5453. doi: 10.1021/am5091462.</cite> [<a href="https://doi.org/10.1021/am5091462" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25686400/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=ACS%20Appl%20Mater%20Interfaces&amp;title=Cell%20microenvironment-controlled%20antitumor%20drug%20releasing-nanomicelles%20for%20GLUT1-targeting%20hepatocellular%20carcinoma%20therapy&amp;author=Y%20Guo&amp;volume=7&amp;issue=9&amp;publication_year=2015&amp;pages=5444-5453&amp;pmid=25686400&amp;doi=10.1021/am5091462&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR171"> <span class="label">171.</span><cite>Synthesis of a hemoglobin-conjugated triblock copolymer for oxygen carrying and specific recognition of cancer cells. RSC Adv., 2017; <strong>7</strong>(76):48166–48175.</cite> </li> <li id="CR172"> <span class="label">172.</span><cite>Yang J, et al. Hypoxic tumor therapy by hemoglobin-mediated drug delivery and reversal of hypoxia-induced chemoresistance. Biomaterials. 2018;182:145–156. doi: 10.1016/j.biomaterials.2018.08.004.</cite> [<a href="https://doi.org/10.1016/j.biomaterials.2018.08.004" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30121013/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomaterials&amp;title=Hypoxic%20tumor%20therapy%20by%20hemoglobin-mediated%20drug%20delivery%20and%20reversal%20of%20hypoxia-induced%20chemoresistance&amp;author=J%20Yang&amp;volume=182&amp;publication_year=2018&amp;pages=145-156&amp;pmid=30121013&amp;doi=10.1016/j.biomaterials.2018.08.004&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR173"> <span class="label">173.</span><cite>Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–383. doi: 10.1038/s41580-020-0230-3.</cite> [<a href="https://doi.org/10.1038/s41580-020-0230-3" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32231263/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Mol%20Cell%20Biol&amp;title=Reactive%20oxygen%20species%20(ROS)%20as%20pleiotropic%20physiological%20signalling%20agents&amp;author=H%20Sies&amp;author=DP%20Jones&amp;volume=21&amp;issue=7&amp;publication_year=2020&amp;pages=363-383&amp;pmid=32231263&amp;doi=10.1038/s41580-020-0230-3&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR174"> <span class="label">174.</span><cite>Jia S, et al. Promoting reactive oxygen species generation: a key strategy in nanosensitizer-mediated radiotherapy. Nanomedicine (Lond) 2021;16(9):759–778. doi: 10.2217/nnm-2020-0448.</cite> [<a href="https://doi.org/10.2217/nnm-2020-0448" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33856241/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nanomedicine%20(Lond)&amp;title=Promoting%20reactive%20oxygen%20species%20generation:%20a%20key%20strategy%20in%20nanosensitizer-mediated%20radiotherapy&amp;author=S%20Jia&amp;volume=16&amp;issue=9&amp;publication_year=2021&amp;pages=759-778&amp;pmid=33856241&amp;doi=10.2217/nnm-2020-0448&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR175"> <span class="label">175.</span><cite>Huang L, et al. Photodynamic therapy for hypoxic tumors: advances and perspectives. Coord Chem Rev. 2021;438:213888. doi: 10.1016/j.ccr.2021.213888.</cite> [<a href="https://doi.org/10.1016/j.ccr.2021.213888" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Coord%20Chem%20Rev&amp;title=Photodynamic%20therapy%20for%20hypoxic%20tumors:%20advances%20and%20perspectives&amp;author=L%20Huang&amp;volume=438&amp;publication_year=2021&amp;pages=213888&amp;doi=10.1016/j.ccr.2021.213888&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR176"> <span class="label">176.</span><cite>Li M, et al. Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors. J Am Chem Soc. 2018;140(44):14851–14859. doi: 10.1021/jacs.8b08658.</cite> [<a href="https://doi.org/10.1021/jacs.8b08658" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30362735/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Am%20Chem%20Soc&amp;title=Near-infrared%20light-initiated%20molecular%20superoxide%20radical%20generator:%20rejuvenating%20photodynamic%20therapy%20against%20hypoxic%20tumors&amp;author=M%20Li&amp;volume=140&amp;issue=44&amp;publication_year=2018&amp;pages=14851-14859&amp;pmid=30362735&amp;doi=10.1021/jacs.8b08658&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR177"> <span class="label">177.</span><cite>Wang S, et al. Hemoglobins from scapharca subcrenata (Bivalvia: Arcidae) likely play an bactericidal role through their peroxidase activity. Comp Biochem Physiol B: Biochem Mol Biol. 2021;253:110545. doi: 10.1016/j.cbpb.2020.110545.</cite> [<a href="https://doi.org/10.1016/j.cbpb.2020.110545" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33346114/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Comp%20Biochem%20Physiol%20B:%20Biochem%20Mol%20Biol&amp;title=Hemoglobins%20from%20scapharca%20subcrenata%20(Bivalvia:%20Arcidae)%20likely%20play%20an%20bactericidal%20role%20through%20their%20peroxidase%20activity&amp;author=S%20Wang&amp;volume=253&amp;publication_year=2021&amp;pages=110545&amp;pmid=33346114&amp;doi=10.1016/j.cbpb.2020.110545&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR178"> <span class="label">178.</span><cite>Wang R, et al. PEGylated hollow gold nanoparticles for combined X-ray radiation and photothermal therapy in vitro and enhanced CT imaging in vivo. Nanomed Nanotechnol Biol Med. 2019;16:195–205. doi: 10.1016/j.nano.2018.12.005.</cite> [<a href="https://doi.org/10.1016/j.nano.2018.12.005" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30597210/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nanomed%20Nanotechnol%20Biol%20Med&amp;title=PEGylated%20hollow%20gold%20nanoparticles%20for%20combined%20X-ray%20radiation%20and%20photothermal%20therapy%20in%20vitro%20and%20enhanced%20CT%20imaging%20in%20vivo&amp;author=R%20Wang&amp;volume=16&amp;publication_year=2019&amp;pages=195-205&amp;pmid=30597210&amp;doi=10.1016/j.nano.2018.12.005&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR179"> <span class="label">179.</span><cite>Goel S, Ni D, Cai W. Harnessing the power of nanotechnology for enhanced radiation therapy. ACS Nano. 2017;11(6):5233–5237. doi: 10.1021/acsnano.7b03675.</cite> [<a href="https://doi.org/10.1021/acsnano.7b03675" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5552968/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28621524/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=ACS%20Nano&amp;title=Harnessing%20the%20power%20of%20nanotechnology%20for%20enhanced%20radiation%20therapy&amp;author=S%20Goel&amp;author=D%20Ni&amp;author=W%20Cai&amp;volume=11&amp;issue=6&amp;publication_year=2017&amp;pages=5233-5237&amp;pmid=28621524&amp;doi=10.1021/acsnano.7b03675&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR180"> <span class="label">180.</span><cite>Sang W, et al. Oxygen-enriched metal-phenolic X-ray nanoprocessor for cancer radio-radiodynamic therapy in combination with checkpoint blockade immunotherapy. Adv Sci. 2021;8(4):2003338. doi: 10.1002/advs.202003338.</cite> [<a href="https://doi.org/10.1002/advs.202003338" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7887592/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33643804/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv%20Sci&amp;title=Oxygen-enriched%20metal-phenolic%20X-ray%20nanoprocessor%20for%20cancer%20radio-radiodynamic%20therapy%20in%20combination%20with%20checkpoint%20blockade%20immunotherapy&amp;author=W%20Sang&amp;volume=8&amp;issue=4&amp;publication_year=2021&amp;pages=2003338&amp;pmid=33643804&amp;doi=10.1002/advs.202003338&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR181"> <span class="label">181.</span><cite>Hu CM, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526(7571):118–121. doi: 10.1038/nature15373.</cite> [<a href="https://doi.org/10.1038/nature15373" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4871317/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26374997/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&amp;title=Nanoparticle%20biointerfacing%20by%20platelet%20membrane%20cloaking&amp;author=CM%20Hu&amp;volume=526&amp;issue=7571&amp;publication_year=2015&amp;pages=118-121&amp;pmid=26374997&amp;doi=10.1038/nature15373&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR182"> <span class="label">182.</span><cite>Yu M, et al. Development of "smart" drug delivery systems for chemo/PDT synergistic treatment. J Mater Chem B. 2023;11(7):1416–1433. doi: 10.1039/D2TB02248F.</cite> [<a href="https://doi.org/10.1039/D2TB02248F" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36734612/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Mater%20Chem%20B&amp;title=Development%20of%20%22smart%22%20drug%20delivery%20systems%20for%20chemo/PDT%20synergistic%20treatment&amp;author=M%20Yu&amp;volume=11&amp;issue=7&amp;publication_year=2023&amp;pages=1416-1433&amp;pmid=36734612&amp;doi=10.1039/D2TB02248F&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR183"> <span class="label">183.</span><cite>Mossakowska BJ, et al. Possible mechanisms of resistance development to photodynamic therapy (PDT) in vulvar cancer cells. Int J Mol Sci. 2022 doi: 10.3390/ijms232314689.</cite> [<a href="https://doi.org/10.3390/ijms232314689" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC9741432/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36499013/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Int%20J%20Mol%20Sci&amp;title=Possible%20mechanisms%20of%20resistance%20development%20to%20photodynamic%20therapy%20(PDT)%20in%20vulvar%20cancer%20cells&amp;author=BJ%20Mossakowska&amp;publication_year=2022&amp;pmid=36499013&amp;doi=10.3390/ijms232314689&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR184"> <span class="label">184.</span><cite>Dang J, et al. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT) Biomater Sci. 2017;5(8):1500–1511. doi: 10.1039/C7BM00392G.</cite> [<a href="https://doi.org/10.1039/C7BM00392G" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28681887/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomater%20Sci&amp;title=Manipulating%20tumor%20hypoxia%20toward%20enhanced%20photodynamic%20therapy%20(PDT)&amp;author=J%20Dang&amp;volume=5&amp;issue=8&amp;publication_year=2017&amp;pages=1500-1511&amp;pmid=28681887&amp;doi=10.1039/C7BM00392G&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR185"> <span class="label">185.</span><cite>Zhou Z, et al. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev. 2016;45(23):6597–6626. doi: 10.1039/C6CS00271D.</cite> [<a href="https://doi.org/10.1039/C6CS00271D" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5118097/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27722328/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Chem%20Soc%20Rev&amp;title=Reactive%20oxygen%20species%20generating%20systems%20meeting%20challenges%20of%20photodynamic%20cancer%20therapy&amp;author=Z%20Zhou&amp;volume=45&amp;issue=23&amp;publication_year=2016&amp;pages=6597-6626&amp;pmid=27722328&amp;doi=10.1039/C6CS00271D&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR186"> <span class="label">186.</span><cite>Feng L, et al. Multifunctional UCNPs@MnSiO(3)@g-C(3)N(4) nanoplatform: improved ROS generation and reduced glutathione levels for highly efficient photodynamic therapy. Biomater Sci. 2017;5(12):2456–2467. doi: 10.1039/C7BM00798A.</cite> [<a href="https://doi.org/10.1039/C7BM00798A" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29068014/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomater%20Sci&amp;title=Multifunctional%20UCNPs@MnSiO(3)@g-C(3)N(4)%20nanoplatform:%20improved%20ROS%20generation%20and%20reduced%20glutathione%20levels%20for%20highly%20efficient%20photodynamic%20therapy&amp;author=L%20Feng&amp;volume=5&amp;issue=12&amp;publication_year=2017&amp;pages=2456-2467&amp;pmid=29068014&amp;doi=10.1039/C7BM00798A&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR187"> <span class="label">187.</span><cite>Chae YC, et al. Mitochondrial akt regulation of hypoxic tumor reprogramming. Cancer Cell. 2016;30(2):257–272. doi: 10.1016/j.ccell.2016.07.004.