CINXE.COM

Search results for: micro rain radar

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: micro rain radar</title> <meta name="description" content="Search results for: micro rain radar"> <meta name="keywords" content="micro rain radar"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="micro rain radar" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="micro rain radar"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2457</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: micro rain radar</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2457</span> Understanding the Classification of Rain Microstructure and Estimation of Z-R Relationship using a Micro Rain Radar in Tropical Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomiwa">Tomiwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinyemi%20Clement"> Akinyemi Clement</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tropical regions experience diverse and complex precipitation patterns, posing significant challenges for accurate rainfall estimation and forecasting. This study addresses the problem of effectively classifying tropical rain types and refining the Z-R (Reflectivity-Rain Rate) relationship to enhance rainfall estimation accuracy. Through a combination of remote sensing, meteorological analysis, and machine learning, the research aims to develop an advanced classification framework capable of distinguishing between different types of tropical rain based on their unique characteristics. This involves utilizing high-resolution satellite imagery, radar data, and atmospheric parameters to categorize precipitation events into distinct classes, providing a comprehensive understanding of tropical rain systems. Additionally, the study seeks to improve the Z-R relationship, a crucial aspect of rainfall estimation. One year of rainfall data was analyzed using a Micro Rain Radar (MRR) located at The Federal University of Technology Akure, Nigeria, measuring rainfall parameters from ground level to a height of 4.8 km with a vertical resolution of 0.16 km. Rain rates were classified into low (stratiform) and high (convective) based on various microstructural attributes such as rain rates, liquid water content, Drop Size Distribution (DSD), average fall speed of the drops, and radar reflectivity. By integrating diverse datasets and employing advanced statistical techniques, the study aims to enhance the precision of Z-R models, offering a more reliable means of estimating rainfall rates from radar reflectivity data. This refined Z-R relationship holds significant potential for improving our understanding of tropical rain systems and enhancing forecasting accuracy in regions prone to heavy precipitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=drop%20size%20distribution" title=" drop size distribution"> drop size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20rain%20radar" title=" micro rain radar"> micro rain radar</a> </p> <a href="https://publications.waset.org/abstracts/187411/understanding-the-classification-of-rain-microstructure-and-estimation-of-z-r-relationship-using-a-micro-rain-radar-in-tropical-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2456</span> Rain Dropsize Distribution from Individual Storms and Variability in Nigeria Topical Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akinyemi%20Tomiwa">Akinyemi Tomiwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microstructure of rainfall is important for predicting and modeling various environmental processes, such as rainfall interception by vegetation, soil erosion, and radar signals in rainfall. This rain microstructure was studied with a vertically pointing Micro Rain Radar (MRR) located at a tropical location in Akure South West Nigeria (7o 15’ N, 5o 15’ E). This research utilizes two years of data (2018 and 2019), and the data obtained comprises rainfall parameters such as Rain rates, radar reflectivity, liquid water content, fall velocity and Drop Size Distribution (DSD) based on vertical profiles. The measurement and variations of rain microstructure of these parameters with heights for different rain types were presented from ground level up to the height of 4800 m at 160 m range gates. It has been found that the convective, stratiform and mixed, which are the three major rain types, have different rain microstructures at different heights and were evaluated in this research. The correlation coefficient and the regression line equation were computed for each rain event. The highest rain rate and liquid water content were observed within the height range of 160-4800. It was found that a good correlation exists between the measured parameters. Hence it shows that specific liquid water content increases with increasing rain rate for both stratiform and convective rain types in this part of the world. The results can be very useful for a better understanding of rain structure over tropical regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rain%20microstructure" title="rain microstructure">rain microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=drop%20size%20distribution" title=" drop size distribution"> drop size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=rain%20rates" title=" rain rates"> rain rates</a>, <a href="https://publications.waset.org/abstracts/search?q=stratiform" title=" stratiform"> stratiform</a>, <a href="https://publications.waset.org/abstracts/search?q=convective." title=" convective."> convective.</a> </p> <a href="https://publications.waset.org/abstracts/187435/rain-dropsize-distribution-from-individual-storms-and-variability-in-nigeria-topical-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2455</span> Classification of Precipitation Types Detected in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Badron">K. Badron</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Ismail"> A. F. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20Asnawi"> A. L. Asnawi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20F.%20A.%20Malik"> N. F. A. Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Z.%20Abidin"> S. Z. Abidin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dzulkifly"> S. Dzulkifly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The occurrences of precipitation, also commonly referred as rain, in the form of &quot;convective&quot; and &quot;stratiform&quot; have been identified to exist worldwide. In this study, the radar return echoes or known as reflectivity values acquired from radar scans have been exploited in the process of classifying the type of rain endured. The investigation use radar data from Malaysian Meteorology Department (MMD). It is possible to discriminate the types of rain experienced in tropical region by observing the vertical characteristics of the rain structure. .Heavy rain in tropical region profoundly affects radiowave signals, causing transmission interference and signal fading. Required wireless system fade margin depends on the type of rain. Information relating to the two mentioned types of rain is critical for the system engineers and researchers in their endeavour to improve the reliability of communication links. This paper highlights the quantification of percentage occurrences over one year period in 2009. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stratiform" title="stratiform">stratiform</a>, <a href="https://publications.waset.org/abstracts/search?q=convective" title=" convective"> convective</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20region" title=" tropical region"> tropical region</a>, <a href="https://publications.waset.org/abstracts/search?q=attenuation%20radar%20reflectivity" title=" attenuation radar reflectivity"> attenuation radar reflectivity</a> </p> <a href="https://publications.waset.org/abstracts/11600/classification-of-precipitation-types-detected-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2454</span> Evaluation of Satellite and Radar Rainfall Product over Seyhan Plain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaz%C4%B1m%20Kaba">Kazım Kaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdem%20Erdi"> Erdem Erdi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Akif%20Erdo%C4%9Fan"> M. Akif Erdoğan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mustafa%20Kand%C4%B1rmaz"> H. Mustafa Kandırmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rainfall is crucial data source for very different discipline such as agriculture, hydrology and climate. Therefore rain rate should be known well both spatial and temporal for any area. Rainfall is measured by using rain-gauge at meteorological ground stations traditionally for many years. At the present time, rainfall products are acquired from radar and satellite images with a temporal and spatial continuity. In this study, we investigated the accuracy of these rainfall data according to rain-gauge data. For this purpose, we used Adana-Hatay radar hourly total precipitation product (RN1) and Meteosat convective rainfall rate (CRR) product over Seyhan plain. We calculated daily rainfall values from RN1 and CRR hourly precipitation products. We used the data of rainy days of four stations located within range of the radar from October 2013 to November 2015. In the study, we examined two rainfall data over Seyhan plain and the correlation between the rain-gauge data and two raster rainfall data was observed lowly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meteosat" title="meteosat">meteosat</a>, <a href="https://publications.waset.org/abstracts/search?q=radar" title=" radar"> radar</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=rain-gauge" title=" rain-gauge"> rain-gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/61709/evaluation-of-satellite-and-radar-rainfall-product-over-seyhan-plain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2453</span> Evaluation of Dual Polarization Rainfall Estimation Algorithm Applicability in Korea: A Case Study on Biseulsan Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chulsang%20Yoo">Chulsang Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gildo%20Kim"> Gildo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dual polarization radar provides comprehensive information about rainfall by measuring multiple parameters. In Korea, for the rainfall estimation, JPOLE and CSU-HIDRO algorithms are generally used. This study evaluated the local applicability of JPOLE and CSU-HIDRO algorithms in Korea by using the observed rainfall data collected on August, 2014 by the Biseulsan dual polarization radar data and KMA AWS. A total of 11,372 pairs of radar-ground rain rate data were classified according to thresholds of synthetic algorithms into suitable and unsuitable data. Then, evaluation criteria were derived by comparing radar rain rate and ground rain rate, respectively, for entire, suitable, unsuitable data. The results are as follows: (1) The radar rain rate equation including KDP, was found better in the rainfall estimation than the other equations for both JPOLE and CSU-HIDRO algorithms. The thresholds were found to be adequately applied for both algorithms including specific differential phase. (2) The radar rain rate equation including horizontal reflectivity and differential reflectivity were found poor compared to the others. The result was not improved even when only the suitable data were applied. Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2013R1A1A2011012). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CSU-HIDRO%20algorithm" title="CSU-HIDRO algorithm">CSU-HIDRO algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20polarization%20radar" title=" dual polarization radar"> dual polarization radar</a>, <a href="https://publications.waset.org/abstracts/search?q=JPOLE%20algorithm" title=" JPOLE algorithm"> JPOLE algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20rainfall%20estimation%20algorithm" title=" radar rainfall estimation algorithm"> radar rainfall estimation algorithm</a> </p> <a href="https://publications.waset.org/abstracts/46874/evaluation-of-dual-polarization-rainfall-estimation-algorithm-applicability-in-korea-a-case-study-on-biseulsan-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2452</span> Detection and Tracking Approach Using an Automotive Radar to Increase Active Pedestrian Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Heuer">Michael Heuer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayoub%20Al-Hamadi"> Ayoub Al-Hamadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Rain"> Alexander Rain</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc-Michael%20Meinecke"> Marc-Michael Meinecke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vulnerable road users, e.g. pedestrians, have a high impact on fatal accident numbers. To reduce these statistics, car manufactures are intensively developing suitable safety systems. Hereby, fast and reliable environment recognition is a major challenge. In this paper we describe a tracking approach that is only based on a 24 GHz radar sensor. While common radar signal processing loses much information, we make use of a track-before-detect filter to incorporate raw measurements. It is explained how the Range-Doppler spectrum can help to indicated pedestrians and stabilize tracking even in occultation scenarios compared to sensors in series. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radar" title="radar">radar</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20detection" title=" pedestrian detection"> pedestrian detection</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20safety" title=" active safety"> active safety</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/6539/detection-and-tracking-approach-using-an-automotive-radar-to-increase-active-pedestrian-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2451</span> Detection of Micro-Unmanned Ariel Vehicles Using a Multiple-Input Multiple-Output Digital Array Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tareq%20AlNuaim">Tareq AlNuaim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubashir%20Alam"> Mubashir Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrazaq%20Aldowesh"> Abdulrazaq Aldowesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The usage of micro-Unmanned Ariel Vehicles (UAVs) has witnessed an enormous increase recently. Detection of such drones became a necessity nowadays to prevent any harmful activities. Typically, such targets have low velocity and low Radar Cross Section (RCS), making them indistinguishable from clutter and phase noise. Multiple-Input Multiple-Output (MIMO) Radars have many potentials; it increases the degrees of freedom on both transmit and receive ends. Such architecture allows for flexibility in operation, through utilizing the direct access to every element in the transmit/ receive array. MIMO systems allow for several array processing techniques, permitting the system to stare at targets for longer times, which improves the Doppler resolution. In this paper, a 2×2 MIMO radar prototype is developed using Software Defined Radio (SDR) technology, and its performance is evaluated against a slow-moving low radar cross section micro-UAV used by hobbyists. Radar cross section simulations were carried out using FEKO simulator, achieving an average of -14.42 dBsm at S-band. The developed prototype was experimentally evaluated achieving more than 300 meters of detection range for a DJI Mavic pro-drone <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20beamforming" title="digital beamforming">digital beamforming</a>, <a href="https://publications.waset.org/abstracts/search?q=drone%20detection" title=" drone detection"> drone detection</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-UAV" title=" micro-UAV"> micro-UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO" title=" MIMO"> MIMO</a>, <a href="https://publications.waset.org/abstracts/search?q=phased%20array" title=" phased array"> phased array</a> </p> <a href="https://publications.waset.org/abstracts/107642/detection-of-micro-unmanned-ariel-vehicles-using-a-multiple-input-multiple-output-digital-array-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2450</span> 2D Point Clouds Features from Radar for Helicopter Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danilo%20Habermann">Danilo Habermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Medella"> Aleksander Medella</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20Cremon"> Carla Cremon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusef%20Caceres"> Yusef Caceres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to analyze the ability of 2d point clouds features to classify different models of helicopters using radars. This method does not need to estimate the blade length, the number of blades of helicopters, and the period of their micro-Doppler signatures. It is also not necessary to generate spectrograms (or any other image based on time and frequency domain). This work transforms a radar return signal into a 2D point cloud and extracts features of it. Three classifiers are used to distinguish 9 different helicopter models in order to analyze the performance of the features used in this work. The high accuracy obtained with each of the classifiers demonstrates that the 2D point clouds features are very useful for classifying helicopters from radar signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helicopter%20classification" title="helicopter classification">helicopter classification</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20clouds%20features" title=" point clouds features"> point clouds features</a>, <a href="https://publications.waset.org/abstracts/search?q=radar" title=" radar"> radar</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20classifiers" title=" supervised classifiers"> supervised classifiers</a> </p> <a href="https://publications.waset.org/abstracts/85676/2d-point-clouds-features-from-radar-for-helicopter-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2449</span> Impairments Correction of Six-Port Based Millimeter-Wave Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dan%20Ohev%20Zion">Dan Ohev Zion</a>, <a href="https://publications.waset.org/abstracts/search?q=Alon%20Cohen"> Alon Cohen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radar" title="radar">radar</a>, <a href="https://publications.waset.org/abstracts/search?q=FMCW%20Radar" title=" FMCW Radar"> FMCW Radar</a>, <a href="https://publications.waset.org/abstracts/search?q=IQ%20mismatch" title=" IQ mismatch"> IQ mismatch</a>, <a href="https://publications.waset.org/abstracts/search?q=six%20port" title=" six port"> six port</a> </p> <a href="https://publications.waset.org/abstracts/117510/impairments-correction-of-six-port-based-millimeter-wave-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2448</span> A Mini Radar System for Low Altitude Targets Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kangkang%20Wu">Kangkang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaizhi%20Wang"> Kaizhi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Yuan"> Zhijun Yuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a mini radar system aimed at detecting small targets at the low latitude. The radar operates at Ku-band in the frequency modulated continuous wave (FMCW) mode with two receiving channels. The radar system has the characteristics of compactness, mobility, and low power consumption. This paper focuses on the implementation of the radar system, and the Block least mean square (Block LMS) algorithm is applied to minimize the fortuitous distortion. It is validated from a series of experiments that the track of the unmanned aerial vehicle (UAV) can be easily distinguished with the radar system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle%20%28UAV%29" title="unmanned aerial vehicle (UAV)">unmanned aerial vehicle (UAV)</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=Block%20Least%20Mean%20Square%20%28Block%20LMS%29%20Algorithm" title=" Block Least Mean Square (Block LMS) Algorithm"> Block Least Mean Square (Block LMS) Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Frequency%20Modulated%20Continuous%20Wave%20%28FMCW%29" title=" Frequency Modulated Continuous Wave (FMCW)"> Frequency Modulated Continuous Wave (FMCW)</a> </p> <a href="https://publications.waset.org/abstracts/71341/a-mini-radar-system-for-low-altitude-targets-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2447</span> A Generalized Model for Performance Analysis of Airborne Radar in Clutter Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar%20Jaysaval">Vinod Kumar Jaysaval</a>, <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Agarwal"> Prateek Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance prediction of airborne radar is a challenging and cumbersome task in clutter scenario for different types of targets. A generalized model requires to predict the performance of Radar for air targets as well as ground moving targets. In this paper, we propose a generalized model to bring out the performance of airborne radar for different Pulsed Repetition Frequency (PRF) as well as different type of targets. The model provides a platform to bring out different subsystem parameters for different applications and performance requirements under different