CINXE.COM
Search results for: thresholding.
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thresholding.</title> <meta name="description" content="Search results for: thresholding."> <meta name="keywords" content="thresholding."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thresholding." name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thresholding."> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 75</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thresholding.</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Wavelet-Based Despeckling of Synthetic Aperture Radar Images Using Adaptive and Mean Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Syed%20Musharaf%20Ali">Syed Musharaf Ali</a>, <a href="https://publications.waset.org/search?q=Muhammad%20Younus%20Javed"> Muhammad Younus Javed</a>, <a href="https://publications.waset.org/search?q=Naveed%20Sarfraz%20Khattak"> Naveed Sarfraz Khattak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper we introduced new wavelet based algorithm for speckle reduction of synthetic aperture radar images, which uses combination of undecimated wavelet transformation, wiener filter (which is an adaptive filter) and mean filter. Further more instead of using existing thresholding techniques such as sure shrinkage, Bayesian shrinkage, universal thresholding, normal thresholding, visu thresholding, soft and hard thresholding, we use brute force thresholding, which iteratively run the whole algorithm for each possible candidate value of threshold and saves each result in array and finally selects the value for threshold that gives best possible results. That is why it is slow as compared to existing thresholding techniques but gives best results under the given algorithm for speckle reduction.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Brute%20force%20thresholding" title="Brute force thresholding">Brute force thresholding</a>, <a href="https://publications.waset.org/search?q=directional%20smoothing" title=" directional smoothing"> directional smoothing</a>, <a href="https://publications.waset.org/search?q=direction%20dependent%20mask" title=" direction dependent mask"> direction dependent mask</a>, <a href="https://publications.waset.org/search?q=undecimated%20wavelet%20transformation." title=" undecimated wavelet transformation."> undecimated wavelet transformation.</a> </p> <a href="https://publications.waset.org/15655/wavelet-based-despeckling-of-synthetic-aperture-radar-images-using-adaptive-and-mean-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15655/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15655/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15655/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15655/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15655/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15655/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15655/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15655/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15655/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15655/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2880</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Nature Inspired Metaheuristic Algorithms for Multilevel Thresholding Image Segmentation - A Survey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20Deepika">C. Deepika</a>, <a href="https://publications.waset.org/search?q=J.%20Nithya"> J. Nithya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Segmentation is one of the essential tasks in image processing. Thresholding is one of the simplest techniques for performing image segmentation. Multilevel thresholding is a simple and effective technique. The primary objective of bi-level or multilevel thresholding for image segmentation is to determine a best thresholding value. To achieve multilevel thresholding various techniques has been proposed. A study of some nature inspired metaheuristic algorithms for multilevel thresholding for image segmentation is conducted. Here, we study about Particle swarm optimization (PSO) algorithm, artificial bee colony optimization (ABC), Ant colony optimization (ACO) algorithm and Cuckoo search (CS) algorithm.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ant%20colony%20optimization" title="Ant colony optimization">Ant colony optimization</a>, <a href="https://publications.waset.org/search?q=Artificial%20bee%20colony%0D%0Aoptimization" title=" Artificial bee colony optimization"> Artificial bee colony optimization</a>, <a href="https://publications.waset.org/search?q=Cuckoo%20search%20algorithm" title=" Cuckoo search algorithm"> Cuckoo search algorithm</a>, <a href="https://publications.waset.org/search?q=Image%20segmentation" title=" Image segmentation"> Image segmentation</a>, <a href="https://publications.waset.org/search?q=Multilevel%20thresholding" title=" Multilevel thresholding"> Multilevel thresholding</a>, <a href="https://publications.waset.org/search?q=Particle%20swarm%20optimization." title=" Particle swarm optimization."> Particle swarm optimization.</a> </p> <a href="https://publications.waset.org/9999738/nature-inspired-metaheuristic-algorithms-for-multilevel-thresholding-image-segmentation-a-survey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999738/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999738/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999738/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999738/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999738/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999738/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999738/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999738/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999738/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999738/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3523</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Empirical Mode Decomposition Based Denoising by Customized Thresholding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wahiba%20Mohguen">Wahiba Mohguen</a>, <a href="https://publications.waset.org/search?q=Ra%C3%AFs%20El%E2%80%99hadi%20Bekka"> Ra茂s El鈥檋adi Bekka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents a denoising method called EMD-Custom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to improve the signal to noise ratio (SNR). The method was tested on simulated data and real ECG signal, and the results were compared to the EMD-Based signal denoising methods using the soft and hard thresholding. The results showed the superior performance of the proposed EMD-Custom denoising over the traditional approach. The performances were evaluated in terms of SNR in dB, and Mean Square Error (MSE).</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Customized%20thresholding" title="Customized thresholding">Customized thresholding</a>, <a href="https://publications.waset.org/search?q=ECG%20signal" title=" ECG signal"> ECG signal</a>, <a href="https://publications.waset.org/search?q=EMD" title=" EMD"> EMD</a>, <a href="https://publications.waset.org/search?q=hard%20thresholding" title=" hard thresholding"> hard thresholding</a>, <a href="https://publications.waset.org/search?q=Soft-thresholding." title=" Soft-thresholding."> Soft-thresholding.</a> </p> <a href="https://publications.waset.org/10006844/empirical-mode-decomposition-based-denoising-by-customized-thresholding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006844/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006844/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006844/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006844/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006844/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006844/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006844/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006844/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006844/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006844/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1085</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Non-Parametric Histogram-Based Thresholding Methods for Weld Defect Detection in Radiography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Nacereddine">N. Nacereddine</a>, <a href="https://publications.waset.org/search?q=L.%20Hamami"> L. Hamami</a>, <a href="https://publications.waset.org/search?q=M.%20Tridi"> M. Tridi</a>, <a href="https://publications.waset.org/search?q=N.%20Oucief"> N. Oucief</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In non destructive testing by radiography, a perfect knowledge of the weld defect shape is an essential step to appreciate the quality of the weld and make decision on its acceptability or rejection. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of thresholding methods must be done judiciously. In this paper, performance criteria are used to conduct a comparative study of four non parametric histogram thresholding methods for automatic extraction of weld defect in radiographic images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Radiographic%20images" title="Radiographic images">Radiographic images</a>, <a href="https://publications.waset.org/search?q=non%20parametric%20methods" title=" non parametric methods"> non parametric methods</a>, <a href="https://publications.waset.org/search?q=histogram%20thresholding" title=" histogram thresholding"> histogram thresholding</a>, <a href="https://publications.waset.org/search?q=performance%20criteria." title=" performance criteria."