</cite> [<a href="https://doi.org/10.1016/j.ccell.2016.07.004" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5131882/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27505672/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cancer%20Cell&amp;title=Mitochondrial%20akt%20regulation%20of%20hypoxic%20tumor%20reprogramming&amp;author=YC%20Chae&amp;volume=30&amp;issue=2&amp;publication_year=2016&amp;pages=257-272&amp;pmid=27505672&amp;doi=10.1016/j.ccell.2016.07.004&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR188"> <span class="label">188.</span><cite>Liang T, et al. Adapting and remolding: orchestrating tumor microenvironment normalization with photodynamic therapy by size transformable nanoframeworks. Angew Chem Int Ed Engl. 2021;60(20):11464–11473. doi: 10.1002/anie.202102180.</cite> [<a href="https://doi.org/10.1002/anie.202102180" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33751758/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Angew%20Chem%20Int%20Ed%20Engl&amp;title=Adapting%20and%20remolding:%20orchestrating%20tumor%20microenvironment%20normalization%20with%20photodynamic%20therapy%20by%20size%20transformable%20nanoframeworks&amp;author=T%20Liang&amp;volume=60&amp;issue=20&amp;publication_year=2021&amp;pages=11464-11473&amp;pmid=33751758&amp;doi=10.1002/anie.202102180&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR189"> <span class="label">189.</span><cite>Shi X, et al. Hemoglobin-mediated biomimetic synthesis of paramagnetic O(2)-evolving theranostic nanoprobes for MR imaging-guided enhanced photodynamic therapy of tumor. Theranostics. 2020;10(25):11607–11621. doi: 10.7150/thno.46228.</cite> [<a href="https://doi.org/10.7150/thno.46228" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7545996/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33052236/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Theranostics&amp;title=Hemoglobin-mediated%20biomimetic%20synthesis%20of%20paramagnetic%20O(2)-evolving%20theranostic%20nanoprobes%20for%20MR%20imaging-guided%20enhanced%20photodynamic%20therapy%20of%20tumor&amp;author=X%20Shi&amp;volume=10&amp;issue=25&amp;publication_year=2020&amp;pages=11607-11621&amp;pmid=33052236&amp;doi=10.7150/thno.46228&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR190"> <span class="label">190.</span><cite>Wang S, et al. Synthesis of hemoglobin conjugated polymeric micelle: a ZnPc carrier with oxygen self-compensating ability for photodynamic therapy. Biomacromol. 2015;16(9):2693–2700. doi: 10.1021/acs.biomac.5b00571.</cite> [<a href="https://doi.org/10.1021/acs.biomac.5b00571" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26207413/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomacromol&amp;title=Synthesis%20of%20hemoglobin%20conjugated%20polymeric%20micelle:%20a%20ZnPc%20carrier%20with%20oxygen%20self-compensating%20ability%20for%20photodynamic%20therapy&amp;author=S%20Wang&amp;volume=16&amp;issue=9&amp;publication_year=2015&amp;pages=2693-2700&amp;pmid=26207413&amp;doi=10.1021/acs.biomac.5b00571&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR191"> <span class="label">191.</span><cite>Luo Z, et al. Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy. Sci Rep. 2016;6:23393. doi: 10.1038/srep23393.</cite> [<a href="https://doi.org/10.1038/srep23393" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4796897/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26987618/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci%20Rep&amp;title=Self-monitoring%20artificial%20red%20cells%20with%20sufficient%20oxygen%20supply%20for%20enhanced%20photodynamic%20therapy&amp;author=Z%20Luo&amp;volume=6&amp;publication_year=2016&amp;pages=23393&amp;pmid=26987618&amp;doi=10.1038/srep23393&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR192"> <span class="label">192.</span><cite>Cao H, et al. An assembled nanocomplex for improving both therapeutic efficiency and treatment depth in photodynamic therapy. Angew Chem Int Ed Engl. 2018;57(26):7759–7763. doi: 10.1002/anie.201802497.</cite> [<a href="https://doi.org/10.1002/anie.201802497" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29704295/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Angew%20Chem%20Int%20Ed%20Engl&amp;title=An%20assembled%20nanocomplex%20for%20improving%20both%20therapeutic%20efficiency%20and%20treatment%20depth%20in%20photodynamic%20therapy&amp;author=H%20Cao&amp;volume=57&amp;issue=26&amp;publication_year=2018&amp;pages=7759-7763&amp;pmid=29704295&amp;doi=10.1002/anie.201802497&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR193"> <span class="label">193.</span><cite>Chen Z, et al. Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect. ACS Nano. 2018;12(8):8633–8645. doi: 10.1021/acsnano.8b04371.</cite> [<a href="https://doi.org/10.1021/acsnano.8b04371" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30005164/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=ACS%20Nano&amp;title=Bioinspired%20hybrid%20protein%20oxygen%20nanocarrier%20amplified%20photodynamic%20therapy%20for%20eliciting%20anti-tumor%20immunity%20and%20abscopal%20effect&amp;author=Z%20Chen&amp;volume=12&amp;issue=8&amp;publication_year=2018&amp;pages=8633-8645&amp;pmid=30005164&amp;doi=10.1021/acsnano.8b04371&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR194"> <span class="label">194.</span><cite>Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12(8):895–904. doi: 10.1038/nm1469.</cite> [<a href="https://doi.org/10.1038/nm1469" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/16892035/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Med&amp;title=Tumor%20metastasis:%20mechanistic%20insights%20and%20clinical%20challenges&amp;author=PS%20Steeg&amp;volume=12&amp;issue=8&amp;publication_year=2006&amp;pages=895-904&amp;pmid=16892035&amp;doi=10.1038/nm1469&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR195"> <span class="label">195.</span><cite>Xu T, et al. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano. 2020;14(3):3414–3425. doi: 10.1021/acsnano.9b09426.</cite> [<a href="https://doi.org/10.1021/acsnano.9b09426" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32155051/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=ACS%20Nano&amp;title=Enhanced%20ferroptosis%20by%20oxygen-boosted%20phototherapy%20based%20on%20a%202-in-1%20nanoplatform%20of%20ferrous%20hemoglobin%20for%20tumor%20synergistic%20therapy&amp;author=T%20Xu&amp;volume=14&amp;issue=3&amp;publication_year=2020&amp;pages=3414-3425&amp;pmid=32155051&amp;doi=10.1021/acsnano.9b09426&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR196"> <span class="label">196.</span><cite>Wang H, et al. Discovery of ML210-Based glutathione peroxidase 4 (GPX4) degrader inducing ferroptosis of human cancer cells. Eur J Med Chem. 2023;254:115343. doi: 10.1016/j.ejmech.2023.115343.</cite> [<a href="https://doi.org/10.1016/j.ejmech.2023.115343" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37087895/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Eur%20J%20Med%20Chem&amp;title=Discovery%20of%20ML210-Based%20glutathione%20peroxidase%204%20(GPX4)%20degrader%20inducing%20ferroptosis%20of%20human%20cancer%20cells&amp;author=H%20Wang&amp;volume=254&amp;publication_year=2023&amp;pages=115343&amp;pmid=37087895&amp;doi=10.1016/j.ejmech.2023.115343&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR197"> <span class="label">197.</span><cite>Hu H, et al. Emerging nanomedicine-enabled/enhanced nanodynamic therapies beyond traditional photodynamics. Adv Mater. 2021;33(12):e2005062. doi: 10.1002/adma.202005062.</cite> [<a href="https://doi.org/10.1002/adma.202005062" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33565157/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv%20Mater&amp;title=Emerging%20nanomedicine-enabled/enhanced%20nanodynamic%20therapies%20beyond%20traditional%20photodynamics&amp;author=H%20Hu&amp;volume=33&amp;issue=12&amp;publication_year=2021&amp;pages=e2005062&amp;pmid=33565157&amp;doi=10.1002/adma.202005062&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR198"> <span class="label">198.</span><cite>Jiang Q, et al. A hydrogen peroxide economizer for on-demand oxygen production-assisted robust sonodynamic immunotherapy. Theranostics. 2022;12(1):59–75. doi: 10.7150/thno.64862.</cite> [<a href="https://doi.org/10.7150/thno.64862" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8690934/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34987634/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Theranostics&amp;title=A%20hydrogen%20peroxide%20economizer%20for%20on-demand%20oxygen%20production-assisted%20robust%20sonodynamic%20immunotherapy&amp;author=Q%20Jiang&amp;volume=12&amp;issue=1&amp;publication_year=2022&amp;pages=59-75&amp;pmid=34987634&amp;doi=10.7150/thno.64862&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR199"> <span class="label">199.</span><cite>Yin T, et al. Hypoxia-alleviated sonodynamic therapy based on a hybrid protein oxygen carrier to enhance tumor inhibition. Biomater Sci. 2021;10(1):294–305. doi: 10.1039/D1BM01710A.</cite> [<a href="https://doi.org/10.1039/D1BM01710A" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34854851/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomater%20Sci&amp;title=Hypoxia-alleviated%20sonodynamic%20therapy%20based%20on%20a%20hybrid%20protein%20oxygen%20carrier%20to%20enhance%20tumor%20inhibition&amp;author=T%20Yin&amp;volume=10&amp;issue=1&amp;publication_year=2021&amp;pages=294-305&amp;pmid=34854851&amp;doi=10.1039/D1BM01710A&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR200"> <span class="label">200.</span><cite>Pan ZQ, et al. Construction and evaluation of zeolitic imidazolate framework-encapsulated hemoglobin microparticles as oxygen carriers. ACS Appl Bio Mater. 2023;6(4):1471–1478. doi: 10.1021/acsabm.2c01013.</cite> [<a href="https://doi.org/10.1021/acsabm.2c01013" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36920300/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=ACS%20Appl%20Bio%20Mater&amp;title=Construction%20and%20evaluation%20of%20zeolitic%20imidazolate%20framework-encapsulated%20hemoglobin%20microparticles%20as%20oxygen%20carriers&amp;author=ZQ%20Pan&amp;volume=6&amp;issue=4&amp;publication_year=2023&amp;pages=1471-1478&amp;pmid=36920300&amp;doi=10.1021/acsabm.2c01013&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR201"> <span class="label">201.</span><cite>Liang G, et al. Reduction of platinum(IV) prodrug hemoglobin nanoparticles with deeply penetrating ultrasound radiation for tumor-targeted therapeutically enhanced anticancer therapy. Angew Chem Int Ed. 2023;62(22):e202301074. doi: 10.1002/anie.202301074.</cite> [<a href="https://doi.org/10.1002/anie.202301074" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36961095/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Angew%20Chem%20Int%20Ed&amp;title=Reduction%20of%20platinum(IV)%20prodrug%20hemoglobin%20nanoparticles%20with%20deeply%20penetrating%20ultrasound%20radiation%20for%20tumor-targeted%20therapeutically%20enhanced%20anticancer%20therapy&amp;author=G%20Liang&amp;volume=62&amp;issue=22&amp;publication_year=2023&amp;pages=e202301074&amp;pmid=36961095&amp;doi=10.1002/anie.202301074&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR202"> <span class="label">202.</span><cite>Mortezaee K, Majidpoor J. The impact of hypoxia on extracellular vesicle secretome profile of cancer. Med Oncol. 2023;40(5):128. doi: 10.1007/s12032-023-01995-x.</cite> [<a href="https://doi.org/10.1007/s12032-023-01995-x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36964452/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Med%20Oncol&amp;title=The%20impact%20of%20hypoxia%20on%20extracellular%20vesicle%20secretome%20profile%20of%20cancer&amp;author=K%20Mortezaee&amp;author=J%20Majidpoor&amp;volume=40&amp;issue=5&amp;publication_year=2023&amp;pages=128&amp;pmid=36964452&amp;doi=10.1007/s12032-023-01995-x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR203"> <span class="label">203.</span><cite>Wijekoon A, Fountas-Davis N, Leipzig ND. Fluorinated methacrylamide chitosan hydrogel systems as adaptable oxygen carriers for wound healing. Acta Biomater. 2013;9(3):5653–5664. doi: 10.1016/j.actbio.2012.10.034.