types of clutter terrain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airborne%20radar" title="airborne radar">airborne radar</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20zone" title=" blind zone"> blind zone</a>, <a href="https://publications.waset.org/abstracts/search?q=clutter" title=" clutter"> clutter</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20detection" title=" probability of detection"> probability of detection</a> </p> <a href="https://publications.waset.org/abstracts/13998/a-generalized-model-for-performance-analysis-of-airborne-radar-in-clutter-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2446</span> Zamzam Water as Corrosion Inhibitor for Steel Rebar in Rainwater and Simulated Acid Rain </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Elshami">Ahmed A. Elshami</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Bonnet"> Stephanie Bonnet</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhafid%20Khelidj"> Abdelhafid Khelidj </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion inhibitors are widely used in concrete industry to reduce the corrosion rate of steel rebar which is present in contact with aggressive environments. The present work aims to using Zamzam water from well located within the Masjid al-Haram in Mecca, Saudi Arabia 20 m (66 ft) east of the Kaaba, the holiest place in Islam as corrosion inhibitor for steel in rain water and simulated acid rain. The effect of Zamzam water was investigated by electrochemical impedance spectroscopy (EIS) and Potentiodynamic polarization techniques in Department of Civil Engineering - IUT Saint-Nazaire, Nantes University, France. Zamzam water is considered to be one of the most important steel corrosion inhibitor which is frequently used in different industrial applications. Results showed that zamzam water gave a very good inhibition for steel corrosion in rain water and simulated acid rain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zamzam%20water" title="Zamzam water">Zamzam water</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibitor" title=" corrosion inhibitor"> corrosion inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=rain%20water" title=" rain water"> rain water</a>, <a href="https://publications.waset.org/abstracts/search?q=simulated%20acid%20rain" title=" simulated acid rain"> simulated acid rain</a> </p> <a href="https://publications.waset.org/abstracts/14797/zamzam-water-as-corrosion-inhibitor-for-steel-rebar-in-rainwater-and-simulated-acid-rain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2445</span> Coherent Ku-Band Radar for Monitoring Ocean Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Mitchell">Richard Mitchell</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Mitchell"> Robert Mitchell</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20Duong"> Thai Duong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyungbin%20Bae"> Kyungbin Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Daegon%20Kim"> Daegon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngsub%20Lee"> Youngsub Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Inho%20Kim"> Inho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Inho%20Park"> Inho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungseok%20Lee"> Hyungseok Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although X-band radar is commonly used to measure the properties of ocean waves, the use of a higher frequency has several advantages, such as increased backscatter coefficient, better Doppler sensitivity, lower power, and a smaller package. A low-power Ku-band radar system was developed to demonstrate these advantages. It is fully coherent, and it interleaves short and long pulses to achieve a transmit duty ratio of 25%, which makes the best use of solid-state amplifiers. The range scales are 2 km, 4 km, and 8 km. The minimum range is 100 m, 200 m, and 400 m for the three range scales, and the range resolution is 4 m, 8 m, and 16 m for the three range scales. Measurements of the significant wave height, wavelength, wave period, and wave direction have been made using traditional 3D-FFT methods. Radar and ultrasonic sensor results collected over an extended period of time at a coastal site in South Korea are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=measurement%20of%20ocean%20wave%20parameters" title="measurement of ocean wave parameters">measurement of ocean wave parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=Ku-band%20radar" title=" Ku-band radar"> Ku-band radar</a>, <a href="https://publications.waset.org/abstracts/search?q=coherent%20radar" title=" coherent radar"> coherent radar</a>, <a href="https://publications.waset.org/abstracts/search?q=compact%20radar" title=" compact radar"> compact radar</a> </p> <a href="https://publications.waset.org/abstracts/146057/coherent-ku-band-radar-for-monitoring-ocean-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2444</span> Sequential Data Assimilation with High-Frequency (HF) Radar Surface Current</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Ren">Lei Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Hartnett"> Michael Hartnett</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Nash"> Stephen Nash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The abundant measured surface current from HF radar system in coastal area is assimilated into model to improve the modeling forecasting ability. A simple sequential data assimilation scheme, Direct Insertion (DI), is applied to update model forecast states. The influence of Direct Insertion data assimilation over time is analyzed at one reference point. Vector maps of surface current from models are compared with HF radar measurements. Root-Mean-Squared-Error (RMSE) between modeling results and HF radar measurements is calculated during the last four days with no data assimilation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20assimilation" title="data assimilation">data assimilation</a>, <a href="https://publications.waset.org/abstracts/search?q=CODAR" title=" CODAR"> CODAR</a>, <a href="https://publications.waset.org/abstracts/search?q=HF%20radar" title=" HF radar"> HF radar</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20current" title=" surface current"> surface current</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20insertion" title=" direct insertion"> direct insertion</a> </p> <a href="https://publications.waset.org/abstracts/14355/sequential-data-assimilation-with-high-frequency-hf-radar-surface-current" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2443</span> Empirical Prediction of the Effect of Rain Drops on Dbs System Operating in Ku-Band (Case Study of Abuja)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tonga%20Agadi%20Danladi">Tonga Agadi Danladi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajao%20Wasiu%20Bamidele"> Ajao Wasiu Bamidele</a>, <a href="https://publications.waset.org/abstracts/search?q=Terdue%20Dyeko"> Terdue Dyeko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent advancement in microwave communications technologies