> performance criteria.</a> </p> <a href="https://publications.waset.org/14872/non-parametric-histogram-based-thresholding-methods-for-weld-defect-detection-in-radiography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14872/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14872/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14872/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14872/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14872/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14872/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14872/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14872/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14872/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14872/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3008</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Image Thresholding for Weld Defect Extraction in Industrial Radiographic Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nafa%C3%A2%20Nacereddine">Nafa芒 Nacereddine</a>, <a href="https://publications.waset.org/search?q=Latifa%20Hamami"> Latifa Hamami</a>, <a href="https://publications.waset.org/search?q=Djemel%20Ziou"> Djemel Ziou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In non destructive testing by radiography, a perfect knowledge of the weld defect shape is an essential step to appreciate the quality of the weld and make decision on its acceptability or rejection. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of thresholding methods must be done judiciously. In this paper, performance criteria are used to conduct a comparative study of thresholding methods based on gray level histogram, 2-D histogram and locally adaptive approach for weld defect extraction in radiographic images.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=1D%20and%202D%20histogram" title="1D and 2D histogram">1D and 2D histogram</a>, <a href="https://publications.waset.org/search?q=locally%20adaptive%20approach" title=" locally adaptive approach"> locally adaptive approach</a>, <a href="https://publications.waset.org/search?q=performance%20criteria" title=" performance criteria"> performance criteria</a>, <a href="https://publications.waset.org/search?q=radiographic%20image" title=" radiographic image"> radiographic image</a>, <a href="https://publications.waset.org/search?q=thresholding" title=" thresholding"> thresholding</a>, <a href="https://publications.waset.org/search?q=weld%20defect." title=" weld defect."> weld defect.</a> </p> <a href="https://publications.waset.org/12939/image-thresholding-for-weld-defect-extraction-in-industrial-radiographic-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12939/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12939/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12939/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12939/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12939/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12939/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12939/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12939/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12939/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12939/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2342</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Color Image Segmentation and Multi-Level Thresholding by Maximization of Conditional Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.Sukesh%20Kumar">R.Sukesh Kumar</a>, <a href="https://publications.waset.org/search?q=Abhisek%20Verma"> Abhisek Verma</a>, <a href="https://publications.waset.org/search?q=Jasprit%20Singh"> Jasprit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work a novel approach for color image segmentation using higher order entropy as a textural feature for determination of thresholds over a two dimensional image histogram is discussed. A similar approach is applied to achieve multi-level thresholding in both grayscale and color images. The paper discusses two methods of color image segmentation using RGB space as the standard processing space. The threshold for segmentation is decided by the maximization of conditional entropy in the two dimensional histogram of the color image separated into three grayscale images of R, G and B. The features are first developed independently for the three ( R, G, B ) spaces, and combined to get different color component segmentation. By considering local maxima instead of the maximum of conditional entropy yields multiple thresholds for the same image which forms the basis for multilevel thresholding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=conditional%20entropy" title="conditional entropy">conditional entropy</a>, <a href="https://publications.waset.org/search?q=multi-level%20thresholding" title=" multi-level thresholding"> multi-level thresholding</a>, <a href="https://publications.waset.org/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/search?q=two%20dimensional%20image%20histogram" title=" two dimensional image histogram"> two dimensional image histogram</a> </p> <a href="https://publications.waset.org/4566/color-image-segmentation-and-multi-level-thresholding-by-maximization-of-conditional-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4566/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4566/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4566/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4566/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4566/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4566/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4566/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4566/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4566/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4566/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2998</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> An Efficient Adaptive Thresholding Technique for Wavelet Based Image Denoising</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=D.Gnanadurai">D.Gnanadurai</a>, <a href="https://publications.waset.org/search?q=V.Sadasivam"> V.Sadasivam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This frame work describes a computationally more efficient and adaptive threshold estimation method for image denoising in the wavelet domain based on Generalized Gaussian Distribution (GGD) modeling of subband coefficients. In this proposed method, the choice of the threshold estimation is carried out by analysing the statistical parameters of the wavelet subband coefficients like standard deviation, arithmetic mean and geometrical mean. The noisy image is first decomposed into many levels to obtain different frequency bands. Then soft thresholding method is used to remove the noisy coefficients, by fixing the optimum thresholding value by the proposed method. Experimental results on several test images by using this method show that this method yields significantly superior image quality and better Peak Signal to Noise Ratio (PSNR). Here, to prove the efficiency of this method in image denoising, we have compared this with various denoising methods like wiener filter, Average filter, VisuShrink and BayesShrink. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Wavelet%20Transform" title="Wavelet Transform">Wavelet Transform</a>, <a href="https://publications.waset.org/search?q=Gaussian%20Noise" title=" Gaussian Noise"> Gaussian Noise</a>, <a href="https://publications.waset.org/search?q=ImageDenoising" title=" ImageDenoising"> ImageDenoising</a>, <a href="https://publications.waset.org/search?q=Filter%20Banks%20and%20Thresholding." title=" Filter Banks and Thresholding."> Filter Banks and Thresholding.</a> </p> <a href="https://publications.waset.org/572/an-efficient-adaptive-thresholding-technique-for-wavelet-based-image-denoising" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/572/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/572/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/572/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/572/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/572/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/572/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/572/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/572/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/572/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/572/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2907</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Fragile Watermarking for Color Images Using Thresholding Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kuo-Cheng%20Liu">Kuo-Cheng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we propose ablock-wise watermarking scheme for color image authentication to resist malicious tampering of digital media. The thresholding technique is incorporated into the scheme such that the tampered region of the color image can be recovered with high quality while the proofing result is obtained. The watermark for each block consists of its dual authentication data and the corresponding feature information. The feature information for recovery iscomputed bythe thresholding technique. In the proofing process, we propose a dual-option parity check method to proof the validity of image blocks. In the recovery process, the feature information of each block embedded into the color image is rebuilt for high quality recovery. The simulation results show that the proposed watermarking scheme can effectively proof the tempered region with high detection rate and can recover the tempered region with high quality.