</cite> [<a href="https://doi.org/10.1016/j.actbio.2012.10.034" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23128156/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Acta%20Biomater&amp;title=Fluorinated%20methacrylamide%20chitosan%20hydrogel%20systems%20as%20adaptable%20oxygen%20carriers%20for%20wound%20healing&amp;author=A%20Wijekoon&amp;author=N%20Fountas-Davis&amp;author=ND%20Leipzig&amp;volume=9&amp;issue=3&amp;publication_year=2013&amp;pages=5653-5664&amp;pmid=23128156&amp;doi=10.1016/j.actbio.2012.10.034&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR204"> <span class="label">204.</span><cite>Younis I. Role of oxygen in wound healing. J Wound Care. 2020;29(Sup5b):S4–s10. doi: 10.12968/jowc.2020.29.Sup5b.S4.</cite> [<a href="https://doi.org/10.12968/jowc.2020.29.Sup5b.S4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32427027/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Wound%20Care&amp;title=Role%20of%20oxygen%20in%20wound%20healing&amp;author=I%20Younis&amp;volume=29&amp;issue=Sup5b&amp;publication_year=2020&amp;pages=S4-s10&amp;pmid=32427027&amp;doi=10.12968/jowc.2020.29.Sup5b.S4&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR205"> <span class="label">205.</span><cite>Gupta S, et al. Dynamic role of oxygen in wound healing: a microbial, immunological, and biochemical perspective. Arch Razi Inst. 2022;77(2):513–523. doi: 10.22092/ARI.2022.357230.2003.</cite> [<a href="https://doi.org/10.22092/ARI.2022.357230.2003" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC9548270/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36284982/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Arch%20Razi%20Inst&amp;title=Dynamic%20role%20of%20oxygen%20in%20wound%20healing:%20a%20microbial,%20immunological,%20and%20biochemical%20perspective&amp;author=S%20Gupta&amp;volume=77&amp;issue=2&amp;publication_year=2022&amp;pages=513-523&amp;pmid=36284982&amp;doi=10.22092/ARI.2022.357230.2003&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR206"> <span class="label">206.</span><cite>Sen CK. Wound healing essentials: let there be oxygen. Wound Repair Regenerat. 2009;17(1):1–18. doi: 10.1111/j.1524-475X.2008.00436.x.</cite> [<a href="https://doi.org/10.1111/j.1524-475X.2008.00436.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2704021/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19152646/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Wound%20Repair%20Regenerat&amp;title=Wound%20healing%20essentials:%20let%20there%20be%20oxygen&amp;author=CK%20Sen&amp;volume=17&amp;issue=1&amp;publication_year=2009&amp;pages=1-18&amp;pmid=19152646&amp;doi=10.1111/j.1524-475X.2008.00436.x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR207"> <span class="label">207.</span><cite>Zhu Y, et al. Roxadustat promotes angiogenesis through HIF-1α/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats. Wound Repair Regen. 2019;27(4):324–334. doi: 10.1111/wrr.12708.</cite> [<a href="https://doi.org/10.1111/wrr.12708" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30817065/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Wound%20Repair%20Regen&amp;title=Roxadustat%20promotes%20angiogenesis%20through%20HIF-1%CE%B1/VEGF/VEGFR2%20signaling%20and%20accelerates%20cutaneous%20wound%20healing%20in%20diabetic%20rats&amp;author=Y%20Zhu&amp;volume=27&amp;issue=4&amp;publication_year=2019&amp;pages=324-334&amp;pmid=30817065&amp;doi=10.1111/wrr.12708&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR208"> <span class="label">208.</span><cite>Thangarajah H, et al. HIF-1α dysfunction in diabetes. Cell Cycle. 2010;9(1):75–79. doi: 10.4161/cc.9.1.10371.</cite> [<a href="https://doi.org/10.4161/cc.9.1.10371" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20016290/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell%20Cycle&amp;title=HIF-1%CE%B1%20dysfunction%20in%20diabetes&amp;author=H%20Thangarajah&amp;volume=9&amp;issue=1&amp;publication_year=2010&amp;pages=75-79&amp;pmid=20016290&amp;doi=10.4161/cc.9.1.10371&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR209"> <span class="label">209.</span><cite>Fosen KM, Thom SR. Hyperbaric oxygen, vasculogenic stem cells, and wound healing. Antioxid Redox Signal. 2014;21(11):1634–1647. doi: 10.1089/ars.2014.5940.</cite> [<a href="https://doi.org/10.1089/ars.2014.5940" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4175035/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24730726/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Antioxid%20Redox%20Signal&amp;title=Hyperbaric%20oxygen,%20vasculogenic%20stem%20cells,%20and%20wound%20healing&amp;author=KM%20Fosen&amp;author=SR%20Thom&amp;volume=21&amp;issue=11&amp;publication_year=2014&amp;pages=1634-1647&amp;pmid=24730726&amp;doi=10.1089/ars.2014.5940&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR210"> <span class="label">210.</span><cite>Wang X, et al. In situ 3D bioprinting living photosynthetic scaffolds for autotrophic wound healing. Research. 2022 doi: 10.34133/2022/9794745.</cite> [<a href="https://doi.org/10.34133/2022/9794745" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8961369/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35387266/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Research&amp;title=In%20situ%203D%20bioprinting%20living%20photosynthetic%20scaffolds%20for%20autotrophic%20wound%20healing&amp;author=X%20Wang&amp;publication_year=2022&amp;pmid=35387266&amp;doi=10.34133/2022/9794745&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR211"> <span class="label">211.</span><cite>Kang JI, Park KM. Oxygen-supplying syringe to create hyperoxia-inducible hydrogels for in situ tissue regeneration. Biomaterials. 2023;293:121943. doi: 10.1016/j.biomaterials.2022.121943.</cite> [<a href="https://doi.org/10.1016/j.biomaterials.2022.121943" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36527790/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biomaterials&amp;title=Oxygen-supplying%20syringe%20to%20create%20hyperoxia-inducible%20hydrogels%20for%20in%20situ%20tissue%20regeneration&amp;author=JI%20Kang&amp;author=KM%20Park&amp;volume=293&amp;publication_year=2023&amp;pages=121943&amp;pmid=36527790&amp;doi=10.1016/j.biomaterials.2022.121943&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR212"> <span class="label">212.</span><cite>Zhao E, et al. Separable microneedles with photosynthesis-driven oxygen manufactory for diabetic wound healing. ACS Appl Mater Interfaces. 2023;15(6):7725–7734. doi: 10.1021/acsami.2c18809.</cite> [<a href="https://doi.org/10.1021/acsami.2c18809" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36731033/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=ACS%20Appl%20Mater%20Interfaces&amp;title=Separable%20microneedles%20with%20photosynthesis-driven%20oxygen%20manufactory%20for%20diabetic%20wound%20healing&amp;author=E%20Zhao&amp;volume=15&amp;issue=6&amp;publication_year=2023&amp;pages=7725-7734&amp;pmid=36731033&amp;doi=10.1021/acsami.2c18809&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR213"> <span class="label">213.</span><cite>Chen H, et al. Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes. Sci Adv. 2020;6(20):eaba4311. doi: 10.1126/sciadv.aba4311.</cite> [<a href="https://doi.org/10.1126/sciadv.aba4311" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7228761/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32440554/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci%20Adv&amp;title=Dissolved%20oxygen%20from%20microalgae-gel%20patch%20promotes%20chronic%20wound%20healing%20in%20diabetes&amp;author=H%20Chen&amp;volume=6&amp;issue=20&amp;publication_year=2020&amp;pages=eaba4311&amp;pmid=32440554&amp;doi=10.1126/sciadv.aba4311&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR214"> <span class="label">214.</span><cite>Wang T, et al. Combined antioxidant-antibiotic treatment for effectively healing infected diabetic wounds based on polymer vesicles. ACS Nano. 2021;15(5):9027–9038. doi: 10.1021/acsnano.1c02102.</cite> [<a href="https://doi.org/10.1021/acsnano.1c02102" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33881831/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=ACS%20Nano&amp;title=Combined%20antioxidant-antibiotic%20treatment%20for%20effectively%20healing%20infected%20diabetic%20wounds%20based%20on%20polymer%20vesicles&amp;author=T%20Wang&amp;volume=15&amp;issue=5&amp;publication_year=2021&amp;pages=9027-9038&amp;pmid=33881831&amp;doi=10.1021/acsnano.1c02102&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR215"> <span class="label">215.</span><cite>Hauck S, et al. Collagen/hyaluronan based hydrogels releasing sulfated hyaluronan improve dermal wound healing in diabetic mice via reducing inflammatory macrophage activity. Bioact Mater. 2021;6(12):4342–4359. doi: 10.1016/j.bioactmat.2021.04.026.</cite> [<a href="https://doi.org/10.1016/j.bioactmat.2021.04.026" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8105600/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33997511/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Bioact%20Mater&amp;title=Collagen/hyaluronan%20based%20hydrogels%20releasing%20sulfated%20hyaluronan%20improve%20dermal%20wound%20healing%20in%20diabetic%20mice%20via%20reducing%20inflammatory%20macrophage%20activity&amp;author=S%20Hauck&amp;volume=6&amp;issue=12&amp;publication_year=2021&amp;pages=4342-4359&amp;pmid=33997511&amp;doi=10.1016/j.bioactmat.2021.04.026&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR216"> <span class="label">216.</span><cite>Wang S, et al. Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett. 2020;20(7):5149–5158. doi: 10.1021/acs.nanolett.0c01371.</cite> [<a href="https://doi.org/10.1021/acs.nanolett.0c01371" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32574064/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nano%20Lett&amp;title=Nanoenzyme-reinforced%20injectable%20hydrogel%20for%20healing%20diabetic%20wounds%20infected%20with%20multidrug%20resistant%20bacteria&amp;author=S%20Wang&amp;volume=20&amp;issue=7&amp;publication_year=2020&amp;pages=5149-5158&amp;pmid=32574064&amp;doi=10.1021/acs.nanolett.0c01371&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR217"> <span class="label">217.</span><cite>Jia Z, et al. Bioinspired conductive silk microfiber integrated bioelectronic for diagnosis and wound healing in diabetes. Adv Func Mater. 2021;31(19):2010461. doi: 10.1002/adfm.202010461.</cite> [<a href="https://doi.org/10.1002/adfm.202010461" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv%20Func%20Mater&amp;title=Bioinspired%20conductive%20silk%20microfiber%20integrated%20bioelectronic%20for%20diagnosis%20and%20wound%20healing%20in%20diabetes&amp;author=Z%20Jia&amp;volume=31&amp;issue=19&amp;publication_year=2021&amp;pages=2010461&amp;doi=10.1002/adfm.202010461&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR218"> <span class="label">218.</span><cite>Chen Y, et al. Research advances in smart responsive-hydrogel dressings with potential clinical diabetic wound healing properties. Mil Med Res. 2023;10(1):37. doi: 10.1186/s40779-023-00473-9.</cite> [<a href="https://doi.org/10.1186/s40779-023-00473-9" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC10463485/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37608335/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mil%20Med%20Res&amp;title=Research%20advances%20in%20smart%20responsive-hydrogel%20dressings%20with%20potential%20clinical%20diabetic%20wound%20healing%20properties&amp;author=Y%20Chen&amp;volume=10&amp;issue=1&amp;publication_year=2023&amp;pages=37&amp;pmid=37608335&amp;doi=10.1186/s40779-023-00473-9&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR219"> <span class="label">219.</span><cite>Thangarajah H, et al. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A. 2009;106(32):13505–13510. doi: 10.1073/pnas.0906670106.</cite> [<a href="https://doi.org/10.1073/pnas.0906670106" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2726398/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19666581/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Proc%20Natl%20Acad%20Sci%20U%20S%20A&amp;title=The%20molecular%20basis%20for%20impaired%20hypoxia-induced%20VEGF%20expression%20in%20diabetic%20tissues&amp;author=H%20Thangarajah&amp;volume=106&amp;issue=32&amp;publication_year=2009&amp;pages=13505-13510&amp;pmid=19666581&amp;doi=10.1073/pnas.0906670106&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR220"> <span class="label">220.