especially in telecommunications and broadcasting have resulted in congestion on the frequencies below 10GHz. This has forced microwave designers to look for high frequencies. Unfortunately for frequencies greater than 10GHz rain becomes one of the main factors of attenuation in signal strength. At frequencies from 10GHz upwards, rain drop sizes leads to outages that compromises the availability and quality of service this making it a critical factor in satellite link budget design. Rain rate and rain attenuation predictions are vital steps to be considered when designing microwave satellite communication link operating at Ku-band frequencies (112-18GHz). Unreliable rain rates data in the tropical regions of the world like Nigeria from radio communication group of the international Telecommunication Union (ITU-R) makes it difficult for microwave engineers to determine a realistic rain margin that needs to be accommodated in satellite link budget design in such region. This work presents an empirical tool for predicting the amount of signal due to rain on DBS signal operating at the Ku-band. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attenuation" title="attenuation">attenuation</a>, <a href="https://publications.waset.org/abstracts/search?q=Ku-Band" title=" Ku-Band"> Ku-Band</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20communication" title=" microwave communication"> microwave communication</a>, <a href="https://publications.waset.org/abstracts/search?q=rain%20rates" title=" rain rates"> rain rates</a> </p> <a href="https://publications.waset.org/abstracts/28730/empirical-prediction-of-the-effect-of-rain-drops-on-dbs-system-operating-in-ku-band-case-study-of-abuja" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2442</span> GIS for Simulating Air Traffic by Applying Different Multi-radar Positioning Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amara%20Rafik">Amara Rafik</a>, <a href="https://publications.waset.org/abstracts/search?q=Bougherara%20Maamar"> Bougherara Maamar</a>, <a href="https://publications.waset.org/abstracts/search?q=Belhadj%20Aissa%20Mostefa"> Belhadj Aissa Mostefa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radar data is one of the many data sources used by ATM Air Traffic Management systems. These data come from air navigation radar antennas. These radars intercept signals emitted by the various aircraft crossing the controlled airspace and calculate the position of these aircraft and retransmit their positions to the Air Traffic Management System. For greater reliability, these radars are positioned in such a way as to allow their coverage areas to overlap. An aircraft will therefore be detected by at least one of these radars. However, the position coordinates of the same aircraft and sent by these different radars are not necessarily identical. Therefore, the ATM system must calculate a single position (radar track) which will ultimately be sent to the control position and displayed on the air traffic controller's monitor. There are several techniques for calculating the radar track. Furthermore, the geographical nature of the problem requires the use of a Geographic Information System (GIS), i.e. a geographical database on the one hand and geographical processing. The objective of this work is to propose a GIS for traffic simulation which reconstructs the evolution over time of aircraft positions from a multi-source radar data set and by applying these different techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ATM" title="ATM">ATM</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20data" title=" radar data"> radar data</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20traffic%20simulation" title=" air traffic simulation"> air traffic simulation</a> </p> <a href="https://publications.waset.org/abstracts/168613/gis-for-simulating-air-traffic-by-applying-different-multi-radar-positioning-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2441</span> Angle of Arrival Estimation Using Maximum Likelihood Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olomon%20Wu">Olomon Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung%20Lu"> Hung Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nick%20Wilkins"> Nick Wilkins</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Kerr"> Daniel Kerr</a>, <a href="https://publications.waset.org/abstracts/search?q=Zekeriya%20Aliyazicioglu"> Zekeriya Aliyazicioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20Hwang"> H. K. Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple Input Multiple Output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection, resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO Uniformly-Spaced Linear Array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, Pseudo Random (PN) sequence length, number of snapshots, and Signal to Noise Ratio (SNR). The results of MIMO are compared to a traditional array antenna. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MIMO%20radar" title="MIMO radar">MIMO radar</a>, <a href="https://publications.waset.org/abstracts/search?q=phased%20array%20antenna" title=" phased array antenna"> phased array antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20detection" title=" target detection"> target detection</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20signal%20processing" title=" radar signal processing"> radar signal processing</a> </p> <a href="https://publications.waset.org/abstracts/2469/angle-of-arrival-estimation-using-maximum-likelihood-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2440</span> Geographic Information System for Simulating Air Traffic By Applying Different Multi-Radar Positioning Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amara%20Rafik">Amara Rafik</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostefa%20Belhadj%20Aissa"> Mostefa Belhadj Aissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radar data is one of the many data sources used by ATM Air Traffic Management systems. These data come from air navigation radar antennas. These radars intercept signals emitted by the various aircraft crossing the controlled airspace and calculate the position of these aircraft and retransmit their positions to the Air Traffic Management System. For greater reliability, these radars are positioned in such a way as to allow their coverage areas to overlap. An aircraft will therefore be detected by at least one of these radars. However, the position coordinates of the same aircraft and sent by these different radars are not necessarily identical. Therefore, the ATM system must calculate a single position (radar track) which will ultimately be sent to the control position and displayed on the air traffic controller's monitor. There are several techniques for calculating the radar track. Furthermore, the geographical nature of the problem requires the use of a Geographic Information System (GIS), i.e. a geographical database on the one hand and geographical processing. The objective of this work is to propose a GIS for traffic simulation which reconstructs the evolution over time of aircraft