CINXE.COM

<!doctype html><html lang="en"><head><title data-rh="true">Innovation Demands Compute: How Meta is Enabling ML Productivity and Efficiency at Scale | by Analytics at Meta | Medium</title><meta data-rh="true" charset="utf-8"/><meta data-rh="true" name="viewport" content="width=device-width,minimum-scale=1,initial-scale=1,maximum-scale=1"/><meta data-rh="true" name="theme-color" content="#000000"/><meta data-rh="true" name="twitter:app:name:iphone" content="Medium"/><meta data-rh="true" name="twitter:app:id:iphone" content="828256236"/><meta data-rh="true" property="al:ios:app_name" content="Medium"/><meta data-rh="true" property="al:ios:app_store_id" content="828256236"/><meta data-rh="true" property="al:android:package" content="com.medium.reader"/><meta data-rh="true" property="fb:app_id" content="542599432471018"/><meta data-rh="true" property="og:site_name" content="Medium"/><meta data-rh="true" property="og:type" content="article"/><meta data-rh="true" property="article:published_time" content="2024-11-08T21:14:20.231Z"/><meta data-rh="true" name="title" content="Innovation Demands Compute: How Meta is Enabling ML Productivity and Efficiency at Scale | by Analytics at Meta | Medium"/><meta data-rh="true" property="og:title" content="Innovation Demands Compute: How Meta is Enabling ML Productivity and Efficiency at Scale"/><meta data-rh="true" property="al:android:url" content="medium://p/38f56cf520f7"/><meta data-rh="true" property="al:ios:url" content="medium://p/38f56cf520f7"/><meta data-rh="true" property="al:android:app_name" content="Medium"/><meta data-rh="true" name="description" content="Meta’s long-term vision is to build artificial general intelligence (AGI) that is open and built responsibly, so that it can be widely available for everyone to benefit from. Large AI models take a…"/><meta data-rh="true" property="og:description" content="Author: Haerang Lee"/><meta data-rh="true" property="og:url" content="https://medium.com/@AnalyticsAtMeta/innovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7"/><meta data-rh="true" property="al:web:url" content="https://medium.com/@AnalyticsAtMeta/innovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7"/><meta data-rh="true" property="og:image" content="https://miro.medium.com/v2/resize:fit:1200/1*6E-yVJQvixQPhaYyBkF9uA.jpeg"/><meta data-rh="true" property="article:author" content="https://medium.com/@AnalyticsAtMeta"/><meta data-rh="true" name="author" content="Analytics at Meta"/><meta data-rh="true" name="robots" content="index,noarchive,follow,max-image-preview:large"/><meta data-rh="true" name="referrer" content="unsafe-url"/><meta data-rh="true" property="twitter:title" content="Innovation Demands Compute: How Meta is Enabling ML Productivity and Efficiency at Scale"/><meta data-rh="true" name="twitter:site" content="@Medium"/><meta data-rh="true" name="twitter:app:url:iphone" content="medium://p/38f56cf520f7"/><meta data-rh="true" property="twitter:description" content="Author: Haerang Lee"/><meta data-rh="true" name="twitter:image:src" content="https://miro.medium.com/v2/resize:fit:1200/1*6E-yVJQvixQPhaYyBkF9uA.jpeg"/><meta data-rh="true" name="twitter:card" content="summary_large_image"/><meta data-rh="true" name="twitter:label1" content="Reading time"/><meta data-rh="true" name="twitter:data1" content="6 min read"/><link data-rh="true" rel="icon" href="https://miro.medium.com/v2/5d8de952517e8160e40ef9841c781cdc14a5db313057fa3c3de41c6f5b494b19"/><link data-rh="true" rel="search" type="application/opensearchdescription+xml" title="Medium" href="/osd.xml"/><link data-rh="true" rel="apple-touch-icon" sizes="152x152" href="https://miro.medium.com/v2/resize:fill:304:304/10fd5c419ac61637245384e7099e131627900034828f4f386bdaa47a74eae156"/><link data-rh="true" rel="apple-touch-icon" sizes="120x120" href="https://miro.medium.com/v2/resize:fill:240:240/10fd5c419ac61637245384e7099e131627900034828f4f386bdaa47a74eae156"/><link data-rh="true" rel="apple-touch-icon" sizes="76x76" href="https://miro.medium.com/v2/resize:fill:152:152/10fd5c419ac61637245384e7099e131627900034828f4f386bdaa47a74eae156"/><link data-rh="true" rel="apple-touch-icon" sizes="60x60" href="https://miro.medium.com/v2/resize:fill:120:120/10fd5c419ac61637245384e7099e131627900034828f4f386bdaa47a74eae156"/><link data-rh="true" rel="mask-icon" href="https://miro.medium.com/v2/resize:fill:1000:1000/7*GAOKVe--MXbEJmV9230oOQ.png" color="#171717"/><link data-rh="true" rel="preconnect" href="https://glyph.medium.com" crossOrigin=""/><link data-rh="true" id="glyph_preload_link" rel="preload" as="style" type="text/css" href="https://glyph.medium.com/css/unbound.css"/><link data-rh="true" id="glyph_link" rel="stylesheet" type="text/css" href="https://glyph.medium.com/css/unbound.css"/><link data-rh="true" rel="author" href="https://medium.com/@AnalyticsAtMeta"/><link data-rh="true" rel="canonical" href="https://medium.com/@AnalyticsAtMeta/innovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7"/><link data-rh="true" rel="alternate" href="android-app://com.medium.reader/https/medium.com/p/38f56cf520f7"/><script data-rh="true" type="application/ld+json">{"@context":"http:\u002F\u002Fschema.org","@type":"NewsArticle","image":["https:\u002F\u002Fmiro.medium.com\u002Fv2\u002Fresize:fit:1200\u002F1*6E-yVJQvixQPhaYyBkF9uA.jpeg"],"url":"https:\u002F\u002Fmedium.com\u002F@AnalyticsAtMeta\u002Finnovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7","dateCreated":"2024-10-31T23:36:26.398Z","datePublished":"2024-10-31T23:36:26.398Z","dateModified":"2024-11-14T06:45:32.611Z","headline":"Innovation Demands Compute: How Meta is Enabling ML Productivity and Efficiency at Scale","name":"Innovation Demands Compute: How Meta is Enabling ML Productivity and Efficiency at Scale","description":"Meta’s long-term vision is to build artificial general intelligence (AGI) that is open and built responsibly, so that it can be widely available for everyone to benefit from. Large AI models take a…","identifier":"38f56cf520f7","author":{"@type":"Person","name":"Analytics at Meta","url":"https:\u002F\u002Fmedium.com\u002F@AnalyticsAtMeta"},"creator":["Analytics at Meta"],"publisher":{"@type":"Organization","name":"Medium","url":"https:\u002F\u002Fmedium.com\u002F","logo":{"@type":"ImageObject","width":272,"height":60,"url":"https:\u002F\u002Fmiro.medium.com\u002Fv2\u002Fresize:fit:544\u002F7*V1_7XP4snlmqrc_0Njontw.png"}},"mainEntityOfPage":"https:\u002F\u002Fmedium.com\u002F@AnalyticsAtMeta\u002Finnovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7"}</script><style type="text/css" data-fela-rehydration="522" data-fela-type="STATIC">html{box-sizing:border-box;-webkit-text-size-adjust:100%}*, *:before, *:after{box-sizing:inherit}body{margin:0;padding:0;text-rendering:optimizeLegibility;-webkit-font-smoothing:antialiased;color:rgba(0,0,0,0.8);position:relative;min-height:100vh}h1, h2, h3, h4, h5, h6, dl, dd, ol, ul, menu, figure, blockquote, p, pre, form{margin:0}menu, ol, ul{padding:0;list-style:none;list-style-image:none}main{display:block}a{color:inherit;text-decoration:none}a, button, input{-webkit-tap-highlight-color:transparent}img, svg{vertical-align:middle}button{background:transparent;overflow:visible}button, input, optgroup, select, textarea{margin:0}:root{--reach-tabs:1;--reach-menu-button:1}#speechify-root{font-family:Sohne, sans-serif}div[data-popper-reference-hidden="true"]{visibility:hidden;pointer-events:none}.grecaptcha-badge{visibility:hidden} /*XCode style (c) Angel Garcia <angelgarcia.mail@gmail.com>*/.hljs {background: #fff;color: black; }/* Gray DOCTYPE selectors like WebKit */ .xml .hljs-meta {color: #c0c0c0; }.hljs-comment, .hljs-quote {color: #007400; }.hljs-tag, .hljs-attribute, .hljs-keyword, .hljs-selector-tag, .hljs-literal, .hljs-name {color: #aa0d91; }.hljs-variable, .hljs-template-variable {color: #3F6E74; }.hljs-code, .hljs-string, .hljs-meta .hljs-string {color: #c41a16; }.hljs-regexp, .hljs-link {color: #0E0EFF; }.hljs-title, .hljs-symbol, .hljs-bullet, .hljs-number {color: #1c00cf; }.hljs-section, .hljs-meta {color: #643820; }.hljs-title.class_, .hljs-class .hljs-title, .hljs-type, .hljs-built_in, .hljs-params {color: #5c2699; }.hljs-attr {color: #836C28; }.hljs-subst {color: #000; }.hljs-formula {background-color: #eee;font-style: italic; }.hljs-addition {background-color: #baeeba; }.hljs-deletion {background-color: #ffc8bd; }.hljs-selector-id, .hljs-selector-class {color: #9b703f; }.hljs-doctag, .hljs-strong {font-weight: bold; }.hljs-emphasis {font-style: italic; } </style><style type="text/css" data-fela-rehydration="522" data-fela-type="KEYFRAME">@-webkit-keyframes k1{0%{opacity:0.8}50%{opacity:0.5}100%{opacity:0.8}}@-moz-keyframes k1{0%{opacity:0.8}50%{opacity:0.5}100%{opacity:0.8}}@keyframes k1{0%{opacity:0.8}50%{opacity:0.5}100%{opacity:0.8}}</style><style type="text/css" data-fela-rehydration="522" data-fela-type="RULE">.a{font-family:medium-content-sans-serif-font, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen, Ubuntu, Cantarell, "Open Sans", "Helvetica Neue", sans-serif}.b{font-weight:400}.c{background-color:rgba(255, 255, 255, 1)}.l{display:block}.m{position:sticky}.n{top:0}.o{z-index:500}.p{padding:0 24px}.q{align-items:center}.r{border-bottom:solid 1px #F2F2F2}.y{height:41px}.z{line-height:20px}.ab{display:flex}.ac{height:57px}.ae{flex:1 0 auto}.af{color:inherit}.ag{fill:inherit}.ah{font-size:inherit}.ai{border:inherit}.aj{font-family:inherit}.ak{letter-spacing:inherit}.al{font-weight:inherit}.am{padding:0}.an{margin:0}.ao{cursor:pointer}.ap:disabled{cursor:not-allowed}.aq:disabled{color:#6B6B6B}.ar:disabled{fill:#6B6B6B}.au{width:auto}.av path{fill:#242424}.aw{height:25px}.ax{margin-left:16px}.ay{border:none}.az{border-radius:20px}.ba{width:240px}.bb{background:#F9F9F9}.bc path{fill:#6B6B6B}.be{outline:none}.bf{font-family:sohne, "Helvetica Neue", Helvetica, Arial, sans-serif}.bg{font-size:14px}.bh{width:100%}.bi{padding:10px 20px 10px 0}.bj{background-color:transparent}.bk{color:#242424}.bl::placeholder{color:#6B6B6B}.bm{display:inline-block}.bn{margin-left:12px}.bo{margin-right:12px}.bp{border-radius:4px}.bq{margin-left:24px}.br{height:24px}.bx{background-color:#F9F9F9}.by{border-radius:50%}.bz{height:32px}.ca{width:32px}.cb{justify-content:center}.ch{max-width:680px}.ci{min-width:0}.cj{animation:k1 1.2s ease-in-out infinite}.ck{height:100vh}.cl{margin-bottom:16px}.cm{margin-top:48px}.cn{align-items:flex-start}.co{flex-direction:column}.cp{justify-content:space-between}.cq{margin-bottom:24px}.cw{width:80%}.cx{background-color:#F2F2F2}.dd{height:44px}.de{width:44px}.df{margin:auto 0}.dg{margin-bottom:4px}.dh{height:16px}.di{width:120px}.dj{width:80px}.dp{margin-bottom:8px}.dq{width:96%}.dr{width:98%}.ds{width:81%}.dt{margin-left:8px}.du{color:#6B6B6B}.dv{font-size:13px}.dw{height:100%}.ep{color:#FFFFFF}.eq{fill:#FFFFFF}.er{background:#1A8917}.es{border-color:#1A8917}.ew:disabled{cursor:inherit !important}.ex:disabled{opacity:0.3}.ey:disabled:hover{background:#1A8917}.ez:disabled:hover{border-color:#1A8917}.fa{border-radius:99em}.fb{border-width:1px}.fc{border-style:solid}.fd{box-sizing:border-box}.fe{text-decoration:none}.ff{text-align:center}.fi{margin-right:32px}.fj{position:relative}.fk{fill:#6B6B6B}.fn{background:transparent}.fo svg{margin-left:4px}.fp svg{fill:#6B6B6B}.fr{box-shadow:inset 0 0 0 1px rgba(0, 0, 0, 0.05)}.fs{position:absolute}.fz{margin:0 24px}.gd{background:rgba(255, 255, 255, 1)}.ge{border:1px solid #F2F2F2}.gf{box-shadow:0 1px 4px #F2F2F2}.gg{max-height:100vh}.gh{overflow-y:auto}.gi{left:0}.gj{top:calc(100vh + 100px)}.gk{bottom:calc(100vh + 100px)}.gl{width:10px}.gm{pointer-events:none}.gn{word-break:break-word}.go{word-wrap:break-word}.gp:after{display:block}.gq:after{content:""}.gr:after{clear:both}.gs{line-height:1.23}.gt{letter-spacing:0}.gu{font-style:normal}.gv{font-weight:700}.ia{align-items:baseline}.ib{width:48px}.ic{height:48px}.id{border:2px solid rgba(255, 255, 255, 1)}.ie{z-index:0}.if{box-shadow:none}.ig{border:1px solid rgba(0, 0, 0, 0.05)}.ih{margin-bottom:2px}.ii{flex-wrap:nowrap}.ij{font-size:16px}.ik{line-height:24px}.im{margin:0 8px}.in{display:inline}.io{color:#1A8917}.ip{fill:#1A8917}.is{flex:0 0 auto}.iv{flex-wrap:wrap}.iw{padding-left:8px}.ix{padding-right:8px}.jy> *{flex-shrink:0}.jz{overflow-x:scroll}.ka::-webkit-scrollbar{display:none}.kb{scrollbar-width:none}.kc{-ms-overflow-style:none}.kd{width:74px}.ke{flex-direction:row}.kf{z-index:2}.kg{margin-right:4px}.kj{-webkit-user-select:none}.kk{border:0}.kl{fill:rgba(117, 117, 117, 1)}.ko{outline:0}.kp{user-select:none}.kq> svg{pointer-events:none}.kz{cursor:progress}.la{opacity:1}.lb{padding:4px 0}.le{margin-top:0px}.lf{width:16px}.lh{display:inline-flex}.ln{max-width:100%}.lo{padding:8px 2px}.lp svg{color:#6B6B6B}.mg{margin-left:auto}.mh{margin-right:auto}.mi{max-width:3840px}.mo{clear:both}.mq{cursor:zoom-in}.mr{z-index:auto}.mt{height:auto}.mu{line-height:1.58}.mv{letter-spacing:-0.004em}.mw{font-family:source-serif-pro, Georgia, Cambria, "Times New Roman", Times, serif}.nr{margin-bottom:-0.46em}.ns{font-style:italic}.nt{line-height:1.12}.nu{letter-spacing:-0.022em}.nv{font-weight:600}.oq{margin-bottom:-0.28em}.ow{text-decoration:underline}.ox{max-width:1356px}.pd{max-width:1374px}.pe{max-width:1190px}.pf{max-width:1506px}.pg{list-style-type:disc}.ph{margin-left:30px}.pi{padding-left:0px}.po{margin-bottom:26px}.pp{margin-top:6px}.pq{margin-top:8px}.pr{margin-right:8px}.ps{padding:8px 16px}.pt{border-radius:100px}.pu{transition:background 300ms ease}.pw{white-space:nowrap}.px{border-top:none}.py{margin-bottom:50px}.pz{height:52px}.qa{max-height:52px}.qb{box-sizing:content-box}.qc{position:static}.qd{z-index:1}.qf{max-width:155px}.ql{margin-right:20px}.qm{margin-bottom:64px}.rb{height:64px}.rc{width:64px}.rd{align-self:flex-end}.re{color:rgba(255, 255, 255, 1)}.rf{fill:rgba(255, 255, 255, 1)}.rg{background:rgba(25, 25, 25, 1)}.rh{border-color:rgba(25, 25, 25, 1)}.rk:disabled{opacity:0.1}.rl:disabled:hover{background:rgba(25, 25, 25, 1)}.rm:disabled:hover{border-color:rgba(25, 25, 25, 1)}.rn{flex:1 1 auto}.rt{padding-right:4px}.ru{font-weight:500}.sh{white-space:pre-wrap}.si{margin-top:16px}.sj{margin-bottom:54px}.sk{height:0px}.sl{gap:18px}.sm{fill:rgba(61, 61, 61, 1)}.sy{border-bottom:solid 1px #E5E5E5}.sz{margin-top:72px}.ta{padding:24px 0}.tb{margin-bottom:0px}.tc{margin-right:16px}.as:hover:not(:disabled){color:rgba(25, 25, 25, 1)}.at:hover:not(:disabled){fill:rgba(25, 25, 25, 1)}.et:hover{background:#156D12}.eu:hover{border-color:#156D12}.ev:hover{cursor:pointer}.fl:hover{color:#242424}.fm:hover{fill:#242424}.fq:hover svg{fill:#242424}.ft:hover{background-color:rgba(0, 0, 0, 0.1)}.il:hover{text-decoration:underline}.iq:hover:not(:disabled){color:#156D12}.ir:hover:not(:disabled){fill:#156D12}.kn:hover{fill:rgba(8, 8, 8, 1)}.lc:hover{fill:#000000}.ld:hover