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=thresholding%20technique" title="thresholding technique">thresholding technique</a>, <a href="https://publications.waset.org/search?q=tamper%20proofing" title=" tamper proofing"> tamper proofing</a>, <a href="https://publications.waset.org/search?q=tamper%0D%0Arecovery" title=" tamper recovery"> tamper recovery</a> </p> <a href="https://publications.waset.org/6665/fragile-watermarking-for-color-images-using-thresholding-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6665/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6665/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6665/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6665/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6665/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6665/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6665/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6665/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6665/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6665/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1632</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Restoration of Noisy Document Images with an Efficient Bi-Level Adaptive Thresholding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Abhijit%20Mitra">Abhijit Mitra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An effective approach for extracting document images from a noisy background is introduced. The entire scheme is divided into three sub- stechniques – the initial preprocessing operations for noise cluster tightening, introduction of a new thresholding method by maximizing the ratio of stan- dard deviations of the combined effect on the image to the sum of weighted classes and finally the image restoration phase by image binarization utiliz- ing the proposed optimum threshold level. The proposed method is found to be efficient compared to the existing schemes in terms of computational complexity as well as speed with better noise rejection.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Document%20image%20extraction" title="Document image extraction">Document image extraction</a>, <a href="https://publications.waset.org/search?q=Preprocessing" title=" Preprocessing"> Preprocessing</a>, <a href="https://publications.waset.org/search?q=Ratio%20of%20stan-dard%20deviations" title=" Ratio of stan-dard deviations"> Ratio of stan-dard deviations</a>, <a href="https://publications.waset.org/search?q=Bi-level%20adaptive%20thresholding." title=" Bi-level adaptive thresholding."> Bi-level adaptive thresholding.</a> </p> <a href="https://publications.waset.org/15663/restoration-of-noisy-document-images-with-an-efficient-bi-level-adaptive-thresholding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15663/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15663/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15663/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15663/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15663/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15663/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15663/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15663/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15663/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15663/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1457</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Spectral Entropy Employment in Speech Enhancement based on Wavelet Packet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Talbi%20Mourad">Talbi Mourad</a>, <a href="https://publications.waset.org/search?q=Salhi%20Lotfi"> Salhi Lotfi</a>, <a href="https://publications.waset.org/search?q=Ch%C3%A9rif%20Adnen"> Ch茅rif Adnen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this work, we are interested in developing a speech denoising tool by using a discrete wavelet packet transform (DWPT). This speech denoising tool will be employed for applications of recognition, coding and synthesis. For noise reduction, instead of applying the classical thresholding technique, some wavelet packet nodes are set to zero and the others are thresholded. To estimate the non stationary noise level, we employ the spectral entropy. A comparison of our proposed technique to classical denoising methods based on thresholding and spectral subtraction is made in order to evaluate our approach. The experimental implementation uses speech signals corrupted by two sorts of noise, white and Volvo noises. The obtained results from listening tests show that our proposed technique is better than spectral subtraction. The obtained results from SNR computation show the superiority of our technique when compared to the classical thresholding method using the modified hard thresholding function based on u-law algorithm.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Enhancement" title="Enhancement">Enhancement</a>, <a href="https://publications.waset.org/search?q=spectral%20subtraction" title=" spectral subtraction"> spectral subtraction</a>, <a href="https://publications.waset.org/search?q=SNR" title=" SNR"> SNR</a>, <a href="https://publications.waset.org/search?q=discrete%0D%0Awavelet%20packet%20transform" title=" discrete wavelet packet transform"> discrete wavelet packet transform</a>, <a href="https://publications.waset.org/search?q=spectral%20entropy%20Histogram" title=" spectral entropy Histogram"> spectral entropy Histogram</a> </p> <a href="https://publications.waset.org/2477/spectral-entropy-employment-in-speech-enhancement-based-on-wavelet-packet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2477/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2477/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2477/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2477/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2477/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2477/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2477/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2477/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2477/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2477/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1992</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Analysis of Image Segmentation Techniques for Diagnosis of Dental Caries in X-ray Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.%20Geetha">V. Geetha</a>, <a href="https://publications.waset.org/search?q=K.%20S.%20Aprameya"> K. S. Aprameya </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Early diagnosis of dental caries is essential for maintaining dental health. In this paper, method for diagnosis of dental caries is proposed using Laplacian filter, adaptive thresholding, texture analysis and Support Vector Machine (SVM) classifier. Analysis of the proposed method is compared with Otsu thresholding, watershed segmentation and active contouring method. Adaptive thresholding has comparatively better performance with 96.9% accuracy and 96.1% precision. The results are validated using statistical method, two-way ANOVA, at significant level of 5%, that shows the interaction of proposed method on performance parameter measures are significant. Hence the proposed technique could be used for detection of dental caries in automated computer assisted diagnosis system.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computer%20assisted%20diagnosis" title="Computer assisted diagnosis">Computer assisted diagnosis</a>, <a href="https://publications.waset.org/search?q=dental%20caries" title=" dental caries"> dental caries</a>, <a href="https://publications.waset.org/search?q=dental%20radiography" title=" dental radiography"> dental radiography</a>, <a href="https://publications.waset.org/search?q=image%20segmentation." title=" image segmentation."> image segmentation.</a> </p> <a href="https://publications.waset.org/10010012/analysis-of-image-segmentation-techniques-for-diagnosis-of-dental-caries-in-x-ray-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010012/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010012/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010012/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010012/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010012/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010012/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010012/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010012/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010012/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010012/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1154</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Scintigraphic Image Coding of Region of Interest Based On SPIHT Algorithm Using Global Thresholding and Huffman Coding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Seddiki">A. Seddiki</a>, <a href="https://publications.waset.org/search?q=M.%20Djebbouri"> M. Djebbouri</a>, <a href="https://publications.waset.org/search?q=D.%20Guerchi"> D. Guerchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. Many current compression schemes provide a very high compression rate but with considerable loss of quality. On the other hand, in some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to the lossless compression in the region of interest of Scintigraphic images based on SPIHT algorithm and global transform thresholding using Huffman coding.