CINXE.COM

Euler-Mascheroni sabiti - Vikipedi

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="tr" dir="ltr"> <head> <meta charset="UTF-8"> <title>Euler-Mascheroni sabiti - Vikipedi</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )trwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","Ocak","Şubat","Mart","Nisan","Mayıs","Haziran","Temmuz","Ağustos","Eylül","Ekim","Kasım","Aralık"],"wgRequestId":"e2d6080d-bb97-4f5b-862a-2fb4cd1957bb","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Euler-Mascheroni_sabiti","wgTitle":"Euler-Mascheroni sabiti","wgCurRevisionId":33825792,"wgRevisionId":33825792,"wgArticleId":997291,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarşiv şablonu wayback bağlantıları","Kaynaksız anlatımlar içeren maddeler","KB1 hataları: dış bağlantılar","KB1 bakım: Birden fazla ad: yazar listesi","GND tanımlayıcısı olan Vikipedi maddeleri","NKC tanımlayıcısı olan Vikipedi maddeleri","ISBN sihirli bağlantısını kullanan sayfalar","Matematiksel sabitler","Leonhard Euler","Sayılar teorisinde çözülememiş problemler"],"wgPageViewLanguage":"tr", "wgPageContentLanguage":"tr","wgPageContentModel":"wikitext","wgRelevantPageName":"Euler-Mascheroni_sabiti","wgRelevantArticleId":997291,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":2}}},"wgStableRevisionId":33825792,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"tr","pageLanguageDir":"ltr","pageVariantFallbacks":"tr"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false, "wgWikibaseItemId":"Q273023","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":true,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready", "mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.charinsert","ext.gadget.extra-toolbar-buttons","ext.gadget.HizliBilgi","ext.gadget.OpenStreetMap","ext.gadget.switcher","ext.gadget.ReferenceTooltips","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=tr&amp;modules=ext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=tr&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=tr&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Euler-Mascheroni sabiti - Vikipedi"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//tr.m.wikipedia.org/wiki/Euler-Mascheroni_sabiti"> <link rel="alternate" type="application/x-wiki" title="Değiştir" href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Vikipedi (tr)"> <link rel="EditURI" type="application/rsd+xml" href="//tr.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://tr.wikipedia.org/wiki/Euler-Mascheroni_sabiti"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.tr"> <link rel="alternate" type="application/atom+xml" title="Vikipedi Atom beslemesi" href="/w/index.php?title=%C3%96zel:SonDe%C4%9Fi%C5%9Fiklikler&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Euler-Mascheroni_sabiti rootpage-Euler-Mascheroni_sabiti skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">İçeriğe atla</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Ana menü" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Ana menü</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Ana menü</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">kenar çubuğuna taşı</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">gizle</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Gezinti </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Anasayfa" title="Anasayfayı ziyaret et [z]" accesskey="z"><span>Anasayfa</span></a></li><li id="n-Hakkımızda" class="mw-list-item"><a href="/wiki/Vikipedi:Hakk%C4%B1nda"><span>Hakkımızda</span></a></li><li id="n-İçindekiler" class="mw-list-item"><a href="/wiki/Vikipedi:G%C3%B6z_at"><span>İçindekiler</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%C3%96zel:Rastgele" title="Rastgele bir sayfaya gidin [x]" accesskey="x"><span>Rastgele madde</span></a></li><li id="n-Seçkin-içerik" class="mw-list-item"><a href="/wiki/Vikipedi:Se%C3%A7kin_i%C3%A7erik"><span>Seçkin içerik</span></a></li><li id="n-Yakınımdakiler" class="mw-list-item"><a href="/wiki/%C3%96zel:Yak%C4%B1n%C4%B1mdakiler"><span>Yakınımdakiler</span></a></li> </ul> </div> </div> <div id="p-Katılım" class="vector-menu mw-portlet mw-portlet-Katılım" > <div class="vector-menu-heading"> Katılım </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-sandbox" class="mw-list-item"><a href="/wiki/Vikipedi:Deneme_tahtas%C4%B1"><span>Deneme tahtası</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Vikipedi:K%C3%B6y_%C3%A7e%C5%9Fmesi" title="Güncel olaylarla ilgili son bilgiler"><span>Köy çeşmesi</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%C3%96zel:SonDe%C4%9Fi%C5%9Fiklikler" title="Vikide yapılmış son değişikliklerin listesi [r]" accesskey="r"><span>Son değişiklikler</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Vikipedi:Y%C3%BCkle"><span>Dosya yükle</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Vikipedi:Topluluk_portali" title="Proje hakkında, neler yapabilirsiniz, ne nerededir"><span>Topluluk portali</span></a></li><li id="n-shop-text" class="mw-list-item"><a href="//shop.wikimedia.org"><span>Wikimedia dükkânı</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Yard%C4%B1m:%C4%B0%C3%A7indekiler" title="Yardım almak için"><span>Yardım</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Anasayfa" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Vikipedi" src="/static/images/mobile/copyright/wikipedia-wordmark-tr.svg" style="width: 6.6875em; height: 1.125em;"> <img class="mw-logo-tagline" alt="Özgür Ansiklopedi" src="/static/images/mobile/copyright/wikipedia-tagline-tr.svg" width="104" height="13" style="width: 6.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/%C3%96zel:Ara" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Vikipedi içinde ara [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Ara</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Vikipedi üzerinde ara" aria-label="Vikipedi üzerinde ara" autocapitalize="sentences" title="Vikipedi içinde ara [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Özel:Ara"> </div> <button class="cdx-button cdx-search-input__end-button">Ara</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Kişisel araçlar"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Görünüm"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Sayfanın yazı tipi boyutunun, genişliğinin ve renginin görünümünü değiştirin" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Görünüm" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Görünüm</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_tr.wikipedia.org&amp;uselang=tr" class=""><span>Bağış yapın</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%C3%96zel:HesapOlu%C5%9Ftur&amp;returnto=Euler-Mascheroni+sabiti" title="Bir hesap oluşturup oturum açmanız tavsiye edilmektedir ancak bu zorunlu değildir" class=""><span>Hesap oluştur</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%C3%96zel:Kullan%C4%B1c%C4%B1OturumuA%C3%A7ma&amp;returnto=Euler-Mascheroni+sabiti" title="Oturum açmanız tavsiye edilmektedir; ancak bu zorunlu değildir [o]" accesskey="o" class=""><span>Oturum aç</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Daha fazla seçenek" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Kişisel araçlar" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Kişisel araçlar</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Kullanıcı menüsü" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_tr.wikipedia.org&amp;uselang=tr"><span>Bağış yapın</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%C3%96zel:HesapOlu%C5%9Ftur&amp;returnto=Euler-Mascheroni+sabiti" title="Bir hesap oluşturup oturum açmanız tavsiye edilmektedir ancak bu zorunlu değildir"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Hesap oluştur</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%C3%96zel:Kullan%C4%B1c%C4%B1OturumuA%C3%A7ma&amp;returnto=Euler-Mascheroni+sabiti" title="Oturum açmanız tavsiye edilmektedir; ancak bu zorunlu değildir [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Oturum aç</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Çıkış yapmış editörler için sayfalar <a href="/wiki/Yard%C4%B1m:Giri%C5%9F" aria-label="Değişiklik yapma hakkında daha fazla bilgi edinin"><span>daha fazla bilgi</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%C3%96zel:Katk%C4%B1lar%C4%B1m" title="Bu IP adresinden yapılmış değişiklikler listesi [y]" accesskey="y"><span>Katkılar</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%C3%96zel:MesajSayfam" title="Bu IP adresindeki düzenlemeler hakkında tartışma [n]" accesskey="n"><span>Mesaj</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="İçindekiler" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">İçindekiler</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">kenar çubuğuna taşı</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">gizle</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Giriş</div> </a> </li> <li id="toc-Tarihçe" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Tarihçe"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Tarihçe</span> </div> </a> <ul id="toc-Tarihçe-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tezahürleri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Tezahürleri"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Tezahürleri</span> </div> </a> <ul id="toc-Tezahürleri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kimliği" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Kimliği"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Kimliği</span> </div> </a> <button aria-controls="toc-Kimliği-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Kimliği alt bölümünü aç/kapa</span> </button> <ul id="toc-Kimliği-sublist" class="vector-toc-list"> <li