positions from a multi-source radar data set and by applying these different techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ATM" title="ATM">ATM</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20data" title=" radar data"> radar data</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/156884/geographic-information-system-for-simulating-air-traffic-by-applying-different-multi-radar-positioning-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2439</span> Ultra-High Frequency Passive Radar Coverage for Cars Detection in Semi-Urban Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pedro%20G%C3%B3mez-del-Hoyo">Pedro Gómez-del-Hoyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose-Luis%20B%C3%A1rcena-Humanes"> Jose-Luis Bárcena-Humanes</a>, <a href="https://publications.waset.org/abstracts/search?q=Nerea%20del-Rey-Maestre"> Nerea del-Rey-Maestre</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa-Pilar%20Jarabo-Amores"> María-Pilar Jarabo-Amores</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Mata-Moya"> David Mata-Moya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study of achievable coverages using passive radar systems in terrestrial traffic monitoring applications is presented. The study includes the estimation of the bistatic radar cross section of different commercial vehicle models that provide challenging low values which make detection really difficult. A semi-urban scenario is selected to evaluate the impact of excess propagation losses generated by an irregular relief. A bistatic passive radar exploiting UHF frequencies radiated by digital video broadcasting transmitters is assumed. A general method of coverage estimation using electromagnetic simulators in combination with estimated car average bistatic radar cross section is applied. In order to reduce the computational cost, hybrid solution is implemented, assuming free space for the target-receiver path but estimating the excess propagation losses for the transmitter-target one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bistatic%20radar%20cross%20section" title="bistatic radar cross section">bistatic radar cross section</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20radar" title=" passive radar"> passive radar</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20losses" title=" propagation losses"> propagation losses</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20coverage" title=" radar coverage"> radar coverage</a> </p> <a href="https://publications.waset.org/abstracts/52279/ultra-high-frequency-passive-radar-coverage-for-cars-detection-in-semi-urban-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2438</span> Space Time Adaptive Algorithm in Bi-Static Passive Radar Systems for Clutter Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Venu">D. Venu</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20Koteswara%20Rao"> N. V. Koteswara Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space – time adaptive processing (STAP) is an effective tool for detecting a moving target in spaceborne or airborne radar systems. Since airborne passive radar systems utilize broadcast, navigation and excellent communication signals to perform various surveillance tasks and also has attracted significant interest from the distinct past, therefore the need of the hour is to have cost effective systems as compared to conventional active radar systems. Moreover, requirements of small number of secondary samples for effective clutter suppression in bi-static passive radar offer abundant illuminator resources for passive surveillance radar systems. This paper presents a framework for incorporating knowledge sources directly in the space-time beam former of airborne adaptive radars. STAP algorithm for clutter mitigation for passive bi-static radar has better quantitation of the reduction in sample size thereby amalgamating the earlier data bank with existing radar data sets. Also, we proposed a novel method to estimate the clutter matrix and perform STAP for efficient clutter suppression based on small sample size. Furthermore, the effectiveness of the proposed algorithm is verified using MATLAB simulations in order to validate STAP algorithm for passive bi-static radar. In conclusion, this study highlights the importance for various applications which augments traditional active radars using cost-effective measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bistatic%20radar" title="bistatic radar">bistatic radar</a>, <a href="https://publications.waset.org/abstracts/search?q=clutter" title=" clutter"> clutter</a>, <a href="https://publications.waset.org/abstracts/search?q=covariance%20matrix%20passive%20radar" title=" covariance matrix passive radar"> covariance matrix passive radar</a>, <a href="https://publications.waset.org/abstracts/search?q=STAP" title=" STAP"> STAP</a> </p> <a href="https://publications.waset.org/abstracts/62372/space-time-adaptive-algorithm-in-bi-static-passive-radar-systems-for-clutter-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2437</span> Numerical Modeling on the Vehicle Interior Noise Produced by Rain-the-Roof Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zilong%20Peng">Zilong Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Fan"> Jun Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the improvement of the living standards, the requirement on the acoustic comfort of the vehicle interior environment is becoming higher. The rain-the-roof producing interior noise is a common phenomenon for the vehicle, which usually discourages the conversation, especially for the heavy rain. This paper presents some numerical results about the rain-the-roof noise. The impact of each water drop is modeled as a short pulse, and the excitation locations on the roof are generated randomly. The vehicle body is simplified to a box closed with some certain-thickness shells. According to the main frequency components of the rain excitation, the analyzing frequency range is divided as low, high and middle frequency domains, which makes the vehicle body are modeled using finite element method (FEM), statistical energy analysis (SEA) and hybrid FE-SEA method, respectively. Furthermore, the effect of spatial distribution density and size of the rain on the sound pressure level are also discussed. These results may provide a guide for designing a more silent vehicle in the special weather. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rain-the-roof%20noise" title="rain-the-roof noise">rain-the-roof noise</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20energy%20analysis" title=" statistical energy analysis"> statistical energy analysis</a> </p> <a href="https://publications.waset.org/abstracts/90695/numerical-modeling-on-the-vehicle-interior-noise-produced-by-rain-the-roof-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2436</span> Fabricating an Infrared-Radar Compatible Stealth Surface with Frequency Selective Surface and Structured Radar-Absorbing Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qingtao%20Yu">Qingtao Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guojia%20Ma"> Guojia Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Approaches to microwave absorption and low infrared emissivity are often conflicting, as the low-emissivity layer, usually consisting of metals, increases the reflection of microwaves, especially in high frequency. In this study, an infrared-radar compatible stealth surface was fabricated by first depositing a layer of low-emissivity metal film on the surface of a layer of radar-absorbing material. Then, ultrafast laser was used to generate patterns on the metal film, forming a frequency selective surface. With proper pattern design, while the majority of the frequency selective surface is covered by the metal film, it has relatively little influence on the reflection of microwaves between 2 to 18 GHz. At last, structures on the radar-absorbing layer were fabricated by ultra-fast laser to further improve the absorbing bandwidth of the microwave. This study demonstrates that the compatibility between microwave absorption and low infrared emissivity can be achieved by properly designing patterns and structures on the metal film and the radar-absorbing layer accordingly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface" title="frequency selective surface">frequency selective surface</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared-radar%20compatible" title=" infrared-radar compatible"> infrared-radar compatible</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20infrared%20emissivity" title=" low infrared emissivity"> low infrared emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=radar-absorbing%20material" title=" radar-absorbing material"> radar-absorbing material</a>, <a href="https://publications.waset.org/abstracts/search?q=patterns" title=" patterns"> patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=structures" title=" structures"> structures</a> </p> <a href="https://publications.waset.org/abstracts/115550/fabricating-an-infrared-radar-compatible-stealth-surface-with-frequency-selective-surface-and-structured-radar-absorbing-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2435</span> Frequency Modulation Continuous Wave Radar Human Fall Detection Based on Time-Varying Range-Doppler Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Yu">Xiang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuntao%20Feng"> Chuntao Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Yang"> Lu Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Meiyang%20Song"> Meiyang Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenhao%20Zhou"> Wenhao Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FMCW%20radar" title="FMCW radar">FMCW radar</a>, <a href="https://publications.waset.org/abstracts/search?q=fall%20detection" title=" fall detection"> fall detection</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20CNN" title=" 3D CNN"> 3D CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=time-varying%20range-doppler%20features" title=" time-varying range-doppler features"> time-varying range-doppler features</a> </p> <a href="https://publications.waset.org/abstracts/150637/frequency-modulation-continuous-wave-radar-human-fall-detection-based-on-time-varying-range-doppler-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2434</span> Optimization of the Rain Harvest Using Multi-Purpose Valley Tanks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Hashad">Ahmad Hashad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Valley tanks are a kind of rain harvest which is used as ground water storage to overcome drought seasons in some countries. This research displays the rain harvest evolution and introduces some ideas to develop the valley tanks to be more than water storage. These ideas developed the current valley tanks design to become an integrated renaissance project. The suggested design has some changes making it different than the traditional design of valley tanks. These changes allow for the new design to be more flexible for adding additional capacity, water purification units and water pumping units. The suggested valley tanks project will be designed based on studying the rainfall and evaporation rates, as well as land topography and designed agricultural map linked to seasons of rain and drought. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=valley%20tanks" title="valley tanks">valley tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=rain%20harvest" title=" rain harvest"> rain harvest</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20nature" title=" volatile nature"> volatile nature</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20renaissance%20project" title=" integrated renaissance project"> integrated renaissance project</a> </p> <a href="https://publications.waset.org/abstracts/14152/optimization-of-the-rain-harvest-using-multi-purpose-valley-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2433</span> Mobile Based Long Range Weather Prediction System for the Farmers of Rural Areas of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeeshan%20Muzammal">Zeeshan Muzammal</a>, <a href="https://publications.waset.org/abstracts/search?q=Usama%20Latif"> Usama Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouzia%20Younas"> Fouzia Younas</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Muhammad%20Hassan"> Syed Muhammad Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Samia%20Razaq"> Samia Razaq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unexpected rainfall has always been an issue in the lifetime of crops and brings destruction for the farmers who harvest them. Unfortunately, Pakistan is one of the countries in which untimely rain impacts badly on crops like wash out of seeds and pesticides etc. Pakistan’s GDP is related to agriculture, especially in rural areas farmers sometimes quit farming because leverage of huge loss to their crops. Through our surveys and research, we came to know that farmers in the rural areas of Pakistan need rain information to avoid damages to their crops from rain. We developed a prototype using ICTs to inform the farmers about rain one week in advance. Our proposed solution has two ways of informing the farmers. In first we send daily messages about weekly prediction and also designed a helpline where they can call us to ask about possibility of rain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ICTD" title="ICTD">ICTD</a>, <a href="https://publications.waset.org/abstracts/search?q=farmers" title=" farmers"> farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20based" title=" mobile based"> mobile based</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20areas" title=" rural areas"> rural areas</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20prediction" title=" weather prediction "> weather prediction </a> </p> <a href="https://publications.waset.org/abstracts/60473/mobile-based-long-range-weather-prediction-system-for-the-farmers-of-rural-areas-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2432</span> Sidelobe Free Inverse Synthetic Aperture Radar Imaging of Non Cooperative Moving Targets Using