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Global%20Thresholding%20Transform" title="Global Thresholding Transform">Global Thresholding Transform</a>, <a href="https://publications.waset.org/search?q=Huffman%20Coding" title=" Huffman Coding"> Huffman Coding</a>, <a href="https://publications.waset.org/search?q=Region%20of%20Interest" title=" Region of Interest"> Region of Interest</a>, <a href="https://publications.waset.org/search?q=SPIHT%20Coding" title=" SPIHT Coding"> SPIHT Coding</a>, <a href="https://publications.waset.org/search?q=Scintigraphic%20images." title=" Scintigraphic images."> Scintigraphic images.</a> </p> <a href="https://publications.waset.org/9999952/scintigraphic-image-coding-of-region-of-interest-based-on-spiht-algorithm-using-global-thresholding-and-huffman-coding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999952/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999952/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999952/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999952/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999952/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999952/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999952/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999952/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999952/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999952/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1979</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Histogram Slicing to Better Reveal Special Thermal Objects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Ratna%20Sulistiyanti">S. Ratna Sulistiyanti</a>, <a href="https://publications.waset.org/search?q=Adhi%20Susanto"> Adhi Susanto</a>, <a href="https://publications.waset.org/search?q=Thomas%20Sri%20Widodo"> Thomas Sri Widodo</a>, <a href="https://publications.waset.org/search?q=Gede%20Bayu%20Suparta"> Gede Bayu Suparta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an experimentation to enhance the visibility of hot objects in a thermal image acquired with ordinary digital camera is reported, after the applications of lowpass and median filters to suppress the distracting granular noises. The common thresholding and slicing techniques were used on the histogram at different gray levels, followed by a subjective comparative evaluation. The best result came out with the threshold level 115 and the number of slices 3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=enhance" title="enhance">enhance</a>, <a href="https://publications.waset.org/search?q=thermal%20image" title=" thermal image"> thermal image</a>, <a href="https://publications.waset.org/search?q=thresholding%20and%20slicingtechniques" title=" thresholding and slicingtechniques"> thresholding and slicingtechniques</a>, <a href="https://publications.waset.org/search?q=granular%20noise" title=" granular noise"> granular noise</a>, <a href="https://publications.waset.org/search?q=hot%20objects." title=" hot objects."> hot objects.</a> </p> <a href="https://publications.waset.org/13498/histogram-slicing-to-better-reveal-special-thermal-objects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13498/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13498/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13498/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13498/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13498/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13498/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13498/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13498/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13498/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13498/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1735</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Journals Subheadlines Text Extraction Using Wavelet Thresholding and New Projection Profile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Davod%20Zaravi">Davod Zaravi</a>, <a href="https://publications.waset.org/search?q=Habib%20Rostami"> Habib Rostami</a>, <a href="https://publications.waset.org/search?q=Alireza%20Malahzaheh"> Alireza Malahzaheh</a>, <a href="https://publications.waset.org/search?q=S.%20S.%20Mortazavi"> S. S. Mortazavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper a new robust and efficient algorithm to automatic text extraction from colored book and journal cover sheets is proposed. First, we perform wavelet transform. Next for edge detecting from detail wavelet coefficient, we use dynamic threshold. By blurring approximate coefficients with alternative heuristic thresholding, achieve effective edge,. Afterward, with ROI technique get binary image. Finally text boxes would be extracted with new projection profile.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Text%20extraction" title="Text extraction">Text extraction</a>, <a href="https://publications.waset.org/search?q=colored%20cover%20sheet" title=" colored cover sheet"> colored cover sheet</a>, <a href="https://publications.waset.org/search?q=wavelet%20threshold" title=" wavelet threshold"> wavelet threshold</a>, <a href="https://publications.waset.org/search?q=region%20of%20interest." title=" region of interest."> region of interest.</a> </p> <a href="https://publications.waset.org/5701/journals-subheadlines-text-extraction-using-wavelet-thresholding-and-new-projection-profile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5701/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5701/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5701/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5701/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5701/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5701/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5701/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5701/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5701/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5701/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1650</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Hardware Centric Machine Vision for High Precision Center of Gravity Calculation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Xin%20Cheng">Xin Cheng</a>, <a href="https://publications.waset.org/search?q=Benny%20Th%C3%B6rnberg"> Benny Th枚rnberg</a>, <a href="https://publications.waset.org/search?q=Abdul%20Waheed%20Malik"> Abdul Waheed Malik</a>, <a href="https://publications.waset.org/search?q=Najeem%20Lawal"> Najeem Lawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a hardware oriented method for real-time measurements of object-s position in video. The targeted application area is light spots used as references for robotic navigation. Different algorithms for dynamic thresholding are explored in combination with component labeling and Center Of Gravity (COG) for highest possible precision versus Signal-to-Noise Ratio (SNR). This method was developed with a low hardware cost in focus having only one convolution operation required for preprocessing of data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dynamic%20thresholding" title="Dynamic thresholding">Dynamic thresholding</a>, <a href="https://publications.waset.org/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/search?q=position%20measurement" title=" position measurement"> position measurement</a>, <a href="https://publications.waset.org/search?q=sub-pixel%20precision" title=" sub-pixel precision"> sub-pixel precision</a>, <a href="https://publications.waset.org/search?q=center%20of%20gravity." title=" center of gravity."> center of gravity.</a> </p> <a href="https://publications.waset.org/15570/hardware-centric-machine-vision-for-high-precision-center-of-gravity-calculation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15570/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15570/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15570/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15570/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15570/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15570/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15570/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15570/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15570/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15570/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2353</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Speckle Reducing Contourlet Transform for Medical Ultrasound Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.S.%20Hiremath">P.S. Hiremath</a>, <a href="https://publications.waset.org/search?q=Prema%20T.