id="toc-Gama_fonksiyonu_ile_ilişkisi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gama_fonksiyonu_ile_ilişkisi"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Gama fonksiyonu ile ilişkisi</span> </div> </a> <ul id="toc-Gama_fonksiyonu_ile_ilişkisi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Zeta_fonksiyonu_ile_ilişkisi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Zeta_fonksiyonu_ile_ilişkisi"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Zeta fonksiyonu ile ilişkisi</span> </div> </a> <ul id="toc-Zeta_fonksiyonu_ile_ilişkisi-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notlar" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notlar"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Notlar</span> </div> </a> <ul id="toc-Notlar-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kaynakça" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Kaynakça"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Kaynakça</span> </div> </a> <ul id="toc-Kaynakça-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dış_bağlantılar" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Dış_bağlantılar"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Dış bağlantılar</span> </div> </a> <ul id="toc-Dış_bağlantılar-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="İçindekiler" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="İçindekiler tablosunu değiştir" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">İçindekiler tablosunu değiştir</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Euler-Mascheroni sabiti</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Başka bir dildeki sayfaya gidin. 44 dilde mevcut" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-44" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">44 dil</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AB%D8%A7%D8%A8%D8%AA_%D8%A3%D9%88%D9%8A%D9%84%D8%B1" title="ثابت أويلر - Arapça" lang="ar" hreflang="ar" data-title="ثابت أويلر" data-language-autonym="العربية" data-language-local-name="Arapça" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9F%D0%B0%D1%81%D1%82%D0%B0%D1%8F%D0%BD%D0%BD%D0%B0%D1%8F_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0_%E2%80%94_%D0%9C%D0%B0%D1%81%D0%BA%D0%B5%D1%80%D0%BE%D0%BD%D1%96" title="Пастаянная Эйлера — Маскероні - Belarusça" lang="be" hreflang="be" data-title="Пастаянная Эйлера — Маскероні" data-language-autonym="Беларуская" data-language-local-name="Belarusça" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%81%D1%82%D0%B0%D0%BD%D1%82%D0%B0_%D0%BD%D0%B0_%D0%9E%D0%B9%D0%BB%D0%B5%D1%80_%E2%80%93_%D0%9C%D0%B0%D1%81%D0%BA%D0%B5%D1%80%D0%BE%D0%BD%D0%B8" title="Константа на Ойлер – Маскерони - Bulgarca" lang="bg" hreflang="bg" data-title="Константа на Ойлер – Маскерони" data-language-autonym="Български" data-language-local-name="Bulgarca" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Constant_d%27Euler-Mascheroni" title="Constant d&#039;Euler-Mascheroni - Katalanca" lang="ca" hreflang="ca" data-title="Constant d&#039;Euler-Mascheroni" data-language-autonym="Català" data-language-local-name="Katalanca" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Eulerova_konstanta" title="Eulerova konstanta - Çekçe" lang="cs" hreflang="cs" data-title="Eulerova konstanta" data-language-autonym="Čeština" data-language-local-name="Çekçe" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Euler-Mascheroni-Konstante" title="Euler-Mascheroni-Konstante - Almanca" lang="de" hreflang="de" data-title="Euler-Mascheroni-Konstante" data-language-autonym="Deutsch" data-language-local-name="Almanca" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Euler%27s_constant" title="Euler&#039;s constant - İngilizce" lang="en" hreflang="en" data-title="Euler&#039;s constant" data-language-autonym="English" data-language-local-name="İngilizce" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Konstanto_de_E%C5%ADlero-Mascheroni" title="Konstanto de Eŭlero-Mascheroni - Esperanto" lang="eo" hreflang="eo" data-title="Konstanto de Eŭlero-Mascheroni" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Constante_de_Euler-Mascheroni" title="Constante de Euler-Mascheroni - İspanyolca" lang="es" hreflang="es" data-title="Constante de Euler-Mascheroni" data-language-autonym="Español" data-language-local-name="İspanyolca" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Euler-Mascheroni_konstante" title="Euler-Mascheroni konstante - Baskça" lang="eu" hreflang="eu" data-title="Euler-Mascheroni konstante" data-language-autonym="Euskara" data-language-local-name="Baskça" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AB%D8%A7%D8%A8%D8%AA_%D8%A7%D9%88%DB%8C%D9%84%D8%B1%E2%80%93%D9%85%D8%A7%D8%B3%DA%A9%D8%B1%D9%88%D9%86%DB%8C" title="ثابت اویلر–ماسکرونی - Farsça" lang="fa" hreflang="fa" data-title="ثابت اویلر–ماسکرونی" data-language-autonym="فارسی" data-language-local-name="Farsça" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Eulerin%E2%80%93Mascheronin_vakio" title="Eulerin–Mascheronin vakio - Fince" lang="fi" hreflang="fi" data-title="Eulerin–Mascheronin vakio" data-language-autonym="Suomi" data-language-local-name="Fince" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Constante_d%27Euler-Mascheroni" title="Constante d&#039;Euler-Mascheroni - Fransızca" lang="fr" hreflang="fr" data-title="Constante d&#039;Euler-Mascheroni" data-language-autonym="Français" data-language-local-name="Fransızca" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A7%D7%91%D7%95%D7%A2_%D7%90%D7%95%D7%99%D7%9C%D7%A8-%D7%9E%D7%A1%D7%A7%D7%A8%D7%95%D7%A0%D7%99" title="קבוע אוילר-מסקרוני - İbranice" lang="he" hreflang="he" data-title="קבוע אוילר-מסקרוני" data-language-autonym="עברית" data-language-local-name="İbranice" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Eulerova_konstanta" title="Eulerova konstanta - Hırvatça" lang="hr" hreflang="hr" data-title="Eulerova konstanta" data-language-autonym="Hrvatski" data-language-local-name="Hırvatça" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Euler%E2%80%93Mascheroni-%C3%A1lland%C3%B3" title="Euler–Mascheroni-állandó - Macarca" lang="hu" hreflang="hu" data-title="Euler–Mascheroni-állandó" data-language-autonym="Magyar" data-language-local-name="Macarca" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B7%D5%B5%D5%AC%D5%A5%D6%80-%D5%84%D5%A1%D5%BD%D5%AF%D5%A5%D6%80%D5%B8%D5%B6%D5%AB_%D5%B0%D5%A1%D5%BD%D5%BF%D5%A1%D5%BF%D5%B8%D6%82%D5%B6" title="Էյլեր-Մասկերոնի հաստատուն - Ermenice" lang="hy" hreflang="hy" data-title="Էյլեր-Մասկերոնի հաստատուն" data-language-autonym="Հայերեն" data-language-local-name="Ermenice" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Constante_de_Euler-Mascheroni" title="Constante de Euler-Mascheroni - İnterlingua" lang="ia" hreflang="ia" data-title="Constante de Euler-Mascheroni" data-language-autonym="İnterlingua" data-language-local-name="İnterlingua" class="interlanguage-link-target"><span>İnterlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Konstanta_Euler%E2%80%93Mascheroni" title="Konstanta Euler–Mascheroni - Endonezce" lang="id" hreflang="id" data-title="Konstanta Euler–Mascheroni" data-language-autonym="Bahasa Indonesia" data-language-local-name="Endonezce" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Costante_di_Eulero-Mascheroni" title="Costante di Eulero-Mascheroni - İtalyanca" lang="it" hreflang="it" data-title="Costante di Eulero-Mascheroni" data-language-autonym="İtaliano" data-language-local-name="İtalyanca" class="interlanguage-link-target"><span>İtaliano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%AA%E3%82%A4%E3%83%A9%E3%83%BC%E3%81%AE%E5%AE%9A%E6%95%B0" title="オイラーの定数 - Japonca" lang="ja" hreflang="ja" data-title="オイラーの定数" data-language-autonym="日本語" data-language-local-name="Japonca" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%AD%D0%B9%D0%BB%D0%B5%D1%80_%E2%80%94_%D0%9C%D0%B0%D1%81%D0%BA%D0%B5%D1%80%D0%BE%D0%BD%D0%B8_%D1%82%D2%B1%D1%80%D0%B0%D2%9B%D1%82%D1%8B%D1%81%D1%8B" title="Эйлер — Маскерони тұрақтысы - Kazakça" lang="kk" hreflang="kk" data-title="Эйлер — Маскерони тұрақтысы" data-language-autonym="Қазақша" data-language-local-name="Kazakça" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%98%A4%EC%9D%BC%EB%9F%AC-%EB%A7%88%EC%8A%A4%EC%BC%80%EB%A1%9C%EB%8B%88_%EC%83%81%EC%88%98" title="오일러-마스케로니 상수 - Korece" lang="ko" hreflang="ko" data-title="오일러-마스케로니 상수" data-language-autonym="한국어" data-language-local-name="Korece" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Custanta_da_Euler_Mascheroni" title="Custanta da Euler Mascheroni - Lombardça" lang="lmo" hreflang="lmo" data-title="Custanta da Euler Mascheroni" data-language-autonym="Lombard" data-language-local-name="Lombardça" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Oilerio-Maskeronio_konstanta" title="Oilerio-Maskeronio konstanta - Litvanca" lang="lt" hreflang="lt" data-title="Oilerio-Maskeronio konstanta" data-language-autonym="Lietuvių" data-language-local-name="Litvanca" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Constante_van_Euler-Mascheroni" title="Constante van Euler-Mascheroni - Felemenkçe" lang="nl" hreflang="nl" data-title="Constante van Euler-Mascheroni" data-language-autonym="Nederlands" data-language-local-name="Felemenkçe" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Euler-Mascheronis_konstant" title="Euler-Mascheronis konstant - Norveççe Bokmål" lang="nb" hreflang="nb" data-title="Euler-Mascheronis konstant" data-language-autonym="Norsk bokmål" data-language-local-name="Norveççe Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Sta%C5%82a_Eulera" title="Stała Eulera - Lehçe" lang="pl" hreflang="pl" data-title="Stała Eulera" data-language-autonym="Polski" data-language-local-name="Lehçe" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Costanta_d%27Euler" title="Costanta d&#039;Euler - Piyemontece" lang="pms" hreflang="pms" data-title="Costanta d&#039;Euler" data-language-autonym="Piemontèis" data-language-local-name="Piyemontece" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Constante_de_Euler-Mascheroni" title="Constante de Euler-Mascheroni - Portekizce" lang="pt" hreflang="pt" data-title="Constante de Euler-Mascheroni" data-language-autonym="Português" data-language-local-name="Portekizce" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Constanta_Euler%E2%80%93Mascheroni" title="Constanta Euler–Mascheroni - Rumence" lang="ro" hreflang="ro" data-title="Constanta Euler–Mascheroni" data-language-autonym="Română" data-language-local-name="Rumence" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%BD%D0%B0%D1%8F_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0_%E2%80%94_%D0%9C%D0%B0%D1%81%D0%BA%D0%B5%D1%80%D0%BE%D0%BD%D0%B8" title="Постоянная Эйлера — Маскерони - Rusça" lang="ru" hreflang="ru" data-title="Постоянная Эйлера — Маскерони" data-language-autonym="Русский" data-language-local-name="Rusça" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Custanti_di_Euleru" title="Custanti di Euleru - Sicilyaca" lang="scn" hreflang="scn" data-title="Custanti di Euleru" data-language-autonym="Sicilianu" data-language-local-name="Sicilyaca" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant" title="Euler–Mascheroni constant - Simple English" lang="en-simple" hreflang="en-simple" data-title="Euler–Mascheroni constant" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Eulerova-Mascheroniova_kon%C5%A1tanta" title="Eulerova-Mascheroniova konštanta - Slovakça" lang="sk" hreflang="sk" data-title="Eulerova-Mascheroniova konštanta" data-language-autonym="Slovenčina" data-language-local-name="Slovakça" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Euler-Mascheronijeva_konstanta" title="Euler-Mascheronijeva konstanta - Slovence" lang="sl" hreflang="sl" data-title="Euler-Mascheronijeva konstanta" data-language-autonym="Slovenščina" data-language-local-name="Slovence" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Konstantja_e_Eulerit" title="Konstantja e Eulerit - Arnavutça" lang="sq" hreflang="sq" data-title="Konstantja e Eulerit" data-language-autonym="Shqip" data-language-local-name="Arnavutça" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9E%D1%98%D0%BB%D0%B5%D1%80-%D0%9C%D0%B0%D1%81%D0%BA%D0%B5%D1%80%D0%BE%D0%BD%D0%B8%D1%98%D0%B5%D0%B2%D0%B0_%D0%BA%D0%BE%D0%BD%D1%81%D1%82%D0%B0%D0%BD%D1%82%D0%B0" title="Ојлер-Маскеронијева константа - Sırpça" lang="sr" hreflang="sr" data-title="Ојлер-Маскеронијева константа" data-language-autonym="Српски / srpski" data-language-local-name="Sırpça" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Euler%E2%80%93Mascheronis_konstant" title="Euler–Mascheronis konstant - İsveççe" lang="sv" hreflang="sv" data-title="Euler–Mascheronis konstant" data-language-autonym="Svenska" data-language-local-name="İsveççe" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%86%E0%AE%AF%E0%AF%8D%E0%AE%B2%E0%AE%B0%E0%AE%BF%E0%AE%A9%E0%AF%8D_%E0%AE%AE%E0%AE%BE%E0%AE%B1%E0%AE%BF%E0%AE%B2%E0%AE%BF" title="ஆய்லரின் மாறிலி - Tamilce" lang="ta" hreflang="ta" data-title="ஆய்லரின் மாறிலி" data-language-autonym="தமிழ்" data-language-local-name="Tamilce" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%84%E0%B9%88%E0%B8%B2%E0%B8%84%E0%B8%87%E0%B8%95%E0%B8%B1%E0%B8%A7%E0%B8%AD%E0%B9%87%E0%B8%AD%E0%B8%A2%E0%B9%80%E0%B8%A5%E0%B8%AD%E0%B8%A3%E0%B9%8C%E2%80%93%E0%B8%A1%E0%B8%B1%E0%B8%AA%E0%B9%80%E0%B8%81%E0%B9%82%E0%B8%A3%E0%B8%99%E0%B8%B5" title="ค่าคงตัวอ็อยเลอร์–มัสเกโรนี - Tayca" lang="th" hreflang="th" data-title="ค่าคงตัวอ็อยเลอร์–มัสเกโรนี" data-language-autonym="ไทย" data-language-local-name="Tayca" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A1%D1%82%D0%B0%D0%BB%D0%B0_%D0%95%D0%B9%D0%BB%D0%B5%D1%80%D0%B0_%E2%80%94_%D0%9C%D0%B0%D1%81%D0%BA%D0%B5%D1%80%D0%BE%D0%BD%D1%96" title="Стала Ейлера — Маскероні - Ukraynaca" lang="uk" hreflang="uk" data-title="Стала Ейлера — Маскероні" data-language-autonym="Українська" data-language-local-name="Ukraynaca" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A7%D9%88%DB%8C%D9%84%D8%B1_%D8%AF%D8%A7%D8%A6%D9%85" title="اویلر دائم - Urduca" lang="ur" hreflang="ur" data-title="اویلر دائم" data-language-autonym="اردو" data-language-local-name="Urduca" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%AD%90%E6%8B%89-%E9%A6%AC%E6%96%AF%E5%88%BB%E8%8B%A5%E5%B0%BC%E5%B8%B8%E6%95%B8" title="歐拉-馬斯刻若尼常數 - Çince" lang="zh" hreflang="zh" data-title="歐拉-馬斯刻若尼常數" data-language-autonym="中文" data-language-local-name="Çince" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q273023#sitelinks-wikipedia" title="Dillerarası bağlantıları değiştir" class="wbc-editpage">Bağlantıları değiştir</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Ad alanları"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Euler-Mascheroni_sabiti" title="İçerik sayfasını göster [c]" accesskey="c"><span>Madde</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Tart%C4%B1%C5%9Fma:Euler-Mascheroni_sabiti" rel="discussion" title="İçerik ile ilgili tartışma [t]" accesskey="t"><span>Tartışma</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Dil varyantını değiştir" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Türkçe</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Görünüm"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Euler-Mascheroni_sabiti"><span>Oku</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;veaction=edit" title="Bu sayfayı değiştir [v]" accesskey="v"><span>Değiştir</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;action=edit" title="Bu sayfanın kaynak kodunu düzenleyin [e]" accesskey="e"><span>Kaynağı değiştir</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;action=history" title="Bu sayfanın geçmiş sürümleri [h]" accesskey="h"><span>Geçmişi gör</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Sayfa araçları"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Araçlar" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Araçlar</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Araçlar</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">kenar çubuğuna taşı</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">gizle</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Daha fazla seçenek" > <div class="vector-menu-heading"> Eylemler </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Euler-Mascheroni_sabiti"><span>Oku</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;veaction=edit" title="Bu sayfayı değiştir [v]" accesskey="v"><span>Değiştir</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;action=edit" title="Bu sayfanın kaynak kodunu düzenleyin [e]" accesskey="e"><span>Kaynağı değiştir</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;action=history"><span>Geçmişi gör</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Genel </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%C3%96zel:SayfayaBa%C4%9Flant%C4%B1lar/Euler-Mascheroni_sabiti" title="Bu sayfaya bağlantı vermiş tüm viki sayfalarının listesi [j]" accesskey="j"><span>Sayfaya bağlantılar</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%C3%96zel:%C4%B0lgiliDe%C4%9Fi%C5%9Fiklikler/Euler-Mascheroni_sabiti" rel="nofollow" title="Bu sayfadan bağlantı verilen sayfalardaki son değişiklikler [k]" accesskey="k"><span>İlgili değişiklikler</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%C3%96zel:%C3%96zelSayfalar" title="Tüm özel sayfaların listesi [q]" accesskey="q"><span>Özel sayfalar</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;oldid=33825792" title="Bu sayfanın bu revizyonuna kalıcı bağlantı"><span>Kalıcı bağlantı</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;action=info" title="Bu sayfa hakkında daha fazla bilgi"><span>Sayfa bilgisi</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%C3%96zel:KaynakG%C3%B6ster&amp;page=Euler-Mascheroni_sabiti&amp;id=33825792&amp;wpFormIdentifier=titleform" title="Bu sayfadan nasıl kaynak göstereceği hakkında bilgi"><span>Bu sayfayı kaynak göster</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%C3%96zel:UrlShortener&amp;url=https%3A%2F%2Ftr.wikipedia.org%2Fwiki%2FEuler-Mascheroni_sabiti"><span>Kısaltılmış URL'yi al</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%C3%96zel:QrCode&amp;url=https%3A%2F%2Ftr.wikipedia.org%2Fwiki%2FEuler-Mascheroni_sabiti"><span>Karekodu indir</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Yazdır/dışa aktar </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=%C3%96zel:Kitap&amp;bookcmd=book_creator&amp;referer=Euler-Mascheroni+sabiti"><span>Bir kitap oluştur</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%C3%96zel:DownloadAsPdf&amp;page=Euler-Mascheroni_sabiti&amp;action=show-download-screen"><span>PDF olarak indir</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;printable=yes" title="Bu sayfanın basılmaya uygun sürümü [p]" accesskey="p"><span>Basılmaya uygun görünüm</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Diğer projelerde </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Euler%E2%80%93Mascheroni_constant" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q273023" title="Veri havuzundaki ilgili ögeye bağlantı [g]" accesskey="g"><span>Vikiveri ögesi</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Sayfa araçları"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Görünüm"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Görünüm</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">kenar çubuğuna taşı</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">gizle</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Vikipedi, özgür ansiklopedi</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="tr" dir="ltr"><div role="note" class="hatnote navigation-not-searchable">Başlığın diğer anlamları için <a href="/wiki/Euler_(anlam_ayr%C4%B1m%C4%B1)" class="mw-disambig" title="Euler (anlam ayrımı)">Euler (anlam ayrımı)</a> sayfasına bakınız.