CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 191 results for author: <span class="mathjax">Chernodub, M N</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&amp;query=Chernodub%2C+M+N">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chernodub, M N"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chernodub%2C+M+N&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chernodub, M N"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chernodub%2C+M+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chernodub%2C+M+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chernodub%2C+M+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chernodub%2C+M+N&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chernodub%2C+M+N&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15085">arXiv:2411.15085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15085">pdf</a>, <a href="https://arxiv.org/format/2411.15085">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> On the origin of mixed inhomogeneous phase in vortical gluon plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Braguta%2C+V+V">V. V. Braguta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gershtein%2C+Y+A">Ya. A. Gershtein</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Roenko%2C+A+A">A. A. Roenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15085v1-abstract-short" style="display: inline;"> Recently, lattice simulations of SU(3) Yang-Mills theory revealed that rotating hot gluon matter in thermal equilibrium possesses a novel inhomogeneous phase consisting of the deconfinement phase located in the center region, which is spatially separated from the confinement phase in the periphery. This inhomogeneous two-phase structure is also expected to be produced by vorticity in quark-gluon p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15085v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15085v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15085v1-abstract-full" style="display: none;"> Recently, lattice simulations of SU(3) Yang-Mills theory revealed that rotating hot gluon matter in thermal equilibrium possesses a novel inhomogeneous phase consisting of the deconfinement phase located in the center region, which is spatially separated from the confinement phase in the periphery. This inhomogeneous two-phase structure is also expected to be produced by vorticity in quark-gluon plasma formed in non-central relativistic heavy-ion collisions. We show that its vortical properties are determined by two types of couplings of the angular velocity to the gluon fields: a linear coupling to the mechanical angular momentum of gluons and a quadratic ``magnetovortical&#39;&#39; coupling to a chromomagnetic component. We demonstrate numerically that the distinctive inhomogeneous structure of the vortical (quark-)gluon plasma is determined by the latter, while the former plays only a subleading role. We argue that the anisotropy of the gluonic action in the curved co-rotating background can quantitatively explain the remarkable property that the spatial structure of this inhomogeneous phase disobeys the picture based on a straightforward implementation of the Tolman-Ehrenfest law. We also support our findings with Monte Carlo simulations of Yang-Mills plasma at the real-valued angular frequency, which take into account only the magnetic part of the action. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15085v1-abstract-full').style.display = 'none'; document.getElementById('2411.15085v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 18 figures, Movies showing the evolution of inhomogeneity with change in the simulation parameters are attached as ancillary files</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15638">arXiv:2409.15638</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15638">pdf</a>, <a href="https://arxiv.org/format/2409.15638">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Vortex wall phase in fractonic XY-plaquette model on square lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Begun%2C+A+M">A. M. Begun</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15638v1-abstract-short" style="display: inline;"> The XY-plaquette model is the most straightforward lattice realization of a broad class of fractonic field theories that host quasiparticles with restricted mobility. The plaquette interaction appears naturally as a ring-exchange term in the low-energy description of exciton Bose liquids, cold atomic gases, and quantum dimer models. Using first-principle Monte Carlo simulations, we study the phase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15638v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15638v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15638v1-abstract-full" style="display: none;"> The XY-plaquette model is the most straightforward lattice realization of a broad class of fractonic field theories that host quasiparticles with restricted mobility. The plaquette interaction appears naturally as a ring-exchange term in the low-energy description of exciton Bose liquids, cold atomic gases, and quantum dimer models. Using first-principle Monte Carlo simulations, we study the phase diagram and the vortex dynamics in the XY-plaquette model on a square lattice in two spatial dimensions. In its minimal formulation, the model contains a ring-exchange plaquette term in two spatial dimensions and a standard XY-link term in the (imaginary) time direction. We show that the phase diagram of the minimal XY-plaquette model possesses two phases: (i) a disordered vortex-dominated phase in which a single percolating vortex trajectory occupies the whole 3d spacetime; (ii) a partially disordered phase in which the vortices become partially immobile, with their worldlines strictly confined to one or several infinite two-dimensional planes. The spatial positions and spatial orientations (along $x$ or $y$ axis) of these vortex domain walls appear to be spontaneous. Individual vortices form a disordered system within each vortex domain wall, so the fractal spacetime dimension of vortex trajectories approaches $D_f = 2$. We argue that the appearance of the vortex walls could be interpreted as a consequence of the spontaneous breaking of a global internal symmetry in the compact XY-plaquette model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15638v1-abstract-full').style.display = 'none'; document.getElementById('2409.15638v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01847">arXiv:2409.01847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01847">pdf</a>, <a href="https://arxiv.org/format/2409.01847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Extreme softening of QCD phase transition under weak acceleration: first principle Monte Carlo results for gluon plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Stepanov%2C+D+V">D. V. Stepanov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Pochinok%2C+A+S">A. S. Pochinok</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01847v2-abstract-short" style="display: inline;"> We study the properties of gluon plasma subjected to a weak acceleration using first-principle numerical Monte Carlo simulations. We use the Luttinger (Tolman-Ehrenfest) correspondence between temperature gradient and gravitational field to impose acceleration in imaginary time formalism. Under acceleration, the system resides in global thermal equilibrium. Our results indicate that even the weake&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01847v2-abstract-full').style.display = 'inline'; document.getElementById('2409.01847v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01847v2-abstract-full" style="display: none;"> We study the properties of gluon plasma subjected to a weak acceleration using first-principle numerical Monte Carlo simulations. We use the Luttinger (Tolman-Ehrenfest) correspondence between temperature gradient and gravitational field to impose acceleration in imaginary time formalism. Under acceleration, the system resides in global thermal equilibrium. Our results indicate that even the weakest acceleration up to $a \simeq 27$ MeV drastically softens the deconfinement phase transition, converting the first-order phase transition of a static system to a soft crossover for accelerating gluons. The accelerating environment can be relevant to the first moments of the early Universe and the initial glasma regime of relativistic heavy ion collisions. In particular, our results imply that the acceleration, if present, may also inhibit the detection of the thermodynamic phase transition from quark-gluon plasma to the hadronic phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01847v2-abstract-full').style.display = 'none'; document.getElementById('2409.01847v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, v2. Acknowledgments added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07828">arXiv:2407.07828</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07828">pdf</a>, <a href="https://arxiv.org/format/2407.07828">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Inhibition of splitting of the chiral and deconfinement transition due to rotation in QCD: the phase diagram of linear sigma model coupled to Polyakov loop </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Singha%2C+P">Pracheta Singha</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ambrus%2C+V+E">Victor E. Ambrus</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">Maxim N. Chernodub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07828v1-abstract-short" style="display: inline;"> We discuss the effect of rigid rotation on critical temperatures of deconfinement and chiral transitions in the linear sigma model coupled to quarks and the Polyakov loop. We point out the essential role of the causality condition, which requires that any point of the system should rotate slower than the velocity of light. We show that imposing this physical requirement leads to inhibition of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07828v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07828v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07828v1-abstract-full" style="display: none;"> We discuss the effect of rigid rotation on critical temperatures of deconfinement and chiral transitions in the linear sigma model coupled to quarks and the Polyakov loop. We point out the essential role of the causality condition, which requires that any point of the system should rotate slower than the velocity of light. We show that imposing this physical requirement leads to inhibition of the splitting between the chiral and confining transitions, which becomes negligibly small ($螖T \sim 1$~MeV or less) for experimentally relevant, slow angular velocities $惟\sim 10$~MeV of a $(5-10)$~fm-sized systems. Moreover, the boundedness of the system has a much bigger effect on temperature splitting than the rotation itself: the splitting reaches 10~MeV in a small, one-fermi-sized non-rotating system. The temperature splitting may, however, become enhanced in an academic limit of ultra-relativistic regimes when the boundary of the system rotates at near-to-light velocities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07828v1-abstract-full').style.display = 'none'; document.getElementById('2407.07828v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13994">arXiv:2312.13994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.13994">pdf</a>, <a href="https://arxiv.org/format/2312.13994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2024.138783">10.1016/j.physletb.2024.138783 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New mixed inhomogeneous phase in vortical gluon plasma: first-principle results from rotating SU(3) lattice gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Braguta%2C+V+V">Victor V. Braguta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">Maxim N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Roenko%2C+A+A">Artem A. Roenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13994v3-abstract-short" style="display: inline;"> Using first-principle numerical simulations, we find a new spatially inhomogeneous phase in rigidly rotating $N_c = 3$ gluon plasma. This mixed phase simultaneously possesses both confining and deconfining phases in thermal equilibrium. Unexpectedly, the local critical temperature of the phase transition at the rotation axis does not depend on the angular frequency within a few percent accuracy. E&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13994v3-abstract-full').style.display = 'inline'; document.getElementById('2312.13994v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13994v3-abstract-full" style="display: none;"> Using first-principle numerical simulations, we find a new spatially inhomogeneous phase in rigidly rotating $N_c = 3$ gluon plasma. This mixed phase simultaneously possesses both confining and deconfining phases in thermal equilibrium. Unexpectedly, the local critical temperature of the phase transition at the rotation axis does not depend on the angular frequency within a few percent accuracy. Even more surprisingly, an analytic continuation of our results to the domain of real angular frequencies indicates a profound breaking of the Tolman-Ehrenfest law in the vicinity of the phase transition, with the confining (deconfining) phase appearing far (near) the rotation axis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13994v3-abstract-full').style.display = 'none'; document.getElementById('2312.13994v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, movies on the phase evolution with increasing angular velocity are attached as ancillary files; acknowledgements and discussion added; figures updated; version accepted for publication in PLB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 855, 138783 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.03947">arXiv:2311.03947</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.03947">pdf</a>, <a href="https://arxiv.org/format/2311.03947">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.453.0181">10.22323/1.453.0181 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Moment of inertia and supervortical temperature of gluon plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Braguta%2C+V+V">Victor V. Braguta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">Maxim N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kudrov%2C+I+E">Ilya E. Kudrov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Roenko%2C+A+A">Artem A. Roenko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sychev%2C+D+A">Dmitrii A. Sychev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.03947v1-abstract-short" style="display: inline;"> Using lattice simulations, we analyze the influence of uniform rotation on the equation of state of gluodynamics. For a sufficiently slow rotation, the free energy of the system can be expanded into a series of powers of angular velocity. We calculate the moment of inertia given by the quadratic coefficient of this expansion using both analytic continuation and derivative methods, which demonstrat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03947v1-abstract-full').style.display = 'inline'; document.getElementById('2311.03947v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.03947v1-abstract-full" style="display: none;"> Using lattice simulations, we analyze the influence of uniform rotation on the