%20Akkasaligar"> Prema T. Akkasaligar</a>, <a href="https://publications.waset.org/search?q=Sharan%20Badiger"> Sharan Badiger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speckle noise affects all coherent imaging systems including medical ultrasound. In medical images, noise suppression is a particularly delicate and difficult task. A tradeoff between noise reduction and the preservation of actual image features has to be made in a way that enhances the diagnostically relevant image content. Even though wavelets have been extensively used for denoising speckle images, we have found that denoising using contourlets gives much better performance in terms of SNR, PSNR, MSE, variance and correlation coefficient. The objective of the paper is to determine the number of levels of Laplacian pyramidal decomposition, the number of directional decompositions to perform on each pyramidal level and thresholding schemes which yields optimal despeckling of medical ultrasound images, in particular. The proposed method consists of the log transformed original ultrasound image being subjected to contourlet transform, to obtain contourlet coefficients. The transformed image is denoised by applying thresholding techniques on individual band pass sub bands using a Bayes shrinkage rule. We quantify the achieved performance improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Contourlet%20transform" title="Contourlet transform">Contourlet transform</a>, <a href="https://publications.waset.org/search?q=Despeckling" title=" Despeckling"> Despeckling</a>, <a href="https://publications.waset.org/search?q=Pyramidal%20directionalfilter%20bank" title=" Pyramidal directionalfilter bank"> Pyramidal directionalfilter bank</a>, <a href="https://publications.waset.org/search?q=Thresholding." title=" Thresholding."> Thresholding.</a> </p> <a href="https://publications.waset.org/6361/speckle-reducing-contourlet-transform-for-medical-ultrasound-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6361/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6361/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6361/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6361/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6361/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6361/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6361/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6361/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6361/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6361/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2446</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> A Novel Approach to Iris Localization for Iris Biometric Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Somnath%20Dey">Somnath Dey</a>, <a href="https://publications.waset.org/search?q=Debasis%20Samanta"> Debasis Samanta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Iris-based biometric system is gaining its importance in several applications. However, processing of iris biometric is a challenging and time consuming task. Detection of iris part in an eye image poses a number of challenges such as, inferior image quality, occlusion of eyelids and eyelashes etc. Due to these problems it is not possible to achieve 100% accuracy rate in any iris-based biometric authentication systems. Further, iris detection is a computationally intensive task in the overall iris biometric processing. In this paper, we address these two problems and propose a technique to localize iris part efficiently and accurately. We propose scaling and color level transform followed by thresholding, finding pupil boundary points for pupil boundary detection and dilation, thresholding, vertical edge detection and removal of unnecessary edges present in the eye images for iris boundary detection. Scaling reduces the search space significantly and intensity level transform is helpful for image thresholding. Experimental results show that our approach is comparable with the existing approaches. Following our approach it is possible to detect iris part with 95-99% accuracy as substantiated by our experiments on CASIA Ver-3.0, ICE 2005, UBIRIS, Bath and MMU iris image databases.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Iris%20recognition" title="Iris recognition">Iris recognition</a>, <a href="https://publications.waset.org/search?q=iris%20localization" title=" iris localization"> iris localization</a>, <a href="https://publications.waset.org/search?q=biometrics" title=" biometrics"> biometrics</a>, <a href="https://publications.waset.org/search?q=image%20processing." title=" image processing."> image processing.</a> </p> <a href="https://publications.waset.org/15231/a-novel-approach-to-iris-localization-for-iris-biometric-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15231/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15231/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15231/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15231/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15231/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15231/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15231/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15231/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15231/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15231/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3191</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Skin Lesion Segmentation Using Color Channel Optimization and Clustering-based Histogram Thresholding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rahil%20Garnavi">Rahil Garnavi</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Aldeen"> Mohammad Aldeen</a>, <a href="https://publications.waset.org/search?q=M.%20Emre%20Celebi"> M. Emre Celebi</a>, <a href="https://publications.waset.org/search?q=Alauddin%20Bhuiyan"> Alauddin Bhuiyan</a>, <a href="https://publications.waset.org/search?q=Constantinos%20Dolianitis"> Constantinos Dolianitis</a>, <a href="https://publications.waset.org/search?q=George%20Varigos"> George Varigos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic segmentation of skin lesions is the first step towards the automated analysis of malignant melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most effective color space for melanoma application. This paper proposes an automatic segmentation algorithm based on color space analysis and clustering-based histogram thresholding, a process which is able to determine the optimal color channel for detecting the borders in dermoscopy images. The algorithm is tested on a set of 30 high resolution dermoscopy images. A comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm, applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. By performing ROC analysis and ranking the metrics, it is demonstrated that the best results are obtained with the X and XoYoR color channels, resulting in an accuracy of approximately 97%. The proposed method is also compared with two state-of-theart skin lesion segmentation methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Border%20detection" title="Border detection">Border detection</a>, <a href="https://publications.waset.org/search?q=Color%20space%20analysis" title=" Color space analysis"> Color space analysis</a>, <a href="https://publications.waset.org/search?q=Dermoscopy" title=" Dermoscopy"> Dermoscopy</a>, <a href="https://publications.waset.org/search?q=Histogram%20thresholding" title="Histogram thresholding">Histogram thresholding</a>, <a href="https://publications.waset.org/search?q=Melanoma" title=" Melanoma"> Melanoma</a>, <a href="https://publications.waset.org/search?q=Segmentation." title=" Segmentation."> Segmentation.</a> </p> <a href="https://publications.waset.org/9437/skin-lesion-segmentation-using-color-channel-optimization-and-clustering-based-histogram-thresholding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9437/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9437/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9437/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9437/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9437/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9437/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9437/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9437/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9437/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9437/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2247</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Automatic Segmentation of Dermoscopy Images Using Histogram Thresholding on Optimal Color Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rahil%20Garnavi">Rahil Garnavi</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Aldeen"> Mohammad Aldeen</a>, <a href="https://publications.waset.org/search?q=M.%20Emre%20Celebi"> M. Emre Celebi</a>, <a href="https://publications.waset.org/search?q=Alauddin%20Bhuiyan"> Alauddin Bhuiyan</a>, <a href="https://publications.waset.org/search?q=Constantinos%20Dolianitis"> Constantinos Dolianitis</a>, <a href="https://publications.waset.org/search?q=George%20Varigos">George Varigos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic segmentation of skin lesions is the first step towards development of a computer-aided diagnosis of melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most discriminative and effective color space for melanoma application. This paper proposes a novel automatic segmentation algorithm using color space analysis and clustering-based histogram thresholding, which is able to determine the optimal color channel for segmentation of skin lesions. To demonstrate the validity of the algorithm, it is tested on a set of 30 high resolution dermoscopy images and a comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm. The evaluation is carried out by applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. Through ROC analysis and ranking the metrics, it is shown that the best results are obtained with the X and XoYoR color channels which results in an accuracy of approximately 97%. The proposed method is also compared with two state-ofthe- art skin lesion segmentation methods, which demonstrates the effectiveness and superiority of the proposed segmentation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Border%20detection" title="Border detection">Border detection</a>, <a href="https://publications.waset.org/search?q=Color%20space%20analysis" title=" Color space analysis"> Color space analysis</a>, <a href="https://publications.waset.org/search?q=Dermoscopy" title=" Dermoscopy"> Dermoscopy</a>, <a href="https://publications.waset.org/search?q=Histogram%20thresholding" title="Histogram thresholding">Histogram thresholding</a>, <a href="https://publications.waset.org/search?q=Melanoma" title=" Melanoma"> Melanoma</a>, <a href="https://publications.waset.org/search?q=Segmentation." title=" Segmentation."