p{color:#000000}.lg:hover{color:#000000}.lq:hover svg{color:#000000}.pv:hover{background-color:#F2F2F2}.ra:hover{background-color:none}.ri:hover{background:#000000}.rj:hover{border-color:#242424}.sn:hover{fill:rgba(25, 25, 25, 1)}.bd:focus-within path{fill:#242424}.km:focus{fill:rgba(8, 8, 8, 1)}.lr:focus svg{color:#000000}.ms:focus{transform:scale(1.01)}.kr:active{border-style:none}</style><style type="text/css" data-fela-rehydration="522" data-fela-type="RULE" media="all and (min-width: 1080px)">.d{display:none}.bw{width:64px}.cg{margin:0 64px}.cv{height:48px}.dc{margin-bottom:52px}.do{margin-bottom:48px}.ef{font-size:14px}.eg{line-height:20px}.em{font-size:13px}.eo{padding:5px 12px}.fh{display:flex}.fy{margin-bottom:50px}.gc{max-width:680px}.hq{font-size:42px}.hr{margin-top:1.19em}.hs{margin-bottom:32px}.ht{line-height:52px}.hu{letter-spacing:-0.011em}.hz{align-items:center}.jk{border-top:solid 1px #F2F2F2}.jl{border-bottom:solid 1px #F2F2F2}.jm{margin:32px 0 0}.jn{padding:3px 8px}.jw> *{margin-right:24px}.jx> :last-child{margin-right:0}.ky{margin-top:0px}.lm{margin:0}.mn{margin-top:40px}.nn{font-size:20px}.no{margin-top:2.14em}.np{line-height:32px}.nq{letter-spacing:-0.003em}.om{font-size:24px}.on{margin-top:1.95em}.oo{line-height:30px}.op{letter-spacing:-0.016em}.ov{margin-top:0.94em}.pc{margin-top:56px}.pn{margin-top:1.14em}.qk{display:inline-block}.qn{flex-direction:row}.qq{margin-bottom:0}.qr{margin-right:20px}.ro{max-width:500px}.sf{line-height:24px}.sg{letter-spacing:0}.ss{margin:40px 0 0}.sx{padding-top:72px}</style><style type="text/css" data-fela-rehydration="522" data-fela-type="RULE" media="all and (max-width: 1079.98px)">.e{display:none}.kx{margin-top:0px}.qj{display:inline-block}</style><style type="text/css" data-fela-rehydration="522" data-fela-type="RULE" media="all and (max-width: 903.98px)">.f{display:none}.kw{margin-top:0px}.qi{display:inline-block}</style><style type="text/css" data-fela-rehydration="522" data-fela-type="RULE" media="all and (max-width: 727.98px)">.g{display:none}.ku{margin-top:0px}.kv{margin-right:0px}.qh{display:inline-block}</style><style type="text/css" data-fela-rehydration="522" data-fela-type="RULE" media="all and (max-width: 551.98px)">.h{display:none}.s{display:flex}.t{justify-content:space-between}.bs{width:24px}.cc{margin:0 24px}.cr{height:40px}.cy{margin-bottom:44px}.dk{margin-bottom:32px}.dx{font-size:13px}.dy{line-height:20px}.eh{padding:0px 8px 1px}.fu{margin-bottom:2px}.gw{font-size:32px}.gx{margin-top:1.01em}.gy{margin-bottom:24px}.gz{line-height:38px}.ha{letter-spacing:-0.014em}.hv{align-items:flex-start}.it{flex-direction:column}.iy{margin:24px -24px 0}.iz{padding:0}.jo> *{margin-right:8px}.jp> :last-child{margin-right:24px}.kh{margin-left:0px}.ks{margin-top:0px}.kt{margin-right:0px}.li{margin:0}.ls{border:1px solid #F2F2F2}.lt{border-radius:99em}.lu{padding:0px 16px 0px 12px}.lv{height:38px}.lw{align-items:center}.ly svg{margin-right:8px}.mj{margin-top:32px}.mx{font-size:18px}.my{margin-top:1.56em}.mz{line-height:28px}.na{letter-spacing:-0.003em}.nw{font-size:20px}.nx{margin-top:1.2em}.ny{line-height:24px}.nz{letter-spacing:0}.or{margin-top:0.67em}.oy{margin-top:40px}.pj{margin-top:1.34em}.qg{display:inline-block}.qy{margin-bottom:20px}.qz{margin-right:0}.rs{max-width:100%}.rv{font-size:24px}.rw{line-height:30px}.rx{letter-spacing:-0.016em}.so{margin:32px 0 0}.st{padding-top:48px}.lx:hover{border-color:#E5E5E5}</style><style type="text/css" data-fela-rehydration="522" data-fela-type="RULE" media="all and (min-width: 904px) and (max-width: 1079.98px)">.i{display:none}.bv{width:64px}.cf{margin:0 64px}.cu{height:48px}.db{margin-bottom:52px}.dn{margin-bottom:48px}.ed{font-size:14px}.ee{line-height:20px}.ek{font-size:13px}.el{padding:5px 12px}.fg{display:flex}.fx{margin-bottom:50px}.gb{max-width:680px}.hl{font-size:42px}.hm{margin-top:1.19em}.hn{margin-bottom:32px}.ho{line-height:52px}.hp{letter-spacing:-0.011em}.hy{align-items:center}.jg{border-top:solid 1px #F2F2F2}.jh{border-bottom:solid 1px #F2F2F2}.ji{margin:32px 0 0}.jj{padding:3px 8px}.ju> *{margin-right:24px}.jv> :last-child{margin-right:0}.ll{margin:0}.mm{margin-top:40px}.nj{font-size:20px}.nk{margin-top:2.14em}.nl{line-height:32px}.nm{letter-spacing:-0.003em}.oi{font-size:24px}.oj{margin-top:1.95em}.ok{line-height:30px}.ol{letter-spacing:-0.016em}.ou{margin-top:0.94em}.pb{margin-top:56px}.pm{margin-top:1.14em}.qo{flex-direction:row}.qs{margin-bottom:0}.qt{margin-right:20px}.rp{max-width:500px}.sd{line-height:24px}.se{letter-spacing:0}.sr{margin:40px 0 0}.sw{padding-top:72px}</style><style type="text/css" data-fela-rehydration="522" data-fela-type="RULE" media="all and (min-width: 728px) and (max-width: 903.98px)">.j{display:none}.w{display:flex}.x{justify-content:space-between}.bu{width:64px}.ce{margin:0 48px}.ct{height:48px}.da{margin-bottom:52px}.dm{margin-bottom:48px}.eb{font-size:13px}.ec{line-height:20px}.ej{padding:0px 8px 1px}.fw{margin-bottom:50px}.ga{max-width:680px}.hg{font-size:42px}.hh{margin-top:1.19em}.hi{margin-bottom:32px}.hj{line-height:52px}.hk{letter-spacing:-0.011em}.hx{align-items:center}.jc{border-top:solid 1px #F2F2F2}.jd{border-bottom:solid 1px #F2F2F2}.je{margin:32px 0 0}.jf{padding:3px 8px}.js> *{margin-right:24px}.jt> :last-child{margin-right:0}.lk{margin:0}.ml{margin-top:40px}.nf{font-size:20px}.ng{margin-top:2.14em}.nh{line-height:32px}.ni{letter-spacing:-0.003em}.oe{font-size:24px}.of{margin-top:1.95em}.og{line-height:30px}.oh{letter-spacing:-0.016em}.ot{margin-top:0.94em}.pa{margin-top:56px}.pl{margin-top:1.14em}.qp{flex-direction:row}.qu{margin-bottom:0}.qv{margin-right:20px}.rq{max-width:500px}.sb{line-height:24px}.sc{letter-spacing:0}.sq{margin:40px 0 0}.sv{padding-top:72px}</style><style type="text/css" data-fela-rehydration="522" data-fela-type="RULE" media="all and (min-width: 552px) and (max-width: 727.98px)">.k{display:none}.u{display:flex}.v{justify-content:space-between}.bt{width:24px}.cd{margin:0 24px}.cs{height:40px}.cz{margin-bottom:44px}.dl{margin-bottom:32px}.dz{font-size:13px}.ea{line-height:20px}.ei{padding:0px 8px 1px}.fv{margin-bottom:2px}.hb{font-size:32px}.hc{margin-top:1.01em}.hd{margin-bottom:24px}.he{line-height:38px}.hf{letter-spacing:-0.014em}.hw{align-items:flex-start}.iu{flex-direction:column}.ja{margin:24px 0 0}.jb{padding:0}.jq> *{margin-right:8px}.jr> :last-child{margin-right:8px}.ki{margin-left:0px}.lj{margin:0}.lz{border:1px solid #F2F2F2}.ma{border-radius:99em}.mb{padding:0px 16px 0px 12px}.mc{height:38px}.md{align-items:center}.mf svg{margin-right:8px}.mk{margin-top:32px}.nb{font-size:18px}.nc{margin-top:1.56em}.nd{line-height:28px}.ne{letter-spacing:-0.003em}.oa{font-size:20px}.ob{margin-top:1.2em}.oc{line-height:24px}.od{letter-spacing:0}.os{margin-top:0.67em}.oz{margin-top:40px}.pk{margin-top:1.34em}.qw{margin-bottom:20px}.qx{margin-right:0}.rr{max-width:100%}.ry{font-size:24px}.rz{line-height:30px}.sa{letter-spacing:-0.016em}.sp{margin:32px 0 0}.su{padding-top:48px}.me:hover{border-color:#E5E5E5}</style><style type="text/css" data-fela-rehydration="522" data-fela-type="RULE" media="print">.qe{display:none}</style><style type="text/css" data-fela-rehydration="522" data-fela-type="RULE" media="(prefers-reduced-motion: no-preference)">.mp{transition:transform 300ms cubic-bezier(0.2, 0, 0.2, 1)}</style></head><body><div id="root"><div class="a b c"><div class="d e f g h i j k"></div><script>document.domain = document.domain;</script><div class="l c"><div class="l m n o c"><div class="p q r s t u v w x i d y z"><a class="du ag dv bf ak b am an ao ap aq ar as at s u w i d q dw z" href="https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F38f56cf520f7&amp;%7Efeature=LoOpenInAppButton&amp;%7Echannel=ShowPostUnderUser&amp;source=---top_nav_layout_nav-----------------------------------------" rel="noopener follow">Open in app<svg xmlns="http://www.w3.org/2000/svg" width="10" height="10" fill="none" viewBox="0 0 10 10" class="dt"><path fill="currentColor" d="M.985 8.485a.375.375 0 1 0 .53.53zM8.75 1.25h.375A.375.375 0 0 0 8.75.875zM8.375 6.5a.375.375 0 1 0 .75 0zM3.5.875a.375.375 0 1 0 0 .75zm-1.985 8.14 7.5-7.5-.53-.53-7.5 7.5zm6.86-7.765V6.5h.75V1.25zM3.5 1.625h5.25v-.75H3.5z"></path></svg></a><div class="ab q"><p class="bf b dx dy dz ea eb ec ed ee ef eg du"><span><button class="bf b dx dy eh dz ea ei eb ec ej ek ee el em eg eo ep eq er es et eu ev ew ex ey ez fa fb fc fd bm fe ff" data-testid="headerSignUpButton">Sign up</button></span></p><div class="ax l"><p class="bf b dx dy dz ea eb ec ed ee ef eg du"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerSignInButton" rel="noopener follow" href="/m/signin?operation=login&amp;redirect=https%3A%2F%2Fmedium.com%2F%40AnalyticsAtMeta%2Finnovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7&amp;source=post_page---top_nav_layout_nav-----------------------global_nav------------------">Sign in</a></span></p></div></div></div><div class="p q r ab ac"><div class="ab q ae"><a class="af ag ah ai aj ak al am an ao ap aq ar as at ab" aria-label="Homepage" data-testid="headerMediumLogo" rel="noopener follow" href="/?source=---top_nav_layout_nav-----------------------------------------"><svg xmlns="http://www.w3.org/2000/svg" width="719" height="160" fill="none" viewBox="0 0 719 160" class="au av aw"><path fill="#242424" d="m174.104 9.734.215-.047V8.02H130.39L89.6 103.89 48.81 8.021H1.472v1.666l.212.047c8.018 1.81 12.09 4.509 12.09 14.242V137.93c0 9.734-4.087 12.433-12.106 14.243l-.212.047v1.671h32.118v-1.665l-.213-.048c-8.018-1.809-12.089-4.509-12.089-14.242V30.586l52.399 123.305h2.972l53.925-126.743V140.75c-.687 7.688-4.721 10.062-11.982 11.701l-.215.05v1.652h55.948v-1.652l-.215-.05c-7.269-1.639-11.4-4.013-12.087-11.701l-.037-116.774h.037c0-9.733 4.071-12.432 12.087-14.242m25.555 75.488c.915-20.474 8.268-35.252 20.606-35.507 3.806.063 6.998 1.312 9.479 3.714 5.272 5.118 7.751 15.812 7.368 31.793zm-.553 5.77h65.573v-.275c-.186-15.656-4.721-27.834-13.466-36.196-7.559-7.227-18.751-11.203-30.507-11.203h-.263c-6.101 0-13.584 1.48-18.909 4.16-6.061 2.807-11.407 7.003-15.855 12.511-7.161 8.874-11.499 20.866-12.554 34.343q-.05.606-.092 1.212a50 50 0 0 0-.065 1.151 85.807 85.807 0 0 0-.094 5.689c.71 30.524 17.198 54.917 46.483 54.917 25.705 0 40.675-18.791 44.407-44.013l-1.886-.664c-6.557 13.556-18.334 21.771-31.738 20.769-18.297-1.369-32.314-19.922-31.042-42.395m139.722 41.359c-2.151 5.101-6.639 7.908-12.653 7.908s-11.513-4.129-15.418-11.63c-4.197-8.053-6.405-19.436-6.405-32.92 0-28.067 8.729-46.22 22.24-46.22 5.657 0 10.111 2.807 12.236 7.704zm43.499 20.008c-8.019-1.897-12.089-4.722-12.089-14.951V1.309l-48.716 14.353v1.757l.299-.024c6.72-.543 11.278.386 13.925 2.83 2.072 1.915 3.082 4.853 3.082 8.987v18.66c-4.803-3.067-10.516-4.56-17.448-4.56-14.059 0-26.909 5.92-36.176 16.672-9.66 11.205-14.767 26.518-14.767 44.278-.003 31.72 15.612 53.039 38.851 53.039 13.595 0 24.533-7.449 29.54-20.013v16.865h43.711v-1.746zM424.1 19.819c0-9.904-7.468-17.374-17.375-17.374-9.859 0-17.573 7.632-17.573 17.374s7.721 17.374 17.573 17.374c9.907 0 17.375-7.47 17.375-17.374m11.499 132.546c-8.019-1.897-12.089-4.722-12.089-14.951h-.035V43.635l-43.714 12.551v1.705l.263.024c9.458.842 12.047 4.1 12.047 15.152v81.086h43.751v-1.746zm112.013 0c-8.018-1.897-12.089-4.722-12.089-14.951V43.635l-41.621 12.137v1.71l.246.026c7.733.813 9.967 4.257 9.967 15.36v59.279c-2.578 5.102-7.415 8.131-13.274 8.336-9.503 0-14.736-6.419-14.736-18.073V43.638l-43.714 12.55v1.703l.262.024c9.459.84 12.05 4.097 12.05 15.152v50.17a56.3 56.3 0 0 0 .91 10.444l.787 3.423c3.701 13.262 13.398 20.197 28.59 20.197 12.868 0 24.147-7.966 29.115-20.43v17.311h43.714v-1.747zm169.818 1.788v-1.749l-.213-.05c-8.7-2.006-12.089-5.789-12.089-13.49v-63.79c0-19.89-11.171-31.761-29.883-31.761-13.64 0-25.141 7.882-29.569 20.16-3.517-13.01-13.639-20.16-28.606-20.16-13.146 0-23.449 6.938-27.869 18.657V43.643L545.487 55.68v1.715l.263.024c9.345.829 12.047 4.181 12.047 14.95v81.784h40.787v-1.746l-.215-.053c-6.941-1.631-9.181-4.606-9.181-12.239V66.998c1.836-4.289 5.537-9.37 12.853-9.37 9.086 0 13.692 6.296 13.692 18.697v77.828h40.797v-1.746l-.215-.053c-6.94-1.631-9.18-4.606-9.18-12.239V75.066a42 42 0 0 0-.578-7.26c1.947-4.661 5.86-10.177 13.475-10.177 9.214 0 13.691 6.114 13.691 18.696v77.828z"></path></svg></a><div class="ax h"><div class="ab ay az ba bb q bc bd"><div class="bm" aria-hidden="false" aria-describedby="searchResults" aria-labelledby="searchResults"></div><div class="bn bo ab"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24"><path fill="currentColor" fill-rule="evenodd" d="M4.092 11.06a6.95 6.95 0 1 1 13.9 0 6.95 6.95 0 0 1-13.9 0m6.95-8.05a8.05 8.05 0 1 0 5.13 14.26l3.75 3.75a.56.56 0 1 0 .79-.79l-3.73-3.73A8.05 8.05 0 0 0 11.042 3z" clip-rule="evenodd"></path></svg></div><input role="combobox" aria-controls="searchResults" aria-expanded="false" aria-label="search" data-testid="headerSearchInput" tabindex="0" class="ay be bf bg z bh bi bj bk bl" placeholder="Search" value=""/></div></div></div><div class="h k w fg fh"><div class="fi ab"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerWriteButton" rel="noopener follow" href="/m/signin?operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2Fnew-story&amp;source=---top_nav_layout_nav-----------------------new_post_topnav------------------"><div class="bf b bg z du fj fk ab q fl fm"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24" aria-label="Write"><path fill="currentColor" d="M14 4a.5.5 0 0 0 0-1zm7 6a.5.5 0 0 0-1 0zm-7-7H4v1h10zM3 4v16h1V4zm1 17h16v-1H4zm17-1V10h-1v10zm-1 1a1 1 0 0 0 1-1h-1zM3 20a1 1 0 0 0 1 1v-1zM4 3a1 1 0 0 0-1 1h1z"></path><path stroke="currentColor" d="m17.5 4.5-8.458 8.458a.25.25 0 0 0-.06.098l-.824 2.47a.25.25 0 0 0 .316.316l2.47-.823a.25.25 0 0 0 .098-.06L19.5 6.5m-2-2 2.323-2.323a.25.25 0 0 1 .354 0l1.646 1.646a.25.25 0 0 1 0 .354L19.5 6.5m-2-2 2 2"></path></svg><div class="dt l">Write</div></div></a></span></div></div><div class="k j i d"><div class="fi ab"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerSearchButton" rel="noopener follow" href="/search?source=---top_nav_layout_nav-----------------------------------------"><div class="bf b bg z du fj fk ab q fl fm"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24" aria-label="Search"><path fill="currentColor" fill-rule="evenodd" d="M4.092 11.06a6.95 6.95 0 1 1 13.9 0 6.95 6.95 0 0 1-13.9 0m6.95-8.05a8.05 8.05 0 1 0 5.13 14.26l3.75 3.75a.56.56 0 1 0 .79-.79l-3.73-3.73A8.05 8.05 0 0 0 11.042 3z" clip-rule="evenodd"></path></svg></div></a></div></div><div class="fi h k j"><div class="ab q"><p class="bf b dx dy dz ea eb ec ed ee ef eg du"><span><button class="bf b dx dy eh dz ea ei eb ec ej ek ee el em eg eo ep eq er es et eu ev ew ex ey ez fa fb fc fd bm fe ff" data-testid="headerSignUpButton">Sign up</button></span></p><div class="ax l"><p class="bf b dx dy dz ea eb ec ed ee ef eg