CINXE.COM
Search results for: climatic condition
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: climatic condition</title> <meta name="description" content="Search results for: climatic condition"> <meta name="keywords" content="climatic condition"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="climatic condition" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="climatic condition"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4568</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: climatic condition</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4568</span> Simulation and Study of the Effect of Paint Mineral Coating on Energy Saving </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Azemati">A. A. Azemati</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hosseini"> H. Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By using an adequate paint in buildings, energy consumption can be decreased. In this research, a range of wall paints in different climatic conditions has been investigated to observe its effect on energy consumption. In the current study, the researchers have investigated the effect of different parameters including climatic condition, absorption coefficient, and thermal loads on paint coating. In order to study these effects, heating and cooling loads of a typical building with different color paints have been calculated. The effect of building paint in different climatic condition was studied and a comparison was drawn between paints and painting coats with inorganic micro particles in temperate climate to obtain optimized energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate" title="climate">climate</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic" title=" inorganic"> inorganic</a>, <a href="https://publications.waset.org/abstracts/search?q=painting%20coats" title=" painting coats"> painting coats</a> </p> <a href="https://publications.waset.org/abstracts/34125/simulation-and-study-of-the-effect-of-paint-mineral-coating-on-energy-saving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4567</span> Variability of Climatic Elements in Nigeria Over Recent 100 Years</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Salami">T. Salami</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Idowu"> O. S. Idowu</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20J.%20Bello"> N. J. Bello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climatic variability is an essential issue when dealing with the issue of climate change. Variability of some climate parameter helps to determine how variable the climatic condition of a region will behave. The most important of these climatic variables which help to determine the climatic condition in an area are both the Temperature and Precipitation. This research deals with Longterm climatic variability in Nigeria. Variables examined in this analysis include near-surface temperature, near surface minimum temperature, maximum temperature, relative humidity, vapour pressure, precipitation, wet-day frequency and cloud cover using data ranging between 1901-2010. Analyses were carried out and the following methods were used: - Regression and EOF analysis. Results show that the annual average, minimum and maximum near-surface temperature all gradually increases from 1901 to 2010. And they are in the same case in a wet season and dry season. Minimum near-surface temperature, with its linear trends are significant for annual, wet season and dry season means. However, the diurnal temperature range decreases in the recent 100 years imply that the minimum near-surface temperature has increased more than the maximum. Both precipitation and wet day frequency decline from the analysis, demonstrating that Nigeria has become dryer than before by the way of rainfall. Temperature and precipitation variability has become very high during these periods especially in the Northern areas. Areas which had excessive rainfall were confronted with flooding and other related issues while area that had less precipitation were all confronted with drought. More practical issues will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate" title="climate">climate</a>, <a href="https://publications.waset.org/abstracts/search?q=variability" title=" variability"> variability</a>, <a href="https://publications.waset.org/abstracts/search?q=flooding" title=" flooding"> flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=excessive%20rainfall" title=" excessive rainfall"> excessive rainfall</a> </p> <a href="https://publications.waset.org/abstracts/40057/variability-of-climatic-elements-in-nigeria-over-recent-100-years" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4566</span> Environmental Impact of Trade Sector Growth: Evidence from Tanzania </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mosses%20E.%20Lufuke">Mosses E. Lufuke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper attempted to investigate whether there is Granger-causality running from trade to environment as evidenced in the changing climatic condition and land degradation. Using Tanzania as the reference, VAR-Granger-causality test was employed to rationalize the conundrum of causal-effect relationship between trade and environment. The changing climatic condition, as the proxy of both nitrous oxide emissions (in thousand metric tons of CO<sub>2</sub> equivalent) and land degradation measured by the size of arable land were tested against trade using both exports and imports variables. The result indicated that neither of the trade variables Granger-cause the variability on gas emissions and arable land size. This suggests the possibility that all trade concerns in relation to environment to have been internalized in domestic policies to offset any likely negative consequence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=trade" title=" trade"> trade</a> </p> <a href="https://publications.waset.org/abstracts/68901/environmental-impact-of-trade-sector-growth-evidence-from-tanzania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4565</span> Growth Pattern, Condition Factor and Relative Condition Factor of Twenty Important Demersal Marine Fish Species in Nigerian Coastal Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omogoriola%20Hannah%20Omoloye">Omogoriola Hannah Omoloye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish is a key ingredient on the global menu, a vital factor in the global environment and an important basis for livelihood worldwide1. The length – weight relationships (LWRs) is of great importance in fishery assessment2,3. Its importance is pronounced in estimated the average weight at a given length group4 and in assessing the relative well being of a fish population5. Length and weight measurement in conjunction with age data can give information on the stock composition, age at maturity, life span, mortality, growth and production4,5,6,7. In addition, the data on length and weight can also provides important clues to climatic and environmental changes and the change in human consumption practices8,9. However, the size attained by the individual fish may also vary because of variation in food supply, and these in turn may reflect variation in climatic parameters and in the supply of nutrient or in the degree of competition for food. Environment deterioration, for example, may reduce growth rates and will cause a decrease in the average age of the fish. The condition factor and the relative condition factor10 are the quantitative parameters of the well being state of the fish and