> Segmentation.</a> </p> <a href="https://publications.waset.org/3079/automatic-segmentation-of-dermoscopy-images-using-histogram-thresholding-on-optimal-color-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3079/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3079/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3079/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3079/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3079/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3079/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3079/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3079/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3079/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3079/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2085</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Target Detection using Adaptive Progressive Thresholding Based Shifted Phase-Encoded Fringe-Adjusted Joint Transform Correlator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Inder%20K.%20Purohit">Inder K. Purohit</a>, <a href="https://publications.waset.org/search?q=M.%20Nazrul%20Islam"> M. Nazrul Islam</a>, <a href="https://publications.waset.org/search?q=K.%20Vijayan%20Asari"> K. Vijayan Asari</a>, <a href="https://publications.waset.org/search?q=Mohammad%20A.%20Karim"> Mohammad A. Karim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new target detection technique is presented in this paper for the identification of small boats in coastal surveillance. The proposed technique employs an adaptive progressive thresholding (APT) scheme to first process the given input scene to separate any objects present in the scene from the background. The preprocessing step results in an image having only the foreground objects, such as boats, trees and other cluttered regions, and hence reduces the search region for the correlation step significantly. The processed image is then fed to the shifted phase-encoded fringe-adjusted joint transform correlator (SPFJTC) technique which produces single and delta-like correlation peak for a potential target present in the input scene. A post-processing step involves using a peak-to-clutter ratio (PCR) to determine whether the boat in the input scene is authorized or unauthorized. Simulation results are presented to show that the proposed technique can successfully determine the presence of an authorized boat and identify any intruding boat present in the given input scene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Adaptive%20progressive%20thresholding" title="Adaptive progressive thresholding">Adaptive progressive thresholding</a>, <a href="https://publications.waset.org/search?q=fringe%20adjusted%20filters" title=" fringe adjusted filters"> fringe adjusted filters</a>, <a href="https://publications.waset.org/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/search?q=joint%20transform%20correlation" title=" joint transform correlation"> joint transform correlation</a>, <a href="https://publications.waset.org/search?q=synthetic%20discriminant%20function" title=" synthetic discriminant function"> synthetic discriminant function</a> </p> <a href="https://publications.waset.org/10176/target-detection-using-adaptive-progressive-thresholding-based-shifted-phase-encoded-fringe-adjusted-joint-transform-correlator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10176/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10176/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10176/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10176/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10176/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10176/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10176/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10176/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10176/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10176/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1208</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> EMD-Based Signal Noise Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.O.%20Boudraa">A.O. Boudraa</a>, <a href="https://publications.waset.org/search?q=J.C.%20Cexus"> J.C. Cexus</a>, <a href="https://publications.waset.org/search?q=Z.%20Saidi"> Z. Saidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper introduces a new signal denoising based on the Empirical mode decomposition (EMD) framework. The method is a fully data driven approach. Noisy signal is decomposed adaptively into oscillatory components called Intrinsic mode functions (IMFs) by means of a process called sifting. The EMD denoising involves filtering or thresholding each IMF and reconstructs the estimated signal using the processed IMFs. The EMD can be combined with a filtering approach or with nonlinear transformation. In this work the Savitzky-Golay filter and shoftthresholding are investigated. For thresholding, IMF samples are shrinked or scaled below a threshold value. The standard deviation of the noise is estimated for every IMF. The threshold is derived for the Gaussian white noise. The method is tested on simulated and real data and compared with averaging, median and wavelet approaches.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Empirical%20mode%20decomposition" title="Empirical mode decomposition">Empirical mode decomposition</a>, <a href="https://publications.waset.org/search?q=Signal%20denoisingnonstationary%20process." title=" Signal denoisingnonstationary process."> Signal denoisingnonstationary process.</a> </p> <a href="https://publications.waset.org/6380/emd-based-signal-noise-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6380/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6380/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6380/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6380/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6380/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6380/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6380/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6380/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6380/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6380/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4003</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Siddhartha%20Bhattacharyya">Siddhartha Bhattacharyya</a>, <a href="https://publications.waset.org/search?q=Paramartha%20Dutta"> Paramartha Dutta</a>, <a href="https://publications.waset.org/search?q=Ujjwal%20Maulik"> Ujjwal Maulik</a>, <a href="https://publications.waset.org/search?q=Prashanta%20Kumar%20Nandi"> Prashanta Kumar Nandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Beta%20activation%20function" title="Beta activation function">Beta activation function</a>, <a href="https://publications.waset.org/search?q=fuzzy%20cardinality" title=" fuzzy cardinality"> fuzzy cardinality</a>, <a href="https://publications.waset.org/search?q=multilayer%20self%20organizing%20neural%20network" title=" multilayer self organizing neural network"> multilayer self organizing neural network</a>, <a href="https://publications.waset.org/search?q=object%20extraction" title=" object extraction"> object extraction</a>, <a href="https://publications.waset.org/search?q=" title=""></a> </p> <a href="https://publications.waset.org/13151/a-self-supervised-bi-directional-neural-network-bdsonn-architecture-for-object-extraction-guided-by-beta-activation-function-and-adaptive-fuzzy-context-sensitive-thresholding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13151/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13151/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13151/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13151/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13151/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13151/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13151/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13151/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13151/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13151/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1565</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> A Novel Reversible Watermarking Method based on Adaptive Thresholding and Companding Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nisar%20Ahmed%20Memon">Nisar Ahmed Memon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Embedding and extraction of a secret information as well as the restoration of the original un-watermarked image is highly desirable in sensitive applications like military, medical, and law enforcement imaging. This paper presents a novel reversible data-hiding method for digital images using integer to integer wavelet transform and companding technique which can embed and recover the secret information