du"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerSignInButton" rel="noopener follow" href="/m/signin?operation=login&amp;redirect=https%3A%2F%2Fmedium.com%2F%40AnalyticsAtMeta%2Finnovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7&amp;source=post_page---top_nav_layout_nav-----------------------global_nav------------------">Sign in</a></span></p></div></div></div><div class="l" aria-hidden="false"><button class="ay fn am ab q ao fo fp fq" aria-label="user options menu" data-testid="headerUserIcon"><div class="l fj"><img alt="" class="l fd by bz ca cx" src="https://miro.medium.com/v2/resize:fill:64:64/1*dmbNkD5D-u45r44go_cf0g.png" width="32" height="32" loading="lazy" role="presentation"/><div class="fr by l bz ca fs n ay ft"></div></div></button></div></div></div><div class="l"><div class="fu fv fw fx fy l"><div class="ab cb"><div class="ci bh fz ga gb gc"></div></div><article><div class="l"><div class="l"><span class="l"></span><section><div><div class="fs gi gj gk gl gm"></div><div class="gn go gp gq gr"><div class="ab cb"><div class="ci bh fz ga gb gc"><div><h1 id="e151" class="pw-post-title gs gt gu bf gv gw gx gy gz ha hb hc hd he hf hg hh hi hj hk hl hm hn ho hp hq hr hs ht hu bk" data-testid="storyTitle">Innovation Demands Compute: How Meta is Enabling ML Productivity and Efficiency at Scale</h1><div><div class="speechify-ignore ab cp"><div class="speechify-ignore bh l"><div class="hv hw hx hy hz ab"><div><div class="ab ia"><div><div class="bm" aria-hidden="false"><a rel="noopener follow" href="/@AnalyticsAtMeta?source=post_page---byline--38f56cf520f7---------------------------------------"><div class="l ib ic by id ie"><div class="l fj"><img alt="Analytics at Meta" class="l fd by dd de cx" src="https://miro.medium.com/v2/resize:fill:88:88/1*9IKlJavI2QSn7CpKVee5uA.png" width="44" height="44" loading="lazy" data-testid="authorPhoto"/><div class="if by l dd de fs n ig ft"></div></div></div></a></div></div></div></div><div class="bn bh l"><div class="ab"><div style="flex:1"><span class="bf b bg z bk"><div class="ih ab q"><div class="ab q ii"><div class="ab q"><div><div class="bm" aria-hidden="false"><p class="bf b ij ik bk"><a class="af ag ah ai aj ak al am an ao ap aq ar il" data-testid="authorName" rel="noopener follow" href="/@AnalyticsAtMeta?source=post_page---byline--38f56cf520f7---------------------------------------">Analytics at Meta</a></p></div></div></div><span class="im in" aria-hidden="true"><span class="bf b bg z du">·</span></span><p class="bf b ij ik du"><span><a class="io ip ah ai aj ak al am an ao ap aq ar ex iq ir" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fsubscribe%2Fuser%2F217b903f99fa&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2F%40AnalyticsAtMeta%2Finnovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7&amp;user=Analytics+at+Meta&amp;userId=217b903f99fa&amp;source=post_page-217b903f99fa--byline--38f56cf520f7---------------------post_header------------------">Follow</a></span></p></div></div></span></div></div><div class="l is"><span class="bf b bg z du"><div class="ab cn it iu iv"><span class="bf b bg z du"><div class="ab ae"><span data-testid="storyReadTime">6 min read</span><div class="iw ix l" aria-hidden="true"><span class="l" aria-hidden="true"><span class="bf b bg z du">·</span></span></div><span data-testid="storyPublishDate">Oct 31, 2024</span></div></span></div></span></div></div></div><div class="ab cp iy iz ja jb jc jd je jf jg jh ji jj jk jl jm jn"><div class="h k w fg fh q"><div class="kd l"><div class="ab q ke kf"><div class="pw-multi-vote-icon fj kg kh ki kj"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerClapButton" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fp%2F38f56cf520f7&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2F%40AnalyticsAtMeta%2Finnovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7&amp;user=Analytics+at+Meta&amp;userId=217b903f99fa&amp;source=---header_actions--38f56cf520f7---------------------clap_footer------------------"><div><div class="bm" aria-hidden="false"><div class="kk ao kl km kn ko am kp kq kr kj"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" aria-label="clap"><path fill-rule="evenodd" d="M11.37.828 12 3.282l.63-2.454zM13.916 3.953l1.523-2.112-1.184-.39zM8.589 1.84l1.522 2.112-.337-2.501zM18.523 18.92c-.86.86-1.75 1.246-2.62 1.33a6 6 0 0 0 .407-.372c2.388-2.389 2.86-4.951 1.399-7.623l-.912-1.603-.79-1.672c-.26-.56-.194-.98.203-1.288a.7.7 0 0 1 .546-.132c.283.046.546.231.728.5l2.363 4.157c.976 1.624 1.141 4.237-1.324 6.702m-10.999-.438L3.37 14.328a.828.828 0 0 1 .585-1.408.83.83 0 0 1 .585.242l2.158 2.157a.365.365 0 0 0 .516-.516l-2.157-2.158-1.449-1.449a.826.826 0 0 1 1.167-1.17l3.438 3.44a.363.363 0 0 0 .516 0 .364.364 0 0 0 0-.516L5.293 9.513l-.97-.97a.826.826 0 0 1 0-1.166.84.84 0 0 1 1.167 0l.97.968 3.437 3.436a.36.36 0 0 0 .517 0 .366.366 0 0 0 0-.516L6.977 7.83a.82.82 0 0 1-.241-.584.82.82 0 0 1 .824-.826c.219 0 .43.087.584.242l5.787 5.787a.366.366 0 0 0 .587-.415l-1.117-2.363c-.26-.56-.194-.98.204-1.289a.7.7 0 0 1 .546-.132c.283.046.545.232.727.501l2.193 3.86c1.302 2.38.883 4.59-1.277 6.75-1.156 1.156-2.602 1.627-4.19 1.367-1.418-.236-2.866-1.033-4.079-2.246M10.75 5.971l2.12 2.12c-.41.502-.465 1.17-.128 1.89l.22.465-3.523-3.523a.8.8 0 0 1-.097-.368c0-.22.086-.428.241-.584a.847.847 0 0 1 1.167 0m7.355 1.705c-.31-.461-.746-.758-1.23-.837a1.44 1.44 0 0 0-1.11.275c-.312.24-.505.543-.59.881a1.74 1.74 0 0 0-.906-.465 1.47 1.47 0 0 0-.82.106l-2.182-2.182a1.56 1.56 0 0 0-2.2 0 1.54 1.54 0 0 0-.396.701 1.56 1.56 0 0 0-2.21-.01 1.55 1.55 0 0 0-.416.753c-.624-.624-1.649-.624-2.237-.037a1.557 1.557 0 0 0 0 2.2c-.239.1-.501.238-.715.453a1.56 1.56 0 0 0 0 2.2l.516.515a1.556 1.556 0 0 0-.753 2.615L7.01 19c1.32 1.319 2.909 2.189 4.475 2.449q.482.08.971.08c.85 0 1.653-.198 2.393-.579.231.033.46.054.686.054 1.266 0 2.457-.52 3.505-1.567 2.763-2.763 2.552-5.734 1.439-7.586z" clip-rule="evenodd"></path></svg></div></div></div></a></span></div><div class="pw-multi-vote-count l ks kt ku kv kw kx ky"><p class="bf b dv z du"><span class="kz">--</span></p></div></div></div><div><div class="bm" aria-hidden="false"><button class="ao kk la lb ab q fk lc ld" aria-label="responses"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" class="le"><path d="M18.006 16.803c1.533-1.456 2.234-3.325 2.234-5.321C20.24 7.357 16.709 4 12.191 4S4 7.357 4 11.482c0 4.126 3.674 7.482 8.191 7.482.817 0 1.622-.111 2.393-.327.231.2.48.391.744.559 1.06.693 2.203 1.044 3.399 1.044.224-.008.4-.112.486-.287a.49.49 0 0 0-.042-.518c-.495-.67-.845-1.364-1.04-2.057a4 4 0 0 1-.125-.598zm-3.122 1.055-.067-.223-.315.096a8 8 0 0 1-2.311.338c-4.023 0-7.292-2.955-7.292-6.587 0-3.633 3.269-6.588 7.292-6.588 4.014 0 7.112 2.958 7.112 6.593 0 1.794-.608 3.469-2.027 4.72l-.195.168v.255c0 .056 0 .151.016.295.025.231.081.478.154.733.154.558.398 1.117.722 1.659a5.3 5.3 0 0 1-2.165-.845c-.276-.176-.714-.383-.941-.59z"></path></svg></button></div></div></div><div class="ab q jo jp jq jr js jt ju jv jw jx jy jz ka kb kc"><div class="lf k j i d"></div><div class="h k"><div><div class="bm" aria-hidden="false"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerBookmarkButton" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2F38f56cf520f7&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2F%40AnalyticsAtMeta%2Finnovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7&amp;source=---header_actions--38f56cf520f7---------------------bookmark_footer------------------"><svg xmlns="http://www.w3.org/2000/svg" width="25" height="25" fill="none" viewBox="0 0 25 25" class="du lg" aria-label="Add to list bookmark button"><path fill="currentColor" d="M18 2.5a.5.5 0 0 1 1 0V5h2.5a.5.5 0 0 1 0 1H19v2.5a.5.5 0 1 1-1 0V6h-2.5a.5.5 0 0 1 0-1H18zM7 7a1 1 0 0 1 1-1h3.5a.5.5 0 0 0 0-1H8a2 2 0 0 0-2 2v14a.5.5 0 0 0 .805.396L12.5 17l5.695 4.396A.5.5 0 0 0 19 21v-8.5a.5.5 0 0 0-1 0v7.485l-5.195-4.012a.5.5 0 0 0-.61 0L7 19.985z"></path></svg></a></span></div></div></div><div class="fd lh cn"><div class="l ae"><div class="ab cb"><div class="li lj lk ll lm ln ci bh"><div class="ab"><div class="bm" aria-hidden="false"><div><div class="bm" aria-hidden="false"><button aria-label="Listen" data-testid="audioPlayButton" class="af fk ah ai aj ak al lo an ao ap ex lp lq ld lr ls lt lu lv s lw lx ly lz ma mb mc u md me mf"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24"><path fill="currentColor" fill-rule="evenodd" d="M3 12a9 9 0 1 1 18 0 9 9 0 0 1-18 0m9-10C6.477 2 2 6.477 2 12s4.477 10 10 10 10-4.477 10-10S17.523 2 12 2m3.376 10.416-4.599 3.066a.5.5 0 0 1-.777-.416V8.934a.5.5 0 0 1 .777-.416l4.599 3.066a.5.5 0 0 1 0 .832" clip-rule="evenodd"></path></svg><div class="j i d"><p class="bf b bg z du">Listen</p></div></button></div></div></div></div></div></div></div></div><div class="bm" aria-hidden="false" aria-describedby="postFooterSocialMenu" aria-labelledby="postFooterSocialMenu"><div><div class="bm" aria-hidden="false"><button aria-controls="postFooterSocialMenu" aria-expanded="false" aria-label="Share Post" data-testid="headerSocialShareButton" class="af fk ah ai aj ak al lo an ao ap ex lp lq ld lr ls lt lu lv s lw lx ly lz ma mb mc u md me mf"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24"><path fill="currentColor" fill-rule="evenodd" d="M15.218 4.931a.4.4 0 0 1-.118.132l.012.006a.45.45 0 0 1-.292.074.5.5 0 0 1-.3-.13l-2.02-2.02v7.07c0 .28-.23.5-.5.5s-.5-.22-.5-.5v-7.04l-2 2a.45.45 0 0 1-.57.04h-.02a.4.4 0 0 1-.16-.3.4.4 0 0 1 .1-.32l2.8-2.8a.5.5 0 0 1 .7 0l2.8 2.79a.42.42 0 0 1 .068.498m-.106.138.008.004v-.01zM16 7.063h1.5a2 2 0 0 1 2 2v10a2 2 0 0 1-2 2h-11c-1.1 0-2-.9-2-2v-10a2 2 0 0 1 2-2H8a.5.5 0 0 1 .35.15.5.5 0 0 1 .15.35.5.5 0 0 1-.15.35.5.5 0 0 1-.35.15H6.4c-.5 0-.9.4-.9.9v10.2a.9.9 0 0 0 .9.9h11.2c.5 0 .9-.4.9-.9v-10.2c0-.5-.4-.9-.9-.9H16a.5.5 0 0 1 0-1" clip-rule="evenodd"></path></svg><div class="j i d"><p class="bf b bg z du">Share</p></div></button></div></div></div></div></div></div></div></div></div><figure class="mj mk ml mm mn mo mg mh paragraph-image"><div role="button" tabindex="0" class="mp mq fj mr bh ms"><div class="mg mh mi"><picture><source srcSet="https://miro.medium.com/v2/resize:fit:640/format:webp/1*6E-yVJQvixQPhaYyBkF9uA.jpeg 640w, https://miro.medium.com/v2/resize:fit:720/format:webp/1*6E-yVJQvixQPhaYyBkF9uA.jpeg 720w, https://miro.medium.com/v2/resize:fit:750/format:webp/1*6E-yVJQvixQPhaYyBkF9uA.jpeg 750w, https://miro.medium.com/v2/resize:fit:786/format:webp/1*6E-yVJQvixQPhaYyBkF9uA.jpeg 786w, https://miro.medium.com/v2/resize:fit:828/format:webp/1*6E-yVJQvixQPhaYyBkF9uA.jpeg 828w, https://miro.medium.com/v2/resize:fit:1100/format:webp/1*6E-yVJQvixQPhaYyBkF9uA.jpeg 1100w, https://miro.medium.com/v2/resize:fit:1400/format:webp/1*6E-yVJQvixQPhaYyBkF9uA.jpeg 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px" type="image/webp"/><source data-testid="og" srcSet="https://miro.medium.com/v2/resize:fit:640/1*6E-yVJQvixQPhaYyBkF9uA.jpeg 640w, https://miro.medium.com/v2/resize:fit:720/1*6E-yVJQvixQPhaYyBkF9uA.jpeg 720w, https://miro.medium.com/v2/resize:fit:750/1*6E-yVJQvixQPhaYyBkF9uA.jpeg 750w, https://miro.medium.com/v2/resize:fit:786/1*6E-yVJQvixQPhaYyBkF9uA.jpeg 786w, https://miro.medium.com/v2/resize:fit:828/1*6E-yVJQvixQPhaYyBkF9uA.jpeg 828w, https://miro.medium.com/v2/resize:fit:1100/1*6E-yVJQvixQPhaYyBkF9uA.jpeg 1100w, https://miro.medium.com/v2/resize:fit:1400/1*6E-yVJQvixQPhaYyBkF9uA.jpeg 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px"/><img alt="" class="bh ln mt c" width="700" height="394" loading="eager" role="presentation"/></picture></div></div></figure><p id="4c84" class="pw-post-body-paragraph mu mv gu mw b mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr gn bk"><em class="ns">Author: Haerang Lee</em></p><p id="0d78" class="pw-post-body-paragraph mu mv gu mw b mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr gn bk">Meta’s long-term vision is to build artificial general intelligence (AGI) that is open and built responsibly, so that it can be widely available for everyone to benefit from. Large AI models take a lot of capacity, but the global shortage of GPUs has implications for all AI companies large and small.</p><p id="e0d8" class="pw-post-body-paragraph mu mv gu mw b mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr gn bk">Meta is no exception. To build superclusters dedicated to the state-of-the-art LLMs, support existing products, and continue advancing in new product spaces, Meta had to develop a principled prioritization framework. This blog post examines the implications of AI innovation on Meta’s compute resources, then discusses ways to measure and improve productivity and efficiency to solve the problem.</p><h1 id="d970" class="nt nu gu bf nv nw nx ny nz oa ob oc od oe of og oh oi oj ok ol om on oo op oq bk">Innovation Demands Compute</h1><p id="cd27" class="pw-post-body-paragraph mu mv gu mw b mx or mz na nb os nd ne nf ot nh ni nj ou nl nm nn ov np nq nr gn bk">In Meta, <a class="af ow" href="https://ai.meta.com/" rel="noopener ugc nofollow" target="_blank">AI</a> powers a variety of products. The <a class="af ow" href="https://transparency.meta.com/features/ranking-and-content/" rel="noopener ugc nofollow" target="_blank">feed ranking</a> algorithm and the <a class="af ow" href="https://spark.meta.com/learn/quick-start/face-filters-ar-effects" rel="noopener ugc nofollow" target="_blank">face effects filters</a> bring users engaging content and delight. AI keeps users safe by <a class="af ow" href="https://transparency.meta.com/enforcement/detecting-violations/technology-detects-violations/" rel="noopener ugc nofollow" target="_blank">detecting</a> community standard violations and promotes inclusiveness via auto-generated <a class="af ow" href="https://tech.facebook.com/artificial-intelligence/2021/1/how-facebook-is-using-ai-to-improve-photo-descriptions-for-people-who-are-blind-or-visually-impaired/" rel="noopener ugc nofollow" target="_blank">alt text</a> for the visually impaired. In Reality Labs, computer vision localizes a person in space and enhances the immersive augmented reality experience. Most recently, breakthroughs in GenAI enabled Meta AI-powered creative assistants such as <a class="af ow" href="https://www.meta.com/help/artificial-intelligence/imagine/" rel="noopener ugc nofollow" target="_blank">Imagine</a>, which generates AI images on command.</p><p id="89b6" class="pw-post-body-paragraph mu mv gu mw b mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr gn bk">Additionally, Meta pushes the boundaries of AI through fundamental and applied research, much of it <a class="af ow" href="https://about.fb.com/news/2024/07/open-source-ai-is-the-path-forward/" rel="noopener ugc nofollow" target="_blank">open source</a>. On July 23, 2024, Meta <a class="af ow" href="https://ai.meta.com/blog/meta-llama-3-1/" rel="noopener ugc nofollow" target="_blank">announced</a> the release of Llama 3.1 405B, which is Meta’s state-of-the-art large language model. It was the world’s largest open-source model of its kind at the time of its release. Innovations like this do not come without significant investments.