</span><cite>Fukui T, et al. Liposome-encapsulated hemoglobin accelerates skin wound healing in diabetic dB/dB mice. Artif Organs. 2017;41(4):319–326. doi: 10.1111/aor.12864.</cite> [<a href="https://doi.org/10.1111/aor.12864" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28326562/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Organs&amp;title=Liposome-encapsulated%20hemoglobin%20accelerates%20skin%20wound%20healing%20in%20diabetic%20dB/dB%20mice&amp;author=T%20Fukui&amp;volume=41&amp;issue=4&amp;publication_year=2017&amp;pages=319-326&amp;pmid=28326562&amp;doi=10.1111/aor.12864&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR221"> <span class="label">221.</span><cite>Rius J, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008;453(7196):807–811. doi: 10.1038/nature06905.</cite> [<a href="https://doi.org/10.1038/nature06905" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2669289/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18432192/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&amp;title=NF-kappaB%20links%20innate%20immunity%20to%20the%20hypoxic%20response%20through%20transcriptional%20regulation%20of%20HIF-1alpha&amp;author=J%20Rius&amp;volume=453&amp;issue=7196&amp;publication_year=2008&amp;pages=807-811&amp;pmid=18432192&amp;doi=10.1038/nature06905&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR222"> <span class="label">222.</span><cite>Jin L, et al. An NIR photothermal-responsive hybrid hydrogel for enhanced wound healing. Bioact Mater. 2022;16:162–172. doi: 10.1016/j.bioactmat.2022.03.006.</cite> [<a href="https://doi.org/10.1016/j.bioactmat.2022.03.006" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8965777/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35415283/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Bioact%20Mater&amp;title=An%20NIR%20photothermal-responsive%20hybrid%20hydrogel%20for%20enhanced%20wound%20healing&amp;author=L%20Jin&amp;volume=16&amp;publication_year=2022&amp;pages=162-172&amp;pmid=35415283&amp;doi=10.1016/j.bioactmat.2022.03.006&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR223"> <span class="label">223.</span><cite>Peng Y, et al. Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition. Bioact Mater. 2021;6(10):3109–3124. doi: 10.1016/j.bioactmat.2021.02.006.</cite> [<a href="https://doi.org/10.1016/j.bioactmat.2021.02.006" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7960791/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33778192/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Bioact%20Mater&amp;title=Construction%20of%20heparin-based%20hydrogel%20incorporated%20with%20Cu5.4O%20ultrasmall%20nanozymes%20for%20wound%20healing%20and%20inflammation%20inhibition&amp;author=Y%20Peng&amp;volume=6&amp;issue=10&amp;publication_year=2021&amp;pages=3109-3124&amp;pmid=33778192&amp;doi=10.1016/j.bioactmat.2021.02.006&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR224"> <span class="label">224.</span><cite>Waris TS, et al. Chitosan-sodium percarbonate-based hydrogels with sustained oxygen release potential stimulated angiogenesis and accelerated wound healing. J Biomed Mater Res B Appl Biomater. 2023 doi: 10.1002/jbm.b.35344.</cite> [<a href="https://doi.org/10.1002/jbm.b.35344" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37942693/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Biomed%20Mater%20Res%20B%20Appl%20Biomater&amp;title=Chitosan-sodium%20percarbonate-based%20hydrogels%20with%20sustained%20oxygen%20release%20potential%20stimulated%20angiogenesis%20and%20accelerated%20wound%20healing&amp;author=TS%20Waris&amp;publication_year=2023&amp;pmid=37942693&amp;doi=10.1002/jbm.b.35344&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR225"> <span class="label">225.</span><cite>Yang Z, et al. Oxygen-generating hydrogels as oxygenation therapy for accelerated chronic wound healing. Adv Healthc Mater. 2023 doi: 10.1002/adhm.202302391.</cite> [<a href="https://doi.org/10.1002/adhm.202302391" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37899694/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv%20Healthc%20Mater&amp;title=Oxygen-generating%20hydrogels%20as%20oxygenation%20therapy%20for%20accelerated%20chronic%20wound%20healing&amp;author=Z%20Yang&amp;publication_year=2023&amp;pmid=37899694&amp;doi=10.1002/adhm.202302391&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR226"> <span class="label">226.</span><cite>Shiekh PA, Singh A, Kumar A. Oxygen-releasing antioxidant cryogel scaffolds with sustained oxygen delivery for tissue engineering applications. ACS Appl Mater Interfaces. 2018;10(22):18458–18469. doi: 10.1021/acsami.8b01736.</cite> [<a href="https://doi.org/10.1021/acsami.8b01736" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29737151/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=ACS%20Appl%20Mater%20Interfaces&amp;title=Oxygen-releasing%20antioxidant%20cryogel%20scaffolds%20with%20sustained%20oxygen%20delivery%20for%20tissue%20engineering%20applications&amp;author=PA%20Shiekh&amp;author=A%20Singh&amp;author=A%20Kumar&amp;volume=10&amp;issue=22&amp;publication_year=2018&amp;pages=18458-18469&amp;pmid=29737151&amp;doi=10.1021/acsami.8b01736&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR227"> <span class="label">227.</span><cite>Frykberg R, et al. Use of Topical Oxygen Therapy in Wound Healing. J Wound Care. 2023;32(Sup8b):S1–s32. doi: 10.12968/jowc.2023.32.Sup8b.S1.</cite> [<a href="https://doi.org/10.12968/jowc.2023.32.Sup8b.S1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37607744/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Wound%20Care&amp;title=Use%20of%20Topical%20Oxygen%20Therapy%20in%20Wound%20Healing&amp;author=R%20Frykberg&amp;volume=32&amp;issue=Sup8b&amp;publication_year=2023&amp;pages=S1-s32&amp;pmid=37607744&amp;doi=10.12968/jowc.2023.32.Sup8b.S1&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR228"> <span class="label">228.</span><cite>Liu Y, et al. Responsive porous microcarriers with controllable oxygen delivery for wound healing. Small. 2019;15(21):e1901254. doi: 10.1002/smll.201901254.</cite> [<a href="https://doi.org/10.1002/smll.201901254" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30997747/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Small&amp;title=Responsive%20porous%20microcarriers%20with%20controllable%20oxygen%20delivery%20for%20wound%20healing&amp;author=Y%20Liu&amp;volume=15&amp;issue=21&amp;publication_year=2019&amp;pages=e1901254&amp;pmid=30997747&amp;doi=10.1002/smll.201901254&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR229"> <span class="label">229.</span><cite>Zhang X, et al. Encoded microneedle arrays for detection of skin interstitial fluid biomarkers. Adv Mater. 2019;31(37):e1902825. doi: 10.1002/adma.201902825.</cite> [<a href="https://doi.org/10.1002/adma.201902825" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31271485/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv%20Mater&amp;title=Encoded%20microneedle%20arrays%20for%20detection%20of%20skin%20interstitial%20fluid%20biomarkers&amp;author=X%20Zhang&amp;volume=31&amp;issue=37&amp;publication_year=2019&amp;pages=e1902825&amp;pmid=31271485&amp;doi=10.1002/adma.201902825&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR230"> <span class="label">230.</span><cite>Li W, et al. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat Biomed Eng. 2019;3(3):220–229. doi: 10.1038/s41551-018-0337-4.</cite> [<a href="https://doi.org/10.1038/s41551-018-0337-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30948808/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Biomed%20Eng&amp;title=Rapidly%20separable%20microneedle%20patch%20for%20the%20sustained%20release%20of%20a%20contraceptive&amp;author=W%20Li&amp;volume=3&amp;issue=3&amp;publication_year=2019&amp;pages=220-229&amp;pmid=30948808&amp;doi=10.1038/s41551-018-0337-4&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR231"> <span class="label">231.</span><cite>Priya S, et al. Concurrent occurrence of lobular capillary haemangioma and port-wine stain: a case report and literature review. Cureus. 2023;15(5):e38642. doi: 10.7759/cureus.38642.</cite> [<a href="https://doi.org/10.7759/cureus.38642" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC10241596/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37284361/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cureus&amp;title=Concurrent%20occurrence%20of%20lobular%20capillary%20haemangioma%20and%20port-wine%20stain:%20a%20case%20report%20and%20literature%20review&amp;author=S%20Priya&amp;volume=15&amp;issue=5&amp;publication_year=2023&amp;pages=e38642&amp;pmid=37284361&amp;doi=10.7759/cureus.38642&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR232"> <span class="label">232.</span><cite>Demirel Öğüt N. Acquired plantar port-wine stain (Fegeler syndrome) following prolonged standing. J Cosmet Dermatol. 2022;21(10):5234–5235. doi: 10.1111/jocd.14822.</cite> [<a href="https://doi.org/10.1111/jocd.14822" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35106900/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Cosmet%20Dermatol&amp;title=Acquired%20plantar%20port-wine%20stain%20(Fegeler%20syndrome)%20following%20prolonged%20standing&amp;author=N%20Demirel%20%C3%96%C4%9F%C3%BCt&amp;volume=21&amp;issue=10&amp;publication_year=2022&amp;pages=5234-5235&amp;pmid=35106900&amp;doi=10.1111/jocd.14822&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR233"> <span class="label">233.</span><cite>Jiang F, et al. Influence of port-wine stains on quality of life of children and their parents. Acta Derm Venereol. 2021;101(8):adv00516. doi: 10.2340/00015555-3883.</cite> [<a href="https://doi.org/10.2340/00015555-3883" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC9413813/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34263327/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Acta%20Derm%20Venereol&amp;title=Influence%20of%20port-wine%20stains%20on%20quality%20of%20life%20of%20children%20and%20their%20parents&amp;author=F%20Jiang&amp;volume=101&amp;issue=8&amp;publication_year=2021&amp;pages=adv00516&amp;pmid=34263327&amp;doi=10.2340/00015555-3883&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR234"> <span class="label">234.</span><cite>Artzi O, et al. Treatment of port wine stain with Tixel-induced rapamycin delivery following pulsed dye laser application. Dermatol Ther. 2020;33(1):e13172. doi: 10.1111/dth.13172.</cite> [<a href="https://doi.org/10.1111/dth.13172" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31747115/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Dermatol%20Ther&amp;title=Treatment%20of%20port%20wine%20stain%20with%20Tixel-induced%20rapamycin%20delivery%20following%20pulsed%20dye%20laser%20application&amp;author=O%20Artzi&amp;volume=33&amp;issue=1&amp;publication_year=2020&amp;pages=e13172&amp;pmid=31747115&amp;doi=10.1111/dth.13172&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR235"> <span class="label">235.</span><cite>Sabeti S, et al. Consensus statement for the management and treatment of port-wine birthmarks in sturge-weber syndrome. JAMA Dermatol. 2021;157(1):98–104. doi: 10.1001/jamadermatol.2020.4226.</cite> [<a href="https://doi.org/10.1001/jamadermatol.2020.4226" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8547264/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33175124/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=JAMA%20Dermatol&amp;title=Consensus%20statement%20for%20the%20management%20and%20treatment%20of%20port-wine%20birthmarks%20in%20sturge-weber%20syndrome&amp;author=S%20Sabeti&amp;volume=157&amp;issue=1&amp;publication_year=2021&amp;pages=98-104&amp;pmid=33175124&amp;doi=10.1001/jamadermatol.2020.4226&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR236"> <span class="label">236.</span><cite>Yang C, et al. Mapping port wine stain in vivo by optical coherence tomography angiography and multi-metric characterization. Opt Express. 2023;31(9):13613–13626. doi: 10.1364/OE.485619.