as well as can restore the image to its pristine state. The novel method takes advantage of block based watermarking and iterative optimization of threshold for companding which avoids histogram pre and post-processing. Consequently, it reduces the associated overhead usually required in most of the reversible watermarking techniques. As a result, it keeps the distortion small between the marked and the original images. Experimental results show that the proposed method outperforms the existing reversible data hiding schemes reported in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Adaptive%20Thresholding" title="Adaptive Thresholding">Adaptive Thresholding</a>, <a href="https://publications.waset.org/search?q=Companding%20Technique" title=" Companding Technique"> Companding Technique</a>, <a href="https://publications.waset.org/search?q=Integer%20Wavelet%20Transform" title="Integer Wavelet Transform">Integer Wavelet Transform</a>, <a href="https://publications.waset.org/search?q=Reversible%20Watermarking" title=" Reversible Watermarking"> Reversible Watermarking</a> </p> <a href="https://publications.waset.org/12926/a-novel-reversible-watermarking-method-based-on-adaptive-thresholding-and-companding-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12926/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12926/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12926/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12926/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12926/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12926/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12926/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12926/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12926/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12926/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1869</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Houda%20Najeh">Houda Najeh</a>, <a href="https://publications.waset.org/search?q=St%C3%A9phane%20Ploix"> St茅phane Ploix</a>, <a href="https://publications.waset.org/search?q=Mahendra%20Pratap%20Singh"> Mahendra Pratap Singh</a>, <a href="https://publications.waset.org/search?q=Karim%20Chabir"> Karim Chabir</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Naceur%20Abdelkrim"> Mohamed Naceur Abdelkrim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Building%20system" title="Building system">Building system</a>, <a href="https://publications.waset.org/search?q=time%20series" title=" time series"> time series</a>, <a href="https://publications.waset.org/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/search?q=outliers" title=" outliers"> outliers</a>, <a href="https://publications.waset.org/search?q=delay" title=" delay"> delay</a>, <a href="https://publications.waset.org/search?q=data%20gap." title=" data gap."> data gap.</a> </p> <a href="https://publications.waset.org/10009912/automatic-thresholding-for-data-gap-detection-for-a-set-of-sensors-in-instrumented-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009912/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009912/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009912/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009912/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009912/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009912/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009912/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009912/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009912/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009912/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">903</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> A Comparison of Some Thresholding Selection Methods for Wavelet Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Alsaidi%20M.%20Altaher">Alsaidi M. Altaher</a>, <a href="https://publications.waset.org/search?q=Mohd%20T.%20Ismail"> Mohd T. Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In wavelet regression, choosing threshold value is a crucial issue. A too large value cuts too many coefficients resulting in over smoothing. Conversely, a too small threshold value allows many coefficients to be included in reconstruction, giving a wiggly estimate which result in under smoothing. However, the proper choice of threshold can be considered as a careful balance of these principles. This paper gives a very brief introduction to some thresholding selection methods. These methods include: Universal, Sure, Ebays, Two fold cross validation and level dependent cross validation. A simulation study on a variety of sample sizes, test functions, signal-to-noise ratios is conducted to compare their numerical performances using three different noise structures. For Gaussian noise, EBayes outperforms in all cases for all used functions while Two fold cross validation provides the best results in the case of long tail noise. For large values of signal-to-noise ratios, level dependent cross validation works well under correlated noises case. As expected, increasing both sample size and level of signal to noise ratio, increases estimation efficiency.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=wavelet%20regression" title="wavelet regression">wavelet regression</a>, <a href="https://publications.waset.org/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/search?q=Threshold." title=" Threshold."> Threshold.</a> </p> <a href="https://publications.waset.org/11289/a-comparison-of-some-thresholding-selection-methods-for-wavelet-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11289/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11289/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11289/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11289/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11289/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11289/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11289/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11289/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11289/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11289/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1767</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> A Computer Aided Detection (CAD) System for Microcalcifications in Mammograms - MammoScan mCaD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kjersti%20Engan">Kjersti Engan</a>, <a href="https://publications.waset.org/search?q=Thor%20Ole%20Gulsrud"> Thor Ole Gulsrud</a>, <a href="https://publications.waset.org/search?q=Karl%20Fredrik%20Fretheim"> Karl Fredrik Fretheim</a>, <a href="https://publications.waset.org/search?q=Barbro%20Furebotten%20Iversen"> Barbro Furebotten Iversen</a>, <a href="https://publications.waset.org/search?q=Liv%20Eriksen"> Liv Eriksen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clusters of microcalcifications in mammograms are an important sign of breast cancer. This paper presents a complete Computer Aided Detection (CAD) scheme for automatic detection of clustered microcalcifications in digital mammograms. The proposed system, MammoScan 渭CaD, consists of three main steps. Firstly all potential microcalcifications are detected using a a method for feature extraction, VarMet, and adaptive thresholding. This will also give a number of false detections. The goal of the second step, Classifier level 1, is to remove everything but microcalcifications. The last step, Classifier level 2, uses learned dictionaries and sparse representations as a texture classification technique to distinguish single, benign microcalcifications from clustered microcalcifications, in addition to remove some remaining false detections. The system is trained and tested on true digital data from Stavanger University Hospital, and the results are evaluated by radiologists. The overall results are promising, with a sensitivity > 90 % and a low false detection rate (approx 1 unwanted pr. image, or 0.3 false pr. image). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=mammogram" title="mammogram">mammogram</a>, <a href="https://publications.waset.org/search?q=microcalcifications" title=" microcalcifications"> microcalcifications</a>, <a href="https://publications.waset.org/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/search?q=CAD" title=" CAD"> CAD</a>, <a href="https://publications.waset.org/search?q=MammoScan%20%CE%BCCaD" title="MammoScan 渭CaD">MammoScan 渭CaD</a>, <a href="https://publications.waset.org/search?q=VarMet" title=" VarMet"> VarMet</a>, <a href="https://publications.waset.org/search?q=dictionary%20learning" title=" dictionary learning"> dictionary learning</a>, <a href="https://publications.waset.org/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/search?q=FTCM" title=" FTCM"> FTCM</a>, <a href="https://publications.waset.org/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/search?q=adaptive%20thresholding" title=" adaptive thresholding"> adaptive thresholding</a> </p> <a href="https://publications.waset.org/11259/a-computer-aided-detection-cad-system-for-microcalcifications-in-mammograms-mammoscan-mcad" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11259/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11259/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11259/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11259/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11259/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11259/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11259/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11259/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11259/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11259/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1807</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Texture