</p><p id="9acb" class="pw-post-body-paragraph mu mv gu mw b mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr gn bk"><em class="ns">As our largest model yet, training Llama 3.1 405B on over 15 trillion tokens was a major challenge. To enable training runs at this scale and achieve the results we have in a reasonable amount of time, we significantly optimized our full training stack and pushed our model training to over 16 thousand H100 GPUs, making the 405B the first Llama model trained at this scale.</em></p><p id="f8d4" class="pw-post-body-paragraph mu mv gu mw b mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr gn bk"><a class="af ow" href="https://ai.meta.com/blog/meta-llama-3-1/" rel="noopener ugc nofollow" target="_blank">-Introducing Llama 3.1</a></p><p id="6e28" class="pw-post-body-paragraph mu mv gu mw b mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr gn bk">GenAI performance is heavily reliant on scale due to the <a class="af ow" href="https://arxiv.org/pdf/2001.08361" rel="noopener ugc nofollow" target="_blank">scaling laws for neural language models</a>, necessitating significantly more resources compared to other types of AI. Here, scale means the number of model parameters, the dataset size, and the amount of compute. To lead in the AI space means to invest more capacity in it.</p><h1 id="72bb" class="nt nu gu bf nv nw nx ny nz oa ob oc od oe of og oh oi oj ok ol om on oo op oq bk">Driving ROI in a Capacity-Constrained Environment</h1><figure class="oy oz pa pb pc mo mg mh paragraph-image"><div role="button" tabindex="0" class="mp mq fj mr bh ms"><div class="mg mh ox"><picture><source srcSet="https://miro.medium.com/v2/resize:fit:640/format:webp/0*cPM2k9PZSjRG8DxE 640w, https://miro.medium.com/v2/resize:fit:720/format:webp/0*cPM2k9PZSjRG8DxE 720w, https://miro.medium.com/v2/resize:fit:750/format:webp/0*cPM2k9PZSjRG8DxE 750w, https://miro.medium.com/v2/resize:fit:786/format:webp/0*cPM2k9PZSjRG8DxE 786w, https://miro.medium.com/v2/resize:fit:828/format:webp/0*cPM2k9PZSjRG8DxE 828w, https://miro.medium.com/v2/resize:fit:1100/format:webp/0*cPM2k9PZSjRG8DxE 1100w, https://miro.medium.com/v2/resize:fit:1400/format:webp/0*cPM2k9PZSjRG8DxE 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px" type="image/webp"/><source data-testid="og" srcSet="https://miro.medium.com/v2/resize:fit:640/0*cPM2k9PZSjRG8DxE 640w, https://miro.medium.com/v2/resize:fit:720/0*cPM2k9PZSjRG8DxE 720w, https://miro.medium.com/v2/resize:fit:750/0*cPM2k9PZSjRG8DxE 750w, https://miro.medium.com/v2/resize:fit:786/0*cPM2k9PZSjRG8DxE 786w, https://miro.medium.com/v2/resize:fit:828/0*cPM2k9PZSjRG8DxE 828w, https://miro.medium.com/v2/resize:fit:1100/0*cPM2k9PZSjRG8DxE 1100w, https://miro.medium.com/v2/resize:fit:1400/0*cPM2k9PZSjRG8DxE 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px"/><img alt="" class="bh ln mt c" width="700" height="289" loading="lazy" role="presentation"/></picture></div></div></figure><h1 id="2b8e" class="nt nu gu bf nv nw nx ny nz oa ob oc od oe of og oh oi oj ok ol om on oo op oq bk">Productivity and efficiency drive return on investment (“ROI”)</h1><p id="a870" class="pw-post-body-paragraph mu mv gu mw b mx or mz na nb os nd ne nf ot nh ni nj ou nl nm nn ov np nq nr gn bk">GPU’s are a constrained and expensive resource, and so it is important that we ensure maximal ROI. Investing in productivity and efficiency can positively impact return and investment, respectively. Analytics at Meta developed frameworks to define and measure success in these areas to drive ROI.</p><p id="940c" class="pw-post-body-paragraph mu mv gu mw b mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr gn bk"><strong class="mw gv">Productivity represents the relationship between outputs and resources</strong>. A productivity metric can be developed for each stage of ML development. Outputs include features engineered, models trained, and models deployed; and the inputs include capacity and developer headcount. Productivity is a leading indicator of future returns.<strong class="mw gv"> </strong>In the short run, it signals whether the developers have sufficient resources and tooling to develop at a healthy speed. In the long run, increasing outputs across the ML development funnel should accelerate the production of high-quality AI models.</p><p id="f125" class="pw-post-body-paragraph mu mv gu mw b mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr gn bk"><strong class="mw gv">Efficiency represents how well the inputs are used</strong>. Most commonly, it is expressed as a percentage of resources that are productive, such as the utilization rate of the GPU fleet. It may also be measured using the amount of resources spent on lower ROI tasks, such as GPU hours spent on overhead or on models that serve lower production traffic. Efficiency optimizes the value we get out of the capacity investment.</p><h1 id="8c04" class="nt nu gu bf nv nw nx ny nz oa ob oc od oe of og oh oi oj ok ol om on oo op oq bk">Efficiency and productivity share levers</h1><p id="bfd1" class="pw-post-body-paragraph mu mv gu mw b mx or mz na nb os nd ne nf ot nh ni nj ou nl nm nn ov np nq nr gn bk">In a capacity-constrained environment, the equation below reveals why efficiency and productivity share many levers. Namely, initiatives that improve the efficiency by reducing idle or lower-ROI capacity will increase the higher-ROI capacity:</p><figure class="oy oz pa pb pc mo mg mh paragraph-image"><div role="button" tabindex="0" class="mp mq fj mr bh ms"><div class="mg mh pd"><picture><source srcSet="https://miro.medium.com/v2/resize:fit:640/format:webp/1*7RccQkMNDHdrnah77bmPBQ.png 640w, https://miro.medium.com/v2/resize:fit:720/format:webp/1*7RccQkMNDHdrnah77bmPBQ.png 720w, https://miro.medium.com/v2/resize:fit:750/format:webp/1*7RccQkMNDHdrnah77bmPBQ.png 750w, https://miro.medium.com/v2/resize:fit:786/format:webp/1*7RccQkMNDHdrnah77bmPBQ.png 786w, https://miro.medium.com/v2/resize:fit:828/format:webp/1*7RccQkMNDHdrnah77bmPBQ.png 828w, https://miro.medium.com/v2/resize:fit:1100/format:webp/1*7RccQkMNDHdrnah77bmPBQ.png 1100w, https://miro.medium.com/v2/resize:fit:1400/format:webp/1*7RccQkMNDHdrnah77bmPBQ.png 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px" type="image/webp"/><source data-testid="og" srcSet="https://miro.medium.com/v2/resize:fit:640/1*7RccQkMNDHdrnah77bmPBQ.png 640w, https://miro.medium.com/v2/resize:fit:720/1*7RccQkMNDHdrnah77bmPBQ.png 720w, https://miro.medium.com/v2/resize:fit:750/1*7RccQkMNDHdrnah77bmPBQ.png 750w, https://miro.medium.com/v2/resize:fit:786/1*7RccQkMNDHdrnah77bmPBQ.png 786w, https://miro.medium.com/v2/resize:fit:828/1*7RccQkMNDHdrnah77bmPBQ.png 828w, https://miro.medium.com/v2/resize:fit:1100/1*7RccQkMNDHdrnah77bmPBQ.png 1100w, https://miro.medium.com/v2/resize:fit:1400/1*7RccQkMNDHdrnah77bmPBQ.png 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px"/><img alt="" class="bh ln mt c" width="700" height="50" loading="lazy" role="presentation"/></picture></div></div></figure><p id="a2cd" class="pw-post-body-paragraph mu mv gu mw b mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr gn bk">Additional higher-ROI capacity creates room for more output, assuming the resource usage per output is constant:</p><figure class="oy oz pa pb pc mo mg mh paragraph-image"><div role="button" tabindex="0" class="mp mq fj mr bh ms"><div class="mg mh pe"><picture><source srcSet="https://miro.medium.com/v2/resize:fit:640/format:webp/1*aMH5BC-3e1alZQ66jROQwg.png 640w, https://miro.medium.com/v2/resize:fit:720/format:webp/1*aMH5BC-3e1alZQ66jROQwg.png 720w, https://miro.medium.com/v2/resize:fit:750/format:webp/1*aMH5BC-3e1alZQ66jROQwg.png 750w, https://miro.medium.com/v2/resize:fit:786/format:webp/1*aMH5BC-3e1alZQ66jROQwg.png 786w, https://miro.medium.com/v2/resize:fit:828/format:webp/1*aMH5BC-3e1alZQ66jROQwg.png 828w, https://miro.medium.com/v2/resize:fit:1100/format:webp/1*aMH5BC-3e1alZQ66jROQwg.png 1100w, https://miro.medium.com/v2/resize:fit:1400/format:webp/1*aMH5BC-3e1alZQ66jROQwg.png 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px" type="image/webp"/><source data-testid="og" srcSet="https://miro.medium.com/v2/resize:fit:640/1*aMH5BC-3e1alZQ66jROQwg.png 640w, https://miro.medium.com/v2/resize:fit:720/1*aMH5BC-3e1alZQ66jROQwg.png 720w, https://miro.medium.com/v2/resize:fit:750/1*aMH5BC-3e1alZQ66jROQwg.png 750w, https://miro.medium.com/v2/resize:fit:786/1*aMH5BC-3e1alZQ66jROQwg.png 786w, https://miro.medium.com/v2/resize:fit:828/1*aMH5BC-3e1alZQ66jROQwg.png 828w, https://miro.medium.com/v2/resize:fit:1100/1*aMH5BC-3e1alZQ66jROQwg.png 1100w, https://miro.medium.com/v2/resize:fit:1400/1*aMH5BC-3e1alZQ66jROQwg.png 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px"/><img alt="" class="bh ln mt c" width="700" height="56" loading="lazy" role="presentation"/></picture></div></div></figure><p id="0a59" class="pw-post-body-paragraph mu mv gu mw b mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr gn bk">Output per developer — a measure of productivity — will increase as a consequence, holding organization size (developer count) constant:</p><figure class="oy oz pa pb pc mo mg mh paragraph-image"><div role="button" tabindex="0" class="mp mq fj mr bh ms"><div class="mg mh pf"><picture><source srcSet="https://miro.medium.com/v2/resize:fit:640/format:webp/1*e69C8IzDEQzjYjSRX_eecw.png 640w, https://miro.medium.com/v2/resize:fit:720/format:webp/1*e69C8IzDEQzjYjSRX_eecw.png 720w, https://miro.medium.com/v2/resize:fit:750/format:webp/1*e69C8IzDEQzjYjSRX_eecw.png 750w, https://miro.medium.com/v2/resize:fit:786/format:webp/1*e69C8IzDEQzjYjSRX_eecw.png 786w, https://miro.medium.com/v2/resize:fit:828/format:webp/1*e69C8IzDEQzjYjSRX_eecw.png 828w, https://miro.medium.com/v2/resize:fit:1100/format:webp/1*e69C8IzDEQzjYjSRX_eecw.png 1100w, https://miro.medium.com/v2/resize:fit:1400/format:webp/1*e69C8IzDEQzjYjSRX_eecw.png 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px" type="image/webp"/><source data-testid="og" srcSet="https://miro.medium.com/v2/resize:fit:640/1*e69C8IzDEQzjYjSRX_eecw.png 640w, https://miro.medium.com/v2/resize:fit:720/1*e69C8IzDEQzjYjSRX_eecw.png 720w, https://miro.medium.com/v2/resize:fit:750/1*e69C8IzDEQzjYjSRX_eecw.png 750w, https://miro.medium.com/v2/resize:fit:786/1*e69C8IzDEQzjYjSRX_eecw.png 786w, https://miro.medium.com/v2/resize:fit:828/1*e69C8IzDEQzjYjSRX_eecw.png 828w, https://miro.medium.com/v2/resize:fit:1100/1*e69C8IzDEQzjYjSRX_eecw.png 1100w, https://miro.medium.com/v2/resize:fit:1400/1*e69C8IzDEQzjYjSRX_eecw.png 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px"/><img alt="" class="bh ln mt c" width="700" height="46" loading="lazy" role="presentation"/></picture></div></div></figure><p id="c545" class="pw-post-body-paragraph mu mv gu mw b mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr gn bk">In conclusion, the same levers that increase efficiency can also increase productivity.</p><h1 id="9536" class="nt nu gu bf nv nw nx ny nz oa ob oc od oe of og oh oi oj ok ol om on oo op oq bk">Sample levers and metric considerations</h1><p id="700c" class="pw-post-body-paragraph mu mv gu mw b mx or mz na nb os nd ne nf ot nh ni nj ou nl nm nn ov np nq nr gn bk">Analytics at Meta evaluates both technological and human levers for improving productivity and efficiency. Here are some sample levers, and considerations by analytics for four key ROI-driving objectives.</p><ul class=""><li id="7e80" class="mu mv gu mw b mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr pg ph pi bk"><strong class="mw gv">Optimize the level of idle capacity</strong>: Some capacity is idle because they are intentionally reserved. Disaster recovery buffer and push buffer should remain unused so that they may fulfill their purpose on short notice. On the other hand, other forms of idleness represent resources that should be used but aren’t. They can result from a mismatch between demand and supply of nonfungible hardware and suboptimal job allocation processes. The goal is to optimize the level of idleness, not eliminate it. Analytics relies on resource logs (e.g., real-time metrics from GPU hosts) to identify idle resources, then partners with engineering to determine the optimal level. For example, improving hardware fungibility can allow training jobs to utilize idle inference capacity.</li><li id="46fe" class="mu mv gu mw b mx pj mz na nb pk nd ne nf pl nh ni nj pm nl nm nn pn np nq nr pg ph pi bk"><strong class="mw gv">Optimize lower-ROI capacity</strong>: To enable training and inference of high-ROI models, we inevitably incur overhead such as data loading. By design, the system will also incur some waste when high priority jobs preempt other jobs. Again, the goal is to optimize — not eliminate — lower-ROI usage. Analytics invested in strong data foundations to increase logging coverage and metric aggregation across diverse tech stacks. It also invested in <a class="af ow" href="https://ai.meta.com/blog/meta-ai-ecosystem-management-metrics/" rel="noopener ugc nofollow" target="_blank">model lifecycle metadata</a>, which was used to identify the models that served low production traffic. As a result, we have increased visibility into the system’s overhead and ROI, which helps us identify and reclaim lower-ROI capacity.</li><li id="6bef" class="mu mv gu mw b mx pj mz na nb pk nd ne nf pl nh ni nj pm nl nm nn pn np nq nr pg ph pi bk"><strong class="mw gv">Increase output per capacity usage</strong>: Some technological frameworks improve the performance of the model at the sub-GPU level (e.g., via better parallelization). For example, PyTorch2.0 automatically <a class="af ow" href="https://pytorch.org/blog/training-production-ai-models/" rel="noopener ugc nofollow" target="_blank">optimizes</a> performance and yields a shorter training time than PyTorch1.x. To fully understand this impact, Analytics leverages metrics that cover machine performance (e.g., GPU core utilization) and user adoption.</li><li id="acab" class="mu mv gu mw b mx pj mz na nb pk nd ne nf pl nh ni nj pm nl nm nn pn np nq nr pg ph pi bk"><strong class="mw gv">Increase developer productivity</strong>: Analytics stood up new metrics for productivity. We found that increased productivity speeds up the pace of innovation. We also found that seasonality, capacity, and organizational shifts toward different model types can affect productivity. We closely monitor development velocity — how long each stage of the model development lifecycle takes — as a mechanism to improve overall productivity.