</div> <p><a href="/wiki/Matematiksel_analiz" class="mw-redirect" title="Matematiksel analiz">Matematiksel analizin</a> <a href="/wiki/Say%C4%B1_teorisi" class="mw-redirect" title="Sayı teorisi">sayı teorisinde</a> <b>Euler–Mascheroni sabiti</b> <a href="/wiki/Matematiksel_sabit" title="Matematiksel sabit">matematiksel sabit</a>'tir. Yunan harfi <a href="/wiki/Yunanca" title="Yunanca">Yunanca</a>:&#160;<span class="lang-el" lang="el" dir="ltr">γ</span> (<a href="/wiki/Gama" title="Gama">gama</a>) ile gösterilir. </p><p><a href="/wiki/Harmonik_seri" class="mw-redirect" title="Harmonik seri">Harmonik seri</a> ile <a href="/wiki/Do%C4%9Fal_logaritma" class="mw-redirect" title="Doğal logaritma">doğal logaritma</a> arasındaki fark veya <a href="/wiki/Dizinin_limiti" title="Dizinin limiti">limit</a>'tir. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =\lim _{n\rightarrow \infty }\left(\sum _{k=1}^{n}{\frac {1}{k}}-\ln(n)\right)=\int _{1}^{\infty }\left({1 \over \lfloor x\rfloor }-{1 \over x}\right)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =\lim _{n\rightarrow \infty }\left(\sum _{k=1}^{n}{\frac {1}{k}}-\ln(n)\right)=\int _{1}^{\infty }\left({1 \over \lfloor x\rfloor }-{1 \over x}\right)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2518b06b8e40ac0f85fca5bf3fea976229b3f3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:50.925ex; height:7.509ex;" alt="{\displaystyle \gamma =\lim _{n\rightarrow \infty }\left(\sum _{k=1}^{n}{\frac {1}{k}}-\ln(n)\right)=\int _{1}^{\infty }\left({1 \over \lfloor x\rfloor }-{1 \over x}\right)\,dx.}"></span></dd></dl> <p>sayısal değerin 50 basamağı: </p> <dl><dd>0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 …|</dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> ile <a href="/wiki/E_say%C4%B1s%C4%B1" title="E sayısı">e sayısı</a> karıştırılmamalıdır <i><a href="/wiki/E_say%C4%B1s%C4%B1" title="E sayısı">e</a></i> <i>Euler sayısı</i>, <a href="/wiki/Do%C4%9Fal_logaritma" class="mw-redirect" title="Doğal logaritma">doğal logaritma</a>'nın tabanı olarak bilinir. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Tarihçe"><span id="Tarih.C3.A7e"></span>Tarihçe</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;veaction=edit&amp;section=1" title="Değiştirilen bölüm: Tarihçe" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;action=edit&amp;section=1" title="Bölümün kaynak kodunu değiştir: Tarihçe"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Sabit 1735'te <a href="/wiki/%C4%B0svi%C3%A7re" title="İsviçre">İsviçreli</a> matematikçi <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a>, <i>De Progressionibus harmonicis observationes</i> başlığı (Eneström Index 43) açıklanmıştır. Euler'in sabit için kullandığı notasyon <i>C</i> ve <i>O</i> dur. 1790'te, <a href="/wiki/%C4%B0talya" title="İtalya">İtalyan</a> matematikçi <a href="/w/index.php?title=Lorenzo_Mascheroni&amp;action=edit&amp;redlink=1" class="new" title="Lorenzo Mascheroni (sayfa mevcut değil)">Lorenzo Mascheroni</a>'nin sabit için kullandığı notasyon <i>A</i> ve <i>a</i> 'dır. γ gösterimine Euler veya Mascheroni sabiti dendi, daha sonra <a href="/wiki/Gama_fonksiyonu" title="Gama fonksiyonu">gama fonksiyonu</a> ile ilişkisi anlaşıldı. Mesela Carl Anton Bretschneider tarafından γ notasyonu 1835'te kullanıldı.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Tezahürleri"><span id="Tezah.C3.BCrleri"></span>Tezahürleri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;veaction=edit&amp;section=2" title="Değiştirilen bölüm: Tezahürleri" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;action=edit&amp;section=2" title="Bölümün kaynak kodunu değiştir: Tezahürleri"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Euler-Mascheroni sabiti, diğer denklemler içerisinde görünür&#160;: </p> <ul><li><a href="/w/index.php?title=%C3%9Cstel_integral&amp;action=edit&amp;redlink=1" class="new" title="Üstel integral (sayfa mevcut değil)">üstel integral</a> ifadelerinde.</li> <li><a href="/wiki/Do%C4%9Fal_logaritma" class="mw-redirect" title="Doğal logaritma">doğal logaritma</a>'nın <a href="/wiki/Laplace_d%C3%B6n%C3%BC%C5%9F%C3%BCm%C3%BC" title="Laplace dönüşümü">Laplace dönüşümü</a>'nde.</li> <li><a href="/wiki/Riemann_zeta_fonksiyonu" class="mw-redirect" title="Riemann zeta fonksiyonu">Riemann zeta fonksiyonu</a>'nun Taylor serisine açılımında ilk terim, burada <a href="/w/index.php?title=Stieljes_sabiti&amp;action=edit&amp;redlink=1" class="new" title="Stieljes sabiti (sayfa mevcut değil)">Stieljes sabiti</a> ilk terimdir.</li> <li><a href="/wiki/Digama_fonksiyonu" title="Digama fonksiyonu">Digama fonksiyonu</a> hesaplamaları</li> <li><a href="/wiki/Gama_fonksiyonu" title="Gama fonksiyonu">Gama fonksiyonu</a>'ndan üretilen bir formül</li> <li><a href="/wiki/Euler_totient_fonksiyonu" class="mw-redirect" title="Euler totient fonksiyonu">Euler totient fonksiyonu</a> için bir eşitsizlik</li> <li><a href="/w/index.php?title=B%C3%B6len_fonksiyonu&amp;action=edit&amp;redlink=1" class="new" title="Bölen fonksiyonu (sayfa mevcut değil)">Bölen fonksiyonu</a>'nun büyük kesri</li> <li><a href="/w/index.php?title=Meissel-Mertens_sabiti&amp;action=edit&amp;redlink=1" class="new" title="Meissel-Mertens sabiti (sayfa mevcut değil)">Meissel-Mertens sabiti</a> için bir hesaplama</li> <li><a href="/w/index.php?title=Mertens%27in_%C3%BC%C3%A7%C3%BCnc%C3%BC_teoremi&amp;action=edit&amp;redlink=1" class="new" title="Mertens&#39;in üçüncü teoremi (sayfa mevcut değil)">Mertens'in üçüncü teoremi</a></li> <li>ikinci tür <a href="/w/index.php?title=Bessel_denklemi&amp;action=edit&amp;redlink=1" class="new" title="Bessel denklemi (sayfa mevcut değil)">Bessel denklemi</a>'nin çözümü.</li> <li><a href="/wiki/Kuantum_alan_teorisi" title="Kuantum alan teorisi">Kuantum alan teorisi</a>'nde <a href="/w/index.php?title=Feynman_diagram&amp;action=edit&amp;redlink=1" class="new" title="Feynman diagram (sayfa mevcut değil)">Feynman diagram</a>'larının <a href="/w/index.php?title=Boyutsal_d%C3%BCzenlenmesinde&amp;action=edit&amp;redlink=1" class="new" title="Boyutsal düzenlenmesinde (sayfa mevcut değil)">Boyutsal düzenlenmesinde</a> .</li> <li><a href="/w/index.php?title=Gumbel_da%C4%9F%C4%B1l%C4%B1m%C4%B1n%C4%B1n_anlam%C4%B1&amp;action=edit&amp;redlink=1" class="new" title="Gumbel dağılımının anlamı (sayfa mevcut değil)">Gumbel dağılımının anlamı</a> ile.</li></ul> <p>Bu tür için daha fazla bilgi, bkz: <a rel="nofollow" class="external text" href="http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.html">Gourdon ve Sebah (2004).</a> 12 Aralık 2009 tarihinde <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> sitesinde <a rel="nofollow" class="external text" href="https://web.archive.org/web/20091212002936/http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.html">arşivlendi</a>. rmulas.html Gourdon and Sebah (2004).] </p> <div class="mw-heading mw-heading2"><h2 id="Kimliği"><span id="Kimli.C4.9Fi"></span>Kimliği</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;veaction=edit&amp;section=3" title="Değiştirilen bölüm: Kimliği" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;action=edit&amp;section=3" title="Bölümün kaynak kodunu değiştir: Kimliği"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>γ sayısının <a href="/w/index.php?title=Algebraic_number&amp;action=edit&amp;redlink=1" class="new" title="Algebraic number (sayfa mevcut değil)">cebirsel sayı</a> veya <a href="/w/index.php?title=Transcendental_number&amp;action=edit&amp;redlink=1" class="new" title="Transcendental number (sayfa mevcut değil)">aşkın sayı</a> olup olmadığı bilinmiyor. Hatta γ'nın <a href="/w/index.php?title=%C4%B0rrational_number&amp;action=edit&amp;redlink=1" class="new" title="İrrational number (sayfa mevcut değil)">irrasyonel sayı</a> olup olmadığıda bilinmiyor <a href="/w/index.php?title=S%C3%BCrekli_kesir&amp;action=edit&amp;redlink=1" class="new" title="Sürekli kesir (sayfa mevcut değil)">sürekli kesir</a>'le <a href="/w/index.php?title=Rational_number&amp;action=edit&amp;redlink=1" class="new" title="Rational number (sayfa mevcut değil)">rasyonel</a>, γ paydası 10<sup>242080</sup> 'dan büyük olmalıdır.<sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Vikipedi:Kaynak_g%C3%B6sterme" title="Vikipedi:Kaynak gösterme"><span title="">kaynak belirtilmeli</span></a></i>&#93;</sup> Birçok denklemde ortaya çıkan γ'nın (pi/2e~0.5778) irrasyonalitesi? büyük bir açık sorudur.Sondow'a bakınız (2003a). </p><p>Daha fazla bilgi için bakınız: <a rel="nofollow" class="external text" href="http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.html">Gourdon and Sebah (2002).</a> 12 Aralık 2009 tarihinde <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> sitesinde <a rel="nofollow" class="external text" href="https://web.archive.org/web/20091212002936/http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.html">arşivlendi</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Gama_fonksiyonu_ile_ilişkisi"><span id="Gama_fonksiyonu_ile_ili.C5.9Fkisi"></span>Gama fonksiyonu ile ilişkisi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;veaction=edit&amp;section=4" title="Değiştirilen bölüm: Gama fonksiyonu ile ilişkisi" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;action=edit&amp;section=4" title="Bölümün kaynak kodunu değiştir: Gama fonksiyonu ile ilişkisi"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>γ <a href="/wiki/Digama_fonksiyonu" title="Digama fonksiyonu">digama fonksiyonu</a> Ψ ile ilişkilidir, Ψ,<a href="/wiki/Gama_fonksiyonu" title="Gama fonksiyonu">gama fonksiyonu</a> yani Γ 'unun türevidir.: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ -\gamma =\Gamma '(1)=\Psi (1).