</cite> [<a href="https://doi.org/10.1364/OE.485619" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37157245/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Opt%20Express&amp;title=Mapping%20port%20wine%20stain%20in%20vivo%20by%20optical%20coherence%20tomography%20angiography%20and%20multi-metric%20characterization&amp;author=C%20Yang&amp;volume=31&amp;issue=9&amp;publication_year=2023&amp;pages=13613-13626&amp;pmid=37157245&amp;doi=10.1364/OE.485619&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR237"> <span class="label">237.</span><cite>Sakai H, et al. O2 release from Hb vesicles evaluated using an artificial, narrow O2-permeable tube: comparison with RBCs and acellular Hbs. Am J Physiol-Heart Circulatory Physiol. 2003;285(6):H2543–H2551. doi: 10.1152/ajpheart.00537.2003.</cite> [<a href="https://doi.org/10.1152/ajpheart.00537.2003" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12881206/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am%20J%20Physiol-Heart%20Circulatory%20Physiol&amp;title=O2%20release%20from%20Hb%20vesicles%20evaluated%20using%20an%20artificial,%20narrow%20O2-permeable%20tube:%20comparison%20with%20RBCs%20and%20acellular%20Hbs&amp;author=H%20Sakai&amp;volume=285&amp;issue=6&amp;publication_year=2003&amp;pages=H2543-H2551&amp;pmid=12881206&amp;doi=10.1152/ajpheart.00537.2003&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR238"> <span class="label">238.</span><cite>Rikihisa N, et al. Artificial red blood cells as potential photosensitizers in dye laser treatment against port-wine stains. J Funct Biomater. 2017;8(2):14. doi: 10.3390/jfb8020014.</cite> [<a href="https://doi.org/10.3390/jfb8020014" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5491995/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28406466/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Funct%20Biomater&amp;title=Artificial%20red%20blood%20cells%20as%20potential%20photosensitizers%20in%20dye%20laser%20treatment%20against%20port-wine%20stains&amp;author=N%20Rikihisa&amp;volume=8&amp;issue=2&amp;publication_year=2017&amp;pages=14&amp;pmid=28406466&amp;doi=10.3390/jfb8020014&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR239"> <span class="label">239.</span><cite>Ranjbar A, et al. Machine learning models for predicting pre-eclampsia: a systematic review protocol. BMJ Open. 2023;13(9):e074705. doi: 10.1136/bmjopen-2023-074705.</cite> [<a href="https://doi.org/10.1136/bmjopen-2023-074705" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC10496701/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/37696628/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=BMJ%20Open&amp;title=Machine%20learning%20models%20for%20predicting%20pre-eclampsia:%20a%20systematic%20review%20protocol&amp;author=A%20Ranjbar&amp;volume=13&amp;issue=9&amp;publication_year=2023&amp;pages=e074705&amp;pmid=37696628&amp;doi=10.1136/bmjopen-2023-074705&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR240"> <span class="label">240.</span><cite>Davidson KW, et al. Screening for gestational diabetes: us preventive services task force recommendation statement. JAMA. 2021;326(6):531–538. doi: 10.1001/jama.2021.11922.</cite> [<a href="https://doi.org/10.1001/jama.2021.11922" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34374716/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=JAMA&amp;title=Screening%20for%20gestational%20diabetes:%20us%20preventive%20services%20task%20force%20recommendation%20statement&amp;author=KW%20Davidson&amp;volume=326&amp;issue=6&amp;publication_year=2021&amp;pages=531-538&amp;pmid=34374716&amp;doi=10.1001/jama.2021.11922&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR241"> <span class="label">241.</span><cite>Henderson JT, et al. Preeclampsia screening: evidence report and systematic review for the US preventive services task force. JAMA. 2017;317(16):1668–1683. doi: 10.1001/jama.2016.18315.</cite> [<a href="https://doi.org/10.1001/jama.2016.18315" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28444285/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=JAMA&amp;title=Preeclampsia%20screening:%20evidence%20report%20and%20systematic%20review%20for%20the%20US%20preventive%20services%20task%20force&amp;author=JT%20Henderson&amp;volume=317&amp;issue=16&amp;publication_year=2017&amp;pages=1668-1683&amp;pmid=28444285&amp;doi=10.1001/jama.2016.18315&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR242"> <span class="label">242.</span><cite>Burton GJ, et al. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009;30(6):473–482. doi: 10.1016/j.placenta.2009.02.009.</cite> [<a href="https://doi.org/10.1016/j.placenta.2009.02.009" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2697319/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19375795/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Placenta&amp;title=Rheological%20and%20physiological%20consequences%20of%20conversion%20of%20the%20maternal%20spiral%20arteries%20for%20uteroplacental%20blood%20flow%20during%20human%20pregnancy&amp;author=GJ%20Burton&amp;volume=30&amp;issue=6&amp;publication_year=2009&amp;pages=473-482&amp;pmid=19375795&amp;doi=10.1016/j.placenta.2009.02.009&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR243"> <span class="label">243.</span><cite>Fruci S, et al. Pravastatin for severe preeclampsia with growth restriction: Placental findings and infant follow-up. Eur J Obstet Gynecol Reprod Biol. 2023;283:37–42. doi: 10.1016/j.ejogrb.2023.01.036.</cite> [<a href="https://doi.org/10.1016/j.ejogrb.2023.01.036" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36764034/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Eur%20J%20Obstet%20Gynecol%20Reprod%20Biol&amp;title=Pravastatin%20for%20severe%20preeclampsia%20with%20growth%20restriction:%20Placental%20findings%20and%20infant%20follow-up&amp;author=S%20Fruci&amp;volume=283&amp;publication_year=2023&amp;pages=37-42&amp;pmid=36764034&amp;doi=10.1016/j.ejogrb.2023.01.036&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR244"> <span class="label">244.</span><cite>Myatt L, Webster RP. Vascular biology of preeclampsia. J Thromb Haemost. 2009;7(3):375–384. doi: 10.1111/j.1538-7836.2008.03259.x.</cite> [<a href="https://doi.org/10.1111/j.1538-7836.2008.03259.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19087223/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Thromb%20Haemost&amp;title=Vascular%20biology%20of%20preeclampsia&amp;author=L%20Myatt&amp;author=RP%20Webster&amp;volume=7&amp;issue=3&amp;publication_year=2009&amp;pages=375-384&amp;pmid=19087223&amp;doi=10.1111/j.1538-7836.2008.03259.x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR245"> <span class="label">245.</span><cite>Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation. 2011;123(24):2856–2869. doi: 10.1161/CIRCULATIONAHA.109.853127.</cite> [<a href="https://doi.org/10.1161/CIRCULATIONAHA.109.853127" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3148781/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21690502/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Circulation&amp;title=Preeclampsia,%20a%20disease%20of%20the%20maternal%20endothelium:%20the%20role%20of%20antiangiogenic%20factors%20and%20implications%20for%20later%20cardiovascular%20disease&amp;author=CE%20Powe&amp;author=RJ%20Levine&amp;author=SA%20Karumanchi&amp;volume=123&amp;issue=24&amp;publication_year=2011&amp;pages=2856-2869&amp;pmid=21690502&amp;doi=10.1161/CIRCULATIONAHA.109.853127&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR246"> <span class="label">246.</span><cite>Cotechini T, et al. Inflammation in rat pregnancy inhibits spiral artery remodeling leading to fetal growth restriction and features of preeclampsia. J Exp Med. 2014;211(1):165–179. doi: 10.1084/jem.20130295.</cite> [<a href="https://doi.org/10.1084/jem.20130295" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3892976/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24395887/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Exp%20Med&amp;title=Inflammation%20in%20rat%20pregnancy%20inhibits%20spiral%20artery%20remodeling%20leading%20to%20fetal%20growth%20restriction%20and%20features%20of%20preeclampsia&amp;author=T%20Cotechini&amp;volume=211&amp;issue=1&amp;publication_year=2014&amp;pages=165-179&amp;pmid=24395887&amp;doi=10.1084/jem.20130295&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR247"> <span class="label">247.</span><cite>Kawaguchi AT, et al. Liposome-encapsulated hemoglobin reduces the size of cerebral infarction in the rat. Stroke. 2007;38(5):1626–1632. doi: 10.1161/STROKEAHA.106.467290.</cite> [<a href="https://doi.org/10.1161/STROKEAHA.106.467290" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17395856/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Stroke&amp;title=Liposome-encapsulated%20hemoglobin%20reduces%20the%20size%20of%20cerebral%20infarction%20in%20the%20rat&amp;author=AT%20Kawaguchi&amp;volume=38&amp;issue=5&amp;publication_year=2007&amp;pages=1626-1632&amp;pmid=17395856&amp;doi=10.1161/STROKEAHA.106.467290&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR248"> <span class="label">248.</span><cite>Chang TMS. Therapeutic applications of polymeric artificial cells. Nat Rev Drug Discovery. 2005;4(3):221–235. doi: 10.1038/nrd1659.</cite> [<a href="https://doi.org/10.1038/nrd1659" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/15738978/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Rev%20Drug%20Discovery&amp;title=Therapeutic%20applications%20of%20polymeric%20artificial%20cells&amp;author=TMS%20Chang&amp;volume=4&amp;issue=3&amp;publication_year=2005&amp;pages=221-235&amp;pmid=15738978&amp;doi=10.1038/nrd1659&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR249"> <span class="label">249.</span><cite>Ohta H, et al. Potential new non-invasive therapy using artificial oxygen carriers for pre-eclampsia. J Funct Biomater. 2017 doi: 10.3390/jfb8030032.</cite> [<a href="https://doi.org/10.3390/jfb8030032" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5618283/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28758949/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Funct%20Biomater&amp;title=Potential%20new%20non-invasive%20therapy%20using%20artificial%20oxygen%20carriers%20for%20pre-eclampsia&amp;author=H%20Ohta&amp;publication_year=2017&amp;pmid=28758949&amp;doi=10.3390/jfb8030032&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR250"> <span class="label">250.</span><cite>Mysak J, et al. Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res. 2014;2014:476068. doi: 10.1155/2014/476068.</cite> [<a href="https://doi.org/10.1155/2014/476068" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3984870/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24741603/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Immunol%20Res&amp;title=Porphyromonas%20gingivalis:%20major%20periodontopathic%20pathogen%20overview&amp;author=J%20Mysak&amp;volume=2014&amp;publication_year=2014&amp;pages=476068&amp;pmid=24741603&amp;doi=10.1155/2014/476068&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR251"> <span class="label">251.</span><cite>Yang J, et al. Porphyromonas gingivalis oral infection promote T helper 17/Treg imbalance in the development of atherosclerosis. J Dent Sci. 2017;12(1):60–69. doi: 10.1016/j.jds.2016.10.003.</cite> [<a href="https://doi.org/10.1016/j.jds.2016.10.003" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6395245/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30895025/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Dent%20Sci&amp;title=Porphyromonas%20gingivalis%20oral%20infection%20promote%20T%20helper%2017/Treg%20imbalance%20in%20the%20development%20of%20atherosclerosis&amp;author=J%20Yang&amp;volume=12&amp;issue=1&amp;publication_year=2017&amp;pages=60-69&amp;pmid=30895025&amp;doi=10.1016/j.jds.2016.10.003&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR252"> <span class="label">252.</span><cite>Paramaesvaran M, et al. Porphyrin-Mediated Cell Surface Heme Capture from Hemoglobin by &lt;i&gt;Porphyromonas gingivalis&lt;/i&gt;. J Bacteriol. 2003;185(8):2528–2537. doi: 10.1128/JB.185.8.2528-2537.2003.