</li></ul><h1 id="8e05" class="nt nu gu bf nv nw nx ny nz oa ob oc od oe of og oh oi oj ok ol om on oo op oq bk">Takeaways</h1><p id="5ef5" class="pw-post-body-paragraph mu mv gu mw b mx or mz na nb os nd ne nf ot nh ni nj ou nl nm nn ov np nq nr gn bk">Operating AI at Meta’s scale is a complex challenge but Analytics at Meta has made significant strides to help unblock development. Analytics at Meta has built strong data foundations to track metrics at various levels of abstraction, from system logs to MLE behavior. Analytics plays a crucial role identifying opportunities and measuring impact so everyone at Meta from Infra to Product can continue to innovate. While the work is far from done, Meta is well on its way to achieving its goals in the pursuit of AGI.</p><p id="ef75" class="pw-post-body-paragraph mu mv gu mw b mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr gn bk">— -</p><p id="d52c" class="pw-post-body-paragraph mu mv gu mw b mx my mz na nb nc nd ne nf ng nh ni nj nk nl nm nn no np nq nr gn bk"><em class="ns">Many thanks to the reviewers: Morgan Henry, Michael Tanenbaum, Crystal Distin, Betty Li, Ryan Neo, Mark Bittmann, Matthew Williams, Jason Schissel, Zeynep Erkin Baz, Brian Conley, Charles Christian, Lee Howes, Adwait Sathye, Gautam Shanbhag, Chip Turner</em></p></div></div></div></div></section></div></div></article></div><div class="ab cb"><div class="ci bh fz ga gb gc"><div class="po pp ab iv"><div class="pq ab"><a class="pr ay am ao" rel="noopener follow" href="/tag/meta?source=post_page-----38f56cf520f7---------------------------------------"><div class="ps fj cx pt ge pu pv bf b bg z bk pw">Meta</div></a></div><div class="pq ab"><a class="pr ay am ao" rel="noopener follow" href="/tag/machine-learning?source=post_page-----38f56cf520f7---------------------------------------"><div class="ps fj cx pt ge pu pv bf b bg z bk pw">Machine Learning</div></a></div><div class="pq ab"><a class="pr ay am ao" rel="noopener follow" href="/tag/generative-ai-tools?source=post_page-----38f56cf520f7---------------------------------------"><div class="ps fj cx pt ge pu pv bf b bg z bk pw">Generative Ai Tools</div></a></div><div class="pq ab"><a class="pr ay am ao" rel="noopener follow" href="/tag/analytics?source=post_page-----38f56cf520f7---------------------------------------"><div class="ps fj cx pt ge pu pv bf b bg z bk pw">Analytics</div></a></div><div class="pq ab"><a class="pr ay am ao" rel="noopener follow" href="/tag/artificial-intelligence?source=post_page-----38f56cf520f7---------------------------------------"><div class="ps fj cx pt ge pu pv bf b bg z bk pw">Artificial Intelligence</div></a></div></div></div></div><div class="l"></div><footer class="px py pz qa qb ab q qc qd c"><div class="l ae"><div class="ab cb"><div class="ci bh fz ga gb gc"><div class="ab cp qe"><div class="ab q ke"><div class="qf l"><span class="l qg qh qi e d"><div class="ab q ke kf"><div class="pw-multi-vote-icon fj kg kh ki kj"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="footerClapButton" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fp%2F38f56cf520f7&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2F%40AnalyticsAtMeta%2Finnovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7&amp;user=Analytics+at+Meta&amp;userId=217b903f99fa&amp;source=---footer_actions--38f56cf520f7---------------------clap_footer------------------"><div><div class="bm" aria-hidden="false"><div class="kk ao kl km kn ko am kp kq kr kj"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" aria-label="clap"><path fill-rule="evenodd" d="M11.37.828 12 3.282l.63-2.454zM13.916 3.953l1.523-2.112-1.184-.39zM8.589 1.84l1.522 2.112-.337-2.501zM18.523 18.92c-.86.86-1.75 1.246-2.62 1.33a6 6 0 0 0 .407-.372c2.388-2.389 2.86-4.951 1.399-7.623l-.912-1.603-.79-1.672c-.26-.56-.194-.98.203-1.288a.7.7 0 0 1 .546-.132c.283.046.546.231.728.5l2.363 4.157c.976 1.624 1.141 4.237-1.324 6.702m-10.999-.438L3.37 14.328a.828.828 0 0 1 .585-1.408.83.83 0 0 1 .585.242l2.158 2.157a.365.365 0 0 0 .516-.516l-2.157-2.158-1.449-1.449a.826.826 0 0 1 1.167-1.17l3.438 3.44a.363.363 0 0 0 .516 0 .364.364 0 0 0 0-.516L5.293 9.513l-.97-.97a.826.826 0 0 1 0-1.166.84.84 0 0 1 1.167 0l.97.968 3.437 3.436a.36.36 0 0 0 .517 0 .366.366 0 0 0 0-.516L6.977 7.83a.82.82 0 0 1-.241-.584.82.82 0 0 1 .824-.826c.219 0 .43.087.584.242l5.787 5.787a.366.366 0 0 0 .587-.415l-1.117-2.363c-.26-.56-.194-.98.204-1.289a.7.7 0 0 1 .546-.132c.283.046.545.232.727.501l2.193 3.86c1.302 2.38.883 4.59-1.277 6.75-1.156 1.156-2.602 1.627-4.19 1.367-1.418-.236-2.866-1.033-4.079-2.246M10.75 5.971l2.12 2.12c-.41.502-.465 1.17-.128 1.89l.22.465-3.523-3.523a.8.8 0 0 1-.097-.368c0-.22.086-.428.241-.584a.847.847 0 0 1 1.167 0m7.355 1.705c-.31-.461-.746-.758-1.23-.837a1.44 1.44 0 0 0-1.11.275c-.312.24-.505.543-.59.881a1.74 1.74 0 0 0-.906-.465 1.47 1.47 0 0 0-.82.106l-2.182-2.182a1.56 1.56 0 0 0-2.2 0 1.54 1.54 0 0 0-.396.701 1.56 1.56 0 0 0-2.21-.01 1.55 1.55 0 0 0-.416.753c-.624-.624-1.649-.624-2.237-.037a1.557 1.557 0 0 0 0 2.2c-.239.1-.501.238-.715.453a1.56 1.56 0 0 0 0 2.2l.516.515a1.556 1.556 0 0 0-.753 2.615L7.01 19c1.32 1.319 2.909 2.189 4.475 2.449q.482.08.971.08c.85 0 1.653-.198 2.393-.579.231.033.46.054.686.054 1.266 0 2.457-.52 3.505-1.567 2.763-2.763 2.552-5.734 1.439-7.586z" clip-rule="evenodd"></path></svg></div></div></div></a></span></div><div class="pw-multi-vote-count l ks kt ku kv kw kx ky"><p class="bf b dv z du"><span class="kz">--</span></p></div></div></span><span class="l h g f qj qk"><div class="ab q ke kf"><div class="pw-multi-vote-icon fj kg kh ki kj"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="footerClapButton" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fp%2F38f56cf520f7&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2F%40AnalyticsAtMeta%2Finnovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7&amp;user=Analytics+at+Meta&amp;userId=217b903f99fa&amp;source=---footer_actions--38f56cf520f7---------------------clap_footer------------------"><div><div class="bm" aria-hidden="false"><div class="kk ao kl km kn ko am kp kq kr kj"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" aria-label="clap"><path fill-rule="evenodd" d="M11.37.828 12 3.282l.63-2.454zM13.916 3.953l1.523-2.112-1.184-.39zM8.589 1.84l1.522 2.112-.337-2.501zM18.523 18.92c-.86.86-1.75 1.246-2.62 1.33a6 6 0 0 0 .407-.372c2.388-2.389 2.86-4.951 1.399-7.623l-.912-1.603-.79-1.672c-.26-.56-.194-.98.203-1.288a.7.7 0 0 1 .546-.132c.283.046.546.231.728.5l2.363 4.157c.976 1.624 1.141 4.237-1.324 6.702m-10.999-.438L3.37 14.328a.828.828 0 0 1 .585-1.408.83.83 0 0 1 .585.242l2.158 2.157a.365.365 0 0 0 .516-.516l-2.157-2.158-1.449-1.449a.826.826 0 0 1 1.167-1.17l3.438 3.44a.363.363 0 0 0 .516 0 .364.364 0 0 0 0-.516L5.293 9.513l-.97-.97a.826.826 0 0 1 0-1.166.84.84 0 0 1 1.167 0l.97.968 3.437 3.436a.36.36 0 0 0 .517 0 .366.366 0 0 0 0-.516L6.977 7.83a.82.82 0 0 1-.241-.584.82.82 0 0 1 .824-.826c.219 0 .43.087.584.242l5.787 5.787a.366.366 0 0 0 .587-.415l-1.117-2.363c-.26-.56-.194-.98.204-1.289a.7.7 0 0 1 .546-.132c.283.046.545.232.727.501l2.193 3.86c1.302 2.38.883 4.59-1.277 6.75-1.156 1.156-2.602 1.627-4.19 1.367-1.418-.236-2.866-1.033-4.079-2.246M10.75 5.971l2.12 2.12c-.41.502-.465 1.17-.128 1.89l.22.465-3.523-3.523a.8.8 0 0 1-.097-.368c0-.22.086-.428.241-.584a.847.847 0 0 1 1.167 0m7.355 1.705c-.31-.461-.746-.758-1.23-.837a1.44 1.44 0 0 0-1.11.275c-.312.24-.505.543-.59.881a1.74 1.74 0 0 0-.906-.465 1.47 1.47 0 0 0-.82.106l-2.182-2.182a1.56 1.56 0 0 0-2.2 0 1.54 1.54 0 0 0-.396.701 1.56 1.56 0 0 0-2.21-.01 1.55 1.55 0 0 0-.416.753c-.624-.624-1.649-.624-2.237-.037a1.557 1.557 0 0 0 0 2.2c-.239.1-.501.238-.715.453a1.56 1.56 0 0 0 0 2.2l.516.515a1.556 1.556 0 0 0-.753 2.615L7.01 19c1.32 1.319 2.909 2.189 4.475 2.449q.482.08.971.08c.85 0 1.653-.198 2.393-.579.231.033.46.054.686.054 1.266 0 2.457-.52 3.505-1.567 2.763-2.763 2.552-5.734 1.439-7.586z" clip-rule="evenodd"></path></svg></div></div></div></a></span></div><div class="pw-multi-vote-count l ks kt ku kv kw kx ky"><p class="bf b dv z du"><span class="kz">--</span></p></div></div></span></div><div class="bq ab"><div><div class="bm" aria-hidden="false"><button class="ao kk la lb ab q fk lc ld" aria-label="responses"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" class="le"><path d="M18.006 16.803c1.533-1.456 2.234-3.325 2.234-5.321C20.24 7.357 16.709 4 12.191 4S4 7.357 4 11.482c0 4.126 3.674 7.482 8.191 7.482.817 0 1.622-.111 2.393-.327.231.2.48.391.744.559 1.06.693 2.203 1.044 3.399 1.044.224-.008.4-.112.486-.287a.49.49 0 0 0-.042-.518c-.495-.67-.845-1.364-1.04-2.057a4 4 0 0 1-.125-.598zm-3.122 1.055-.067-.223-.315.096a8 8 0 0 1-2.311.338c-4.023 0-7.292-2.955-7.292-6.587 0-3.633 3.269-6.588 7.292-6.588 4.014 0 7.112 2.958 7.112 6.593 0 1.794-.608 3.469-2.027 4.72l-.195.168v.255c0 .056 0 .151.016.295.025.231.081.478.154.733.154.558.398 1.117.722 1.659a5.3 5.3 0 0 1-2.165-.845c-.276-.176-.714-.383-.941-.59z"></path></svg></button></div></div></div></div><div class="ab q"><div class="ql l is"><div><div class="bm" aria-hidden="false"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="footerBookmarkButton" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2F38f56cf520f7&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2F%40AnalyticsAtMeta%2Finnovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7&amp;source=---footer_actions--38f56cf520f7---------------------bookmark_footer------------------"><svg xmlns="http://www.w3.org/2000/svg" width="25" height="25" fill="none" viewBox="0 0 25 25" class="du lg" aria-label="Add to list bookmark button"><path fill="currentColor" d="M18 2.5a.5.5 0 0 1 1 0V5h2.5a.5.5 0 0 1 0 1H19v2.5a.5.5 0 1 1-1 0V6h-2.5a.5.5 0 0 1 0-1H18zM7 7a1 1 0 0 1 1-1h3.5a.5.5 0 0 0 0-1H8a2 2 0 0 0-2 2v14a.5.5 0 0 0 .805.396L12.5 17l5.695 4.396A.5.5 0 0 0 19 21v-8.5a.5.5 0 0 0-1 0v7.485l-5.195-4.012a.5.5 0 0 0-.61 0L7 19.985z"></path></svg></a></span></div></div></div><div class="ql l is"><div class="bm" aria-hidden="false" aria-describedby="postFooterSocialMenu" aria-labelledby="postFooterSocialMenu"><div><div class="bm" aria-hidden="false"><button aria-controls="postFooterSocialMenu" aria-expanded="false" aria-label="Share Post" data-testid="footerSocialShareButton" class="af fk ah ai aj ak al lo an ao ap ex lp lq ld lr"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24"><path fill="currentColor" fill-rule="evenodd" d="M15.218 4.931a.4.4 0 0 1-.118.132l.012.006a.45.45 0 0 1-.292.074.5.5 0 0 1-.3-.13l-2.02-2.02v7.07c0 .28-.23.5-.5.5s-.5-.22-.5-.5v-7.04l-2 2a.45.45 0 0 1-.57.04h-.02a.4.4 0 0 1-.16-.3.4.4 0 0 1 .1-.32l2.8-2.8a.5.5 0 0 1 .7 0l2.8 2.79a.42.42 0 0 1 .068.498m-.106.138.008.004v-.01zM16 7.063h1.5a2 2 0 0 1 2 2v10a2 2 0 0 1-2 2h-11c-1.1 0-2-.9-2-2v-10a2 2 0 0 1 2-2H8a.5.5 0 0 1 .35.15.5.5 0 0 1 .15.35.5.5 0 0 1-.15.35.5.5 0 0 1-.35.15H6.4c-.5 0-.9.4-.9.9v10.2a.9.9 0 0 0 .9.9h11.2c.5 0 .9-.4.9-.9v-10.2c0-.5-.4-.9-.9-.9H16a.5.5 0 0 1 0-1" clip-rule="evenodd"></path></svg></button></div></div></div></div></div></div></div></div></div></footer><div class="qm l"><div><div class="ab cb"><div class="ci bh fz ga gb gc"><div class="ab qn qo qp iu it"><div class="qq qr qs qt qu qv qw qx qy qz ab cp"><div class="h k"><a tabindex="0" rel="noopener follow" href="/@AnalyticsAtMeta?source=post_page---post_author_info--38f56cf520f7---------------------------------------"><div class="l fj"><img alt="Analytics at Meta" class="l fd by ic ib cx" src="https://miro.medium.com/v2/resize:fill:96:96/1*9IKlJavI2QSn7CpKVee5uA.png" width="48" height="48" loading="lazy"/><div class="fr by l ic ib fs n ay ra"></div></div></a></div><div class="j i d"><a tabindex="0" rel="noopener follow" href="/@AnalyticsAtMeta?source=post_page---post_author_info--38f56cf520f7---------------------------------------"><div class="l fj"><img alt="Analytics at Meta" class="l fd by rb rc cx" src="https://miro.medium.com/v2/resize:fill:128:128/1*9IKlJavI2QSn7CpKVee5uA.png" width="64" height="64" loading="lazy"/><div class="fr by l rb rc fs n ay ra"></div></div></a></div><div class="j i d rd is"><div class="ab"><span><button class="bf b bg z re ps rf rg rh ri rj ev ew rk rl rm fa fb fc fd bm fe ff">Follow</button></span></div></div></div><div class="ab co rn"><div class="ro rp rq rr rs l"><a class="af ag ah aj ak al am an ao ap aq ar as at ab q" rel="noopener follow" href="/@AnalyticsAtMeta?source=post_page---post_author_info--38f56cf520f7---------------------------------------"><h2 class="pw-author-name bf ru rv rw rx ry rz sa nf sb sc nj sd se nn sf sg bk"><span class="gn rt">Written by <!-- -->Analytics at Meta</span></h2></a><div class="pq ab ia"><div class="l is"><span class="pw-follower-count bf b bg z du"><a class="af ag ah ai aj ak al am an ao ap aq ar il" rel="noopener follow" href="/@AnalyticsAtMeta/followers?source=post_page---post_author_info--38f56cf520f7---------------------------------------">13.6K Followers</a></span></div><div class="bf b bg z du ab sh"><span class="im l" aria-hidden="true"><span class="bf b bg z du">·</span></span><a class="af ag ah ai aj ak al am an ao ap aq ar il" rel="noopener follow" href="/@AnalyticsAtMeta/following?source=post_page---post_author_info--38f56cf520f7---------------------------------------">2 Following</a></div></div><div class="si l"><p class="bf b bg z bk"><span class="gn">The mission that unites Meta Analytics is to “drive better outcomes using data as a voice for our communities.”