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ -\gamma =\Gamma '(1)=\Psi (1).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8bd08df693d77e285f9a189656fb0994635b178" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.416ex; height:3.009ex;" alt="{\displaystyle \ -\gamma =\Gamma &#039;(1)=\Psi (1).}"></span></dd></dl> <p>Bunun limiti: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\gamma =\lim _{z\to 0}\left\{\Gamma (z)-{\frac {1}{z}}\right\}=\lim _{z\to 0}\left\{\Psi (z)+{\frac {1}{z}}\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow> <mo>{</mo> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>z</mi> </mfrac> </mrow> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow> <mo>{</mo> <mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>z</mi> </mfrac> </mrow> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\gamma =\lim _{z\to 0}\left\{\Gamma (z)-{\frac {1}{z}}\right\}=\lim _{z\to 0}\left\{\Psi (z)+{\frac {1}{z}}\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9b99586ffc3cb6f14b4b67b8c81137b4a9aeba2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:43.251ex; height:6.176ex;" alt="{\displaystyle -\gamma =\lim _{z\to 0}\left\{\Gamma (z)-{\frac {1}{z}}\right\}=\lim _{z\to 0}\left\{\Psi (z)+{\frac {1}{z}}\right\}.}"></span></dd></dl> <p>Daha öte limit sonuçları (Krämer, 2005): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{z\to 0}{\frac {1}{z}}\left\{{\frac {1}{\Gamma (1+z)}}-{\frac {1}{\Gamma (1-z)}}\right\}=2\gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>z</mi> </mfrac> </mrow> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mn>2</mn> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{z\to 0}{\frac {1}{z}}\left\{{\frac {1}{\Gamma (1+z)}}-{\frac {1}{\Gamma (1-z)}}\right\}=2\gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a653df6825d891c48f4dd8b596ca59aa7bc95658" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:36.236ex; height:6.343ex;" alt="{\displaystyle \lim _{z\to 0}{\frac {1}{z}}\left\{{\frac {1}{\Gamma (1+z)}}-{\frac {1}{\Gamma (1-z)}}\right\}=2\gamma }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{z\to 0}{\frac {1}{z}}\left\{{\frac {1}{\Psi (1-z)}}-{\frac {1}{\Psi (1+z)}}\right\}={\frac {\pi ^{2}}{3\gamma ^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>z</mi> </mfrac> </mrow> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>3</mn> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{z\to 0}{\frac {1}{z}}\left\{{\frac {1}{\Psi (1-z)}}-{\frac {1}{\Psi (1+z)}}\right\}={\frac {\pi ^{2}}{3\gamma ^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b816ddabe68db0df43d585c3aebaf957f9c4ab0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:39.501ex; height:6.509ex;" alt="{\displaystyle \lim _{z\to 0}{\frac {1}{z}}\left\{{\frac {1}{\Psi (1-z)}}-{\frac {1}{\Psi (1+z)}}\right\}={\frac {\pi ^{2}}{3\gamma ^{2}}}.}"></span></dd></dl> <p><a href="/wiki/Beta_fonksiyonu" title="Beta fonksiyonu">beta fonksiyonu</a> ile ilişkisi (dolayısıyla <a href="/wiki/Gama_fonksiyonu" title="Gama fonksiyonu">gama fonksiyonu</a>) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =\lim _{n\to \infty }\left\{{\frac {\Gamma ({\frac {1}{n}})\Gamma (n+1)\,n^{1+1/n}}{\Gamma (2+n+{\frac {1}{n}})}}-{\frac {n^{2}}{n+1}}\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo stretchy="false">)</mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =\lim _{n\to \infty }\left\{{\frac {\Gamma ({\frac {1}{n}})\Gamma (n+1)\,n^{1+1/n}}{\Gamma (2+n+{\frac {1}{n}})}}-{\frac {n^{2}}{n+1}}\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb49e1e2efe9030f333bf8a0b9f003c05e3db88b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:44.2ex; height:7.509ex;" alt="{\displaystyle \gamma =\lim _{n\to \infty }\left\{{\frac {\Gamma ({\frac {1}{n}})\Gamma (n+1)\,n^{1+1/n}}{\Gamma (2+n+{\frac {1}{n}})}}-{\frac {n^{2}}{n+1}}\right\}.}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =\lim \limits _{m\to \infty }\sum _{k=1}^{m}{m \choose k}{\frac {(-1)^{k}}{k}}\ln(\Gamma (k+1)).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <munder> <mo form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>m</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mi>k</mi> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =\lim \limits _{m\to \infty }\sum _{k=1}^{m}{m \choose k}{\frac {(-1)^{k}}{k}}\ln(\Gamma (k+1)).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/928e111232675bfa91f7641acf613cd598c14ac5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.644ex; height:7.009ex;" alt="{\displaystyle \gamma =\lim \limits _{m\to \infty }\sum _{k=1}^{m}{m \choose k}{\frac {(-1)^{k}}{k}}\ln(\Gamma (k+1)).}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Zeta_fonksiyonu_ile_ilişkisi"><span id="Zeta_fonksiyonu_ile_ili.C5.9Fkisi"></span>Zeta fonksiyonu ile ilişkisi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;veaction=edit&amp;section=5" title="Değiştirilen bölüm: Zeta fonksiyonu ile ilişkisi" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;action=edit&amp;section=5" title="Bölümün kaynak kodunu değiştir: Zeta fonksiyonu ile ilişkisi"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Pozitif tam sayı içeren <a href="/wiki/Riemann_zeta_i%C5%9Flevi" title="Riemann zeta işlevi">Riemann zeta fonksiyonu</a>'nun <a href="/w/index.php?title=Series_(mathematics)&amp;action=edit&amp;redlink=1" class="new" title="Series (mathematics) (sayfa mevcut değil)">sonsuz toplamı</a> γ sabitine yakınsar: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\gamma &amp;=\sum _{m=2}^{\infty }(-1)^{m}{\frac {\zeta (m)}{m}}\\&amp;=\ln \left({\frac {4}{\pi }}\right)+\sum _{m=2}^{\infty }(-1)^{m}{\frac {\zeta (m)}{2^{m-1}m}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03B3;<!-- γ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mrow> <mi>m</mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>m</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\gamma &amp;=\sum _{m=2}^{\infty }(-1)^{m}{\frac {\zeta (m)}{m}}\\&amp;=\ln \left({\frac {4}{\pi }}\right)+\sum _{m=2}^{\infty }(-1)^{m}{\frac {\zeta (m)}{2^{m-1}m}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bdc84ada4a51308a849e9da179db31b5f158e5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:33.941ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}\gamma &amp;=\sum _{m=2}^{\infty }(-1)^{m}{\frac {\zeta (m)}{m}}\\&amp;=\ln \left({\frac {4}{\pi }}\right)+\sum _{m=2}^{\infty }(-1)^{m}{\frac {\zeta (m)}{2^{m-1}m}}.\end{aligned}}}"></span></dd></dl> <p>zeta fonksiyonu içeren diğer serilerle ilişkisi: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\gamma &amp;={\frac {3}{2}}-\ln 2-\sum _{m=2}^{\infty }(-1)^{m}\,{\frac {m-1}{m}}[\zeta (m)-1]\\&amp;=\lim _{n\to \infty }\left[{\frac {2\,n-1}{2\,n}}-\ln \,n+\sum _{k=2}^{n}\left({\frac {1}{k}}-{\frac {\zeta (1-k)}{n^{k}}}\right)\right]\\&amp;=\lim _{n\to \infty }\left[{\frac {2^{n}}{e^{2^{n}}}}\sum _{m=0}^{\infty }{\frac {2^{m\,n}}{(m+1)!}}\sum _{t=0}^{m}{\frac {1}{t+1}}-n\,\ln 2+O\left({\frac {1}{2^{n}\,e^{2^{n}}}}\right)\right].\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03B3;<!-- γ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>m</mi> </mfrac> </mrow> <mo stretchy="false">[</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">]</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mspace width="thinmathspace" /> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mspace width="thinmathspace" /> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>ln</mi> <mspace width="thinmathspace" /> <mi>n</mi> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mspace width="thinmathspace" /> <mi>n</mi> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>t</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mspace width="thinmathspace" /> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\gamma &amp;={\frac {3}{2}}-\ln 2-\sum _{m=2}^{\infty }(-1)^{m}\,{\frac {m-1}{m}}[\zeta (m)-1]\\&amp;=\lim _{n\to \infty }\left[{\frac {2\,n-1}{2\,n}}-\ln \,n+\sum _{k=2}^{n}\left({\frac {1}{k}}-{\frac {\zeta (1-k)}{n^{k}}}\right)\right]\\&amp;=\lim _{n\to \infty }\left[{\frac {2^{n}}{e^{2^{n}}}}\sum _{m=0}^{\infty }{\frac {2^{m\,n}}{(m+1)!}}\sum _{t=0}^{m}{\frac {1}{t+1}}-n\,\ln 2+O\left({\frac {1}{2^{n}\,e^{2^{n}}}}\right)\right].\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c4a5413d5b0a6c08764cd0e62fd121a9012015b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.505ex; width:64.543ex; height:22.176ex;" alt="{\displaystyle {\begin{aligned}\gamma &amp;={\frac {3}{2}}-\ln 2-\sum _{m=2}^{\infty }(-1)^{m}\,{\frac {m-1}{m}}[\zeta (m)-1]\\&amp;=\lim _{n\to \infty }\left[{\frac {2\,n-1}{2\,n}}-\ln \,n+\sum _{k=2}^{n}\left({\frac {1}{k}}-{\frac {\zeta (1-k)}{n^{k}}}\right)\right]\\&amp;=\lim _{n\to \infty }\left[{\frac {2^{n}}{e^{2^{n}}}}\sum _{m=0}^{\infty }{\frac {2^{m\,n}}{(m+1)!}}\sum _{t=0}^{m}{\frac {1}{t+1}}-n\,\ln 2+O\left({\frac {1}{2^{n}\,e^{2^{n}}}}\right)\right].\end{aligned}}}"></span></dd></dl> <p>Son denklemde n sayısı nedeniyle hata teriminin hızla azalması hesaplama için uygundur. </p><p>Diğer ilginç limit eşitliği Euler–Mascheroni sabitinin antisimetrik limitidir. (Sondow, 1998) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =\lim _{s\to 1^{+}}\sum _{n=1}^{\infty }\left({\frac {1}{n^{s}}}-{\frac {1}{s^{n}}}\right)=\lim _{s\to 1}\left(\zeta (s)-{\frac {1}{s-1}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mrow> </munder> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>1</mn> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =\lim _{s\to 1^{+}}\sum _{n=1}^{\infty }\left({\frac {1}{n^{s}}}-{\frac {1}{s^{n}}}\right)=\lim _{s\to 1}\left(\zeta (s)-{\frac {1}{s-1}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3a6acf56ca8eddd7fd6031cd363de13dc989ec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:48.477ex; height:6.843ex;" alt="{\displaystyle \gamma =\lim _{s\to 1^{+}}\sum _{n=1}^{\infty }\left({\frac {1}{n^{s}}}-{\frac {1}{s^{n}}}\right)=\lim _{s\to 1}\left(\zeta (s)-{\frac {1}{s-1}}\right)}"></span></dd></dl> <p>ve </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\gamma =\lim _{n\to \infty }{\frac {1}{n}}\,\sum _{k=1}^{n}\left(\left\lceil {\frac {n}{k}}\right\rceil -{\frac {n}{k}}\right).