</cite> [<a href="https://doi.org/10.1128/JB.185.8.2528-2537.2003" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC152631/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12670977/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Bacteriol&amp;title=Porphyrin-Mediated%20Cell%20Surface%20Heme%20Capture%20from%20Hemoglobin%20by%20&lt;i&gt;Porphyromonas%20gingivalis&lt;/i&gt;&amp;author=M%20Paramaesvaran&amp;volume=185&amp;issue=8&amp;publication_year=2003&amp;pages=2528-2537&amp;pmid=12670977&amp;doi=10.1128/JB.185.8.2528-2537.2003&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR253"> <span class="label">253.</span><cite>Bai L, et al. Oxyhemoglobin-based nanophotosensitizer for specific and synergistic photothermal and photodynamic therapies against porphyromonas gingivalis oral infection. ACS Biomater Sci Eng. 2023;9(1):485–497. doi: 10.1021/acsbiomaterials.2c01034.</cite> [<a href="https://doi.org/10.1021/acsbiomaterials.2c01034" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/36507692/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=ACS%20Biomater%20Sci%20Eng&amp;title=Oxyhemoglobin-based%20nanophotosensitizer%20for%20specific%20and%20synergistic%20photothermal%20and%20photodynamic%20therapies%20against%20porphyromonas%20gingivalis%20oral%20infection&amp;author=L%20Bai&amp;volume=9&amp;issue=1&amp;publication_year=2023&amp;pages=485-497&amp;pmid=36507692&amp;doi=10.1021/acsbiomaterials.2c01034&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR254"> <span class="label">254.</span><cite>Mao C, et al. Local photothermal/photodynamic synergistic therapy by disrupting bacterial membrane to accelerate reactive oxygen species permeation and protein leakage. ACS Appl Mater Interfaces. 2019;11(19):17902–17914. doi: 10.1021/acsami.9b05787.</cite> [<a href="https://doi.org/10.1021/acsami.9b05787" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31013044/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=ACS%20Appl%20Mater%20Interfaces&amp;title=Local%20photothermal/photodynamic%20synergistic%20therapy%20by%20disrupting%20bacterial%20membrane%20to%20accelerate%20reactive%20oxygen%20species%20permeation%20and%20protein%20leakage&amp;author=C%20Mao&amp;volume=11&amp;issue=19&amp;publication_year=2019&amp;pages=17902-17914&amp;pmid=31013044&amp;doi=10.1021/acsami.9b05787&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR255"> <span class="label">255.</span><cite>Zhang H, et al. Dual-mode antibacterial conjugated polymer nanoparticles for photothermal and photodynamic therapy. Macromol Biosci. 2020;20(2):e1900301. doi: 10.1002/mabi.201900301.</cite> [<a href="https://doi.org/10.1002/mabi.201900301" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31762196/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Macromol%20Biosci&amp;title=Dual-mode%20antibacterial%20conjugated%20polymer%20nanoparticles%20for%20photothermal%20and%20photodynamic%20therapy&amp;author=H%20Zhang&amp;volume=20&amp;issue=2&amp;publication_year=2020&amp;pages=e1900301&amp;pmid=31762196&amp;doi=10.1002/mabi.201900301&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR256"> <span class="label">256.</span><cite>Hu X, et al. Synergistic antibacterial strategy based on photodynamic therapy: Progress and perspectives. Chem Eng J. 2022;450:138129. doi: 10.1016/j.cej.2022.138129.</cite> [<a href="https://doi.org/10.1016/j.cej.2022.138129" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Chem%20Eng%20J&amp;title=Synergistic%20antibacterial%20strategy%20based%20on%20photodynamic%20therapy:%20Progress%20and%20perspectives&amp;author=X%20Hu&amp;volume=450&amp;publication_year=2022&amp;pages=138129&amp;doi=10.1016/j.cej.2022.138129&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR257"> <span class="label">257.</span><cite>Paciello A, et al. Hemoglobin-conjugated gelatin microsphere as a smart oxygen releasing biomaterial. Adv Healthc Mater. 2016;5(20):2655–2666. doi: 10.1002/adhm.201600559.</cite> [<a href="https://doi.org/10.1002/adhm.201600559" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27594116/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv%20Healthc%20Mater&amp;title=Hemoglobin-conjugated%20gelatin%20microsphere%20as%20a%20smart%20oxygen%20releasing%20biomaterial&amp;author=A%20Paciello&amp;volume=5&amp;issue=20&amp;publication_year=2016&amp;pages=2655-2666&amp;pmid=27594116&amp;doi=10.1002/adhm.201600559&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR258"> <span class="label">258.</span><cite>Jones GL, et al. Time course and quantification of pancreatic islet revasculariztion following intraportal transplantation. Cell Transplant. 2007;16(5):505–516. doi: 10.3727/000000007783464993.</cite> [<a href="https://doi.org/10.3727/000000007783464993" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17708340/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cell%20Transplant&amp;title=Time%20course%20and%20quantification%20of%20pancreatic%20islet%20revasculariztion%20following%20intraportal%20transplantation&amp;author=GL%20Jones&amp;volume=16&amp;issue=5&amp;publication_year=2007&amp;pages=505-516&amp;pmid=17708340&amp;doi=10.3727/000000007783464993&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR259"> <span class="label">259.</span><cite>Rodriguez-Brotons A, et al. Impact of pancreatic rat islet density on cell survival during hypoxia. J Diabetes Res. 2016;2016:3615286. doi: 10.1155/2016/3615286.</cite> [<a href="https://doi.org/10.1155/2016/3615286" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4707363/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26824040/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Diabetes%20Res&amp;title=Impact%20of%20pancreatic%20rat%20islet%20density%20on%20cell%20survival%20during%20hypoxia&amp;author=A%20Rodriguez-Brotons&amp;volume=2016&amp;publication_year=2016&amp;pages=3615286&amp;pmid=26824040&amp;doi=10.1155/2016/3615286&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR260"> <span class="label">260.</span><cite>Okere B, et al. Cell therapies for pancreatic beta-cell replenishment. Ital J Pediatr. 2016;42(1):62. doi: 10.1186/s13052-016-0273-4.</cite> [<a href="https://doi.org/10.1186/s13052-016-0273-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4940879/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27400873/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Ital%20J%20Pediatr&amp;title=Cell%20therapies%20for%20pancreatic%20beta-cell%20replenishment&amp;author=B%20Okere&amp;volume=42&amp;issue=1&amp;publication_year=2016&amp;pages=62&amp;pmid=27400873&amp;doi=10.1186/s13052-016-0273-4&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR261"> <span class="label">261.</span><cite>Mouré A, et al. Extracellular hemoglobin combined with an O(2) -generating material overcomes O(2) limitation in the bioartificial pancreas. Biotechnol Bioeng. 2019;116(5):1176–1189. doi: 10.1002/bit.26913.</cite> [<a href="https://doi.org/10.1002/bit.26913" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30593660/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biotechnol%20Bioeng&amp;title=Extracellular%20hemoglobin%20combined%20with%20an%20O(2)%20-generating%20material%20overcomes%20O(2)%20limitation%20in%20the%20bioartificial%20pancreas&amp;author=A%20Mour%C3%A9&amp;volume=116&amp;issue=5&amp;publication_year=2019&amp;pages=1176-1189&amp;pmid=30593660&amp;doi=10.1002/bit.26913&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR262"> <span class="label">262.</span><cite>Le Pape F, et al. Advancement in recombinant protein production using a marine oxygen carrier to enhance oxygen transfer in a CHO-S cell line. Artif Cells Nanomed Biotechnol. 2015;43(3):186–195. doi: 10.3109/21691401.2015.1029632.</cite> [<a href="https://doi.org/10.3109/21691401.2015.1029632" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25961365/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Artif%20Cells%20Nanomed%20Biotechnol&amp;title=Advancement%20in%20recombinant%20protein%20production%20using%20a%20marine%20oxygen%20carrier%20to%20enhance%20oxygen%20transfer%20in%20a%20CHO-S%20cell%20line&amp;author=F%20Le%20Pape&amp;volume=43&amp;issue=3&amp;publication_year=2015&amp;pages=186-195&amp;pmid=25961365&amp;doi=10.3109/21691401.2015.1029632&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR263"> <span class="label">263.</span><cite>Sue C-Y, Tsai N-C. Human powered MEMS-based energy harvest devices. Appl Energy. 2012;93:390–403. doi: 10.1016/j.apenergy.2011.12.037.</cite> [<a href="https://doi.org/10.1016/j.apenergy.2011.12.037" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Appl%20Energy&amp;title=Human%20powered%20MEMS-based%20energy%20harvest%20devices&amp;author=C-Y%20Sue&amp;author=N-C%20Tsai&amp;volume=93&amp;publication_year=2012&amp;pages=390-403&amp;doi=10.1016/j.apenergy.2011.12.037&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR264"> <span class="label">264.</span><cite>Zebda A, et al. Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat Commun. 2011;2:370. doi: 10.1038/ncomms1365.</cite> [<a href="https://doi.org/10.1038/ncomms1365" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3156815/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21712818/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat%20Commun&amp;title=Mediatorless%20high-power%20glucose%20biofuel%20cells%20based%20on%20compressed%20carbon%20nanotube-enzyme%20electrodes&amp;author=A%20Zebda&amp;volume=2&amp;publication_year=2011&amp;pages=370&amp;pmid=21712818&amp;doi=10.1038/ncomms1365&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR265"> <span class="label">265.</span><cite>Weltin A, et al. Polymer-based, flexible glutamate and lactate microsensors for in vivo applications. Biosens Bioelectron. 2014;61:192–199. doi: 10.1016/j.bios.2014.05.014.</cite> [<a href="https://doi.org/10.1016/j.bios.2014.05.014" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24880657/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biosens%20Bioelectron&amp;title=Polymer-based,%20flexible%20glutamate%20and%20lactate%20microsensors%20for%20in%20vivo%20applications&amp;author=A%20Weltin&amp;volume=61&amp;publication_year=2014&amp;pages=192-199&amp;pmid=24880657&amp;doi=10.1016/j.bios.2014.05.014&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR266"> <span class="label">266.</span><cite>Chen H, et al. In Situ Engineering of Intracellular Hemoglobin for Implantable High-Performance Biofuel Cells. Angew Chem Int Ed Engl. 2019;58(20):6663–6668. doi: 10.1002/anie.201902073.</cite> [<a href="https://doi.org/10.1002/anie.201902073" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30884032/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Angew%20Chem%20Int%20Ed%20Engl&amp;title=In%20Situ%20Engineering%20of%20Intracellular%20Hemoglobin%20for%20Implantable%20High-Performance%20Biofuel%20Cells&amp;author=H%20Chen&amp;volume=58&amp;issue=20&amp;publication_year=2019&amp;pages=6663-6668&amp;pmid=30884032&amp;doi=10.1002/anie.201902073&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR267"> <span class="label">267.</span><cite>Rikihisa N, et al. Artificial red blood cells as potential photosensitizers in dye laser treatment against port-wine stains. J Funct Biomater. 2017 doi: 10.3390/jfb8020014.</cite> [<a href="https://doi.org/10.3390/jfb8020014" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5491995/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28406466/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J%20Funct%20Biomater&amp;title=Artificial%20red%20blood%20cells%20as%20potential%20photosensitizers%20in%20dye%20laser%20treatment%20against%20port-wine%20stains&amp;author=N%20Rikihisa&amp;publication_year=2017&amp;pmid=28406466&amp;doi=10.3390/jfb8020014&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> </ul></section></section><section id="_ad93_" lang="en" class="associated-data"><h2 class="pmc_sec_title">Associated Data</h2> <p class="font-secondary"><em>This section collects any data citations, data availability statements, or supplementary materials included in this article.</em></p> <section id="_adda93_" lang="en" class="data-availability-statement"><h3 class="pmc_sec_title">Data Availability Statement</h3> <p>Not applicable.