</span></p></div></div></div><div class="h k"><div class="ab"><span><button class="bf b bg z re ps rf rg rh ri rj ev ew rk rl rm fa fb fc fd bm fe ff">Follow</button></span></div></div></div></div></div></div></div><div class="sj l"><div class="sk bh r qm"></div><div class="ab cb"><div class="ci bh fz ga gb gc"><div class="ab q cp"><h2 class="bf ru nw ny nz oa oc od oe og oh oi ok ol om oo op bk">No responses yet</h2><div class="ab sl"><div><div class="bm" aria-hidden="false"><a class="sm sn" href="https://policy.medium.com/medium-rules-30e5502c4eb4?source=post_page---post_responses--38f56cf520f7---------------------------------------" rel="noopener follow" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" width="25" height="25" viewBox="0 0 25 25"><path fill-rule="evenodd" d="M11.987 5.036a.754.754 0 0 1 .914-.01c.972.721 1.767 1.218 2.6 1.543.828.322 1.719.485 2.887.505a.755.755 0 0 1 .741.757c-.018 3.623-.43 6.256-1.449 8.21-1.034 1.984-2.662 3.209-4.966 4.083a.75.75 0 0 1-.537-.003c-2.243-.874-3.858-2.095-4.897-4.074-1.024-1.951-1.457-4.583-1.476-8.216a.755.755 0 0 1 .741-.757c1.195-.02 2.1-.182 2.923-.503.827-.322 1.6-.815 2.519-1.535m.468.903c-.897.69-1.717 1.21-2.623 1.564-.898.35-1.856.527-3.026.565.037 3.45.469 5.817 1.36 7.515.884 1.684 2.25 2.762 4.284 3.571 2.092-.81 3.465-1.89 4.344-3.575.886-1.698 1.299-4.065 1.334-7.512-1.149-.039-2.091-.217-2.99-.567-.906-.353-1.745-.873-2.683-1.561m-.009 9.155a2.672 2.672 0 1 0 0-5.344 2.672 2.672 0 0 0 0 5.344m0 1a3.672 3.672 0 1 0 0-7.344 3.672 3.672 0 0 0 0 7.344m-1.813-3.777.525-.526.916.917 1.623-1.625.526.526-2.149 2.152z" clip-rule="evenodd"></path></svg></a></div></div></div></div><div class="so sp sq sr ss l"></div></div></div></div><div class="st su sv sw sx l bx"><div class="h k j"><div class="sk bh sy sz"></div><div class="ab cb"><div class="ci bh fz ga gb gc"><div class="ta ab ke iv"><div class="tb tc l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://help.medium.com/hc/en-us?source=post_page-----38f56cf520f7---------------------------------------" rel="noopener follow"><p class="bf b dv z du">Help</p></a></div><div class="tb tc l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://medium.statuspage.io/?source=post_page-----38f56cf520f7---------------------------------------" rel="noopener follow"><p class="bf b dv z du">Status</p></a></div><div class="tb tc l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" rel="noopener follow" href="/about?autoplay=1&amp;source=post_page-----38f56cf520f7---------------------------------------"><p class="bf b dv z du">About</p></a></div><div class="tb tc l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" rel="noopener follow" href="/jobs-at-medium/work-at-medium-959d1a85284e?source=post_page-----38f56cf520f7---------------------------------------"><p class="bf b dv z du">Careers</p></a></div><div class="tb tc l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="mailto:pressinquiries@medium.com" rel="noopener follow"><p class="bf b dv z du">Press</p></a></div><div class="tb tc l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://blog.medium.com/?source=post_page-----38f56cf520f7---------------------------------------" rel="noopener follow"><p class="bf b dv z du">Blog</p></a></div><div class="tb tc l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://policy.medium.com/medium-privacy-policy-f03bf92035c9?source=post_page-----38f56cf520f7---------------------------------------" rel="noopener follow"><p class="bf b dv z du">Privacy</p></a></div><div class="tb tc l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----38f56cf520f7---------------------------------------" rel="noopener follow"><p class="bf b dv z du">Terms</p></a></div><div class="tb tc l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://speechify.com/medium?source=post_page-----38f56cf520f7---------------------------------------" rel="noopener follow"><p class="bf b dv z du">Text to speech</p></a></div><div class="tb l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" rel="noopener follow" href="/business?source=post_page-----38f56cf520f7---------------------------------------"><p class="bf b dv z du">Teams</p></a></div></div></div></div></div></div></div></div></div></div><script>window.__BUILD_ID__="main-20250217-152844-ca206ec2ba"</script><script>window.__GRAPHQL_URI__ = "https://medium.com/_/graphql"</script><script>window.__PRELOADED_STATE__ = {"algolia":{"queries":{}},"cache":{"experimentGroupSet":true,"reason":"","group":"enabled","tags":["group-edgeCachePosts","post-38f56cf520f7","user-217b903f99fa"],"serverVariantState":"44136fa355b3678a1146ad16f7e8649e94fb4fc21fe77e8310c060f61caaff8a","middlewareEnabled":true,"cacheStatus":"DYNAMIC","shouldUseCache":true,"vary":[],"pubFeaturingPostPageLabelEnabled":false},"client":{"hydrated":false,"isUs":false,"isNativeMedium":false,"isSafariMobile":false,"isSafari":false,"isFirefox":false,"routingEntity":{"type":"DEFAULT","explicit":false},"viewerIsBot":false},"debug":{"requestId":"8c0f5ea8-d99f-4b15-8119-d411189387f6","requestTag":"","hybridDevServices":[],"originalSpanCarrier":{"traceparent":"00-364ae70b393cd366bfe5bece6df5b9cc-702cadf4979cfb45-01"}},"multiVote":{"clapsPerPost":{}},"navigation":{"branch":{"show":null,"hasRendered":null,"blockedByCTA":false},"hideGoogleOneTap":false,"hasRenderedAlternateUserBanner":null,"currentLocation":"https:\u002F\u002Fmedium.com\u002F@AnalyticsAtMeta\u002Finnovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7","host":"medium.com","hostname":"medium.com","referrer":"","hasSetReferrer":false,"susiModal":{"step":null,"operation":"register"},"postRead":false,"partnerProgram":{"selectedCountryCode":null},"queryString":"","currentHash":""},"config":{"nodeEnv":"production","version":"main-20250217-152844-ca206ec2ba","target":"production","productName":"Medium","publicUrl":"https:\u002F\u002Fcdn-client.medium.com\u002Flite","authDomain":"medium.com","authGoogleClientId":"216296035834-k1k6qe060s2tp2a2jam4ljdcms00sttg.apps.googleusercontent.com","favicon":"production","glyphUrl":"https:\u002F\u002Fglyph.medium.com","branchKey":"key_live_ofxXr2qTrrU9NqURK8ZwEhknBxiI6KBm","algolia":{"appId":"MQ57UUUQZ2","apiKeySearch":"394474ced050e3911ae2249ecc774921","indexPrefix":"medium_","host":"-dsn.algolia.net"},"recaptchaKey":"6Lfc37IUAAAAAKGGtC6rLS13R1Hrw_BqADfS1LRk","recaptcha3Key":"6Lf8R9wUAAAAABMI_85Wb8melS7Zj6ziuf99Yot5","recaptchaEnterpriseKeyId":"6Le-uGgpAAAAAPprRaokM8AKthQ9KNGdoxaGUvVp","datadog":{"applicationId":"6702d87d-a7e0-42fe-bbcb-95b469547ea0","clientToken":"pub853ea8d17ad6821d9f8f11861d23dfed","rumToken":"pubf9cc52896502b9413b68ba36fc0c7162","context":{"deployment":{"target":"production","tag":"main-20250217-152844-ca206ec2ba","commit":"ca206ec2ba708507b1bef4ec007a67163085196c"}},"datacenter":"us"},"googleAnalyticsCode":"G-7JY7T788PK","googlePay":{"apiVersion":"2","apiVersionMinor":"0","merchantId":"BCR2DN6TV7EMTGBM","merchantName":"Medium","instanceMerchantId":"13685562959212738550"},"applePay":{"version":3},"signInWallCustomDomainCollectionIds":["3a8144eabfe3","336d898217ee","61061eb0c96b","138adf9c44c","819cc2aaeee0"],"mediumMastodonDomainName":"me.dm","mediumOwnedAndOperatedCollectionIds":["8a9336e5bb4","b7e45b22fec3","193b68bd4fba","8d6b8a439e32","54c98c43354d","3f6ecf56618","d944778ce714","92d2092dc598","ae2a65f35510","1285ba81cada","544c7006046e","fc8964313712","40187e704f1c","88d9857e584e","7b6769f2748b","bcc38c8f6edf","cef6983b292","cb8577c9149e","444d13b52878","713d7dbc99b0","ef8e90590e66","191186aaafa0","55760f21cdc5","9dc80918cc93","bdc4052bbdba","8ccfed20cbb2"],"tierOneDomains":["medium.com","thebolditalic.com","arcdigital.media","towardsdatascience.com","uxdesign.cc","codeburst.io","psiloveyou.xyz","writingcooperative.com","entrepreneurshandbook.co","prototypr.io","betterhumans.coach.me","theascent.pub"],"topicsToFollow":["d61cf867d93f","8a146bc21b28","1eca0103fff3","4d562ee63426","aef1078a3ef5","e15e46793f8d","6158eb913466","55f1c20aba7a","3d18b94f6858","4861fee224fd","63c6f1f93ee","1d98b3a9a871","decb52b64abf","ae5d4995e225","830cded25262"],"topicToTagMappings":{"accessibility":"accessibility","addiction":"addiction","android-development":"android-development","art":"art","artificial-intelligence":"artificial-intelligence","astrology":"astrology","basic-income":"basic-income","beauty":"beauty","biotech":"biotech","blockchain":"blockchain","books":"books","business":"business","cannabis":"cannabis","cities":"cities","climate-change":"climate-change","comics":"comics","coronavirus":"coronavirus","creativity":"creativity","cryptocurrency":"cryptocurrency","culture":"culture","cybersecurity":"cybersecurity","data-science":"data-science","design":"design","digital-life":"digital-life","disability":"disability","economy":"economy","education":"education","equality":"equality","family":"family","feminism":"feminism","fiction":"fiction","film":"film","fitness":"fitness","food":"food","freelancing":"freelancing","future":"future","gadgets":"gadgets","gaming":"gaming","gun-control":"gun-control","health":"health","history":"history","humor":"humor","immigration":"immigration","ios-development":"ios-development","javascript":"javascript","justice":"justice","language":"language","leadership":"leadership","lgbtqia":"lgbtqia","lifestyle":"lifestyle","machine-learning":"machine-learning","makers":"makers","marketing":"marketing","math":"math","media":"media","mental-health":"mental-health","mindfulness":"mindfulness","money":"money","music":"music","neuroscience":"neuroscience","nonfiction":"nonfiction","outdoors":"outdoors","parenting":"parenting","pets":"pets","philosophy":"philosophy","photography":"photography","podcasts":"podcast","poetry":"poetry","politics":"politics","privacy":"privacy","product-management":"product-management","productivity":"productivity","programming":"programming","psychedelics":"psychedelics","psychology":"psychology","race":"race","relationships":"relationships","religion":"religion","remote-work":"remote-work","san-francisco":"san-francisco","science":"science","self":"self","self-driving-cars":"self-driving-cars","sexuality":"sexuality","social-media":"social-media","society":"society","software-engineering":"software-engineering","space":"space","spirituality":"spirituality","sports":"sports","startups":"startup","style":"style","technology":"technology","transportation":"transportation","travel":"travel","true-crime":"true-crime","tv":"tv","ux":"ux","venture-capital":"venture-capital","visual-design":"visual-design","work":"work","world":"world","writing":"writing"},"defaultImages":{"avatar":{"imageId":"1*dmbNkD5D-u45r44go_cf0g.png","height":150,"width":150},"orgLogo":{"imageId":"7*V1_7XP4snlmqrc_0Njontw.png","height":110,"width":500},"postLogo":{"imageId":"bd978bb536350a710e8efb012513429cabdc4c28700604261aeda246d0f980b7","height":810,"width":1440},"postPreviewImage":{"imageId":"1*hn4v1tCaJy7cWMyb0bpNpQ.png","height":386,"width":579}},"collectionStructuredData":{"8d6b8a439e32":{"name":"Elemental","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fcdn-images-1.medium.com\u002Fmax\u002F980\u002F1*9ygdqoKprhwuTVKUM0DLPA@2x.png","width":980,"height":159}}},"3f6ecf56618":{"name":"Forge","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fcdn-images-1.medium.com\u002Fmax\u002F596\u002F1*uULpIlImcO5TDuBZ6lm7Lg@2x.png","width":596,"height":183}}},"ae2a65f35510":{"name":"GEN","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fmiro.medium.com\u002Fmax\u002F264\u002F1*RdVZMdvfV3YiZTw6mX7yWA.png","width":264,"height":140}}},"88d9857e584e":{"name":"LEVEL","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fmiro.medium.com\u002Fmax\u002F540\u002F1*JqYMhNX6KNNb2UlqGqO2WQ.png","width":540,"height":108}}},"7b6769f2748b":{"name":"Marker","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fcdn-images-1.medium.com\u002Fmax\u002F383\u002F1*haCUs0wF6TgOOvfoY-jEoQ@2x.png","width":383,"height":92}}},"444d13b52878":{"name":"OneZero","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fmiro.medium.com\u002Fmax\u002F540\u002F1*cw32fIqCbRWzwJaoQw6BUg.png","width":540,"height":123}}},"8ccfed20cbb2":{"name":"Zora","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fmiro.medium.com\u002Fmax\u002F540\u002F1*tZUQqRcCCZDXjjiZ4bDvgQ.png","width":540,"height":106}}}},"embeddedPostIds":{"coronavirus":"cd3010f9d81f"},"sharedCdcMessaging":{"COVID_APPLICABLE_TAG_SLUGS":[],"COVID_APPLICABLE_TOPIC_NAMES":[],"COVID_APPLICABLE_TOPIC_NAMES_FOR_TOPIC_PAGE":[],"COVID_MESSAGES":{"tierA":{"text":"For more information on the novel coronavirus and Covid-19, visit cdc.gov.","markups":[{"start":66,"end":73,"href":"https:\u002F\u002Fwww.cdc.gov\u002Fcoronavirus\u002F2019-nCoV"}]},"tierB":{"text":"Anyone can publish on Medium per our Policies, but we don’t fact-check every story. For more info about the coronavirus, see cdc.gov.","markups":[{"start":37,"end":45,"href":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Fcategories\u002F201931128-Policies-Safety"},{"start":125,"end":132,"href":"https:\u002F\u002Fwww.cdc.gov\u002Fcoronavirus\u002F2019-nCoV"}]},"paywall":{"text":"This article has been made free for everyone, thanks to Medium Members. For more information on the novel coronavirus and Covid-19, visit cdc.gov.","markups":[{"start":56,"end":70,"href":"https:\u002F\u002Fmedium.com\u002Fmembership"},{"start":138,"end":145,"href":"https:\u002F\u002Fwww.cdc.gov\u002Fcoronavirus\u002F2019-nCoV"}]},"unbound":{"text":"This article is free for everyone, thanks to Medium Members. For more information on the novel coronavirus and Covid-19, visit cdc.gov.","markups":[{"start":45,"end":59,"href":"https:\u002F\u002Fmedium.com\u002Fmembership"},{"start":127,"end":134,"href":"https:\u002F\u002Fwww.cdc.gov\u002Fcoronavirus\u002F2019-nCoV"}]}},"COVID_BANNER_POST_ID_OVERRIDE_WHITELIST":["3b31a67bff4a"]},"sharedVoteMessaging":{"TAGS":["politics","election-2020","government","us-politics","election","2020-presidential-race","trump","donald-trump","democrats","republicans","congress","republican-party","democratic-party","biden","joe-biden","maga"],"TOPICS":["politics","election"],"MESSAGE":{"text":"Find out more about the U.S. election results here.","markups":[{"start":46,"end":50,"href":"https:\u002F\u002Fcookpolitical.com\u002F2020-national-popular-vote-tracker"}]},"EXCLUDE_POSTS":["397ef29e3ca5"]},"embedPostRules":[],"recircOptions":{"v1":{"limit":3},"v2":{"limit":8}},"braintreeClientKey":"production_zjkj96jm_m56f8fqpf7ngnrd4","braintree":{"enabled":true,"merchantId":"m56f8fqpf7ngnrd4","merchantAccountId":{"usd":"AMediumCorporation_instant","eur":"amediumcorporation_EUR","cad":"amediumcorporation_CAD"},"publicKey":"ds2nn34bg2z7j5gd","braintreeEnvironment":"production","dashboardUrl":"https:\u002F\u002Fwww.braintreegateway.com\u002Fmerchants","gracePeriodDurationInDays":14,"mediumMembershipPlanId":{"monthly":"ce105f8c57a3","monthlyV2":"e8a5e126-792b-4ee6-8fba-d574c1b02fc5","monthlyWithTrial":"d5ee3dbe3db8","monthlyPremium":"fa741a9b47a2","yearly":"a40ad4a43185","yearlyV2":"3815d7d6-b8ca-4224-9b8c-182f9047866e","yearlyStaff":"d74fb811198a","yearlyWithTrial":"b3bc7350e5c7","yearlyPremium":"e21bd2c12166","monthlyOneYearFree":"e6c0637a-2bad-4171-ab4f-3c268633d83c","monthly25PercentOffFirstYear":"235ecc62-0cdb-49ae-9378-726cd21c504b","monthly20PercentOffFirstYear":"ba518864-9c13-4a99-91ca-411bf0cac756","monthly15PercentOffFirstYear":"594c029b-9f89-43d5-88f8-8173af4e070e","monthly10PercentOffFirstYear":"c6c7bc9a-40f2-4b51-8126-e28511d5bdb0","monthlyForStudents":"629ebe51-da7d-41fd-8293-34cd2f2030a8","yearlyOneYearFree":"78ba7be9-0d9f-4ece-aa3e-b54b826f2bf1","yearly25PercentOffFirstYear":"2dbb010d-bb8f-4eeb-ad5c-a08509f42d34","yearly20PercentOffFirstYear":"47565488-435b-47f8-bf93-40d5fbe0ebc8","yearly15PercentOffFirstYear":"8259809b-0881-47d9-acf7-6c001c7f720f","yearly10PercentOffFirstYear":"9dd694fb-96e1-472c-8d9e-3c868d5c1506","yearlyForStudents":"e29345ef-ab1c-4234-95c5-70e50fe6bc23","monthlyCad":"p52orjkaceei","yearlyCad":"h4q9g2up9ktt"},"braintreeDiscountId":{"oneMonthFree":"MONTHS_FREE_01","threeMonthsFree":"MONTHS_FREE_03","sixMonthsFree":"MONTHS_FREE_06","fiftyPercentOffOneYear":"FIFTY_PERCENT_OFF_ONE_YEAR"},"3DSecureVersion":"2","defaultCurrency":"usd","providerPlanIdCurrency":{"4ycw":"usd","rz3b":"usd","3kqm":"usd","jzw6":"usd","c2q2":"usd","nnsw":"usd","q8qw":"usd","d9y6":"usd","fx7w":"cad","nwf2":"cad"}},"paypalClientId":"AXj1G4fotC2GE8KzWX9mSxCH1wmPE3nJglf4Z2ig_amnhvlMVX87otaq58niAg9iuLktVNF_1WCMnN7v","paypal":{"host":"https:\u002F\u002Fapi.paypal.com:443","clientMode":"production","serverMode":"live","webhookId":"4G466076A0294510S","monthlyPlan":{"planId":"P-9WR0658853113943TMU5FDQA","name":"Medium Membership (Monthly) with setup fee","description":"Unlimited access to the best and brightest stories on Medium. Membership billed monthly."