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow> <mo>&#x2308;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>k</mi> </mfrac> </mrow> <mo>&#x2309;</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>k</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\gamma =\lim _{n\to \infty }{\frac {1}{n}}\,\sum _{k=1}^{n}\left(\left\lceil {\frac {n}{k}}\right\rceil -{\frac {n}{k}}\right).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/984761e6ed8782444be6c003cb5b261464653795" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:30.085ex; height:6.843ex;" alt="{\displaystyle {\begin{aligned}\gamma =\lim _{n\to \infty }{\frac {1}{n}}\,\sum _{k=1}^{n}\left(\left\lceil {\frac {n}{k}}\right\rceil -{\frac {n}{k}}\right).\end{aligned}}}"></span></dd></dl> <p><a href="/w/index.php?title=Rasyonel_zeta_serisi&amp;action=edit&amp;redlink=1" class="new" title="Rasyonel zeta serisi (sayfa mevcut değil)">rasyonel zeta serisi</a> ifadesi ile de yakında ilişkilidir. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =\sum _{k=1}^{n}{\frac {1}{k}}-\ln n-\sum _{m=2}^{\infty }{\frac {\zeta (m,n+1)}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mi>m</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =\sum _{k=1}^{n}{\frac {1}{k}}-\ln n-\sum _{m=2}^{\infty }{\frac {\zeta (m,n+1)}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55eb3465f12d5235989cd2845ac186400cb8b719" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:35.695ex; height:6.843ex;" alt="{\displaystyle \gamma =\sum _{k=1}^{n}{\frac {1}{k}}-\ln n-\sum _{m=2}^{\infty }{\frac {\zeta (m,n+1)}{m}}}"></span></dd></dl> <p>Burada ζ(<i>s</i>,<i>k</i>) <a href="/wiki/Hurwitz_zeta_fonksiyonu" title="Hurwitz zeta fonksiyonu">Hurwitz zeta fonksiyonu</a>'dur. Bu denklem <a href="/w/index.php?title=Harmonik_say%C4%B1lar&amp;action=edit&amp;redlink=1" class="new" title="Harmonik sayılar (sayfa mevcut değil)">harmonik sayılar</a>'ın toplamını içermektedir., <i>H</i><sub><i>n</i></sub>. Hurwitz zeta fonksiyonu'nun açılımındaki bazı terimler: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{n}=\ln n+\gamma +{\frac {1}{2n}}-{\frac {1}{12n^{2}}}+{\frac {1}{120n^{4}}}-\varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>12</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>120</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{n}=\ln n+\gamma +{\frac {1}{2n}}-{\frac {1}{12n^{2}}}+{\frac {1}{120n^{4}}}-\varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/190051a902445567cbec9ad845f34cd9c78cf9e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:42.293ex; height:5.509ex;" alt="{\displaystyle H_{n}=\ln n+\gamma +{\frac {1}{2n}}-{\frac {1}{12n^{2}}}+{\frac {1}{120n^{4}}}-\varepsilon }"></span>, burada <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;\varepsilon &lt;{\frac {1}{252n^{6}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>&#x03B5;<!-- ε --></mi> <mo>&lt;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>252</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;\varepsilon &lt;{\frac {1}{252n^{6}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a253cb043ead35fb9963e3d76766250543eba22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:15.862ex; height:5.509ex;" alt="{\displaystyle 0&lt;\varepsilon &lt;{\frac {1}{252n^{6}}}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Notlar">Notlar</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;veaction=edit&amp;section=6" title="Değiştirilen bölüm: Notlar" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;action=edit&amp;section=6" title="Bölümün kaynak kodunu değiştir: Notlar"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r32805677">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-count:2}.mw-parser-output .reflist-columns-3{column-count:3}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><strong><a href="#cite_ref-1">^</a></strong> <span class="reference-text">Krämer 2005</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Kaynakça"><span id="Kaynak.C3.A7a"></span>Kaynakça</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;veaction=edit&amp;section=7" title="Değiştirilen bölüm: Kaynakça" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;action=edit&amp;section=7" title="Bölümün kaynak kodunu değiştir: Kaynakça"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite class="kaynak dergi">Borwein, Jonathan M., David M. Bradley, Richard E. Crandall (2000). "<a rel="nofollow" class="external text" href="http://www.maths.ex.ac.uk/~mwatkins/zeta/borwein1.pdf">Computational Strategies for the Riemann Zeta Function</a>". <i>Journal of Computational and Applied Mathematics</i>. Cilt&#160;121. s.&#160;11.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=%5Bhttp%3A%2F%2Fwww.maths.ex.ac.uk%2F~mwatkins%2Fzeta%2Fborwein1.pdf+Computational+Strategies+for+the+Riemann+Zeta+Function%5D&amp;rft.pages=11&amp;rft.date=2000&amp;rft.au=Borwein%2C+Jonathan+M.%2C+David+M.+Bradley%2C+Richard+E.+Crandall&amp;rfr_id=info%3Asid%2Ftr.wikipedia.org%3AEuler-Mascheroni+sabiti" class="Z3988"><span style="display:none;">&#160;</span></span> <span style="font-size:100%" class="error citation-comment"><code style="color:inherit; border:inherit; padding:inherit;">&#124;başlık=</code> dış bağlantı (<a href="/wiki/Yard%C4%B1m:KB1_hatalar%C4%B1#param_has_ext_link" title="Yardım:KB1 hataları">yardım</a>)</span><span class="citation-comment" style="display:none; color:#33aa33; margin-left:0.3em">KB1 bakım: Birden fazla ad: yazar listesi (<a href="/wiki/Kategori:KB1_bak%C4%B1m:_Birden_fazla_ad:_yazar_listesi" title="Kategori:KB1 bakım: Birden fazla ad: yazar listesi">link</a>) </span> Derives γ as sums over Riemann zeta functions.</li> <li>Gourdon, Xavier, and Sebah, P. (2002) "<a rel="nofollow" class="external text" href="http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.html">Collection of formulas for Euler's constant, γ.</a> 12 Aralık 2009 tarihinde <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> sitesinde <a rel="nofollow" class="external text" href="https://web.archive.org/web/20091212002936/http://numbers.computation.free.fr/Constants/Gamma/gammaFormulas.html">arşivlendi</a>."</li> <li>----- (2004) "<a rel="nofollow" class="external text" href="http://numbers.computation.free.fr/Constants/Gamma/gamma.html">The Euler constant: γ.</a> 28 Nisan 2009 tarihinde <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> sitesinde <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090428001402/http://numbers.computation.free.fr/Constants/Gamma/gamma.html">arşivlendi</a>."</li> <li><a href="/wiki/Donald_Knuth" title="Donald Knuth">Donald Knuth</a> (1997) <i><a href="/wiki/The_Art_of_Computer_Programming" title="The Art of Computer Programming">The Art of Computer Programming</a>, Vol. 1</i>, 3rd ed. Addison-Wesley. <a href="/wiki/%C3%96zel:KitapKaynaklar%C4%B1/0201896834" class="internal mw-magiclink-isbn">ISBN 0-201-89683-4</a></li> <li>Krämer, Stefan (2005) <i>Die Eulersche Konstante γ und verwandte Zahlen</i>. Diplomarbeit, Universität Göttingen.</li> <li>Sondow, Jonathan (1998) "<a rel="nofollow" class="external text" href="https://web.archive.org/web/20060808201434/http://home.earthlink.net/~jsondow/id8.html">An antisymmetric formula for Euler's constant,</a>" <i><a href="/w/index.php?title=Mathematics_Magazine&amp;action=edit&amp;redlink=1" class="new" title="Mathematics Magazine (sayfa mevcut değil)">Mathematics Magazine</a> 71</i>: 219-220.</li> <li>------ (2002) "<a rel="nofollow" class="external text" href="http://arXiv.org/abs/math.NT/0211075">A hypergeometric approach, via linear forms involving logarithms, to irrationality criteria for Euler's constant.</a>" With an Appendix by <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130523085959/http://wain.mi.ras.ru/zlobin/">Sergey Zlobin</a>, Mathematica Slovaca 59<i>: 307-314.</i></li> <li>------ (2003) "<a rel="nofollow" class="external text" href="http://arXiv.org/abs/math.CA/0306008">An infinite product for e<sup>γ</sup> via hypergeometric formulas for Euler's constant, γ.</a>"</li> <li>------ (2003a) "<a rel="nofollow" class="external text" href="http://arXiv.org/abs/math.NT/0209070">Criteria for irrationality of Euler's constant,</a>" <i><a href="/w/index.php?title=Proceedings_of_the_American_Mathematical_Society&amp;action=edit&amp;redlink=1" class="new" title="Proceedings of the American Mathematical Society (sayfa mevcut değil)">Proceedings of the American Mathematical Society</a> 131</i>: 3335-3344.</li> <li>------ (2005) "<a rel="nofollow" class="external text" href="http://arXiv.org/abs/math.CA/0211148">Double integrals for Euler's constant and ln 4/π and an analog of Hadjicostas's formula,</a>" <i><a href="/w/index.php?title=American_Mathematical_Monthly&amp;action=edit&amp;redlink=1" class="new" title="American Mathematical Monthly (sayfa mevcut değil)">American Mathematical Monthly</a> 112</i>: 61-65.</li> <li>------ (2005) <a rel="nofollow" class="external text" href="http://arXiv.org/abs/math.NT/0508042">"New Vacca-type rational series for Euler's constant and its 'alternating' analog ln 4/π.</a>"</li> <li>------ and <a href="/w/index.php?title=Wadim_Zudilin&amp;action=edit&amp;redlink=1" class="new" title="Wadim Zudilin (sayfa mevcut değil)">Wadim Zudilin</a> (2006), <a rel="nofollow" class="external text" href="http://arXiv.org/abs/math.NT/0304021">"Euler's constant, q-logarithms, and formulas of Ramanujan and Gosper,"</a> Ramanujan Journal 12<i>: 225-244.