</p></section></section></section><footer class="p courtesy-note font-secondary font-sm text-center"><hr class="headless"> <p>Articles from Journal of Nanobiotechnology are provided here courtesy of <strong>BMC</strong></p></footer></section></article> </main> </div> </div> </div> <!-- Secondary navigation placeholder --> <div class="pmc-sidenav desktop:grid-col-4 display-flex"> <section class="pmc-sidenav__container" aria-label="Article resources and navigation"> <button type="button" class="usa-button pmc-sidenav__container__close usa-button--unstyled"> <img src="/static/img/usa-icons/close.svg" role="img" alt="Close" /> </button> <div class="display-none desktop:display-block"> <section class="margin-top-4 desktop:margin-top-0"> <h2 class="margin-top-0">ACTIONS</h2> <ul class="usa-list usa-list--unstyled usa-list--actions"> <li> <a href="https://doi.org/10.1186/s12951-024-02606-1" class="usa-button usa-button--outline width-24 font-xs usa-link--external padding-left-0 padding-right-0" target="_blank" rel="noreferrer noopener" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_desktop" > <span class="height-3 display-inline-flex flex-align-center">View on publisher site</span> </a> </li> <li> <a href="pdf/12951_2024_Article_2606.pdf" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify-start padding-left-1" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">PDF (2.8 MB)</span> </a> </li> <li> <button role="button" class="usa-button width-24 citation-dialog-trigger display-inline-flex flex-align-center flex-justify-start padding-left-1" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_desktop" data-all-citations-url="/resources/citations/11180412/" data-citation-style="nlm" data-download-format-link="/resources/citations/11180412/export/" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Cite</span> </button> </li> <li> <button class="usa-button width-24 collections-dialog-trigger collections-button display-inline-flex flex-align-center flex-justify-start padding-left-1 collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_desktop" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC11180412%2F%23open-collections-dialog" data-in-collections="false"> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">Collections</span> </button> </li> <li class="pmc-permalink"> <button type="button" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify padding-left-1 shadow-none" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Permalink</span> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC11180412/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </section> </div> <section class="pmc-resources margin-top-6 desktop:margin-top-4" data-page-path="/articles/PMC11180412/"> <h2 class="margin-top-0">RESOURCES</h2> <div class="usa-accordion usa-accordion--multiselectable" data-allow-multiple> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-similar-articles" data-ga-category="resources_accordion" data-ga-action="open_similar_articles" data-ga-label="/articles/PMC11180412/" data-action-open="open_similar_articles" data-action-close="close_similar_articles" > Similar articles </button> </h3> <div id="resources-similar-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/similar-article-links/38880905/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-cited-by-other-articles" data-ga-category="resources_accordion" data-ga-action="open_cited_by" data-ga-label="/articles/PMC11180412/" data-action-open="open_cited_by" data-action-close="close_cited_by" > Cited by other articles </button> </h3> <div id="resources-cited-by-other-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/cited-by-links/38880905/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-links-to-ncbi-databases" data-ga-category="resources_accordion" data-ga-action="open_NCBI_links" data-ga-label="/articles/PMC11180412/" data-action-open="open_NCBI_links" data-action-close="close_NCBI_link" > Links to NCBI Databases </button> </h3> <div id="resources-links-to-ncbi-databases" class="usa-accordion__content usa-prose" data-source-url="/resources/db-links/11180412/" > </div> </div> </section> <section class="usa-in-page-nav usa-in-page-nav--wide margin-top-6 desktop:margin-top-4" data-title-text="On this page" data-title-heading-level="h2" data-scroll-offset="0" data-root-margin="-10% 0px -80% 0px" data-main-content-selector="main" data-threshold="1" hidden ></section> </section> </div> <div class="overlay" role="dialog" aria-label="Citation Dialog" hidden> <div class="dialog citation-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Cite</h2> <button type="button" class="usa-button usa-button--unstyled close-overlay text-black width-auto" tabindex="1"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="citation-text-block"> <div class="citation-text margin-bottom-2"></div> <ul class="usa-list usa-list--unstyled display-inline-flex flex-justify width-full flex-align-center"> <li> <button class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center copy-button dialog-focus" data-ga-category="save_share" data-ga-action="cite" data-ga-label="copy" tabindex="2"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span>Copy</span> </button> </li> <li> <a href="#" role="button" class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center export-button" data-ga-category="save_share" data-ga-action="cite" data-ga-label="download" title="Download a file for external citation management software" tabindex="3"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-none mobile-lg:display-inline">Download .nbib</span> <span class="display-inline mobile-lg:display-none">.nbib</span> </a> </li> <li> <div class="display-inline-flex flex-align-center"> <label class="usa-label margin-top-0">Format:</label> <select aria-label="Format" class="usa-select citation-style-selector padding-1 margin-top-0 border-0 padding-right-4" tabindex="4" > <option data-style-url-name="ama" value="AMA" > AMA </option> <option data-style-url-name="apa" value="APA" > APA </option> <option data-style-url-name="mla" value="MLA" > MLA </option> <option data-style-url-name="nlm" value="NLM" selected="selected"> NLM </option> </select> </div> </li> </ul> </div> </div> </div> <div class="overlay" role="dialog" hidden> <div id="collections-action-dialog" class="dialog collections-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Add to Collections</h2> </div> <div class="collections-action-panel action-panel"> <form id="collections-action-dialog-form" class="usa-form maxw-full collections-action-panel-form action-panel-content action-form action-panel-smaller-selectors" data-existing-collections-url="/list-existing-collections/" data-add-to-existing-collection-url="/add-to-existing-collection/" data-create-and-add-to-new-collection-url="/create-and-add-to-new-collection/" data-myncbi-max-collection-name-length="100" data-collections-root-url="https://www.ncbi.nlm.nih.gov/myncbi/collections/"> <input type="hidden" name="csrfmiddlewaretoken" value="uSBRrWBOMi0QrYgeojI1r1gXRuC0qb5OE2tM4QQfCJFabtBrusaq3QkJ2od3OxRn"> <fieldset class="usa-fieldset margin-bottom-2"> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-new" class="usa-radio__input usa-radio__input--tile collections-new margin-top-0" name="collections" value="new" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_new" /> <label class="usa-radio__label" for="collections-action-dialog-new">Create a new collection</label> </div> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-existing" class="usa-radio__input usa-radio__input--tile collections-existing" name="collections" value="existing" checked="true" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_existing" /> <label class="usa-radio__label" for="collections-action-dialog-existing">Add to an existing collection</label> </div> </fieldset> <fieldset class="usa-fieldset margin-bottom-2"> <div class="action-panel-control-wrap new-collections-controls"> <label for="collections-action-dialog-add-to-new" class="usa-label margin-top-0"> Name your collection <abbr title="required" class="usa-hint usa-hint--required text-no-underline">*</abbr> </label> <input type="text" name="add-to-new-collection" id="collections-action-dialog-add-to-new" class="usa-input collections-action-add-to-new" pattern="[^&quot;&amp;=&lt;&gt;/]*" title="The following characters are not allowed in the Name field: &quot;&amp;=&lt;&gt;/" maxlength="" data-ga-category="collections_button" data-ga-action="create_collection" data-ga-label="non_favorties_collection" required /> </div> <div class="action-panel-control-wrap existing-collections-controls"> <label for="collections-action-dialog-add-to-existing" class="usa-label margin-top-0"> Choose a collection </label> <select id="collections-action-dialog-add-to-existing" class="usa-select collections-action-add-to-existing" data-ga-category="collections_button" data-ga-action="select_collection" data-ga-label="($('.collections-action-add-to-existing').val() === 'Favorites') ? 'Favorites' : 'non_favorites_collection'"> </select> <div class="collections-retry-load-on-error usa-input-error-message selection-validation-message"> Unable to load your collection due to an error<br> <a href="#">Please try again</a> </div> </div> </fieldset> <div class="display-inline-flex"> <button class="usa-button margin-top-0 action-panel-submit" type="submit" data-loading-label="Adding..." data-pinger-ignore data-ga-category="collections_button" data-ga-action="click" data-ga-label="add"> Add </button> <button class="usa-button usa-button--outline margin-top-0 action-panel-cancel" aria-label="Close 'Add to Collections' panel" ref="linksrc=close_collections_panel" data-ga-category="collections_button" data-ga-action="click" data-ga-label="cancel"> Cancel </button> </div> </form> </div> </div> </div> </div> </div> </div> <footer class="ncbi-footer ncbi-dark-background " > <div class="ncbi-footer__icon-section"> <div class="ncbi-footer__social-header"> Follow NCBI </div> <div class="grid-container ncbi-footer__ncbi-social-icons-container"> <a href="https://twitter.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="40" height="40" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NCBI on X (formerly known as Twitter)</span> </a> <a href="https://www.facebook.com/ncbi.nlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="16" height="29" focusable="false" aria-hidden="true" viewBox="0 0 16 29" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M3.8809 21.4002C3.8809 19.0932 3.8809 16.7876 3.8809 14.478C3.8809 14.2117 3.80103 14.1452 3.54278 14.1492C2.53372 14.1638 1.52334 14.1492 0.514288 14.1598C0.302626 14.1598 0.248047 14.0972 0.248047 13.8936C0.256034 12.4585 0.256034 11.0239 0.248047 9.58978C0.248047 9.37013 0.302626 9.30224 0.528931 9.3049C1.53798 9.31688 2.54837 9.3049 3.55742 9.31555C3.80103 9.31555 3.8809 9.26097 3.87957 9.00272C3.87158 8.00565 3.85428 7.00592 3.90753 6.00884C3.97142 4.83339 4.31487 3.73115 5.04437 2.78467C5.93095 1.63318 7.15699 1.09005 8.56141 0.967577C10.5582 0.79319 12.555 0.982221 14.5518 0.927641C14.7102 0.927641 14.7462 0.99287 14.7449 1.13664C14.7449 2.581 14.7449 4.02668 14.7449 5.47104C14.7449 5.67604 14.6517 5.68669 14.4946 5.68669C13.4523 5.68669 12.4113 5.68669 11.3703 5.68669C10.3506 5.68669 9.92057 6.10868 9.90593 7.13904C9.89661 7.7647 9.91525 8.39303 9.89794 9.01869C9.88995 9.26364 9.96583 9.31822 10.2015 9.31688C11.7204 9.30623 13.2393 9.31688 14.7595 9.3049C15.0257 9.3049 15.0723 9.3728 15.0444 9.62439C14.89 10.9849 14.7515 12.3467 14.6144 13.7085C14.5691 14.1571 14.5785 14.1585 14.1458 14.1585C12.8386 14.1585 11.5313 14.1665 10.2254 14.1518C9.95119 14.1518 9.89794 14.2317 9.89794 14.4899C9.90593 19.0799 9.89794 23.6752 9.91125 28.2612C9.91125 28.5674 9.8407 28.646 9.53186 28.6433C7.77866 28.6273 6.02414 28.6366 4.27094 28.634C3.82499 28.634 3.87158 28.6992 3.87158 28.22C3.87602 25.9472 3.87913 23.6739 3.8809 21.4002Z"> </path> </svg> <span class="usa-sr-only">NCBI on Facebook</span> </a> <a href="https://www.linkedin.com/company/ncbinlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="25" height="23" viewBox="0 0 26 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M14.6983 9.98423C15.6302 9.24808 16.5926 8.74754 17.6762 8.51991C19.673 8.09126 21.554 8.30824 23.1262 9.7526C24.2351 10.7723 24.7529 12.1115 25.0165 13.5612C25.1486 14.3363 25.2105 15.1218 25.2015 15.9081C25.2015 18.3043 25.2015 20.6898 25.2082 23.0806C25.2082 23.3468 25.1549 23.444 24.8621 23.4414C23.1297 23.4272 21.3992 23.4272 19.6704 23.4414C19.4041 23.4414 19.3429 23.3588 19.3442 23.1019C19.3535 20.5194 19.3442 17.9368 19.3442 15.3543C19.3442 14.0005 18.3258 12.9448 17.0266 12.9488C15.7273 12.9528 14.6983 14.0071 14.6983 15.361C14.6983 17.9328 14.6917 20.5047 14.6983 23.0753C14.6983 23.3708 14.6198 23.444 14.3296 23.4427C12.6185 23.4294 10.9079 23.4294 9.19779 23.4427C8.93155 23.4427 8.86099 23.3735 8.86232 23.1086C8.8783 19.7619 8.88628 16.4144 8.88628 13.066C8.88628 11.5688 8.87874 10.0708 8.86365 8.57182C8.86365 8.3575 8.90758 8.27896 9.14054 8.28029C10.9048 8.29094 12.6687 8.29094 14.4321 8.28029C14.6464 8.28029 14.6983 8.34818 14.6983 8.54653C14.6903 9.00047 14.6983 9.45441 14.6983 9.98423Z"> </path> <path d="M6.55316 15.8443C6.55316 18.2564 6.55316 20.6699 6.55316 23.082C6.55316 23.3629 6.48127 23.4388 6.19906 23.4374C4.47737 23.4241 2.75568 23.4241 1.03399 23.4374C0.767751 23.4374 0.69986 23.3629 0.701191 23.1006C0.709178 18.2648 0.709178 13.4281 0.701191 8.59053C0.701191 8.34026 0.765089 8.27237 1.01669 8.2737C2.74991 8.28435 4.48048 8.28435 6.20838 8.2737C6.47462 8.2737 6.5465 8.33627 6.54517 8.6065C6.54783 11.0186 6.55316 13.4308 6.55316 15.8443Z"> </path> <path d="M3.65878 0.243898C5.36804 0.243898 6.58743 1.45529 6.58743 3.1406C6.58743 4.75801 5.32145 5.95742 3.60819 5.96807C3.22177 5.97614 2.83768 5.90639 2.47877 5.76299C2.11985 5.61959 1.79344 5.40546 1.51897 5.13334C1.24449 4.86123 1.02755 4.53668 0.881058 4.17902C0.734563 3.82136 0.661505 3.43788 0.666231 3.05141C0.67555 1.42601 1.9362 0.242566 3.65878 0.243898Z"> </path> </svg> <span class="usa-sr-only">NCBI on LinkedIn</span> </a> <a href="https://github.