},"yearlyPlan":{"planId":"P-7N8963881P8875835MU5JOPQ","name":"Medium Membership (Annual) with setup fee","description":"Unlimited access to the best and brightest stories on Medium. Membership billed annually."},"oneYearGift":{"name":"Medium Membership (1 Year, Digital Gift Code)","description":"Unlimited access to the best and brightest stories on Medium. Gift codes can be redeemed at medium.com\u002Fredeem.","price":"50.00","currency":"USD","sku":"membership-gift-1-yr"},"oldMonthlyPlan":{"planId":"P-96U02458LM656772MJZUVH2Y","name":"Medium Membership (Monthly)","description":"Unlimited access to the best and brightest stories on Medium. Membership billed monthly."},"oldYearlyPlan":{"planId":"P-59P80963JF186412JJZU3SMI","name":"Medium Membership (Annual)","description":"Unlimited access to the best and brightest stories on Medium. Membership billed annually."},"monthlyPlanWithTrial":{"planId":"P-66C21969LR178604GJPVKUKY","name":"Medium Membership (Monthly) with setup fee","description":"Unlimited access to the best and brightest stories on Medium. Membership billed monthly."},"yearlyPlanWithTrial":{"planId":"P-6XW32684EX226940VKCT2MFA","name":"Medium Membership (Annual) with setup fee","description":"Unlimited access to the best and brightest stories on Medium. Membership billed annually."},"oldMonthlyPlanNoSetupFee":{"planId":"P-4N046520HR188054PCJC7LJI","name":"Medium Membership (Monthly)","description":"Unlimited access to the best and brightest stories on Medium. Membership billed monthly."},"oldYearlyPlanNoSetupFee":{"planId":"P-7A4913502Y5181304CJEJMXQ","name":"Medium Membership (Annual)","description":"Unlimited access to the best and brightest stories on Medium. Membership billed annually."},"sdkUrl":"https:\u002F\u002Fwww.paypal.com\u002Fsdk\u002Fjs"},"stripePublishableKey":"pk_live_7FReX44VnNIInZwrIIx6ghjl","log":{"json":true,"level":"info"},"imageUploadMaxSizeMb":25,"staffPicks":{"title":"Staff Picks","catalogId":"c7bc6e1ee00f"}},"session":{"xsrf":""}}</script><script>window.__APOLLO_STATE__ = {"ROOT_QUERY":{"__typename":"Query","collectionByDomainOrSlug({\"domainOrSlug\":\"medium.com\"})":null,"viewer":null,"postResult({\"id\":\"38f56cf520f7\"})":{"__ref":"Post:38f56cf520f7"}},"LinkedAccounts:217b903f99fa":{"__typename":"LinkedAccounts","mastodon":null,"id":"217b903f99fa"},"User:217b903f99fa":{"__typename":"User","id":"217b903f99fa","linkedAccounts":{"__ref":"LinkedAccounts:217b903f99fa"},"isSuspended":false,"name":"Analytics at Meta","imageId":"1*9IKlJavI2QSn7CpKVee5uA.png","customDomainState":null,"hasSubdomain":false,"username":"AnalyticsAtMeta","verifications":{"__typename":"VerifiedInfo","isBookAuthor":false},"socialStats":{"__typename":"SocialStats","followerCount":13633,"followingCount":1,"collectionFollowingCount":1},"bio":"The mission that unites Meta Analytics is to “drive better outcomes using data as a voice for our communities.”","membership":null,"allowNotes":true,"viewerEdge":{"__ref":"UserViewerEdge:userId:217b903f99fa-viewerId:lo_397e0fd6710a"},"twitterScreenName":""},"Paragraph:7e2b9dea269d_0":{"__typename":"Paragraph","id":"7e2b9dea269d_0","name":"e151","type":"H3","href":null,"layout":null,"metadata":null,"text":"Innovation Demands Compute: How Meta is Enabling ML Productivity and Efficiency at Scale","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"ImageMetadata:1*6E-yVJQvixQPhaYyBkF9uA.jpeg":{"__typename":"ImageMetadata","id":"1*6E-yVJQvixQPhaYyBkF9uA.jpeg","originalHeight":2160,"originalWidth":3840,"focusPercentX":null,"focusPercentY":null,"alt":null},"Paragraph:7e2b9dea269d_1":{"__typename":"Paragraph","id":"7e2b9dea269d_1","name":"bb27","type":"IMG","href":null,"layout":"INSET_CENTER","metadata":{"__ref":"ImageMetadata:1*6E-yVJQvixQPhaYyBkF9uA.jpeg"},"text":"","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_2":{"__typename":"Paragraph","id":"7e2b9dea269d_2","name":"4c84","type":"P","href":null,"layout":null,"metadata":null,"text":"Author: Haerang Lee","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"EM","start":0,"end":19,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_3":{"__typename":"Paragraph","id":"7e2b9dea269d_3","name":"0d78","type":"P","href":null,"layout":null,"metadata":null,"text":"Meta’s long-term vision is to build artificial general intelligence (AGI) that is open and built responsibly, so that it can be widely available for everyone to benefit from. Large AI models take a lot of capacity, but the global shortage of GPUs has implications for all AI companies large and small.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_4":{"__typename":"Paragraph","id":"7e2b9dea269d_4","name":"e0d8","type":"P","href":null,"layout":null,"metadata":null,"text":"Meta is no exception. To build superclusters dedicated to the state-of-the-art LLMs, support existing products, and continue advancing in new product spaces, Meta had to develop a principled prioritization framework. This blog post examines the implications of AI innovation on Meta’s compute resources, then discusses ways to measure and improve productivity and efficiency to solve the problem.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_5":{"__typename":"Paragraph","id":"7e2b9dea269d_5","name":"d970","type":"H3","href":null,"layout":null,"metadata":null,"text":"Innovation Demands Compute","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_6":{"__typename":"Paragraph","id":"7e2b9dea269d_6","name":"cd27","type":"P","href":null,"layout":null,"metadata":null,"text":"In Meta, AI powers a variety of products. The feed ranking algorithm and the face effects filters bring users engaging content and delight. AI keeps users safe by detecting community standard violations and promotes inclusiveness via auto-generated alt text for the visually impaired. In Reality Labs, computer vision localizes a person in space and enhances the immersive augmented reality experience. Most recently, breakthroughs in GenAI enabled Meta AI-powered creative assistants such as Imagine, which generates AI images on command.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":9,"end":11,"href":"https:\u002F\u002Fai.meta.com\u002F","anchorType":"LINK","userId":null,"linkMetadata":null},{"__typename":"Markup","type":"A","start":46,"end":58,"href":"https:\u002F\u002Ftransparency.meta.com\u002Ffeatures\u002Franking-and-content\u002F","anchorType":"LINK","userId":null,"linkMetadata":null},{"__typename":"Markup","type":"A","start":77,"end":97,"href":"https:\u002F\u002Fspark.meta.com\u002Flearn\u002Fquick-start\u002Fface-filters-ar-effects","anchorType":"LINK","userId":null,"linkMetadata":null},{"__typename":"Markup","type":"A","start":163,"end":172,"href":"https:\u002F\u002Ftransparency.meta.com\u002Fenforcement\u002Fdetecting-violations\u002Ftechnology-detects-violations\u002F","anchorType":"LINK","userId":null,"linkMetadata":null},{"__typename":"Markup","type":"A","start":249,"end":257,"href":"https:\u002F\u002Ftech.facebook.com\u002Fartificial-intelligence\u002F2021\u002F1\u002Fhow-facebook-is-using-ai-to-improve-photo-descriptions-for-people-who-are-blind-or-visually-impaired\u002F","anchorType":"LINK","userId":null,"linkMetadata":null},{"__typename":"Markup","type":"A","start":493,"end":500,"href":"https:\u002F\u002Fwww.meta.com\u002Fhelp\u002Fartificial-intelligence\u002Fimagine\u002F","anchorType":"LINK","userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_7":{"__typename":"Paragraph","id":"7e2b9dea269d_7","name":"89b6","type":"P","href":null,"layout":null,"metadata":null,"text":"Additionally, Meta pushes the boundaries of AI through fundamental and applied research, much of it open source. On July 23, 2024, Meta announced the release of Llama 3.1 405B, which is Meta’s state-of-the-art large language model. It was the world’s largest open-source model of its kind at the time of its release. Innovations like this do not come without significant investments.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":100,"end":111,"href":"https:\u002F\u002Fabout.fb.com\u002Fnews\u002F2024\u002F07\u002Fopen-source-ai-is-the-path-forward\u002F","anchorType":"LINK","userId":null,"linkMetadata":null},{"__typename":"Markup","type":"A","start":136,"end":145,"href":"https:\u002F\u002Fai.meta.com\u002Fblog\u002Fmeta-llama-3-1\u002F","anchorType":"LINK","userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_8":{"__typename":"Paragraph","id":"7e2b9dea269d_8","name":"9acb","type":"P","href":null,"layout":null,"metadata":null,"text":"As our largest model yet, training Llama 3.1 405B on over 15 trillion tokens was a major challenge. To enable training runs at this scale and achieve the results we have in a reasonable amount of time, we significantly optimized our full training stack and pushed our model training to over 16 thousand H100 GPUs, making the 405B the first Llama model trained at this scale.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"EM","start":0,"end":374,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_9":{"__typename":"Paragraph","id":"7e2b9dea269d_9","name":"f8d4","type":"P","href":null,"layout":null,"metadata":null,"text":"-Introducing Llama 3.1","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":0,"end":22,"href":"https:\u002F\u002Fai.meta.com\u002Fblog\u002Fmeta-llama-3-1\u002F","anchorType":"LINK","userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_10":{"__typename":"Paragraph","id":"7e2b9dea269d_10","name":"6e28","type":"P","href":null,"layout":null,"metadata":null,"text":"GenAI performance is heavily reliant on scale due to the scaling laws for neural language models, necessitating significantly more resources compared to other types of AI. Here, scale means the number of model parameters, the dataset size, and the amount of compute. To lead in the AI space means to invest more capacity in it.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":57,"end":96,"href":"https:\u002F\u002Farxiv.org\u002Fpdf\u002F2001.08361","anchorType":"LINK","userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_11":{"__typename":"Paragraph","id":"7e2b9dea269d_11","name":"72bb","type":"H3","href":null,"layout":null,"metadata":null,"text":"Driving ROI in a Capacity-Constrained Environment","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"ImageMetadata:0*cPM2k9PZSjRG8DxE":{"__typename":"ImageMetadata","id":"0*cPM2k9PZSjRG8DxE","originalHeight":558,"originalWidth":1356,"focusPercentX":null,"focusPercentY":null,"alt":null},"Paragraph:7e2b9dea269d_12":{"__typename":"Paragraph","id":"7e2b9dea269d_12","name":"f744","type":"IMG","href":null,"layout":"INSET_CENTER","metadata":{"__ref":"ImageMetadata:0*cPM2k9PZSjRG8DxE"},"text":"","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_13":{"__typename":"Paragraph","id":"7e2b9dea269d_13","name":"2b8e","type":"H3","href":null,"layout":null,"metadata":null,"text":"Productivity and efficiency drive return on investment (“ROI”)","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_14":{"__typename":"Paragraph","id":"7e2b9dea269d_14","name":"a870","type":"P","href":null,"layout":null,"metadata":null,"text":"GPU’s are a constrained and expensive resource, and so it is important that we ensure maximal ROI. Investing in productivity and efficiency can positively impact return and investment, respectively. Analytics at Meta developed frameworks to define and measure success in these areas to drive ROI.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_15":{"__typename":"Paragraph","id":"7e2b9dea269d_15","name":"940c","type":"P","href":null,"layout":null,"metadata":null,"text":"Productivity represents the relationship between outputs and resources. A productivity metric can be developed for each stage of ML development. Outputs include features engineered, models trained, and models deployed; and the inputs include capacity and developer headcount. Productivity is a leading indicator of future returns. In the short run, it signals whether the developers have sufficient resources and tooling to develop at a healthy speed. In the long run, increasing outputs across the ML development funnel should accelerate the production of high-quality AI models.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":70,"href":null,"anchorType":null,"userId":null,"linkMetadata":null},{"__typename":"Markup","type":"STRONG","start":330,"end":331,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_16":{"__typename":"Paragraph","id":"7e2b9dea269d_16","name":"f125","type":"P","href":null,"layout":null,"metadata":null,"text":"Efficiency represents how well the inputs are used. Most commonly, it is expressed as a percentage of resources that are productive, such as the utilization rate of the GPU fleet. It may also be measured using the amount of resources spent on lower ROI tasks, such as GPU hours spent on overhead or on models that serve lower production traffic. Efficiency optimizes the value we get out of the capacity investment.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":50,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_17":{"__typename":"Paragraph","id":"7e2b9dea269d_17","name":"8c04","type":"H3","href":null,"layout":null,"metadata":null,"text":"Efficiency and productivity share levers","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_18":{"__typename":"Paragraph","id":"7e2b9dea269d_18","name":"bfd1","type":"P","href":null,"layout":null,"metadata":null,"text":"In a capacity-constrained environment, the equation below reveals why efficiency and productivity share many levers. Namely, initiatives that improve the efficiency by reducing idle or lower-ROI capacity will increase the higher-ROI capacity:","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"ImageMetadata:1*7RccQkMNDHdrnah77bmPBQ.png":{"__typename":"ImageMetadata","id":"1*7RccQkMNDHdrnah77bmPBQ.png","originalHeight":98,"originalWidth":1374,"focusPercentX":null,"focusPercentY":null,"alt":null},"Paragraph:7e2b9dea269d_19":{"__typename":"Paragraph","id":"7e2b9dea269d_19","name":"8332","type":"IMG","href":null,"layout":"INSET_CENTER","metadata":{"__ref":"ImageMetadata:1*7RccQkMNDHdrnah77bmPBQ.png"},"text":"","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_20":{"__typename":"Paragraph","id":"7e2b9dea269d_20","name":"a2cd","type":"P","href":null,"layout":null,"metadata":null,"text":"Additional higher-ROI capacity creates room for more output, assuming the resource usage per output is constant:","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"ImageMetadata:1*aMH5BC-3e1alZQ66jROQwg.png":{"__typename":"ImageMetadata","id":"1*aMH5BC-3e1alZQ66jROQwg.png","originalHeight":94,"originalWidth":1190,"focusPercentX":null,"focusPercentY":null,"alt":null},"Paragraph:7e2b9dea269d_21":{"__typename":"Paragraph","id":"7e2b9dea269d_21","name":"4e1a","type":"IMG","href":null,"layout":"INSET_CENTER","metadata":{"__ref":"ImageMetadata:1*aMH5BC-3e1alZQ66jROQwg.png"},"text":"","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_22":{"__typename":"Paragraph","id":"7e2b9dea269d_22","name":"0a59","type":"P","href":null,"layout":null,"metadata":null,"text":"Output per developer — a measure of productivity — will increase as a consequence, holding organization size (developer count) constant:","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"ImageMetadata:1*e69C8IzDEQzjYjSRX_eecw.png":{"__typename":"ImageMetadata","id":"1*e69C8IzDEQzjYjSRX_eecw.png","originalHeight":98,"originalWidth":1506,"focusPercentX":null,"focusPercentY":null,"alt":null},"Paragraph:7e2b9dea269d_23":{"__typename":"Paragraph","id":"7e2b9dea269d_23","name":"7d3f","type":"IMG","href":null,"layout":"INSET_CENTER","metadata":{"__ref":"ImageMetadata:1*e69C8IzDEQzjYjSRX_eecw.png"},"text":"","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_24":{"__typename":"Paragraph","id":"7e2b9dea269d_24","name":"c545","type":"P","href":null,"layout":null,"metadata":null,"text":"In conclusion, the same levers that increase efficiency can also increase productivity.