equation of state of gluodynamics. For a sufficiently slow rotation, the free energy of the system can be expanded into a series of powers of angular velocity. We calculate the moment of inertia given by the quadratic coefficient of this expansion using both analytic continuation and derivative methods, which demonstrate a good agreement between the results. We find that the moment of inertia unexpectedly takes a negative value below the ``supervortical temperature&#39;&#39; $T_s = 1.50(10) T_c$, vanishes at $T = T_s$, and becomes a positive quantity at higher temperatures. We discuss how our results are related to the scale anomaly and the magnetic gluon condensate. We point out that the negativity of the moment of inertia is in qualitative agreement with our previous lattice calculations, indicating that the rigid rotation increases the critical temperatures in gluodynamics and QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03947v1-abstract-full').style.display = 'none'; document.getElementById('2311.03947v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures, Proceedings of the 40th International Symposium on Lattice Field Theory (Lattice 2023), July 31st - August 4th, 2023, Fermilab, Batavia, Illinois, USA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS LATTICE2023, 181 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16036">arXiv:2310.16036</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16036">pdf</a>, <a href="https://arxiv.org/format/2310.16036">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.014511">10.1103/PhysRevD.110.014511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Negative Barnett effect, negative moment of inertia of gluon plasma and thermal evaporation of chromomagnetic condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Braguta%2C+V+V">Victor V. Braguta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">Maxim N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kudrov%2C+I+E">Ilya E. Kudrov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Roenko%2C+A+A">Artem A. Roenko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sychev%2C+D+A">Dmitrii A. Sychev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16036v3-abstract-short" style="display: inline;"> We discuss the negativity of the moment of inertia of (quark-)gluon plasma in a window of &#34;supervortical&#34; range of temperatures above the deconfining phase transition, $T \simeq (1\dots 1.5) T_c $ found recently in numerical Monte Carlo simulations by two independent methods. In our work, we confirm numerically that the origin of this effect is rooted in the thermal evaporation of the non-perturba&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16036v3-abstract-full').style.display = 'inline'; document.getElementById('2310.16036v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16036v3-abstract-full" style="display: none;"> We discuss the negativity of the moment of inertia of (quark-)gluon plasma in a window of &#34;supervortical&#34; range of temperatures above the deconfining phase transition, $T \simeq (1\dots 1.5) T_c $ found recently in numerical Monte Carlo simulations by two independent methods. In our work, we confirm numerically that the origin of this effect is rooted in the thermal evaporation of the non-perturbative chromomagnetic condensate. We argue that the negative moment of inertia of gluon plasma indicates the presence of a novel effect, the negative spin-vortical coupling for gluons resulting in a negative gluonic Barnett effect: the spin polarization of gluons exceeds the total angular momentum of rotating plasma, thus forcing the orbital angular momentum to take negative values in the supervortical range of temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16036v3-abstract-full').style.display = 'none'; document.getElementById('2310.16036v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures; acknowledgements added; discussion added; version accepted for publication in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 110, 014511 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03225">arXiv:2308.03225</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.03225">pdf</a>, <a href="https://arxiv.org/format/2308.03225">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2024.138757">10.1016/j.physletb.2024.138757 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Acceleration as a circular motion along an imaginary circle: Kubo-Martin-Schwinger condition for accelerating field theories in imaginary-time formalism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ambru%C5%9F%2C+V+E">Victor E. Ambru艧</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">Maxim N. Chernodub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03225v2-abstract-short" style="display: inline;"> We discuss the imaginary-time formalism for field theories in thermal equilibrium in uniformly accelerating frames. We show that under a Wick rotation of Minkowski spacetime, the Rindler event horizon shrinks to a point in a two-dimensional subspace tangential to the acceleration direction and the imaginary time. We demonstrate that the accelerated version of the Kubo-Martin-Schwinger (KMS) condit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03225v2-abstract-full').style.display = 'inline'; document.getElementById('2308.03225v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03225v2-abstract-full" style="display: none;"> We discuss the imaginary-time formalism for field theories in thermal equilibrium in uniformly accelerating frames. We show that under a Wick rotation of Minkowski spacetime, the Rindler event horizon shrinks to a point in a two-dimensional subspace tangential to the acceleration direction and the imaginary time. We demonstrate that the accelerated version of the Kubo-Martin-Schwinger (KMS) condition implies an identification of all spacetime points related by integer-multiple rotations in the tangential subspace about this Euclidean Rindler event-horizon point, with the rotational quanta defined by the thermal acceleration, $伪= a/T$. In the Wick-rotated Rindler hyperbolic coordinates, the KMS relations reduce to standard (anti-)periodic boundary conditions in terms of the imaginary proper time (rapidity) coordinate. Our findings pave the way to study, using first-principle lattice simulations, the Hawking-Unruh radiation in geometries with event horizons, phase transitions in accelerating Early Universe and early stages of quark-gluon plasma created in relativistic heavy-ion collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03225v2-abstract-full').style.display = 'none'; document.getElementById('2308.03225v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 855 (2024) 138757 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.14033">arXiv:2305.14033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.14033">pdf</a>, <a href="https://arxiv.org/format/2305.14033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/apxr.202300058">10.1002/apxr.202300058 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation of electric current by magnetic field at the boundary: quantum scale anomaly vs. semiclassical Meissner current outside of the conformal limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.14033v2-abstract-short" style="display: inline;"> The scale (conformal) anomaly can generate an electric current near the boundary of a system in the presence of a static magnetic field. The magnitude of this magnetization current, produced at zero temperature and in the absence of matter, is proportional to a beta function associated with the renormalization of the electric charge. Using first-principle lattice simulations, we investigate how th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14033v2-abstract-full').style.display = 'inline'; document.getElementById('2305.14033v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.14033v2-abstract-full" style="display: none;"> The scale (conformal) anomaly can generate an electric current near the boundary of a system in the presence of a static magnetic field. The magnitude of this magnetization current, produced at zero temperature and in the absence of matter, is proportional to a beta function associated with the renormalization of the electric charge. Using first-principle lattice simulations, we investigate how the breaking of the scale symmetry affects this ``scale magnetic effect&#39;&#39; near a Dirichlet boundary in scalar QED (Abelian Higgs model). We demonstrate the interplay of the generated current with vortex excitations both in symmetric (normal) and broken (superconducting) phases and compare the results with the anomalous current produced in the conformal, scale-invariant regime. Possible experimental signatures of the effect in Dirac semimetals are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.14033v2-abstract-full').style.display = 'none'; document.getElementById('2305.14033v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 12 figures; v2: discussions and references added, matches the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Physics Res. 2023, 2300058 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05998">arXiv:2304.05998</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05998">pdf</a>, <a href="https://arxiv.org/format/2304.05998">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.085016">10.1103/PhysRevD.108.085016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rigidly-rotating scalar fields: between real divergence and imaginary fractalization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ambru%C5%9F%2C+V+E">Victor E. Ambru艧</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">Maxim N. Chernodub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05998v2-abstract-short" style="display: inline;"> The thermodynamics of rigidly rotating systems experience divergences when the system dimensions transverse to the rotation axis exceed the critical size imposed by the causality constraint. The rotation with imaginary angular frequency, suitable for numerical lattice simulations in Euclidean imaginary-time formalism, experiences fractalization of thermodynamics in the thermodynamic limit, when th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05998v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05998v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05998v2-abstract-full" style="display: none;"> The thermodynamics of rigidly rotating systems experience divergences when the system dimensions transverse to the rotation axis exceed the critical size imposed by the causality constraint. The rotation with imaginary angular frequency, suitable for numerical lattice simulations in Euclidean imaginary-time formalism, experiences fractalization of thermodynamics in the thermodynamic limit, when the system&#39;s pressure becomes a fractal function of the rotation frequency. Our work connects two phenomena by studying how thermodynamics fractalizes as the system size grows. We examine an analytically-accessible system of rotating massless scalar matter on a one-dimensional ring and the numerically treatable case of rotation in the cylindrical geometry and show how the ninionic deformation of statistics emerges in these systems. We discuss a no-go theorem on analytical continuation between real- and imaginary-rotating theories. Finally, we compute the moment of inertia and shape deformation coefficients caused by the rotation of the relativistic bosonic gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05998v2-abstract-full').style.display = 'none'; document.getElementById('2304.05998v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 22 figures; accepted for publication in PRD; fractalization video is available at https://youtu.be/Pk-S_10BM-k</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108, 085016 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03147">arXiv:2303.03147</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03147">pdf</a>, <a href="https://arxiv.org/format/2303.03147">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2024.138604">10.1016/j.physletb.2024.138604 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Negative moment of inertia and rotational instability of gluon plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Braguta%2C+V+V">Victor V. Braguta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">Maxim N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Roenko%2C+A+A">Artem A. Roenko</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Sychev%2C+D+A">Dmitrii A. Sychev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03147v2-abstract-short" style="display: inline;"> Using first-principle numerical simulations of the lattice SU(3) gauge theory, we calculate the isothermal moment of inertia of the rigidly rotating gluon plasma. We find that the moment of inertia unexpectedly takes a negative value below the &#34;supervortical temperature&#34; $T_s = 1.50(10) T_c$, vanishes at $T = T_s$, and becomes a positive quantity at higher temperatures. The negative moment of iner&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03147v2-abstract-full').style.display = 'inline'; document.getElementById('2303.03147v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03147v2-abstract-full" style="display: none;"> Using first-principle numerical simulations of the lattice SU(3) gauge theory, we calculate the isothermal moment of inertia of the rigidly rotating gluon plasma. We find that the moment of inertia unexpectedly takes a negative value below the &#34;supervortical temperature&#34; $T_s = 1.50(10) T_c$, vanishes at $T = T_s$, and becomes a positive quantity at higher temperatures. The negative moment of inertia indicates a thermodynamic instability of rigid rotation. We derive the condition of thermodynamic stability of the vortical plasma and show how it relates to the scale anomaly and the magnetic gluon condensate. The rotational instability of gluon plasma shares a striking similarity with the rotational instabilities of spinning Kerr and Myers-Perry black holes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03147v2-abstract-full').style.display = 'none'; document.getElementById('2303.03147v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures; added discussions, 1 figure and Supplementary Material; version accepted for publication in PLB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 852, 138604 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.00376">arXiv:2302.00376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.00376">pdf</a>, <a href="https://arxiv.org/format/2302.00376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.014515">10.1103/PhysRevD.108.014515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Boundary states and Non-Abelian Casimir effect in lattice Yang-Mills theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">Maxim N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">Vladimir A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">Alexander V. Molochkov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tanashkin%2C+A+S">Alexey S. Tanashkin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.00376v1-abstract-short" style="display: inline;"> Using first-principle numerical simulations, we investigate the Casimir effect in zero-temperature SU(3) lattice gauge theory in 3+1 spacetime dimensions. The Casimir interaction between perfect chromometallic mirrors