Feature-Based Language Identification Using Wavelet-Domain BDIP and BVLC Features and FFT Feature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ick%20Hoon%20Jang">Ick Hoon Jang</a>, <a href="https://publications.waset.org/search?q=Hoon%20Jae%20Lee"> Hoon Jae Lee</a>, <a href="https://publications.waset.org/search?q=Dae%20Hoon%20Kwon"> Dae Hoon Kwon</a>, <a href="https://publications.waset.org/search?q=Ui%20Young%20Pak"> Ui Young Pak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a texture feature-based language identification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features and FFT (fast Fourier transform) feature. In the proposed method, wavelet subbands are first obtained by wavelet transform from a test image and denoised by Donoho-s soft-thresholding. BDIP and BVLC operators are next applied to the wavelet subbands. FFT blocks are also obtained by 2D (twodimensional) FFT from the blocks into which the test image is partitioned. Some significant FFT coefficients in each block are selected and magnitude operator is applied to them. Moments for each subband of BDIP and BVLC and for each magnitude of significant FFT coefficients are then computed and fused into a feature vector. In classification, a stabilized Bayesian classifier, which adopts variance thresholding, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method with the three operations yields excellent language identification even with rather low feature dimension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=BDIP" title="BDIP">BDIP</a>, <a href="https://publications.waset.org/search?q=BVLC" title=" BVLC"> BVLC</a>, <a href="https://publications.waset.org/search?q=FFT" title=" FFT"> FFT</a>, <a href="https://publications.waset.org/search?q=language%20identification" title=" language identification"> language identification</a>, <a href="https://publications.waset.org/search?q=texture%0Afeature" title=" texture feature"> texture feature</a>, <a href="https://publications.waset.org/search?q=wavelet%20transform." title=" wavelet transform."> wavelet transform.</a> </p> <a href="https://publications.waset.org/1363/texture-feature-based-language-identification-using-wavelet-domain-bdip-and-bvlc-features-and-fft-feature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1363/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1363/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1363/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1363/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1363/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1363/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1363/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1363/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1363/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1363/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2149</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zehai%20Yu">Zehai Yu</a>, <a href="https://publications.waset.org/search?q=Hui%20Zhu"> Hui Zhu</a>, <a href="https://publications.waset.org/search?q=Linglong%20Lin"> Linglong Lin</a>, <a href="https://publications.waset.org/search?q=Huawei%20Liang"> Huawei Liang</a>, <a href="https://publications.waset.org/search?q=Biao%20Yu"> Biao Yu</a>, <a href="https://publications.waset.org/search?q=Weixin%20Huang"> Weixin Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Curve%20fitting" title="Curve fitting">Curve fitting</a>, <a href="https://publications.waset.org/search?q=lane-level%20road%20map" title=" lane-level road map"> lane-level road map</a>, <a href="https://publications.waset.org/search?q=line%20recognition" title=" line recognition"> line recognition</a>, <a href="https://publications.waset.org/search?q=multi-thresholding" title=" multi-thresholding"> multi-thresholding</a>, <a href="https://publications.waset.org/search?q=two-stage%20clustering." title=" two-stage clustering. "> two-stage clustering. </a> </p> <a href="https://publications.waset.org/10011651/laser-data-based-automatic-generation-of-lane-level-road-map-for-intelligent-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011651/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011651/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011651/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011651/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011651/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011651/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011651/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011651/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011651/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011651/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Amir%20Moslemi">Amir Moslemi</a>, <a href="https://publications.waset.org/search?q=Amir%20Movafeghi"> Amir Movafeghi</a>, <a href="https://publications.waset.org/search?q=Shahab%20Moradi"> Shahab Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important challenging factors in medical images is nominated as noise. Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjects to low quality due to the noise. Quality of CT images is dependent on absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete Wavelet Transform (DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computed%20Tomography%20%28CT%29" title="Computed Tomography (CT)">Computed Tomography (CT)</a>, <a href="https://publications.waset.org/search?q=noise%20reduction" title=" noise reduction"> noise reduction</a>, <a href="https://publications.waset.org/search?q=curve-let" title=" curve-let"> curve-let</a>, <a href="https://publications.waset.org/search?q=contour-let" title=" contour-let"> contour-let</a>, <a href="https://publications.waset.org/search?q=Signal%20to%20Noise%20Peak-Peak%20Ratio%20%28PSNR%29" title=" Signal to Noise Peak-Peak Ratio (PSNR)"> Signal to Noise Peak-Peak Ratio (PSNR)</a>, <a href="https://publications.waset.org/search?q=Structure%20Similarity%20%28Ssim%29" title=" Structure Similarity (Ssim)"> Structure Similarity (Ssim)</a>, <a href="https://publications.waset.org/search?q=Absorbed%20Dose%20to%20Patient%20%28ADP%29." title=" Absorbed Dose to Patient (ADP)."> Absorbed Dose to Patient (ADP).</a> </p> <a href="https://publications.waset.org/10002440/ct-medical-images-denoising-based-on-new-wavelet-thresholding-compared-with-curvelet-and-contourlet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002440/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002440/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002440/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002440/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002440/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002440/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002440/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002440/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002440/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002440/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2920</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> A Novel Approach towards Segmentation of Breast Tumors from Screening Mammograms for Efficient Decision Support System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.Suganthi">M.Suganthi</a>, <a href="https://publications.waset.org/search?q=M.Madheswaran"> M.Madheswaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a novel approach to finding a priori interesting regions in mammograms. In order to delineate those regions of interest (ROI-s) in mammograms, which appear to be prominent, a topographic representation called the iso-level contour map consisting of iso-level contours at multiple intensity levels and region segmentation based-thresholding have been proposed. The simulation results indicate that the computed boundary gives the detection rate of 99.5% accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Breast%20Cancer" title="Breast Cancer">Breast Cancer</a>, <a href="https://publications.waset.org/search?q=Mammogram" title=" Mammogram"> Mammogram</a>, <a href="https://publications.waset.org/search?q=and%20Segmentation." title=" and Segmentation."> and Segmentation.</a> </p> <a href="https://publications.waset.org/3741/a-novel-approach-towards-segmentation-of-breast-tumors-from-screening-mammograms-for-efficient-decision-support-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3741/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3741/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3741/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3741/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3741/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3741/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3741/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3741/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3741/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3741/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1481</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=thresholding.&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=thresholding.&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=thresholding.&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>