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_25":{"__typename":"Paragraph","id":"7e2b9dea269d_25","name":"9536","type":"H3","href":null,"layout":null,"metadata":null,"text":"Sample levers and metric considerations","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_26":{"__typename":"Paragraph","id":"7e2b9dea269d_26","name":"700c","type":"P","href":null,"layout":null,"metadata":null,"text":"Analytics at Meta evaluates both technological and human levers for improving productivity and efficiency. Here are some sample levers, and considerations by analytics for four key ROI-driving objectives.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_27":{"__typename":"Paragraph","id":"7e2b9dea269d_27","name":"7e80","type":"ULI","href":null,"layout":null,"metadata":null,"text":"Optimize the level of idle capacity: Some capacity is idle because they are intentionally reserved. Disaster recovery buffer and push buffer should remain unused so that they may fulfill their purpose on short notice. On the other hand, other forms of idleness represent resources that should be used but aren’t. They can result from a mismatch between demand and supply of nonfungible hardware and suboptimal job allocation processes. The goal is to optimize the level of idleness, not eliminate it. Analytics relies on resource logs (e.g., real-time metrics from GPU hosts) to identify idle resources, then partners with engineering to determine the optimal level. For example, improving hardware fungibility can allow training jobs to utilize idle inference capacity.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":35,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_28":{"__typename":"Paragraph","id":"7e2b9dea269d_28","name":"46fe","type":"ULI","href":null,"layout":null,"metadata":null,"text":"Optimize lower-ROI capacity: To enable training and inference of high-ROI models, we inevitably incur overhead such as data loading. By design, the system will also incur some waste when high priority jobs preempt other jobs. Again, the goal is to optimize — not eliminate — lower-ROI usage. Analytics invested in strong data foundations to increase logging coverage and metric aggregation across diverse tech stacks. It also invested in model lifecycle metadata, which was used to identify the models that served low production traffic. As a result, we have increased visibility into the system’s overhead and ROI, which helps us identify and reclaim lower-ROI capacity.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":438,"end":462,"href":"https:\u002F\u002Fai.meta.com\u002Fblog\u002Fmeta-ai-ecosystem-management-metrics\u002F","anchorType":"LINK","userId":null,"linkMetadata":null},{"__typename":"Markup","type":"STRONG","start":0,"end":27,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_29":{"__typename":"Paragraph","id":"7e2b9dea269d_29","name":"6bef","type":"ULI","href":null,"layout":null,"metadata":null,"text":"Increase output per capacity usage: Some technological frameworks improve the performance of the model at the sub-GPU level (e.g., via better parallelization). For example, PyTorch2.0 automatically optimizes performance and yields a shorter training time than PyTorch1.x. To fully understand this impact, Analytics leverages metrics that cover machine performance (e.g., GPU core utilization) and user adoption.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":198,"end":207,"href":"https:\u002F\u002Fpytorch.org\u002Fblog\u002Ftraining-production-ai-models\u002F","anchorType":"LINK","userId":null,"linkMetadata":null},{"__typename":"Markup","type":"STRONG","start":0,"end":34,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_30":{"__typename":"Paragraph","id":"7e2b9dea269d_30","name":"acab","type":"ULI","href":null,"layout":null,"metadata":null,"text":"Increase developer productivity: Analytics stood up new metrics for productivity. We found that increased productivity speeds up the pace of innovation. We also found that seasonality, capacity, and organizational shifts toward different model types can affect productivity. We closely monitor development velocity — how long each stage of the model development lifecycle takes — as a mechanism to improve overall productivity.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"STRONG","start":0,"end":31,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_31":{"__typename":"Paragraph","id":"7e2b9dea269d_31","name":"8e05","type":"H3","href":null,"layout":null,"metadata":null,"text":"Takeaways","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_32":{"__typename":"Paragraph","id":"7e2b9dea269d_32","name":"5ef5","type":"P","href":null,"layout":null,"metadata":null,"text":"Operating AI at Meta’s scale is a complex challenge but Analytics at Meta has made significant strides to help unblock development. Analytics at Meta has built strong data foundations to track metrics at various levels of abstraction, from system logs to MLE behavior. Analytics plays a crucial role identifying opportunities and measuring impact so everyone at Meta from Infra to Product can continue to innovate. While the work is far from done, Meta is well on its way to achieving its goals in the pursuit of AGI.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_33":{"__typename":"Paragraph","id":"7e2b9dea269d_33","name":"ef75","type":"P","href":null,"layout":null,"metadata":null,"text":"— -","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:7e2b9dea269d_34":{"__typename":"Paragraph","id":"7e2b9dea269d_34","name":"d52c","type":"P","href":null,"layout":null,"metadata":null,"text":"Many thanks to the reviewers: Morgan Henry, Michael Tanenbaum, Crystal Distin, Betty Li, Ryan Neo, Mark Bittmann, Matthew Williams, Jason Schissel, Zeynep Erkin Baz, Brian Conley, Charles Christian, Lee Howes, Adwait Sathye, Gautam Shanbhag, Chip Turner","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"EM","start":0,"end":253,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"UserViewerEdge:userId:217b903f99fa-viewerId:lo_397e0fd6710a":{"__typename":"UserViewerEdge","id":"userId:217b903f99fa-viewerId:lo_397e0fd6710a","isMuting":false},"PostViewerEdge:postId:38f56cf520f7-viewerId:lo_397e0fd6710a":{"__typename":"PostViewerEdge","shouldIndexPostForExternalSearch":true,"id":"postId:38f56cf520f7-viewerId:lo_397e0fd6710a"},"Tag:meta":{"__typename":"Tag","id":"meta","displayTitle":"Meta","normalizedTagSlug":"meta"},"Tag:machine-learning":{"__typename":"Tag","id":"machine-learning","displayTitle":"Machine Learning","normalizedTagSlug":"machine-learning"},"Tag:generative-ai-tools":{"__typename":"Tag","id":"generative-ai-tools","displayTitle":"Generative Ai Tools","normalizedTagSlug":"generative-ai-tools"},"Tag:analytics":{"__typename":"Tag","id":"analytics","displayTitle":"Analytics","normalizedTagSlug":"analytics"},"Tag:artificial-intelligence":{"__typename":"Tag","id":"artificial-intelligence","displayTitle":"Artificial Intelligence","normalizedTagSlug":"artificial-intelligence"},"Post:38f56cf520f7":{"__typename":"Post","id":"38f56cf520f7","collection":null,"content({\"postMeteringOptions\":{\"referrer\":\"\"}})":{"__typename":"PostContent","isLockedPreviewOnly":false,"bodyModel":{"__typename":"RichText","sections":[{"__typename":"Section","name":"f7ae","startIndex":0,"textLayout":null,"imageLayout":null,"backgroundImage":null,"videoLayout":null,"backgroundVideo":null}],"paragraphs":[{"__ref":"Paragraph:7e2b9dea269d_0"},{"__ref":"Paragraph:7e2b9dea269d_1"},{"__ref":"Paragraph:7e2b9dea269d_2"},{"__ref":"Paragraph:7e2b9dea269d_3"},{"__ref":"Paragraph:7e2b9dea269d_4"},{"__ref":"Paragraph:7e2b9dea269d_5"},{"__ref":"Paragraph:7e2b9dea269d_6"},{"__ref":"Paragraph:7e2b9dea269d_7"},{"__ref":"Paragraph:7e2b9dea269d_8"},{"__ref":"Paragraph:7e2b9dea269d_9"},{"__ref":"Paragraph:7e2b9dea269d_10"},{"__ref":"Paragraph:7e2b9dea269d_11"},{"__ref":"Paragraph:7e2b9dea269d_12"},{"__ref":"Paragraph:7e2b9dea269d_13"},{"__ref":"Paragraph:7e2b9dea269d_14"},{"__ref":"Paragraph:7e2b9dea269d_15"},{"__ref":"Paragraph:7e2b9dea269d_16"},{"__ref":"Paragraph:7e2b9dea269d_17"},{"__ref":"Paragraph:7e2b9dea269d_18"},{"__ref":"Paragraph:7e2b9dea269d_19"},{"__ref":"Paragraph:7e2b9dea269d_20"},{"__ref":"Paragraph:7e2b9dea269d_21"},{"__ref":"Paragraph:7e2b9dea269d_22"},{"__ref":"Paragraph:7e2b9dea269d_23"},{"__ref":"Paragraph:7e2b9dea269d_24"},{"__ref":"Paragraph:7e2b9dea269d_25"},{"__ref":"Paragraph:7e2b9dea269d_26"},{"__ref":"Paragraph:7e2b9dea269d_27"},{"__ref":"Paragraph:7e2b9dea269d_28"},{"__ref":"Paragraph:7e2b9dea269d_29"},{"__ref":"Paragraph:7e2b9dea269d_30"},{"__ref":"Paragraph:7e2b9dea269d_31"},{"__ref":"Paragraph:7e2b9dea269d_32"},{"__ref":"Paragraph:7e2b9dea269d_33"},{"__ref":"Paragraph:7e2b9dea269d_34"}]},"validatedShareKey":"","shareKeyCreator":null},"creator":{"__ref":"User:217b903f99fa"},"inResponseToEntityType":null,"isLocked":false,"isMarkedPaywallOnly":false,"lockedSource":"LOCKED_POST_SOURCE_NONE","mediumUrl":"https:\u002F\u002Fmedium.com\u002F@AnalyticsAtMeta\u002Finnovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7","primaryTopic":null,"topics":[{"__typename":"Topic","slug":"artificial-intelligence"}],"isLimitedState":false,"isPublished":true,"allowResponses":true,"latestPublishedVersion":"7e2b9dea269d","visibility":"PUBLIC","postResponses":{"__typename":"PostResponses","count":0},"responseDistribution":"NOT_DISTRIBUTED","clapCount":17,"title":"Innovation Demands Compute: How Meta is Enabling ML Productivity and Efficiency at Scale","isSeries":false,"sequence":null,"uniqueSlug":"innovation-demands-compute-how-to-enable-ml-productivity-and-efficiency-38f56cf520f7","socialTitle":"","socialDek":"","canonicalUrl":"","metaDescription":"","latestPublishedAt":1731100460231,"readingTime":5.395597484276729,"previewContent":{"__typename":"PreviewContent","subtitle":"Author: Haerang Lee"},"previewImage":{"__ref":"ImageMetadata:1*6E-yVJQvixQPhaYyBkF9uA.jpeg"},"isShortform":false,"seoTitle":"","firstPublishedAt":1730417786398,"updatedAt":1731566732611,"shortformType":"SHORTFORM_TYPE_LINK","seoDescription":"","viewerEdge":{"__ref":"PostViewerEdge:postId:38f56cf520f7-viewerId:lo_397e0fd6710a"},"isSuspended":false,"license":"ALL_RIGHTS_RESERVED","tags":[{"__ref":"Tag:meta"},{"__ref":"Tag:machine-learning"},{"__ref":"Tag:generative-ai-tools"},{"__ref":"Tag:analytics"},{"__ref":"Tag:artificial-intelligence"}],"isFeaturedInPublishedPublication":false,"isNewsletter":false,"statusForCollection":null,"pendingCollection":null,"detectedLanguage":"en","wordCount":1209,"layerCake":6,"responsesLocked":false}}</script><script>window.__MIDDLEWARE_STATE__={"session":{"xsrf":""},"cache":{"cacheStatus":"HIT"}}</script><script src="https://cdn-client.medium.com/lite/static/js/manifest.4b5fe151.js"></script><script src="https://cdn-client.medium.com/lite/static/js/9865.1496d74a.js"></script><script src="https://cdn-client.medium.com/lite/static/js/main.af7becea.js"></script><script src="https://cdn-client.medium.com/lite/static/js/instrumentation.5bef8967.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/reporting.ff22a7a5.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/5049.d1ead72d.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/4505.6dfaf853.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6618.db187378.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/9380.fb176dee.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2707.dc8dbee4.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/9977.933c1c9a.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/8599.68bc318b.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/3045.1cc3d8cb.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6349.3329b100.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2648.26563adf.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/8393.a4ecfb83.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6428.7d30b23c.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6199.6da73f3b.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/5642.7d9f7f3d.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6546.67eb283b.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6834.8aa8d357.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/4492.0c3e1a1d.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2571.6814b962.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/839.1c286b32.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6128.f8800a13.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2135.2e8dc177.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/7975.60bcefe8.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/144.86429b48.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/5240.6281357f.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/8819.c627c2bf.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/8204.d0637ed0.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/PostPage.MainContent.a27c27dc.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/8414.0d800846.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/3974.8d3e0217.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2527.18a8996d.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/PostResponsesContent.e1e580cb.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/responses.editor.e89462cb.chunk.js"></script><script>window.main();</script><script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'913895a1ac028930',t:'MTczOTgyNDc0My4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body></html>

Pages: 1 2 3 4 5 6 7 8 9 10