reveals the presence of a new gluonic state with the mass $m_{\mathrm{gt}} = 1.0(1)\sqrt蟽 = 0.49(5)\,\mathrm{GeV} = 0.29(3) M_{0^{++}}$ which is substantially lighter than the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00376v1-abstract-full').style.display = 'inline'; document.getElementById('2302.00376v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.00376v1-abstract-full" style="display: none;"> Using first-principle numerical simulations, we investigate the Casimir effect in zero-temperature SU(3) lattice gauge theory in 3+1 spacetime dimensions. The Casimir interaction between perfect chromometallic mirrors reveals the presence of a new gluonic state with the mass $m_{\mathrm{gt}} = 1.0(1)\sqrt蟽 = 0.49(5)\,\mathrm{GeV} = 0.29(3) M_{0^{++}}$ which is substantially lighter than the $0^{++}$ groundstate glueball. We call this excitation ``glueton&#39;&#39; interpreting it as a non-perturbative colorless state of gluons bound to their negatively colored images in the chromometallic mirror. The glueton is a gluonic counterpart of a surface electron-hole exciton in semiconductors. We also show that a heavy quark is attracted to the neutral chromometallic mirror, thus supporting the existence of a ``quarkiton&#39;&#39; (a ``quark exciton&#39;&#39;) colorless state in QCD, which is formed by a single quark with its anti-quark image in the chromometallic mirror. Analogies with edge modes in topological insulators and boundary states of fractional vortices in multi-component condensates are highlighted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00376v1-abstract-full').style.display = 'none'; document.getElementById('2302.00376v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06849">arXiv:2301.06849</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.06849">pdf</a>, <a href="https://arxiv.org/format/2301.06849">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Ising Model on the Fibonacci Sphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Pochinok%2C+A+S">A. S. Pochinok</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06849v1-abstract-short" style="display: inline;"> We formulate the ferromagnetic Ising model on a two-dimensional sphere using the Delaunay triangulation of the Fibonacci covering. The Fibonacci approach generates a uniform isotropic covering of the sphere with approximately equal-area triangles, thus potentially supporting a smooth thermodynamic limit. In the absence of a magnetic field, the model exhibits a spontaneous magnetization phase trans&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06849v1-abstract-full').style.display = 'inline'; document.getElementById('2301.06849v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06849v1-abstract-full" style="display: none;"> We formulate the ferromagnetic Ising model on a two-dimensional sphere using the Delaunay triangulation of the Fibonacci covering. The Fibonacci approach generates a uniform isotropic covering of the sphere with approximately equal-area triangles, thus potentially supporting a smooth thermodynamic limit. In the absence of a magnetic field, the model exhibits a spontaneous magnetization phase transition at a critical temperature that depends on the connectivity properties of the underlying lattice. While in the standard triangular lattice, every site is connected to 6 neighboring sites, the triangulated Fibonacci lattice of the curved surface contains a substantial density of the 5- and 7-vertices. As the number of sites in the Fibonacci sphere increases, the triangular cover of the sphere experiences a series of singular transitions that reflect a sudden change in its connectivity properties. These changes substantially influence the statistical features of the system leading to a series of first-order-like discontinuities as the radius of the sphere increases. We found that the Ising model on a uniform, Fibonacci-triangulated sphere in a large-radius limit possesses the phase transition at the critical temperature $T_c \simeq 3.33(3) J$, which is slightly lower than the thermodynamic result for an equilaterally triangulated planar lattice. This mismatch is a memory effect: the planar Fibonacci lattice remembers its origin from the curved space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06849v1-abstract-full').style.display = 'none'; document.getElementById('2301.06849v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.15534">arXiv:2209.15534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.15534">pdf</a>, <a href="https://arxiv.org/format/2209.15534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.114502">10.1103/PhysRevD.107.114502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inhomogeneity of rotating gluon plasma and Tolman-Ehrenfest law in imaginary time: lattice results for fast imaginary rotation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.15534v1-abstract-short" style="display: inline;"> We present the results of first-principle numerical simulations of Euclidean SU(3) Yang-Mills plasma rotating with a high imaginary angular frequency. The rigid Euclidean rotation is introduced via ``rotwisted&#39;&#39; boundary conditions along imaginary time direction. The Polyakov loop in the co-rotating Euclidean reference frame shows the emergence of a spatially inhomogeneous confining-deconfining ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15534v1-abstract-full').style.display = 'inline'; document.getElementById('2209.15534v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.15534v1-abstract-full" style="display: none;"> We present the results of first-principle numerical simulations of Euclidean SU(3) Yang-Mills plasma rotating with a high imaginary angular frequency. The rigid Euclidean rotation is introduced via ``rotwisted&#39;&#39; boundary conditions along imaginary time direction. The Polyakov loop in the co-rotating Euclidean reference frame shows the emergence of a spatially inhomogeneous confining-deconfining phase through a broad crossover transition. A continuation of our numerical results to Minkowski spacetime suggests that the gluon plasma, rotating at real angular frequencies, produces a new inhomogeneous phase possessing the confining phase near the rotation axis and the deconfinement phase in the outer regions. The inhomogeneous phase structure has a purely kinematic origin, rooted in the Tolman-Ehrenfest effect in a rotating medium. We also derive the Euclidean version of the Tolman-Ehrenfest law in imaginary time formalism and discuss two definitions of temperature at imaginary Euclidean rotation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15534v1-abstract-full').style.display = 'none'; document.getElementById('2209.15534v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14008">arXiv:2206.14008</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.14008">pdf</a>, <a href="https://arxiv.org/format/2206.14008">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.111802">10.1103/PhysRevLett.130.111802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase structure of electroweak vacuum in a strong magnetic field: the lattice results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14008v2-abstract-short" style="display: inline;"> Using first-principle lattice simulations, we demonstrate that in the background of a strong magnetic field (around $10^{20}$ T), the electroweak sector of the vacuum experiences two consecutive crossover transitions associated with dramatic changes in the zero-temperature dynamics of the vector $W$ bosons and the scalar Higgs particles, respectively. Above the first crossover, we observe the appe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14008v2-abstract-full').style.display = 'inline'; document.getElementById('2206.14008v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14008v2-abstract-full" style="display: none;"> Using first-principle lattice simulations, we demonstrate that in the background of a strong magnetic field (around $10^{20}$ T), the electroweak sector of the vacuum experiences two consecutive crossover transitions associated with dramatic changes in the zero-temperature dynamics of the vector $W$ bosons and the scalar Higgs particles, respectively. Above the first crossover, we observe the appearance of large, inhomogeneous structures consistent with a classical picture of the formation of $W$ and $Z$ condensates pierced by vortices. The presence of the $W$ and $Z$ condensates supports the emergence of the exotic superconducting and superfluid properties induced by a strong magnetic field in the vacuum. We find evidence that the vortices form a disordered solid or a liquid rather than a crystal. The second transition restores the electroweak symmetry. Such conditions can be realized in the near-horizon region of the magnetized black holes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14008v2-abstract-full').style.display = 'none'; document.getElementById('2206.14008v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures (text + supplementary material); v2: minor improvements, matches published version; a short illustratory video is available at https://www.youtube.com/watch?v=-TCZcLZWIBk</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 111802 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14922">arXiv:2203.14922</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.14922">pdf</a>, <a href="https://arxiv.org/format/2203.14922">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.114506">10.1103/PhysRevD.105.114506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Casimir boundaries, monopoles, and deconfinement transition in 3+1 dimensional compact electrodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Tanashkin%2C+A+S">A. S. Tanashkin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14922v1-abstract-short" style="display: inline;"> Compact U(1) gauge theory in 3+1 dimensions possesses the confining phase, characterized by a linear raise of the potential between particles with opposite electric charges at sufficiently large inter-particle separation. The confinement is generated by condensation of Abelian monopoles at strong gauge coupling. We study the properties of monopoles and the deconfining order parameter in zero-tempe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14922v1-abstract-full').style.display = 'inline'; document.getElementById('2203.14922v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14922v1-abstract-full" style="display: none;"> Compact U(1) gauge theory in 3+1 dimensions possesses the confining phase, characterized by a linear raise of the potential between particles with opposite electric charges at sufficiently large inter-particle separation. The confinement is generated by condensation of Abelian monopoles at strong gauge coupling. We study the properties of monopoles and the deconfining order parameter in zero-temperature theory in the presence of ideally conducting parallel metallic boundaries (plates) usually associated with the Casimir effect. Using first-principle numerical simulations in compact U(1) lattice gauge theory, we show that as the distance between the plates diminishes, the vacuum in between the plates experiences a deconfining transition. The phase diagram in the space of the gauge coupling and the inter-plane distance is obtained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14922v1-abstract-full').style.display = 'none'; document.getElementById('2203.14922v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.07865">arXiv:2112.07865</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.07865">pdf</a>, <a href="https://arxiv.org/ps/2112.07865">ps</a>, <a href="https://arxiv.org/format/2112.07865">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Applying machine learning methods to prediction problems of lattice observables </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Gerasimeniuk%2C+N+V">N. V. Gerasimeniuk</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D+L">D. L. Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liubimov%2C+S+D">S. D. Liubimov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.07865v2-abstract-short" style="display: inline;"> We discuss the prediction of critical behavior of lattice observables in SU(2) and SU(3) gauge theories. We show that feed-forward neural network, trained on the lattice configurations of gauge fields as input data, finds correlations with the target observable, which is also true in the critical region where the neural network has not been trained. We have verified that the neural network constru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07865v2-abstract-full').style.display = 'inline'; document.getElementById('2112.07865v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.07865v2-abstract-full" style="display: none;"> We discuss the prediction of critical behavior of lattice observables in SU(2) and SU(3) gauge theories. We show that feed-forward neural network, trained on the lattice configurations of gauge fields as input data, finds correlations with the target observable, which is also true in the critical region where the neural network has not been trained. We have verified that the neural network constructs a gauge-invariant function and this property does not change over the entire range of the parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.07865v2-abstract-full').style.display = 'none'; document.getElementById('2112.07865v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, 1 table, contribution to the proceedings of XXXIII International (ONLINE) Workshop on High Energy Physics &#34;Hard Problems of Hadron Physics: Non-Perturbative QCD &amp; Related Quests&#34; November 8-12, 2021, Submission to SciPost</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.04924">arXiv:2012.04924</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.04924">pdf</a>, <a href="https://arxiv.org/format/2012.04924">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.054027">10.1103/PhysRevD.103.054027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Inhomogeneous confining-deconfining phases in rotating plasmas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.04924v1-abstract-short" style="display: inline;"> We discuss the effects of rotation on confining properties of gauge theories focusing on compact electrodynamics in two spatial dimensions as an analytically tractable model. We show that at finite temperature, the rotation leads to a deconfining transition starting from a certain distance from the rotation axis. A uniformly rotating confining system possesses, in addition to the usual confinement&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.04924v1-abstract-full').style.display = 'inline'; document.getElementById('2012.04924v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.04924v1-abstract-full" style="display: none;"> We discuss the effects of rotation on confining properties of gauge theories focusing on compact electrodynamics in two spatial dimensions as an analytically tractable model. We show that at finite temperature, the rotation leads to a deconfining transition starting from a certain distance from the rotation axis. A uniformly rotating confining system possesses, in addition to the usual confinement and deconfinement phases, a mixed inhomogeneous phase which hosts spatially separated confinement and deconfinement regions. The phase diagram thus has two different deconfining temperatures. The