</i></li> <li>G. Vacca (1926), "Nuova serie per la costante di Eulero, <i>C</i> = 0,577…". <i>Rendiconti, Accademia Nazionale dei Lincei, Roma, Classe di Scienze Fisiche, Matematiche e Naturali</i> (6) 3, 19–20.</li> <li><a href="/w/index.php?title=James_Whitbread_Lee_Glaisher&amp;action=edit&amp;redlink=1" class="new" title="James Whitbread Lee Glaisher (sayfa mevcut değil)">James Whitbread Lee Glaisher</a> (1872), "On the history of Euler's constant". Messenger of Mathematics. New Series, vol.1, p.&#160;25-30, JFM 03.0130.01</li> <li>Carl Anton Bretschneider (1837). "Theoriae logarithmi integralis lineamenta nova". Crelle Journal, vol.17, p.&#160;257-285 (submitted 1835)</li> <li><a href="/w/index.php?title=Lorenzo_Mascheroni&amp;action=edit&amp;redlink=1" class="new" title="Lorenzo Mascheroni (sayfa mevcut değil)">Lorenzo Mascheroni</a> (1790). "Adnotationes ad calculum integralem Euleri, in quibus nonnulla problemata ab Eulero proposita resolvuntur". Galeati, Ticini.</li> <li><a href="/w/index.php?title=Lorenzo_Mascheroni&amp;action=edit&amp;redlink=1" class="new" title="Lorenzo Mascheroni (sayfa mevcut değil)">Lorenzo Mascheroni</a> (1792). "Adnotationes ad calculum integralem Euleri. In quibus nonnullae formulae ab Eulero propositae evolvuntur". Galeati, Ticini. Both online at: <a rel="nofollow" class="external free" href="http://books.google.de/books?id=XkgDAAAAQAAJ">http://books.google.de/books?id=XkgDAAAAQAAJ</a> 24 Ekim 2012 tarihinde <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> sitesinde <a rel="nofollow" class="external text" href="https://web.archive.org/web/20121024193226/http://books.google.de/books?id=XkgDAAAAQAAJ">arşivlendi</a>.</li> <li><cite class="kaynak kitap">Havil, Julian (2003). <a rel="nofollow" class="external text" href="https://archive.org/details/gammaexploringeu0000havi"><i>Gamma: Exploring Euler's Constant</i></a>. Princeton University Press. <a href="/wiki/Uluslararas%C4%B1_Standart_Kitap_Numaras%C4%B1" title="Uluslararası Standart Kitap Numarası">ISBN</a>&#160;<a href="/wiki/%C3%96zel:KitapKaynaklar%C4%B1/0-691-09983-9" title="Özel:KitapKaynakları/0-691-09983-9">0-691-09983-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gamma%3A+Exploring+Euler%27s+Constant&amp;rft.pub=Princeton+University+Press&amp;rft.date=2003&amp;rft.isbn=0-691-09983-9&amp;rft.aulast=Havil&amp;rft.aufirst=Julian&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgammaexploringeu0000havi&amp;rfr_id=info%3Asid%2Ftr.wikipedia.org%3AEuler-Mascheroni+sabiti" class="Z3988"><span style="display:none;">&#160;</span></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Dış_bağlantılar"><span id="D.C4.B1.C5.9F_ba.C4.9Flant.C4.B1lar"></span>Dış bağlantılar</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;veaction=edit&amp;section=8" title="Değiştirilen bölüm: Dış bağlantılar" class="mw-editsection-visualeditor"><span>değiştir</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Euler-Mascheroni_sabiti&amp;action=edit&amp;section=8" title="Bölümün kaynak kodunu değiştir: Dış bağlantılar"><span>kaynağı değiştir</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite class="kaynak web">Krämer, Stefan. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131017040641/http://www.math.uni-goettingen.de/skraemer/gamma.html">"Euler's Constant γ=0.577... Its Mathematics and History"</a>. 17 Ekim 2017 tarihinde <a rel="nofollow" class="external text" href="http://www.math.uni-goettingen.de/skraemer/gamma.html">kaynağından</a> arşivlendi.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Euler%27s+Constant+%CE%B3%3D0.577...+Its+Mathematics+and+History&amp;rft.au=Kr%C3%A4mer%2C+Stefan&amp;rft_id=http%3A%2F%2Fwww.math.uni-goettingen.de%2Fskraemer%2Fgamma.html&amp;rfr_id=info%3Asid%2Ftr.wikipedia.org%3AEuler-Mascheroni+sabiti" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="kaynak web"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20071210200421/http://home.earthlink.net/~jsondow/">"Jonathan Sondow"</a>. 10 Aralık 2007 tarihinde <a rel="nofollow" class="external text" href="https://home.earthlink.net/~jsondow/">kaynağından</a> arşivlendi.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Jonathan+Sondow&amp;rft_id=http%3A%2F%2Fhome.earthlink.net%2F~jsondow%2F&amp;rfr_id=info%3Asid%2Ftr.wikipedia.org%3AEuler-Mascheroni+sabiti" class="Z3988"><span style="display:none;">&#160;</span></span></li></ul> <div role="navigation" class="navbox" aria-labelledby="Leonhard_Euler" style="padding:3px"><table class="nowraplinks collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><style data-mw-deduplicate="TemplateStyles:r25548259">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:100%}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style><div class="plainlinks hlist navbar navbar-mini"><ul><li class="nv-view"><a href="/wiki/%C5%9Eablon:Leonhard_Euler" title="Şablon:Leonhard Euler"><abbr title="Bu şablonu görüntüle" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">g</abbr></a></li><li class="nv-talk"><a href="/wiki/%C5%9Eablon_tart%C4%B1%C5%9Fma:Leonhard_Euler" title="Şablon tartışma:Leonhard Euler"><abbr title="Bu şablonu tartış" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">t</abbr></a></li><li class="nv-edit"><a class="external text" href="https://tr.wikipedia.org/w/index.php?title=%C5%9Eablon:Leonhard_Euler&amp;action=edit"><abbr title="Bu şablonu değiştir" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">d</abbr></a></li></ul></div><div id="Leonhard_Euler" style="font-size:114%;margin:0 4em"><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Çalışmalar</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><i><a href="/wiki/Mechanica" title="Mechanica">Mechanica</a></i></li> <li><i><a href="/w/index.php?title=Introductio_in_analysin_infinitorum&amp;action=edit&amp;redlink=1" class="new" title="Introductio in analysin infinitorum (sayfa mevcut değil)">Introductio in analysin infinitorum</a></i></li> <li><i><a href="/w/index.php?title=Institutiones_calculi_differentialis&amp;action=edit&amp;redlink=1" class="new" title="Institutiones calculi differentialis (sayfa mevcut değil)">Institutiones calculi differentialis</a></i></li> <li><i><a href="/w/index.php?title=Institutiones_calculi_integralis&amp;action=edit&amp;redlink=1" class="new" title="Institutiones calculi integralis (sayfa mevcut değil)">Institutiones calculi integralis</a></i></li> <li><i><a href="/w/index.php?title=Letters_to_a_German_Princess&amp;action=edit&amp;redlink=1" class="new" title="Letters to a German Princess (sayfa mevcut değil)">Letters to a German Princess</a></i></li></ul> </div></td><td class="navbox-image" rowspan="3" style="width:1px;padding:0px 0px 0px 2px"><div><span typeof="mw:File"><a href="/wiki/Dosya:Leonhard_Euler.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Leonhard_Euler.jpg/90px-Leonhard_Euler.jpg" decoding="async" width="90" height="116" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Leonhard_Euler.jpg/135px-Leonhard_Euler.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Leonhard_Euler.jpg/180px-Leonhard_Euler.jpg 2x" data-file-width="4672" data-file-height="6040" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Kavramlar <br />ve teoriler</th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/w/index.php?title=Euler-Lagrange_denklemi&amp;action=edit&amp;redlink=1" class="new" title="Euler-Lagrange denklemi (sayfa mevcut değil)">Euler-Lagrange denklemi</a></li> <li><a href="/w/index.php?title=Euler-Lotka_denklemi&amp;action=edit&amp;redlink=1" class="new" title="Euler-Lotka denklemi (sayfa mevcut değil)">Euler-Lotka denklemi</a></li> <li><a href="/w/index.php?title=Euler-Maclaurin_form%C3%BCl%C3%BC&amp;action=edit&amp;redlink=1" class="new" title="Euler-Maclaurin formülü (sayfa mevcut değil)">Euler-Maclaurin formülü</a></li> <li><a href="/w/index.php?title=Euler-Maruyama_y%C3%B6ntemi&amp;action=edit&amp;redlink=1" class="new" title="Euler-Maruyama yöntemi (sayfa mevcut değil)">Euler-Maruyama yöntemi</a></li> <li><a class="mw-selflink selflink">Euler-Mascheroni sabiti</a></li> <li><a href="/w/index.php?title=Euler-Poisson-Darboux_denklemi&amp;action=edit&amp;redlink=1" class="new" title="Euler-Poisson-Darboux denklemi (sayfa mevcut değil)">Euler-Poisson-Darboux denklemi</a></li> <li><a href="/w/index.php?title=Euler-Rodrigues_form%C3%BCl%C3%BC&amp;action=edit&amp;redlink=1" class="new" title="Euler-Rodrigues formülü (sayfa mevcut değil)">Euler-Rodrigues formülü</a></li> <li><a href="/w/index.php?title=Euler-Tricomi_denklemi&amp;action=edit&amp;redlink=1" class="new" title="Euler-Tricomi denklemi (sayfa mevcut değil)">Euler-Tricomi denklemi</a></li> <li><a href="/w/index.php?title=Euler_s%C3%BCrekli_kesirler_form%C3%BCl%C3%BC&amp;action=edit&amp;redlink=1" class="new" title="Euler sürekli kesirler formülü (sayfa mevcut değil)">Euler sürekli kesirler formülü</a></li> <li><a href="/w/index.php?title=Euler_kritik_y%C3%BCk%C3%BC&amp;action=edit&amp;redlink=1" class="new" title="Euler kritik yükü (sayfa mevcut değil)">Euler kritik yükü</a></li> <li><a href="/wiki/Euler_form%C3%BCl%C3%BC" title="Euler formülü">Euler formülü</a></li> <li><a href="/w/index.php?title=Euler_d%C3%B6rt-kare_%C3%B6zde%C5%9Fli%C4%9Fi&amp;action=edit&amp;redlink=1" class="new" title="Euler dört-kare özdeşliği (sayfa mevcut değil)">Euler dört-kare özdeşliği</a></li> <li><a href="/wiki/Euler_%C3%B6zde%C5%9Fli%C4%9Fi" title="Euler özdeşliği">Euler özdeşliği</a></li> <li><a href="/w/index.php?title=Euler_pompa_ve_trib%C3%BCn_denklemi&amp;action=edit&amp;redlink=1" class="new" title="Euler pompa ve tribün denklemi (sayfa mevcut değil)">Euler pompa ve tribün denklemi</a></li> <li><a href="/w/index.php?title=Euler_d%C3%B6nme_teoremi&amp;action=edit&amp;redlink=1" class="new" title="Euler dönme teoremi (sayfa mevcut değil)">Euler dönme teoremi</a></li> <li><a href="/w/index.php?title=Euler_kuvvetler_toplam%C4%B1_varsay%C4%B1m%C4%B1&amp;action=edit&amp;redlink=1" class="new" title="Euler kuvvetler toplamı varsayımı (sayfa mevcut değil)">Euler kuvvetler toplamı varsayımı</a></li> <li><a href="/wiki/Euler_teoremi" title="Euler teoremi">Euler teoremi</a></li> <li><a href="/w/index.php?title=Euler_denklemleri_(ak%C4%B1%C5%9Fkanlar_dinami%C4%9Fi)&amp;action=edit&amp;redlink=1" class="new" title="Euler denklemleri (akışkanlar dinamiği) (sayfa mevcut değil)">Euler denklemleri (akışkanlar dinamiği)</a></li> <li><a href="/w/index.php?title=Euler_fonksiyonu&amp;action=edit&amp;redlink=1" class="new" title="Euler fonksiyonu (sayfa mevcut değil)">Euler fonksiyonu</a></li> <li><a href="/wiki/Euler_y%C3%B6ntemi" title="Euler yöntemi">Euler yöntemi</a></li> <li><a href="/wiki/Euler_say%C4%B1lar%C4%B1" title="Euler sayıları">Euler sayıları</a></li> <li><a href="/wiki/Euler_say%C4%B1s%C4%B1_(fizik)" title="Euler sayısı (fizik)">Euler sayısı (fizik)</a></li> <li><a href="/w/index.php?title=Euler-Bernoulli_kiri%C5%9F_teorisi&amp;action=edit&amp;redlink=1" class="new" title="Euler-Bernoulli kiriş teorisi (sayfa mevcut değil)">Euler-Bernoulli kiriş teorisi</a></li> <li><a href="/wiki/Euler_teoremi_(geometri)" title="Euler teoremi (geometri)">Euler teoremi (geometri)</a></li> <li><a href="/wiki/Euler_spirali" title="Euler spirali">Euler spirali</a></li> <li><a href="/wiki/Euler-Fuss_denklemi" title="Euler-Fuss denklemi">Euler-Fuss denklemi</a></li> <li><a href="/wiki/Euler_d%C3%B6rtgen_teoremi" title="Euler dörtgen teoremi">Euler dörtgen teoremi</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Diğer</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/w/index.php?title=Leonhard_Euler%27in_ad%C4%B1n%C4%B1_ta%C5%9F%C4%B1yan_%C5%9Feylerin_listesi&amp;action=edit&amp;redlink=1" class="new" title="Leonhard Euler&#39;in adını taşıyan şeylerin listesi (sayfa mevcut değil)">Aynı adı taşıyan</a></li> <li><a href="/w/index.php?title=Euler_Committee&amp;action=edit&amp;redlink=1" class="new" title="Euler Committee (sayfa mevcut değil)">Euler Committee</a></li> <li><a href="/w/index.php?title=Johann_Euler&amp;action=edit&amp;redlink=1" class="new" title="Johann Euler (sayfa mevcut değil)">Johann Euler</a></li> <li><a href="/wiki/Johann_Bernoulli" title="Johann Bernoulli">Johann Bernoulli</a> (<a href="/wiki/Bernoulli_ailesi" title="Bernoulli ailesi">Bernoulli ailesi</a>)</li> <li><a href="/w/index.php?title=Georg_Gsell&amp;action=edit&amp;redlink=1" class="new" title="Georg Gsell (sayfa mevcut değil)">Georg Gsell</a></li> <li><a href="/w/index.php?title=Merian_ailesi&amp;action=edit&amp;redlink=1" class="new" title="Merian ailesi (sayfa mevcut değil)">Merian ailesi</a></li> <li><a href="/w/index.php?title=Basel_Okulu_(matematik)&amp;action=edit&amp;redlink=1" class="new" title="Basel Okulu (matematik) (sayfa mevcut değil)">Basel Okulu (matematik)</a></li></ul> </div></td></tr></tbody></table></div> <div role="navigation" class="navbox authority-control" aria-labelledby="Otorite_kontrolü_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Bunu_Vikiveri&amp;#039;de_düzenleyin&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q273023&amp;#124;class=noprint&amp;#124;Bunu_Vikiveri&amp;#039;de_düzenleyin" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th id="Otorite_kontrolü_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=Bunu_Vikiveri&amp;#039;de_düzenleyin&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q273023&amp;#124;class=noprint&amp;#124;Bunu_Vikiveri&amp;#039;de_düzenleyin" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Otorite_kontrol%C3%BC" title="Otorite kontrolü">Otorite kontrolü</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q273023" title="Bunu Vikiveri&#39;de düzenleyin"><img alt="Bunu Vikiveri&#39;de düzenleyin" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="nowrap"><a href="/wiki/T%C3%BCmle%C5%9Fik_Otorite_Dosyas%C4%B1" title="Tümleşik Otorite Dosyası">GND</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4227778-4">4227778-4</a></span></span></li> <li><span class="nowrap"><a href="/wiki/%C3%87ek_Cumhuriyeti_Mill%C3%AE_K%C3%BCt%C3%BCphanesi" title="Çek Cumhuriyeti Millî Kütüphanesi">NKC</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph301323&amp;CON_LNG=ENG">ph301323</a></span></span></li></ul> </div></td></tr></tbody></table></div></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">"<a dir="ltr" href="https://tr.wikipedia.org/w/index.php?title=Euler-Mascheroni_sabiti&amp;oldid=33825792">https://tr.wikipedia.org/w/index.php?title=Euler-Mascheroni_sabiti&amp;oldid=33825792</a>" sayfasından alınmıştır</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%C3%96zel:Kategoriler" title="Özel:Kategoriler">Kategori</a>: <ul><li><a href="/wiki/Kategori:Matematiksel_sabitler" title="Kategori:Matematiksel sabitler">Matematiksel sabitler</a></li><li><a href="/wiki/Kategori:Leonhard_Euler" title="Kategori:Leonhard Euler">Leonhard Euler</a></li><li><a href="/wiki/Kategori:Say%C4%B1lar_teorisinde_%C3%A7%C3%B6z%C3%BClememi%C5%9F_problemler" title="Kategori:Sayılar teorisinde çözülememiş problemler">Sayılar teorisinde çözülememiş problemler</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Gizli kategoriler: <ul><li><a href="/wiki/Kategori:Webar%C5%9Fiv_%C5%9Fablonu_wayback_ba%C4%9Flant%C4%B1lar%C4%B1" title="Kategori:Webarşiv şablonu wayback bağlantıları">Webarşiv şablonu wayback bağlantıları</a></li><li><a href="/wiki/Kategori:Kaynaks%C4%B1z_anlat%C4%B1mlar_i%C3%A7eren_maddeler" title="Kategori:Kaynaksız anlatımlar içeren maddeler">Kaynaksız anlatımlar içeren maddeler</a></li><li><a href="/wiki/Kategori:KB1_hatalar%C4%B1:_d%C4%B1%C5%9F_ba%C4%9Flant%C4%B1lar" title="Kategori:KB1 hataları: dış bağlantılar">KB1 hataları: dış bağlantılar</a></li><li><a href="/wiki/Kategori:KB1_bak%C4%B1m:_Birden_fazla_ad:_yazar_listesi" title="Kategori:KB1 bakım: Birden fazla ad: yazar listesi">KB1 bakım: Birden fazla ad: yazar listesi</a></li><li><a href="/wiki/Kategori:GND_tan%C4%B1mlay%C4%B1c%C4%B1s%C4%B1_olan_Vikipedi_maddeleri" title="Kategori:GND tanımlayıcısı olan Vikipedi maddeleri">GND tanımlayıcısı olan Vikipedi maddeleri</a></li><li><a href="/wiki/Kategori:NKC_tan%C4%B1mlay%C4%B1c%C4%B1s%C4%B1_olan_Vikipedi_maddeleri" title="Kategori:NKC tanımlayıcısı olan Vikipedi maddeleri">NKC tanımlayıcısı olan Vikipedi maddeleri</a></li><li><a href="/wiki/Kategori:ISBN_sihirli_ba%C4%9Flant%C4%B1s%C4%B1n%C4%B1_kullanan_sayfalar" title="Kategori:ISBN sihirli bağlantısını kullanan sayfalar">ISBN sihirli bağlantısını kullanan sayfalar</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Sayfa en son 09.40, 19 Eylül 2024 tarihinde değiştirildi.</li> <li id="footer-info-copyright">Metin <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.tr">Creative Commons Atıf-AynıLisanslaPaylaş Lisansı</a> altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/tr">Kullanım Şartlarını</a> ve <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/tr">Gizlilik Politikasını</a> kabul etmiş olursunuz.<br />Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan <a rel="nofollow" class="external text" href="https://www.wikimediafoundation.org/">Wikimedia Foundation, Inc.</a> tescilli markasıdır.<br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Gizlilik politikası</a></li> <li id="footer-places-about"><a href="/wiki/Vikipedi:Hakk%C4%B1nda">Vikipedi hakkında</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Vikipedi:Genel_sorumluluk_reddi">Sorumluluk reddi</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Davranış Kuralları</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Geliştiriciler</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/tr.wikipedia.org">İstatistikler</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Çerez politikası</a></li> <li id="footer-places-mobileview"><a href="//tr.m.wikipedia.org/w/index.php?title=Euler-Mascheroni_sabiti&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobil görünüm</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6b7f745dd4-gkjhp","wgBackendResponseTime":186,"wgPageParseReport":{"limitreport":{"cputime":"0.234","walltime":"0.411","ppvisitednodes":{"value":713,"limit":1000000},"postexpandincludesize":{"value":24634,"limit":2097152},"templateargumentsize":{"value":370,"limit":2097152},"expansiondepth":{"value":10,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":2813,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 276.165 1 -total"," 20.14% 55.629 1 Şablon:Leonhard_Euler"," 18.81% 51.941 1 Şablon:Dolaşım"," 16.70% 46.133 1 Şablon:Kaynak_belirt"," 16.19% 44.713 1 Şablon:Otorite_kontrolü"," 14.51% 40.080 1 Şablon:Dergi_kaynağı"," 14.40% 39.777 1 Şablon:Fix"," 12.57% 34.707 1 Şablon:Category_handler"," 9.77% 26.977 1 Şablon:Diğer_anlamı2"," 8.44% 23.318 1 Şablon:Hakkında"]},"scribunto":{"limitreport-timeusage":{"value":"0.102","limit":"10.000"},"limitreport-memusage":{"value":3255290,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-wnrtj","timestamp":"20241124211204","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Euler-Mascheroni sabiti","url":"https:\/\/tr.wikipedia.org\/wiki\/Euler-Mascheroni_sabiti","sameAs":"http:\/\/www.wikidata.org\/entity\/Q273023","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q273023","author":{"@type":"Organization","name":"Wikimedia projelerine katk\u0131da bulunanlar"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2009-11-06T19:47:24Z"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10