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="28" height="27" viewBox="0 0 28 28" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M16.7228 20.6334C17.5057 20.5527 18.2786 20.3944 19.0301 20.1608C21.3108 19.4193 22.5822 17.8259 22.963 15.4909C23.1228 14.5112 23.1814 13.5287 22.9883 12.5437C22.8106 11.6423 22.4013 10.8028 21.8007 10.1076C21.7526 10.0605 21.7197 10 21.7064 9.934C21.6931 9.86799 21.7 9.79952 21.7262 9.73748C22.0856 8.6206 21.9711 7.51969 21.601 6.42677C21.582 6.3497 21.5345 6.2827 21.468 6.23923C21.4016 6.19577 21.3211 6.17906 21.2429 6.19248C20.7329 6.21649 20.2313 6.33051 19.7611 6.52928C19.1103 6.7908 18.4899 7.12198 17.9104 7.51703C17.84 7.56996 17.7581 7.60551 17.6713 7.62078C17.5846 7.63605 17.4954 7.6306 17.4112 7.60489C15.2596 7.05882 13.0054 7.06203 10.8554 7.61421C10.7806 7.63586 10.7018 7.63967 10.6253 7.62534C10.5487 7.611 10.4766 7.57892 10.4148 7.53167C9.64788 7.03247 8.85171 6.58918 7.96368 6.33359C7.65781 6.24338 7.34123 6.19458 7.02239 6.18849C6.94879 6.17986 6.87462 6.19893 6.81432 6.242C6.75402 6.28507 6.71191 6.34904 6.69621 6.42145C6.32342 7.51437 6.2209 8.61527 6.56307 9.73348C6.59635 9.84264 6.64694 9.93316 6.54177 10.0516C5.47666 11.2604 5.09988 12.6834 5.19574 14.2676C5.2663 15.4244 5.46201 16.5466 6.01454 17.5769C6.84399 19.1171 8.21664 19.9119 9.85158 20.3352C10.3938 20.4706 10.9444 20.5698 11.4998 20.632C11.5384 20.7492 11.4506 20.7798 11.408 20.8291C11.1734 21.1179 10.9894 21.4441 10.8634 21.7942C10.7622 22.0458 10.8315 22.4039 10.6065 22.5516C10.263 22.7766 9.83827 22.8485 9.42421 22.8871C8.17936 23.0056 7.26471 22.4877 6.6283 21.4348C6.25552 20.8184 5.76956 20.3325 5.08523 20.0663C4.76981 19.9325 4.42139 19.8967 4.08537 19.9638C3.7898 20.029 3.73788 20.1901 3.93891 20.4111C4.03639 20.5234 4.14989 20.6207 4.27575 20.6999C4.9796 21.1318 5.51717 21.7884 5.80152 22.5636C6.37002 23.9973 7.48039 24.5697 8.93825 24.6323C9.43741 24.6575 9.93768 24.615 10.4254 24.5058C10.5892 24.4672 10.6531 24.4872 10.6517 24.6762C10.6451 25.4936 10.6637 26.3123 10.6517 27.131C10.6517 27.6635 10.1684 27.9297 9.58663 27.7393C8.17396 27.2671 6.84977 26.5631 5.66838 25.656C2.59555 23.2891 0.720966 20.1861 0.217704 16.3376C-0.357453 11.9127 0.911353 8.00824 3.98551 4.73881C6.11909 2.42656 8.99932 0.939975 12.1203 0.540191C16.5351 -0.0601815 20.4347 1.14323 23.7232 4.16373C26.2449 6.47869 27.724 9.37672 28.1048 12.7726C28.5828 17.0325 27.3686 20.7945 24.4768 23.9827C22.9762 25.6323 21.0956 26.8908 18.9982 27.6488C18.8783 27.6927 18.7585 27.738 18.636 27.7726C18.0356 27.9404 17.6189 27.6395 17.6189 27.0098C17.6189 25.7452 17.6308 24.4806 17.6295 23.2159C17.6329 22.9506 17.6128 22.6856 17.5696 22.4238C17.4325 21.6664 17.3419 21.484 16.7228 20.6334Z"> </path> </svg> <span class="usa-sr-only">NCBI on GitHub</span> </a> <a href="https://ncbiinsights.ncbi.nlm.nih.gov/" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="26" height="26" viewBox="0 0 27 27" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M23.7778 26.4574C23.1354 26.3913 22.0856 26.8024 21.636 26.3087C21.212 25.8444 21.4359 24.8111 21.324 24.0347C19.9933 14.8323 14.8727 8.80132 6.09057 5.85008C4.37689 5.28406 2.58381 4.99533 0.779072 4.99481C0.202773 4.99481 -0.0229751 4.83146 0.00455514 4.21479C0.0660406 3.08627 0.0660406 1.95525 0.00455514 0.826734C-0.0413285 0.0815827 0.259669 -0.0193618 0.896534 0.00266238C6.96236 0.222904 12.3693 2.24179 16.9889 6.16209C22.9794 11.2478 26.1271 17.7688 26.4372 25.648C26.4629 26.294 26.3179 26.5271 25.6609 26.4684C25.0827 26.417 24.4991 26.4574 23.7778 26.4574Z"> </path> <path d="M14.8265 26.441C14.0924 26.441 13.2371 26.6795 12.6626 26.3786C12.0092 26.0372 12.3781 25.0644 12.246 24.378C11.1154 18.5324 6.6849 14.5497 0.74755 14.1001C0.217135 14.0615 -0.0104482 13.9422 0.0134113 13.3659C0.0519536 12.1454 0.0482829 10.9213 0.0134113 9.69524C-0.00127145 9.14464 0.196946 9.03268 0.703502 9.04736C9.21217 9.27128 16.5994 16.2511 17.2804 24.7231C17.418 26.4446 17.418 26.4446 15.6579 26.4446H14.832L14.8265 26.441Z"> </path> <path d="M3.58928 26.4555C2.64447 26.4618 1.73584 26.0925 1.06329 25.4289C0.39073 24.7653 0.00933763 23.8617 0.0030097 22.9169C-0.00331824 21.9721 0.365937 21.0635 1.02954 20.3909C1.69315 19.7184 2.59675 19.337 3.54156 19.3306C4.48637 19.3243 5.39499 19.6936 6.06755 20.3572C6.7401 21.0208 7.1215 21.9244 7.12782 22.8692C7.13415 23.814 6.7649 24.7226 6.10129 25.3952C5.43768 26.0677 4.53409 26.4491 3.58928 26.4555Z"> </path> </svg> <span class="usa-sr-only">NCBI RSS feed</span> </a> </div> </div> <div data-testid="gridContainer" class="grid-container ncbi-footer__container"> <div class="grid-row ncbi-footer__main-content-container" data-testid="grid"> <div class="ncbi-footer__column"> <p class="ncbi-footer__circled-icons-heading"> Connect with NLM </p> <div class="ncbi-footer__circled-icons-list"> <a href=https://twitter.com/nlm_nih class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="32" height="32" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NLM on X (formerly known as Twitter)</span> </a> <a href=https://www.facebook.com/nationallibraryofmedicine class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="13" height="24" viewBox="0 0 13 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M4.11371 23.1369C4.11371 23.082 4.11371 23.0294 4.11371 22.9745V12.9411H0.817305C0.6709 12.9411 0.670898 12.9411 0.670898 12.8016C0.670898 11.564 0.670898 10.3287 0.670898 9.09341C0.670898 8.97903 0.705213 8.95158 0.815017 8.95158C1.8673 8.95158 2.91959 8.95158 3.97417 8.95158H4.12057V8.83263C4.12057 7.8055 4.12057 6.7738 4.12057 5.74897C4.1264 4.92595 4.31387 4.11437 4.66959 3.37217C5.12916 2.38246 5.94651 1.60353 6.95717 1.1921C7.64827 0.905008 8.3913 0.764035 9.13953 0.778051C10.0019 0.791777 10.8644 0.830666 11.7268 0.860404C11.8869 0.860404 12.047 0.894717 12.2072 0.90158C12.2964 0.90158 12.3261 0.940469 12.3261 1.02968C12.3261 1.5421 12.3261 2.05452 12.3261 2.56465C12.3261 3.16857 12.3261 3.7725 12.3261 4.37642C12.3261 4.48165 12.2964 4.51367 12.1912 4.51138C11.5369 4.51138 10.8804 4.51138 10.2261 4.51138C9.92772 4.51814 9.63058 4.5526 9.33855 4.61433C9.08125 4.6617 8.84537 4.78881 8.66431 4.97766C8.48326 5.16652 8.3662 5.40755 8.32972 5.66661C8.28476 5.89271 8.26027 6.1224 8.25652 6.35289C8.25652 7.19014 8.25652 8.02969 8.25652 8.86923C8.25652 8.89439 8.25652 8.91955 8.25652 8.95615H12.0219C12.1797 8.95615 12.182 8.95616 12.1614 9.10714C12.0768 9.76596 11.9876 10.4248 11.9029 11.0813C11.8312 11.6319 11.7626 12.1824 11.697 12.733C11.6719 12.9434 11.6787 12.9434 11.4683 12.9434H8.26338V22.899C8.26338 22.979 8.26338 23.0591 8.26338 23.1392L4.11371 23.1369Z"> </path> </svg> <span class="usa-sr-only">NLM on Facebook</span> </a> <a href=https://www.youtube.com/user/NLMNIH class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="21" height="15" viewBox="0 0 21 15" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M19.2561 1.47914C18.9016 1.15888 18.5699 0.957569 17.2271 0.834039C15.5503 0.678484 13.2787 0.655608 11.563 0.65332H9.43556C7.71987 0.65332 5.4483 0.678484 3.77151 0.834039C2.43098 0.957569 2.097 1.15888 1.74242 1.47914C0.813665 2.32097 0.619221 4.62685 0.598633 6.89384C0.598633 7.31781 0.598633 7.74101 0.598633 8.16345C0.626084 10.4121 0.827391 12.686 1.74242 13.521C2.097 13.8412 2.4287 14.0425 3.77151 14.1661C5.4483 14.3216 7.71987 14.3445 9.43556 14.3468H11.563C13.2787 14.3468 15.5503 14.3216 17.2271 14.1661C18.5676 14.0425 18.9016 13.8412 19.2561 13.521C20.1712 12.6929 20.3725 10.451 20.3999 8.22064C20.3999 7.74025 20.3999 7.25986 20.3999 6.77946C20.3725 4.54907 20.1689 2.30724 19.2561 1.47914ZM8.55942 10.5311V4.65201L13.5601 7.50005L8.55942 10.5311Z" fill="white" /> </svg> <span class="usa-sr-only">NLM on YouTube</span> </a> </div> </div> <address class="ncbi-footer__address ncbi-footer__column"> <p> <a class="usa-link usa-link--external" href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/%4038.9959508, -77.101021,17z/data%3D!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb%3A0x19156f88b27635b8!8m2!3d38.9959508! 4d-77.0988323" rel="noopener noreferrer" target="_blank">National Library of Medicine <br/> 8600 Rockville Pike<br/> Bethesda, MD 20894</a> </p> </address> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/web_policies.html" class="usa-link usa-link--alt ncbi-footer__link" > Web Policies </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="usa-link usa-link--alt ncbi-footer__link" > FOIA </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS Vulnerability Disclosure </a> </li> </ul> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://support.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > Help </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/accessibility.html" class="usa-link usa-link--alt ncbi-footer__link" > Accessibility </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/careers/careers.html" class="usa-link usa-link--alt ncbi-footer__link" > Careers </a> </li> </ul> </div> <div class="grid-row grid-col-12" data-testid="grid"> <ul class="ncbi-footer__bottom-links-list"> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NLM </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NIH </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.hhs.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.usa.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > USA.gov </a> </li> </ul> </div> </div> </footer> <script type="text/javascript" src="https://cdn.ncbi.nlm.nih.gov/core/pinger/pinger.js"> </script> <button class="back-to-top" data-ga-category="pagination" data-ga-action="back_to_top"> <label>Back to Top</label> <svg class="usa-icon order-0" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#arrow_upward"></use> </svg> </button> <script src="https://code.jquery.com/jquery-3.5.0.min.js" integrity="sha256-xNzN2a4ltkB44Mc/Jz3pT4iU1cmeR0FkXs4pru/JxaQ=" crossorigin="anonymous"> </script> <script type="text/javascript">var exports = {};</script> <script src="/static/CACHE/js/output.13b077bc3ffd.js"></script> <script type="application/javascript"> window.ncbi = window.ncbi || {}; window.ncbi.pmc = window.ncbi.pmc || {}; window.ncbi.pmc.options = { logLevel: 'INFO', staticEndpoint: '/static/', citeCookieName: 'pmc-cf', }; </script> <script type="module" crossorigin="" src="/static/assets/base-9bea7450.js"></script> <script type="module" crossorigin="" src="/static/assets/article-722d91a2.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10