first deconfining temperature can be made arbitrarily low by sufficiently rapid rotation while the second deconfining temperature is largely unaffected by the rotation. Implications of our results for the phase diagram of QCD are presented. We point out that uniformly rotating quark-gluon plasma should therefore experience an inverse hadronization effect when the hadronization starts from the core of the rotating plasma rather than from its boundary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.04924v1-abstract-full').style.display = 'none'; document.getElementById('2012.04924v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 054027 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.10971">arXiv:2009.10971</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.10971">pdf</a>, <a href="https://arxiv.org/format/2009.10971">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.014509">10.1103/PhysRevD.103.014509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Machine-learning physics from unphysics: Finding deconfinement temperature in lattice Yang-Mills theories from outside the scaling window </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Boyda%2C+D+L">D. L. Boyda</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Gerasimeniuk%2C+N+V">N. V. Gerasimeniuk</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Liubimov%2C+S+D">S. D. Liubimov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.10971v2-abstract-short" style="display: inline;"> We study the machine learning techniques applied to the lattice gauge theory&#39;s critical behavior, particularly to the confinement/deconfinement phase transition in the SU(2) and SU(3) gauge theories. We find that the neural network, trained on lattice configurations of gauge fields at an unphysical value of the lattice parameters as an input, builds up a gauge-invariant function, and finds correla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10971v2-abstract-full').style.display = 'inline'; document.getElementById('2009.10971v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.10971v2-abstract-full" style="display: none;"> We study the machine learning techniques applied to the lattice gauge theory&#39;s critical behavior, particularly to the confinement/deconfinement phase transition in the SU(2) and SU(3) gauge theories. We find that the neural network, trained on lattice configurations of gauge fields at an unphysical value of the lattice parameters as an input, builds up a gauge-invariant function, and finds correlations with the target observable that is valid in the physical region of the parameter space. In particular, if the algorithm aimed to predict the Polyakov loop as the deconfining order parameter, it builds a trace of the gauge group matrices along a closed loop in the time direction. As a result, the neural network, trained at one unphysical value of the lattice coupling $尾$ predicts the order parameter in the whole region of the $尾$ values with good precision. We thus demonstrate that the machine learning techniques may be used as a numerical analog of the analytical continuation from easily accessible but physically uninteresting regions of the coupling space to the interesting but potentially not accessible regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10971v2-abstract-full').style.display = 'none'; document.getElementById('2009.10971v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 14 figures; v2: discussions added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 014509 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.09113">arXiv:2006.09113</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.09113">pdf</a>, <a href="https://arxiv.org/format/2006.09113">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.054501">10.1103/PhysRevD.102.054501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological defects and confinement with machine learning: the case of monopoles in compact electrodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Erbin%2C+H">Harold Erbin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.09113v2-abstract-short" style="display: inline;"> We investigate the advantages of machine learning techniques to recognize the dynamics of topological objects in quantum field theories. We consider the compact U(1) gauge theory in three spacetime dimensions as the simplest example of a theory that exhibits confinement and mass gap phenomena generated by monopoles. We train a neural network with a generated set of monopole configurations to disti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09113v2-abstract-full').style.display = 'inline'; document.getElementById('2006.09113v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.09113v2-abstract-full" style="display: none;"> We investigate the advantages of machine learning techniques to recognize the dynamics of topological objects in quantum field theories. We consider the compact U(1) gauge theory in three spacetime dimensions as the simplest example of a theory that exhibits confinement and mass gap phenomena generated by monopoles. We train a neural network with a generated set of monopole configurations to distinguish between confinement and deconfinement phases, from which it is possible to determine the deconfinement transition point and to predict several observables. The model uses a supervised learning approach and treats the monopole configurations as three-dimensional images (holograms). We show that the model can determine the transition temperature with accuracy, which depends on the criteria implemented in the algorithm. More importantly, we train the neural network with configurations from a single lattice size before making predictions for configurations from other lattice sizes, from which a reliable estimation of the critical temperatures are obtained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.09113v2-abstract-full').style.display = 'none'; document.getElementById('2006.09113v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 36 figures; minor revisions, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 054501 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.09393">arXiv:2004.09393</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.09393">pdf</a>, <a href="https://arxiv.org/format/2004.09393">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.014031">10.1103/PhysRevD.102.014031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological susceptibility, divergent chiral density and phase diagram of chirally imbalanced QCD medium at finite temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Ruggieri%2C+M">Marco Ruggieri</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">Maxim N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lu%2C+Z">Zhen-Yan Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.09393v1-abstract-short" style="display: inline;"> We show that the nonlocal two-flavor Nambu--Jona-Lasinio model predicts the enhancement of both chiral and axial symmetry breaking as the chiral imbalance of hot QCD matter, regulated by a chiral chemical potential $渭_5$, increases. The two crossovers are reasonably close to each other in the range of $渭_5$ examined here and the pseudocritical temperatures rise with $渭_5$. The curvatures of the ch&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09393v1-abstract-full').style.display = 'inline'; document.getElementById('2004.09393v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.09393v1-abstract-full" style="display: none;"> We show that the nonlocal two-flavor Nambu--Jona-Lasinio model predicts the enhancement of both chiral and axial symmetry breaking as the chiral imbalance of hot QCD matter, regulated by a chiral chemical potential $渭_5$, increases. The two crossovers are reasonably close to each other in the range of $渭_5$ examined here and the pseudocritical temperatures rise with $渭_5$. The curvatures of the chiral and axial crossovers for the chiral quark chemical potential approximately coincide and give $魏_5 \simeq - 0.011$. We point out that the presence of $渭_5$ in thermodynamic equilibrium is inconsistent with the fact that the chiral charge is not a Noether-conserved quantity for massive fermions. The chiral chemical potential should not, therefore, be considered as a true chemical potential that sets a thermodynamically stable environment in the massive theory, but rather than as a new coupling that may require a renormalization in the ultraviolet domain. The divergence of an unrenormalized chiral density, \corr{coming from zero-point fermionic fluctuations,} is a consequence of this property. We propose a solution to this problem via a renormalization procedure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.09393v1-abstract-full').style.display = 'none'; document.getElementById('2004.09393v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 014031 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.07571">arXiv:1911.07571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.07571">pdf</a>, <a href="https://arxiv.org/format/1911.07571">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.2.033375">10.1103/PhysRevResearch.2.033375 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Casimir effect with machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Erbin%2C+H">Harold Erbin</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Grishmanovskii%2C+I+V">I. V. Grishmanovskii</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.07571v2-abstract-short" style="display: inline;"> Vacuum fluctuations of quantum fields between physical objects depend on the shapes, positions, and internal composition of the latter. For objects of arbitrary shapes, even made from idealized materials, the calculation of the associated zero-point (Casimir) energy is an analytically intractable challenge. We propose a new numerical approach to this problem based on machine-learning techniques an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.07571v2-abstract-full').style.display = 'inline'; document.getElementById('1911.07571v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.07571v2-abstract-full" style="display: none;"> Vacuum fluctuations of quantum fields between physical objects depend on the shapes, positions, and internal composition of the latter. For objects of arbitrary shapes, even made from idealized materials, the calculation of the associated zero-point (Casimir) energy is an analytically intractable challenge. We propose a new numerical approach to this problem based on machine-learning techniques and illustrate the effectiveness of the method in a (2+1) dimensional scalar field theory. The Casimir energy is first calculated numerically using a Monte-Carlo algorithm for a set of the Dirichlet boundaries of various shapes. Then, a neural network is trained to compute this energy given the Dirichlet domain, treating the latter as black-and-white pixelated images. We show that after the learning phase, the neural network is able to quickly predict the Casimir energy for new boundaries of general shapes with reasonable accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.07571v2-abstract-full').style.display = 'none'; document.getElementById('1911.07571v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures; minor changes, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 2, 033375 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.09547">arXiv:1909.09547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.09547">pdf</a>, <a href="https://arxiv.org/format/1909.09547">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.114503">10.1103/PhysRevD.100.114503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Finite-density QCD transition in magnetic field background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Braguta%2C+V+V">V. V. Braguta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kotov%2C+A+Y">A. Yu. Kotov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nikolaev%2C+A+A">A. A. Nikolaev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.09547v1-abstract-short" style="display: inline;"> Using numerical simulations of lattice QCD with physical quark masses, we reveal the influence of magnetic-field background on chiral and deconfinement crossovers in finite-temperature QCD at low baryonic density. In the absence of thermodynamic singularity, we identify these transitions with inflection points of the approximate order parameters: normalized light-quark condensate and renormalized&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09547v1-abstract-full').style.display = 'inline'; document.getElementById('1909.09547v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.09547v1-abstract-full" style="display: none;"> Using numerical simulations of lattice QCD with physical quark masses, we reveal the influence of magnetic-field background on chiral and deconfinement crossovers in finite-temperature QCD at low baryonic density. In the absence of thermodynamic singularity, we identify these transitions with inflection points of the approximate order parameters: normalized light-quark condensate and renormalized Polyakov loop, respectively. We show that the quadratic curvature of the chiral transition temperature in the ``temperature--chemical potential&#39;&#39; plane depends rather weakly on the strength of the background magnetic field. At weak magnetic fields, the thermal width of the chiral crossover gets narrower as the density of the baryon matter increases, possibly indicating a proximity to a real thermodynamic phase transition. Remarkably, the curvature of the chiral thermal width flips its sign at $eB_{\mathrm{fl}} \simeq 0.6\,\mathrm{GeV}^2$, so that above the flipping point $B &gt; B_{\mathrm{fl}}$, the chiral width gets wider as the baryon density increases. Approximately at the same strength of magnetic field, the chiral and deconfining crossovers merge together at $T \approx 140\,\mathrm{MeV}$. The phase diagram in the parameter space ``temperature-chemical potential-magnetic field&#39;&#39; is outlined, and single-quark entropy and single-quark magnetization are explored. The curvature of the chiral thermal width allows us to estimate an approximate position of the chiral critical endpoint at zero magnetic field: $(T_c^{\text{CEP}}, 渭_B^{\text{CEP}})= (100(25)\, \text{MeV},\ 800(140)\,\text{MeV})$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09547v1-abstract-full').style.display = 'none'; document.getElementById('1909.09547v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 17 figures; a video file revealing the evolution of the phase diagram is attached</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 114503 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.04754">arXiv:1901.04754</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.04754">pdf</a>, <a href="https://arxiv.org/format/1901.04754">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.336.0006">10.22323/1.336.0006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative Casimir Effects in Field Theories: aspects of confinement, dynamical mass generation and chiral symmetry breaking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.04754v1-abstract-short" style="display: inline;"> The Casimir effect is a quantum phenomenon rooted in the fact that vacuum fluctuations of quantum fields are affected by the presence of physical objects and boundaries. Since the energy spectrum of the vacuum fluctuations depends on