WiFi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiamin%20Huang">Jiamin Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuliang%20Gui"> Shuliang Gui</a>, <a href="https://publications.waset.org/abstracts/search?q=Zengshan%20Tian"> Zengshan Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Yan"> Fei Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20Wu"> Xiaodong Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, with the rapid development of radio frequency technology, the differences between radar sensing and wireless communication in terms of receiving and sending channels, signal processing, data management and control are gradually shrinking. There has been a trend of integrated communication radar sensing. However, most of the existing radar imaging technologies based on communication signals are combined with synthetic aperture radar (SAR) imaging, which does not conform to the practical application case of the integration of communication and radar. Therefore, in this paper proposes a high-precision imaging method using communication signals based on the imaging mechanism of inverse synthetic aperture radar (ISAR) imaging. This method makes full use of the structural characteristics of the orthogonal frequency division multiplexing (OFDM) signal, so the sidelobe effect in distance compression is removed and combines radon transform and Fractional Fourier Transform (FrFT) parameter estimation methods to achieve ISAR imaging of non-cooperative targets. The simulation experiment and measured results verify the feasibility and effectiveness of the method, and prove its broad application prospects in the field of intelligent transportation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integration%20of%20communication%20and%20radar" title="integration of communication and radar">integration of communication and radar</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=radon" title=" radon"> radon</a>, <a href="https://publications.waset.org/abstracts/search?q=FrFT" title=" FrFT"> FrFT</a>, <a href="https://publications.waset.org/abstracts/search?q=ISAR" title=" ISAR"> ISAR</a> </p> <a href="https://publications.waset.org/abstracts/155640/sidelobe-free-inverse-synthetic-aperture-radar-imaging-of-non-cooperative-moving-targets-using-wifi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2431</span> Radar Fault Diagnosis Strategy Based on Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Feng">Bin Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhulin%20Zong"> Zhulin Zong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radar%20system" title="radar system">radar system</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20fault" title=" radar fault"> radar fault</a> </p> <a href="https://publications.waset.org/abstracts/163350/radar-fault-diagnosis-strategy-based-on-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2430</span> The Wear Recognition on Guide Surface Based on the Feature of Radar Graph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youhang%20Zhou">Youhang Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Weimin%20Zeng"> Weimin Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Xie"> Qi Xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guide%20surface" title="guide surface">guide surface</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20defects" title=" wear defects"> wear defects</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20visualization" title=" data visualization"> data visualization</a> </p> <a href="https://publications.waset.org/abstracts/18625/the-wear-recognition-on-guide-surface-based-on-the-feature-of-radar-graph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2429</span> Cognitive SATP for Airborne Radar Based on Slow-Time Coding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fanqiang%20Kong">Fanqiang Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jindong%20Zhang"> Jindong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Daiyin%20Zhu"> Daiyin Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space-time adaptive processing (STAP) techniques have been motivated as a key enabling technology for advanced airborne radar applications. In this paper, the notion of cognitive radar is extended to STAP technique, and cognitive STAP is discussed. The principle for improving signal-to-clutter ratio (SCNR) based on slow-time coding is given, and the corresponding optimization algorithm based on cyclic and power-like algorithms is presented. Numerical examples show the effectiveness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space-time%20adaptive%20processing%20%28STAP%29" title="space-time adaptive processing (STAP)">space-time adaptive processing (STAP)</a>, <a href="https://publications.waset.org/abstracts/search?q=airborne%20radar" title=" airborne radar"> airborne radar</a>, <a href="https://publications.waset.org/abstracts/search?q=signal-to-clutter%20ratio" title=" signal-to-clutter ratio"> signal-to-clutter ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=slow-time%20coding" title=" slow-time coding"> slow-time coding</a> </p> <a href="https://publications.waset.org/abstracts/71518/cognitive-satp-for-airborne-radar-based-on-slow-time-coding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2428</span> Lab Bench for Synthetic Aperture Radar Imaging System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karthiyayini%20Nagarajan">Karthiyayini Nagarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Ramakrishna"> P. V. Ramakrishna </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar (SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System (Lab Bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20aperture%20radar" title="synthetic aperture radar">synthetic aperture radar</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20reflection%20model" title=" radio reflection model"> radio reflection model</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20bench" title=" lab bench"> lab bench</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging%20engineering" title=" imaging engineering"> imaging engineering</a> </p> <a href="https://publications.waset.org/abstracts/29485/lab-bench-for-synthetic-aperture-radar-imaging-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20rain%20radar&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20rain%20radar&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20rain%20radar&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20rain%20radar&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20rain%20radar&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20rain%20radar&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20rain%20radar&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20rain%20radar&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20rain%20radar&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20rain%20radar&amp;page=81">81</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20rain%20radar&amp;page=82">82</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro%20rain%20radar&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10