distances between (and geometries of) physical bodies, the quantum vacuum exerts a small but experimentally detectable force on neutral objects. Usually, the associat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04754v1-abstract-full').style.display = 'inline'; document.getElementById('1901.04754v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.04754v1-abstract-full" style="display: none;"> The Casimir effect is a quantum phenomenon rooted in the fact that vacuum fluctuations of quantum fields are affected by the presence of physical objects and boundaries. Since the energy spectrum of the vacuum fluctuations depends on distances between (and geometries of) physical bodies, the quantum vacuum exerts a small but experimentally detectable force on neutral objects. Usually, the associated Casimir energy is calculated for free or weakly coupled quantum fields. We review recent studies of the Casimir effect in field-theoretical models which mimic features of non-perturbative QCD such as chiral or deconfining phase transitions. We discuss ${{\mathbb C}P}^{\,N-1}$ sigma model and chiral Gross-Neveu model in (1+1) dimensions as well as compact U(1) gauge theory and Yang-Mills theory in (2+1) dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04754v1-abstract-full').style.display = 'none'; document.getElementById('1901.04754v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures; Contribution to the XIIIth conference on Quark Confinement and the Hadron Spectrum, 31 July - 6 August 2018, Maynooth University, Ireland</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.05411">arXiv:1811.05411</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.05411">pdf</a>, <a href="https://arxiv.org/format/1811.05411">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2019.01.003">10.1016/j.physletb.2019.01.003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conformal magnetic effect at the edge: a numerical study in scalar QED </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.05411v1-abstract-short" style="display: inline;"> Quantum polarization effects associated with the conformal anomaly in a static magnetic field background may generate a transverse electric current in the vacuum. The current may be produced either in an unbounded curved spacetime or in a flat spacetime in a physically bounded system. In both cases, the magnitude of the electric current is proportional to the beta-function associated with renormal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05411v1-abstract-full').style.display = 'inline'; document.getElementById('1811.05411v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.05411v1-abstract-full" style="display: none;"> Quantum polarization effects associated with the conformal anomaly in a static magnetic field background may generate a transverse electric current in the vacuum. The current may be produced either in an unbounded curved spacetime or in a flat spacetime in a physically bounded system. In both cases, the magnitude of the electric current is proportional to the beta-function associated with renormalization of the electric charge. In our article, we investigate the electric current density induced by the magnetic field in the vicinity of a Dirichlet boundary in the scalar QED. Using first-principle lattice simulations we show that the electric current, generated by this `conformal magnetic effect at the edge&#39; (CMEE), is well described by the conformal anomaly provided the conformal symmetry is classically unbroken. Outside of the conformal limit, the current density is characterized by an anomalous power law near the edge of the system and by an exponential suppression of the current far away from the edge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05411v1-abstract-full').style.display = 'none'; document.getElementById('1811.05411v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.01550">arXiv:1811.01550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.01550">pdf</a>, <a href="https://arxiv.org/format/1811.01550">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.074021">10.1103/PhysRevD.99.074021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase structure of lattice Yang-Mills theory on ${\mathbb T}^2 \times {\mathbb R}^2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.01550v2-abstract-short" style="display: inline;"> We study properties of SU(2) Yang-Mills theory on a four-dimensional Euclidean spacetime in which two directions are compactified into a finite two-dimensional torus ${\mathbb T}^2$ while two others constitute a large ${\mathbb R}^2$ subspace. This Euclidean ${\mathbb T}^2 \times {\mathbb R}^2$ manifold corresponds simultaneously to two systems in a (3+1) dimensional Minkowski spacetime: a zero-te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.01550v2-abstract-full').style.display = 'inline'; document.getElementById('1811.01550v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.01550v2-abstract-full" style="display: none;"> We study properties of SU(2) Yang-Mills theory on a four-dimensional Euclidean spacetime in which two directions are compactified into a finite two-dimensional torus ${\mathbb T}^2$ while two others constitute a large ${\mathbb R}^2$ subspace. This Euclidean ${\mathbb T}^2 \times {\mathbb R}^2$ manifold corresponds simultaneously to two systems in a (3+1) dimensional Minkowski spacetime: a zero-temperature theory with two compactified spatial dimensions and a finite-temperature theory with one compactified spatial dimension. Using numerical lattice simulations we show that the model exhibits two phase transitions related to the breaking of center symmetries along the compactified directions. We find that at zero temperature the transition lines cross each other and form the Greek letter $纬$ in the phase space parametrized by the lengths of two compactified spatial dimensions. There are four different phases. We also demonstrate that the compactification of only one spatial dimension enhances the confinement property and, consequently, increases the critical deconfinement temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.01550v2-abstract-full').style.display = 'none'; document.getElementById('1811.01550v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures; v2: references added, title modified, wording improved, results and conclusions unchanged, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 074021 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.11887">arXiv:1805.11887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.11887">pdf</a>, <a href="https://arxiv.org/format/1805.11887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.191601">10.1103/PhysRevLett.121.191601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Casimir effect in Yang-Mills theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nguyen%2C+H+H">Ha Huu Nguyen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.11887v1-abstract-short" style="display: inline;"> We study, for the first time, the Casimir effect in non-Abelian gauge theory using first-principle numerical simulations. Working in two spatial dimensions at zero temperature we find that closely spaced perfect chromoelectric conductors attract each other with a small anomalous scaling dimension. At large separation between the conductors, the attraction is exponentially suppressed by a new massi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.11887v1-abstract-full').style.display = 'inline'; document.getElementById('1805.11887v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.11887v1-abstract-full" style="display: none;"> We study, for the first time, the Casimir effect in non-Abelian gauge theory using first-principle numerical simulations. Working in two spatial dimensions at zero temperature we find that closely spaced perfect chromoelectric conductors attract each other with a small anomalous scaling dimension. At large separation between the conductors, the attraction is exponentially suppressed by a new massive quantity, the Casimir mass, which is surprisingly different from the lowest glueball mass. The apparent emergence of the new massive scale may be a result of the backreaction of the vacuum to the presence of the plates as sufficiently close chromoelectric conductors induce, in a space between them, a smooth crossover transition to a color deconfinement phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.11887v1-abstract-full').style.display = 'none'; document.getElementById('1805.11887v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 191601 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.02262">arXiv:1709.02262</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.02262">pdf</a>, <a href="https://arxiv.org/format/1709.02262">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.094507">10.1103/PhysRevD.96.094507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Casimir effect and deconfinement phase transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.02262v1-abstract-short" style="display: inline;"> We show that the Casimir effect may lead to a deconfinement phase transition induced by the presence of boundaries in confining gauge theories. Using first-principle numerical simulations we demonstrate this phenomenon in the simplest case of the compact lattice electrodynamics in two spatial dimensions. We find that the critical temperature of the deconfinement transition in the vacuum between tw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.02262v1-abstract-full').style.display = 'inline'; document.getElementById('1709.02262v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.02262v1-abstract-full" style="display: none;"> We show that the Casimir effect may lead to a deconfinement phase transition induced by the presence of boundaries in confining gauge theories. Using first-principle numerical simulations we demonstrate this phenomenon in the simplest case of the compact lattice electrodynamics in two spatial dimensions. We find that the critical temperature of the deconfinement transition in the vacuum between two parallel dielectric/metallic wires is a monotonically increasing function of the separation between the wires. At infinite separation the wires do not affect the critical temperature while at small separations the vacuum between the wires looses the confinement property due to modification of vacuum fluctuations of virtual monopoles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.02262v1-abstract-full').style.display = 'none'; document.getElementById('1709.02262v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 094507 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.03439">arXiv:1703.03439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.03439">pdf</a>, <a href="https://arxiv.org/format/1703.03439">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.074511">10.1103/PhysRevD.95.074511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonperturbative Casimir effect and monopoles: compact Abelian gauge theory in two spatial dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.03439v1-abstract-short" style="display: inline;"> We demonstrate that Casimir forces associated with zero-point fluctuations of quantum vacuum may be substantially affected by the presence of dynamical topological defects. In order to illustrate this nonperturbative effect we study the Casimir interactions between dielectric wires in a compact formulation of Abelian gauge theory in two spatial dimensions. The model possesses topological defects,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.03439v1-abstract-full').style.display = 'inline'; document.getElementById('1703.03439v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.03439v1-abstract-full" style="display: none;"> We demonstrate that Casimir forces associated with zero-point fluctuations of quantum vacuum may be substantially affected by the presence of dynamical topological defects. In order to illustrate this nonperturbative effect we study the Casimir interactions between dielectric wires in a compact formulation of Abelian gauge theory in two spatial dimensions. The model possesses topological defects, instanton-like monopoles, which are known to be responsible for nonperturbative generation of a mass gap and for a linear confinement of electrically charged probes. Despite the model has no matter fields, the Casimir energy depends on the value of the gauge coupling constant. We show, both analytically and numerically, that in the strong coupling regime the Abelian monopoles make the Casimir forces short-ranged. Simultaneously, their presence increases the interaction strength between the wires at short distances for certain range of values of the gauge coupling. The wires suppress monopole density in the space between them compared to the density outside the wires. In the weak coupling regime the monopoles become dilute and the Casimir potential reduces to a known theoretical result which does not depend on the gauge coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.03439v1-abstract-full').style.display = 'none'; document.getElementById('1703.03439v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 074511 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1701.07426">arXiv:1701.07426</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1701.07426">pdf</a>, <a href="https://arxiv.org/format/1701.07426">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1751-8121/aa809a">10.1088/1751-8121/aa809a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Nielsen-Ninomiya theorem, PT-invariant non-Hermiticity and single 8-shaped Dirac cone </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1701.07426v1-abstract-short" style="display: inline;"> The Nielsen-Ninomiya theorem implies that any local, Hermitian and translationally invariant lattice action in even-dimensional spacetime possess an equal number of left- and right-handed chiral fermions. We argue that if one sacrifices the property of Hermiticity while keeping the locality and translation invariance, while imposing invariance of the action under the space-time (PT) reversal symme&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.07426v1-abstract-full').style.display = 'inline'; document.getElementById('1701.07426v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1701.07426v1-abstract-full" style="display: none;"> The Nielsen-Ninomiya theorem implies that any local, Hermitian and translationally invariant lattice action in even-dimensional spacetime possess an equal number of left- and right-handed chiral fermions. We argue that if one sacrifices the property of Hermiticity while keeping the locality and translation invariance, while imposing invariance of the action under the space-time (PT) reversal symmetry, then the excitation spectrum of the theory may contain a non-equal number of left- and right-handed massless fermions with real-valued dispersion. We illustrate our statement in a simple 1+1 dimensional lattice model which exhibits a skewed 8-figure patterns in its energy spectrum. A drawback of the model is that the PT symmetry of the Hamiltonian is spontaneously broken implying that the energy spectrum contains complex branches. We also demonstrate that the Dirac cone is robust against local disorder so that the massless excitations in this PT-invariant model are not gapped by random space-dependent perturbations in the couplings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1701.07426v1-abstract-full').style.display = 'none'; document.getElementById('1701.07426v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.02323">arXiv:1609.02323</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.02323">pdf</a>, <a href="https://arxiv.org/format/1609.02323">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.94.094504">10.1103/PhysRevD.94.094504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Casimir effect on the lattice: U(1) gauge theory in two spatial dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.02323v1-abstract-short" style="display: inline;"> We propose a general numerical method to study the Casimir effect in lattice gauge theories. We illustrate the method by calculating the energy density of zero-point fluctuations around two parallel wires of finite static permittivity in Abelian gauge theory in two spatial dimensions. We discuss various subtle issues related to the lattice formulation of the problem and show how they can successfu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02323v1-abstract-full').style.display = 'inline'; document.getElementById('1609.02323v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.02323v1-abstract-full" style="display: none;"> We propose a general numerical method to study the Casimir effect in lattice gauge theories. We illustrate the method by calculating the energy density of zero-point fluctuations around two parallel wires of finite static permittivity in Abelian gauge theory in two spatial dimensions. We discuss various subtle issues related to the lattice formulation of the problem and show how they can successfully be resolved. Finally, we calculate the Casimir potential between the wires of a fixed permittivity, extrapolate our results to the limit of ideally conducting wires and demonstrate excellent agreement with a known theoretical result. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02323v1-abstract-full').style.display = 'none'; document.getElementById('1609.02323v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 94, 094504 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.02269">arXiv:1504.02269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1504.02269">pdf</a>, <a href="https://arxiv.org/format/1504.02269">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.92.042102">10.1103/PhysRevE.92.042102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fractal energy carpets in non-Hermitian Hofstadter quantum mechanics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ouvry%2C+S">Stephane Ouvry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.02269v1-abstract-short" style="display: inline;"> We study the non-Hermitian Hofstadter dynamics of a quantum particle with biased motion on a square lattice in the background of a magnetic field. We show that in quasi-momentum space the energy spectrum is an overlap of infinitely many inequivalent fractals. The energy levels in each fractal are space-filling curves with Hausdorff dimension 2. The band structure of the spectrum is similar to a fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.02269v1-abstract-full').style.display = 'inline'; document.getElementById('1504.02269v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.02269v1-abstract-full" style="display: none;"> We study the non-Hermitian Hofstadter dynamics of a quantum particle with biased motion on a square lattice in the background of a magnetic field. We show that in quasi-momentum space the energy spectrum is an overlap of infinitely many inequivalent fractals. The energy levels in each fractal are space-filling curves with Hausdorff dimension 2. The band structure of the spectrum is similar to a fractal spider net in contrast to the Hofstadter butterfly for unbiased motion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.02269v1-abstract-full').style.display = 'none'; document.getElementById('1504.02269v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 18 figures. Fractal properties of the energy levels are visualised in the supplementary video material https://www.youtube.com/watch?v=ODS3QVkPTPE</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 92, 042102 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.8095">arXiv:1401.8095</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.8095">pdf</a>, <a href="https://arxiv.org/format/1401.8095">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.89.074510">10.1103/PhysRevD.89.074510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature dependence of the axial magnetic effect in two-color quenched QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Braguta%2C+V">V. Braguta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Goy%2C+V+A">V. A. Goy</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Landsteiner%2C+K">K. Landsteiner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Molochkov%2C+A+V">A. V. Molochkov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Polikarpov%2C+M+I">M. I. Polikarpov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.8095v1-abstract-short" style="display: inline;"> The Axial Magnetic Effect is the generation of an equilibrium dissipationless energy flow of chiral fermions in the direction of the axial (chiral) magnetic field. At finite temperature the dissipationless energy transfer may be realized in the absence of any chemical potentials. We numerically study the temperature behavior of the Axial Magnetic Effect in quenched SU(2) lattice gauge theory. We s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.8095v1-abstract-full').style.display = 'inline'; document.getElementById('1401.8095v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.8095v1-abstract-full" style="display: none;"> The Axial Magnetic Effect is the generation of an equilibrium dissipationless energy flow of chiral fermions in the direction of the axial (chiral) magnetic field. At finite temperature the dissipationless energy transfer may be realized in the absence of any chemical potentials. We numerically study the temperature behavior of the Axial Magnetic Effect in quenched SU(2) lattice gauge theory. We show that in the confinement (hadron) phase the effect is absent. In the deconfinement transition region the conductivity quickly increases, reaching the asymptotic $T^2$ behavior in a deep deconfinement (plasma) phase. Apart from an overall proportionality factor, our results qualitatively agree with theoretical predictions for the behavior of the energy flow as a function of temperature and strength of the axial magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.8095v1-abstract-full').style.display = 'none'; document.getElementById('1401.8095v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFT-UAM/CSIC-14-002 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 89, 074510 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.4071">arXiv:1309.4071</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.4071">pdf</a>, <a href="https://arxiv.org/format/1309.4071">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.89.018501">10.1103/PhysRevD.89.018501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comment on &#34;Charged vector mesons in a strong magnetic field&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.4071v1-abstract-short" style="display: inline;"> In a recent paper Y. Hidaka and A. Yamamoto [Phys. Rev. D 87 (2013) 094502] claim -- using both analytical and numerical approaches -- that the charged rho mesons cannot condense in the vacuum subjected to a strong magnetic field. In this Comment we point out that both analytical and numerical results of this paper are consistent with the inhomogeneous rho-meson condensation. Furthermore, we show&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.4071v1-abstract-full').style.display = 'inline'; document.getElementById('1309.4071v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.4071v1-abstract-full" style="display: none;"> In a recent paper Y. Hidaka and A. Yamamoto [Phys. Rev. D 87 (2013) 094502] claim -- using both analytical and numerical approaches -- that the charged rho mesons cannot condense in the vacuum subjected to a strong magnetic field. In this Comment we point out that both analytical and numerical results of this paper are consistent with the inhomogeneous rho-meson condensation. Furthermore, we show that the numerical results of the paper support the presence of the expected (in quenched lattice QCD) crossover transition driven by the rho-meson condensation. Finally, we stress that the inhomogeneous rho-meson condensation is consistent with both Vafa-Witten and Elitzur theorems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.4071v1-abstract-full').style.display = 'none'; document.getElementById('1309.4071v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 89, 018501 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.6266">arXiv:1303.6266</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1303.6266">pdf</a>, <a href="https://arxiv.org/format/1303.6266">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.88.071501">10.1103/PhysRevD.88.071501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Numerical evidence of the axial magnetic effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Braguta%2C+V">V. Braguta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Landsteiner%2C+K">K. Landsteiner</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Polikarpov%2C+M+I">M. I. Polikarpov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Ulybyshev%2C+M+V">M. V. Ulybyshev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.6266v2-abstract-short" style="display: inline;"> The axial magnetic field, which couples to left- and right-handed fermions with opposite signs, may generate an equilibrium dissipationless energy flow of fermions in the direction of the field even in the presence of interactions. We report on numerical observation of this Axial Magnetic Effect in quenched SU(2) lattice gauge theory. We find that in the deconfinement (plasma) phase the energy flo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.6266v2-abstract-full').style.display = 'inline'; document.getElementById('1303.6266v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.6266v2-abstract-full" style="display: none;"> The axial magnetic field, which couples to left- and right-handed fermions with opposite signs, may generate an equilibrium dissipationless energy flow of fermions in the direction of the field even in the presence of interactions. We report on numerical observation of this Axial Magnetic Effect in quenched SU(2) lattice gauge theory. We find that in the deconfinement (plasma) phase the energy flow grows linearly with the increase of the strength of the axial magnetic field. In the confinement (hadron) phase the Axial Magnetic Effect is absent. Our study indirectly confirms the existence of the Chiral Vortical Effect since both these effects have the same physical origin related to the presence of the gravitational anomaly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.6266v2-abstract-full').style.display = 'none'; document.getElementById('1303.6266v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures; v2: discussions extended, figure and references added, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFT-UAM/CSIC-13-033 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 88, 071501 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.6590">arXiv:1301.6590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1301.6590">pdf</a>, <a href="https://arxiv.org/format/1301.6590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Vortex liquid in magnetic-field-induced superconducting vacuum of quenched lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Braguta%2C+V+V">V. V. Braguta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buividovich%2C+P+V">P. V. Buividovich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kotov%2C+A+Y">A. Yu. Kotov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Polikarpov%2C+M+I">M. I. Polikarpov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.6590v1-abstract-short" style="display: inline;"> In the background of the strong magnetic field the vacuum is suggested to possess an electromagnetically superconducting phase characterised by the emergence of inhomogeneous quark-antiquark vector condensates which carry quantum numbers of the charged rho mesons. The rho-meson condensates are inhomogeneous due to the presence of the stringlike defects (&#34;the rho vortices&#34;) which are parallel to th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.6590v1-abstract-full').style.display = 'inline'; document.getElementById('1301.6590v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.6590v1-abstract-full" style="display: none;"> In the background of the strong magnetic field the vacuum is suggested to possess an electromagnetically superconducting phase characterised by the emergence of inhomogeneous quark-antiquark vector condensates which carry quantum numbers of the charged rho mesons. The rho-meson condensates are inhomogeneous due to the presence of the stringlike defects (&#34;the rho vortices&#34;) which are parallel to the magnetic field (the superconducting vacuum phase is similar to the mixed Abrikosov phase of a type-II superconductor). In agreement with these expectations, we have observed the presence of the rho vortices in numerical simulations of the vacuum of the quenched two-color lattice QCD in strong magnetic field background. We have found that in the quenched QCD the rho vortices form a liquid. The transition between the usual (insulator) phase at low B and the superconducting vortex liquid phase at high B turns out to be very smooth, at least in the quenched QCD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.6590v1-abstract-full').style.display = 'none'; document.getElementById('1301.6590v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures; talk given at &#34;Quark Confinement and the Hadron Spectrum X&#34;, Munich, Germany, Oct. 8-12, 2012</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of Science (Confinement X) 083 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.3168">arXiv:1212.3168</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.3168">pdf</a>, <a href="https://arxiv.org/format/1212.3168">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2014.01.029">10.1016/j.physletb.2014.01.029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On chromoelectric (super)conductivity of the Yang-Mills vacuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+Doorsselaere%2C+J">Jos Van Doorsselaere</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kalaydzhyan%2C+T">Tigran Kalaydzhyan</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Verschelde%2C+H">Henri Verschelde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.3168v2-abstract-short" style="display: inline;"> We argue that in the Copenhagen (``spaghetti&#39;&#39;) picture of the QCD vacuum the chromomagnetic flux tubes exhibit chromoelectric superconductivity. We show that the superconducting chromoelectric currents in the tubes may be induced by the topological charge density. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.3168v2-abstract-full" style="display: none;"> We argue that in the Copenhagen (``spaghetti&#39;&#39;) picture of the QCD vacuum the chromomagnetic flux tubes exhibit chromoelectric superconductivity. We show that the superconducting chromoelectric currents in the tubes may be induced by the topological charge density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.3168v2-abstract-full').style.display = 'none'; document.getElementById('1212.3168v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures; v2: misprints corrected, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 730 (2014) 63 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.3587">arXiv:1209.3587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1209.3587">pdf</a>, <a href="https://arxiv.org/ps/1209.3587">ps</a>, <a href="https://arxiv.org/format/1209.3587">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.86.107703">10.1103/PhysRevD.86.107703 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vafa-Witten theorem, vector meson condensates and magnetic-field-induced electromagnetic superconductivity of vacuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.3587v1-abstract-short" style="display: inline;"> We show that the electromagnetic superconductivity of vacuum in strong magnetic field background is consistent with the Vafa-Witten theorem because the charged vector meson condensates lock relevant internal global symmetries of QCD with the electromagnetic gauge group. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.3587v1-abstract-full" style="display: none;"> We show that the electromagnetic superconductivity of vacuum in strong magnetic field background is consistent with the Vafa-Witten theorem because the charged vector meson condensates lock relevant internal global symmetries of QCD with the electromagnetic gauge group. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.3587v1-abstract-full').style.display = 'none'; document.getElementById('1209.3587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D86:107703,2012 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.6118">arXiv:1208.6118</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1208.6118">pdf</a>, <a href="https://arxiv.org/format/1208.6118">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4763532">10.1063/1.4763532 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous electromagnetic superconductivity of vacuum induced by a strong magnetic field: QCD and electroweak theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+Doorsselaere%2C+J">J. Van Doorsselaere</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Verschelde%2C+H">H. Verschelde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.6118v1-abstract-short" style="display: inline;"> Both in electroweak theory and QCD, the vacuum in strong magnetic fields develops charged vector condensates once a critical value of the magnetic field is reached. Both ground states have a similar Abrikosov lattice structure and superconducting properties. It is the purpose of these proceedings to put the condensates and their superconducting properties side by side and obtain a global view on t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.6118v1-abstract-full').style.display = 'inline'; document.getElementById('1208.6118v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.6118v1-abstract-full" style="display: none;"> Both in electroweak theory and QCD, the vacuum in strong magnetic fields develops charged vector condensates once a critical value of the magnetic field is reached. Both ground states have a similar Abrikosov lattice structure and superconducting properties. It is the purpose of these proceedings to put the condensates and their superconducting properties side by side and obtain a global view on this type of condensates. Some peculiar aspects of the superfluidity and backreaction of the condensates are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.6118v1-abstract-full').style.display = 'none'; document.getElementById('1208.6118v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures. Talk presented at QCD@Work 2012: International Workshop on QCD - Theory and Experiment, June 18-21, Lecce, Italy</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIP Conf. Proc. 1492, 281 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.5025">arXiv:1208.5025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1208.5025">pdf</a>, <a href="https://arxiv.org/format/1208.5025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-642-37305-3_6">10.1007/978-3-642-37305-3_6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electromagnetic superconductivity of vacuum induced by strong magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.5025v1-abstract-short" style="display: inline;"> The quantum vacuum may become an electromagnetic superconductor in the presence of a strong external magnetic field of the order of 10^{16} Tesla. The magnetic field of the required strength (and even stronger) is expected to be generated for a short time in ultraperipheral collisions of heavy ions at the Large Hadron Collider. The superconducting properties of the new phase appear as a result of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.5025v1-abstract-full').style.display = 'inline'; document.getElementById('1208.5025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.5025v1-abstract-full" style="display: none;"> The quantum vacuum may become an electromagnetic superconductor in the presence of a strong external magnetic field of the order of 10^{16} Tesla. The magnetic field of the required strength (and even stronger) is expected to be generated for a short time in ultraperipheral collisions of heavy ions at the Large Hadron Collider. The superconducting properties of the new phase appear as a result of a magnetic-field-assisted condensation of quark-antiquark pairs with quantum numbers of electrically charged rho mesons. We discuss similarities and differences between the suggested superconducting state of the quantum vacuum, a conventional superconductivity and the Schwinger pair creation. We argue qualitatively and quantitatively why the superconducting state should be a natural ground state of the vacuum at the sufficiently strong magnetic field. We demonstrate the existence of the superconducting phase using both the Nambu-Jona-Lasinio model and an effective bosonic model based on the vector meson dominance (the rho-meson electrodynamics). We discuss various properties of the new phase such as absence of the Meissner effect, anisotropy of superconductivity, spatial inhomogeneity of ground state, emergence of a neutral superfluid component in the ground state and presence of new topological vortices in the quark-antiquark condensates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.5025v1-abstract-full').style.display = 'none'; document.getElementById('1208.5025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 14 figures, to appear in Lect. Notes Phys. &#34;Strongly interacting matter in magnetic fields&#34; (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.4401">arXiv:1111.4401</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1111.4401">pdf</a>, <a href="https://arxiv.org/format/1111.4401">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.85.045002">10.1103/PhysRevD.85.045002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electromagnetically superconducting phase of vacuum in strong magnetic field: structure of superconductor and superfluid vortex lattices in the ground state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Van+Doorsselaere%2C+J">J. Van Doorsselaere</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Verschelde%2C+H">H. Verschelde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.4401v1-abstract-short" style="display: inline;"> Recently it was shown that vacuum in a background of strong enough magnetic field becomes an electromagnetic superconductor due to interplay between strong and electromagnetic forces. The superconducting ground state of the vacuum is associated with a spontaneous emergence of quark-antiquark condensates which carry quantum numbers of charged rho mesons. The rho-meson condensate is an inhomogeneous&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.4401v1-abstract-full').style.display = 'inline'; document.getElementById('1111.4401v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.4401v1-abstract-full" style="display: none;"> Recently it was shown that vacuum in a background of strong enough magnetic field becomes an electromagnetic superconductor due to interplay between strong and electromagnetic forces. The superconducting ground state of the vacuum is associated with a spontaneous emergence of quark-antiquark condensates which carry quantum numbers of charged rho mesons. The rho-meson condensate is an inhomogeneous structure made of the so-called rho vortices, which are parallel to the magnetic field axis. The condensation of the charged rho mesons induces a (much weaker) superfluid-like condensate with quantum numbers of the neutral rho mesons. In this paper we show that the vortices in the superconducting condensate organize themselves in an equilateral triangular lattice similarly to an ordinary type-II superconductor. We show that each of these superconductor vortices is accompanied by three superfluid vortices and three superfluid antivortices made of the neutral rho meson condensate. The superconductor vortex overlaps with one of the superfluid vortices. The superposition of the superconducting and superfluid vortex lattices has a honeycomb pattern. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.4401v1-abstract-full').style.display = 'none'; document.getElementById('1111.4401v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.4937">arXiv:1105.4937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1105.4937">pdf</a>, <a href="https://arxiv.org/ps/1105.4937">ps</a>, <a href="https://arxiv.org/format/1105.4937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.83.114501">10.1103/PhysRevD.83.114501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gluon propagators and center vortices in gluon plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakagawa%2C+Y">Y. Nakagawa</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nakamura%2C+A">A. Nakamura</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Saito%2C+T">T. Saito</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Zakharov%2C+V+I">V. I. Zakharov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.4937v1-abstract-short" style="display: inline;"> We study electric and magnetic components of the gluon propagators in quark-gluon plasma in terms of center vortices by using a quenched simulation of SU(2) lattice theory. In the Landau gauge, the magnetic components of the propagators are strongly affected in the infrared region by removal of the center vortices, while the electric components are almost unchanged by this procedure. In the Coulom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.4937v1-abstract-full').style.display = 'inline'; document.getElementById('1105.4937v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.4937v1-abstract-full" style="display: none;"> We study electric and magnetic components of the gluon propagators in quark-gluon plasma in terms of center vortices by using a quenched simulation of SU(2) lattice theory. In the Landau gauge, the magnetic components of the propagators are strongly affected in the infrared region by removal of the center vortices, while the electric components are almost unchanged by this procedure. In the Coulomb gauge, the time-time correlators, including an instantaneous interaction, also have an essential contribution from the center vortices. As a result, one finds that magnetic degrees of freedom in the infrared region couple strongly to the center vortices in the deconfinement phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.4937v1-abstract-full').style.display = 'none'; document.getElementById('1105.4937v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D83:114501,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.4404">arXiv:1104.4404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.4404">pdf</a>, <a href="https://arxiv.org/format/1104.4404">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Can nothing be a superconductor and a superfluid? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.4404v1-abstract-short" style="display: inline;"> A superconductor is a material that conducts electric current with no resistance. Superconductivity and magnetism are known to be antagonistic phenomena: superconductors expel weak external magnetic field (the Meissner effect) while a sufficiently strong magnetic field, in general, destroys superconductivity. In a seemingly contradictory statement, we show that a very strong magnetic field can tur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.4404v1-abstract-full').style.display = 'inline'; document.getElementById('1104.4404v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.4404v1-abstract-full" style="display: none;"> A superconductor is a material that conducts electric current with no resistance. Superconductivity and magnetism are known to be antagonistic phenomena: superconductors expel weak external magnetic field (the Meissner effect) while a sufficiently strong magnetic field, in general, destroys superconductivity. In a seemingly contradictory statement, we show that a very strong magnetic field can turn an empty space into a superconductor. The external magnetic field required for this effect should be about 10^{16} Tesla (eB ~ 1 GeV^2). The physical mechanism of the exotic vacuum superconductivity is as follows: in strong magnetic field the dynamics of virtual quarks and antiquarks is effectively one-dimensional because these electrically charged particles tend to move along the lines of the magnetic field. In one spatial dimension a gluon-mediated attraction between a quark and an antiquark of different flavors inevitably leads to formation of a colorless spin-triplet bound state (a vector analogue of the Cooper pair) with quantum numbers of an electrically charged rho meson. Such quark-antiquark pairs condense to form an anisotropic inhomogeneous superconducting state similar to the Abrikosov vortex lattice in a type-II superconductor. The onset of the superconductivity of the charged rho mesons should also induce an inhomogeneous superfluidity of the neutral rho mesons. The vacuum superconductivity should survive at very high temperatures of typical Quantum Chromodynamics (QCD) scale of 10^{12} K (T ~ 100 MeV). We propose the phase diagram of QCD in the plane &#34;magnetic field - temperature&#34;. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.4404v1-abstract-full').style.display = 'none'; document.getElementById('1104.4404v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, contribution to the proceedings of the workshop &#34;The many faces of QCD&#34;, 2-5 November 2010, Gent, Belgium</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1104.3767">arXiv:1104.3767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1104.3767">pdf</a>, <a href="https://arxiv.org/format/1104.3767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2012.10.081">10.1016/j.physletb.2012.10.081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electromagnetic superconductivity of vacuum induced by strong magnetic field: numerical evidence in lattice gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Braguta%2C+V+V">V. V. Braguta</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Buividovich%2C+P+V">P. V. Buividovich</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Kotov%2C+A+Y">A. Yu. Kotov</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Polikarpov%2C+M+I">M. I. Polikarpov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1104.3767v3-abstract-short" style="display: inline;"> Using numerical simulations of quenched SU(2) gauge theory we demonstrate that an external magnetic field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged rho mesons if the strength of the magnetic field exceeds the critical value eBc = 0.927(77) GeV^2 or Bc =(1.56 \pm 0.13) 10^{16} Tesla. The condensation of the charged rho mesons in strong magneti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.3767v3-abstract-full').style.display = 'inline'; document.getElementById('1104.3767v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1104.3767v3-abstract-full" style="display: none;"> Using numerical simulations of quenched SU(2) gauge theory we demonstrate that an external magnetic field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged rho mesons if the strength of the magnetic field exceeds the critical value eBc = 0.927(77) GeV^2 or Bc =(1.56 \pm 0.13) 10^{16} Tesla. The condensation of the charged rho mesons in strong magnetic field is a key feature of the magnetic-field-induced electromagnetic superconductivity of the vacuum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1104.3767v3-abstract-full').style.display = 'none'; document.getElementById('1104.3767v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures, 2 tables, elsarticle style; continuum limit is analyzed, best fit parameters are presented in Table 2, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ITEP-LAT/2011-06 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B718 (2012) 667 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1103.0954">arXiv:1103.0954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1103.0954">pdf</a>, <a href="https://arxiv.org/format/1103.0954">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Phase diagram of strong interactions in an external magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Mizher%2C+A+J">Ana Julia Mizher</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Fraga%2C+E+S">Eduardo S. Fraga</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1103.0954v1-abstract-short" style="display: inline;"> We obtain the phase diagram of strong interactions in the presence of a magnetic field within the linear sigma model coupled to quarks and to the Polyakov loop, and show that the chiral and deconfinement lines can split. We also study the behavior of the chiral condensate in this magnetic environment and find an approximately linear dependence on the external field, in accordance with lattice data&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.0954v1-abstract-full').style.display = 'inline'; document.getElementById('1103.0954v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1103.0954v1-abstract-full" style="display: none;"> We obtain the phase diagram of strong interactions in the presence of a magnetic field within the linear sigma model coupled to quarks and to the Polyakov loop, and show that the chiral and deconfinement lines can split. We also study the behavior of the chiral condensate in this magnetic environment and find an approximately linear dependence on the external field, in accordance with lattice data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1103.0954v1-abstract-full').style.display = 'none'; document.getElementById('1103.0954v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2011. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1102.0188">arXiv:1102.0188</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1102.0188">pdf</a>, <a href="https://arxiv.org/format/1102.0188">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.83.105008">10.1103/PhysRevD.83.105008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase diagram of chirally imbalanced QCD matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Nedelin%2C+A+S">A. S. Nedelin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1102.0188v1-abstract-short" style="display: inline;"> We compute the QCD phase diagram in the plane of the chiral chemical potential and temperature using the linear sigma model coupled to quarks and to the Polyakov loop. The chiral chemical potential accounts for effects of imbalanced chirality due to QCD sphaleron transitions which may emerge in heavy-ion collisions. We found three effects caused by the chiral chemical potential: the imbalanced chi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.0188v1-abstract-full').style.display = 'inline'; document.getElementById('1102.0188v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1102.0188v1-abstract-full" style="display: none;"> We compute the QCD phase diagram in the plane of the chiral chemical potential and temperature using the linear sigma model coupled to quarks and to the Polyakov loop. The chiral chemical potential accounts for effects of imbalanced chirality due to QCD sphaleron transitions which may emerge in heavy-ion collisions. We found three effects caused by the chiral chemical potential: the imbalanced chirality (i) tightens the link between deconfinement and chiral phase transitions; (ii) lowers the common critical temperature; (iii) strengthens the order of the phase transition by converting the crossover into the strong first order phase transition passing via the second order end-point. Since the fermionic determinant with the chiral chemical potential has no sign problem, the chirally imbalanced QCD matter can be studied in numerical lattice simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.0188v1-abstract-full').style.display = 'none'; document.getElementById('1102.0188v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, RevTeX 4.1</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UUITP-01/11 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D83:105008,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.0117">arXiv:1101.0117</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1101.0117">pdf</a>, <a href="https://arxiv.org/format/1101.0117">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.106.142003">10.1103/PhysRevLett.106.142003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous electromagnetic superconductivity of vacuum in strong magnetic field: evidence from the Nambu--Jona-Lasinio model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.0117v2-abstract-short" style="display: inline;"> Using an extended Nambu--Jona-Lasinio model as a low--energy effective model of QCD, we show that the vacuum in a strong external magnetic field (stronger than 10^{16} Tesla) experiences a spontaneous phase transition to an electromagnetically superconducting state. The unexpected superconductivity of, basically, empty space is induced by emergence of quark-antiquark vector condensates with quantu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.0117v2-abstract-full').style.display = 'inline'; document.getElementById('1101.0117v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.0117v2-abstract-full" style="display: none;"> Using an extended Nambu--Jona-Lasinio model as a low--energy effective model of QCD, we show that the vacuum in a strong external magnetic field (stronger than 10^{16} Tesla) experiences a spontaneous phase transition to an electromagnetically superconducting state. The unexpected superconductivity of, basically, empty space is induced by emergence of quark-antiquark vector condensates with quantum numbers of electrically charged rho mesons. The superconducting phase possesses an anisotropic inhomogeneous structure similar to a periodic Abrikosov lattice in a type-II superconductor. The superconducting vacuum is made of a new type of vortices which are topological defects in the charged vector condensates. The superconductivity is realized along the axis of the magnetic field only. We argue that this effect is absent in pure QED. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.0117v2-abstract-full').style.display = 'none'; document.getElementById('1101.0117v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 December, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure; uses RevTeX 4.1; v2: misprints corrected, references added, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett.106:142003,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.5626">arXiv:1011.5626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.5626">pdf</a>, <a href="https://arxiv.org/format/1011.5626">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Possible splitting of deconfinement and chiral transitions in strong magnetic fields in QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Fraga%2C+E+S">Eduardo S. Fraga</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Mizher%2C+A+J">Ana Julia Mizher</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.5626v1-abstract-short" style="display: inline;"> We show that finite-temperature deconfinement and chiral transitions can split in a strong enough magnetic field. The splitting in critical temperatures of these transitions in a constant magnetic field of a typical LHC magnitude is of the order of 10 MeV. A new deconfined phase with broken chiral symmetry appears. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.5626v1-abstract-full" style="display: none;"> We show that finite-temperature deconfinement and chiral transitions can split in a strong enough magnetic field. The splitting in critical temperatures of these transitions in a constant magnetic field of a typical LHC magnitude is of the order of 10 MeV. A new deconfined phase with broken chiral symmetry appears. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.5626v1-abstract-full').style.display = 'none'; document.getElementById('1011.5626v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 6 figures; talk given by E. S. Fraga at 35th International Conference of High Energy Physics (ICHEP 2010), July 22-28, 2010, Paris, France</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PoS ICHEP2010:340,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.2658">arXiv:1011.2658</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1011.2658">pdf</a>, <a href="https://arxiv.org/format/1011.2658">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3574959">10.1063/1.3574959 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electromagnetically superconducting phase of QCD vacuum induced by strong magnetic field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.2658v1-abstract-short" style="display: inline;"> In this talk we discuss our recent suggestion that the QCD vacuum in a sufficiently strong magnetic field (stronger than 10^{16} Tesla) may undergo a spontaneous transition to an electromagnetically superconducting state. The possible superconducting state is anisotropic (the vacuum exhibits superconductivity only along the axis of the uniform magnetic field) and inhomogeneous (in the transverse d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2658v1-abstract-full').style.display = 'inline'; document.getElementById('1011.2658v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.2658v1-abstract-full" style="display: none;"> In this talk we discuss our recent suggestion that the QCD vacuum in a sufficiently strong magnetic field (stronger than 10^{16} Tesla) may undergo a spontaneous transition to an electromagnetically superconducting state. The possible superconducting state is anisotropic (the vacuum exhibits superconductivity only along the axis of the uniform magnetic field) and inhomogeneous (in the transverse directions the vacuum structure shares similarity with the Abrikosov lattice of an ordinary type-II superconductor). The electromagnetic superconductivity of the QCD vacuum is suggested to occur due to emergence of specific quark-antiquark condensates which carry quantum numbers of electrically charged rho mesons. A Lorentz-covariant generalization of the London transport equations for the magnetic-field-induced superconductivity is given. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.2658v1-abstract-full').style.display = 'none'; document.getElementById('1011.2658v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, talk at the conference &#34;Quark Confinement and the Hadron Spectrum IX&#34;, 30 Aug - 3 Sep 2010, Madrid, Spain</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIP Conf.Proc.1343:149-151,2011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1008.4552">arXiv:1008.4552</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1008.4552">pdf</a>, <a href="https://arxiv.org/format/1008.4552">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.83.011126">10.1103/PhysRevE.83.011126 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elastic Energy and Phase Structure in a Continuous Spin Ising Chain with Applications to the Protein Folding Problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&amp;query=Chernodub%2C+M+N">M. N. Chernodub</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Lundgren%2C+M">Martin Lundgren</a>, <a href="/search/hep-lat?searchtype=author&amp;query=Niemi%2C+A+J">Antti J. Niemi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1008.4552v1-abstract-short" style="display: inline;"> We present a numerical Monte Carlo analysis of a continuos spin Ising chain that can describe the statistical proterties of folded proteins. We find that depending on the value of the Metropolis temperature, the model displays the three known nontrivial phases of polymers: At low temperatures the model is in a collapsed phase, at medium temperatures it is in a random walk phase, and at high temper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.4552v1-abstract-full').style.display = 'inline'; document.getElementById('1008.4552v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1008.4552v1-abstract-full" style="display: none;"> We present a numerical Monte Carlo analysis of a continuos spin Ising chain that can describe the statistical proterties of folded proteins. We find that depending on the value of the Metropolis temperature, the model displays the three known nontrivial phases of polymers: At low temperatures the model is in a collapsed phase, at medium temperatures it is in a random walk phase, and at high temperatures it enters the self-avoiding random walk phase. By investigating the temperature dependence of the specific energy we confirm that the transition between the collapsed phase and the random walk phase is a phase transition, while the random walk phase and self-avoiding random walk phase are separated from each other by a cross-over transition. We also compare the predictions of the model to a phenomenological elastic energy formula, proposed by Huang and Lei to describe folded proteins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1008.4552v1-abstract-full').style.display = 'none'; document.getElementById('1008.4552v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 23 figures, RevTeX 4.1</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.E83:011126,2011 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chernodub%2C+M+N&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chernodub%2C+M+N&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chernodub%2C+M+N&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chernodub%2C+M+N&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chernodub%2C+M+N&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10