reflect recent feeding condition of the fish. It is based on the hypothesis that heavier fish of a given length are in better condition11. This factor varies according to influences of physiological factors, fluctuating according to different stages of the development. Condition factor has been used as an index of growth and feeding intensity12. Condition factor decrease with increase in length 12,13 and also influences the reproductive cycle in fish14. The objective here is to determine the length-weight relationships and condition factor for direct use in fishery assessment and for future comparisons between populations of the same species at different locations. To provide quantitative information on the biology of marine fish species trawl from Nigeria coastal water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20factor" title="condition factor">condition factor</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20pattern" title=" growth pattern"> growth pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20fish%20species" title=" marine fish species"> marine fish species</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigerian%20Coastal%20water" title=" Nigerian Coastal water"> Nigerian Coastal water</a> </p> <a href="https://publications.waset.org/abstracts/28437/growth-pattern-condition-factor-and-relative-condition-factor-of-twenty-important-demersal-marine-fish-species-in-nigerian-coastal-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4564</span> Estimation of the Drought Index Based on the Climatic Projections of Precipitation of the Uruguay River Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Leandro%20Melgar%20N%C3%A9ris">José Leandro Melgar Néris</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudin%C3%A9ia%20Brazil"> Claudinéia Brazil</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciane%20Teresa%20Salvi"> Luciane Teresa Salvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Cristina%20Damin"> Isabel Cristina Damin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impact the climate change is not recent, the main variable in the hydrological cycle is the sequence and shortage of a drought, which has a significant impact on the socioeconomic, agricultural and environmental spheres. This study aims to characterize and quantify, based on precipitation climatic projections, the rainy and dry events in the region of the Uruguay River Basin, through the Standardized Precipitation Index (SPI). The database is the image that is part of the Intercomparison of Model Models, Phase 5 (CMIP5), which provides condition prediction models, organized according to the Representative Routes of Concentration (CPR). Compared to the normal set of climates in the Uruguay River Watershed through precipitation projections, seasonal precipitation increases for all proposed scenarios, with a low climate trend. From the data of this research, the idea is that this article can be used to support research and the responsible bodies can use it as a subsidy for mitigation measures in other hydrographic basins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20model" title=" climatic model"> climatic model</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20events" title=" dry events"> dry events</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation%20projections" title=" precipitation projections"> precipitation projections</a> </p> <a href="https://publications.waset.org/abstracts/105773/estimation-of-the-drought-index-based-on-the-climatic-projections-of-precipitation-of-the-uruguay-river-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4563</span> Flood Scenarios for Hydrological and Hydrodynamic Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sharif%20Imam%20Ibne%20Amir">M. Sharif Imam Ibne Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Masud%20Kamal%20Khan"> Mohammad Masud Kamal Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Golam%20Rasul"> Mohammad Golam Rasul</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20H.%20Sharma"> Raj H. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatema%20Akram"> Fatema Akram </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Future flood can be predicted using the probable maximum flood (PMF). PMF is calculated using the historical discharge or rainfall data considering the other climatic parameter stationary. However, climate is changing globally and the key climatic variables are temperature, evaporation, rainfall and sea level rise (SLR). To develop scenarios to a basin or catchment scale these important climatic variables should be considered. Nowadays scenario based on climatic variables is more suitable than PMF. Six scenarios were developed for a large Fitzroy basin and presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20evaporation" title=" potential evaporation"> potential evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=scenario" title=" scenario"> scenario</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20level%20rise%20%28SLR%29" title=" sea level rise (SLR)"> sea level rise (SLR)</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-catchment" title=" sub-catchment"> sub-catchment</a> </p> <a href="https://publications.waset.org/abstracts/17875/flood-scenarios-for-hydrological-and-hydrodynamic-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4562</span> Evaluation of Corrosion Behaviour of Coatings Applied in a High-Strength Low Alloy Steel in Different Climatic Cabinets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raquel%20Bayon">Raquel Bayon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ainara%20Lopez-Ortega"> Ainara Lopez-Ortega</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Rodriguez"> Elena Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Amaya%20Igartua"> Amaya Igartua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion is one of the most concerning phenomenon that accelerates material degradation in offshore applications. In order to avoid the premature failure of metallic materials in marine environments, organic coatings have widely been used, due to their elevated corrosion resistance. Thermally-sprayed metals have recently been used in offshore applications, whereas ceramic materials are usually less employed, due to their high cost. The protectiveness of the coatings can be evaluated and categorized in corrosivity categories in accordance with the ISO 12944-6 Standard. According to this standard, for coatings that are supposed to work in marine environments, a C5-M category is required for components working out of the water or partially immersed in the splash zone, and an Im2 category for totally immersed components. C5-M/Im-2 high category would correspond to a durability of more than 20 years without maintenance in accordance with ISO 12944 and NORSOK M501 standards. In this work, the corrosion behavior of three potential coatings used in offshore applications has been evaluated. For this aim, the materials have been subjected to different environmental conditions in several climatic chambers (humidostatic, climatic, immersion, UV and salt-fog). The category of the coatings to each condition has been selected, in accordance with the previously mentioned standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cabinet" title="cabinet">cabinet</a>, <a href="https://publications.waset.org/abstracts/search?q=coatings" title=" coatings"> coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore" title=" offshore"> offshore</a> </p> <a href="https://publications.waset.org/abstracts/58681/evaluation-of-corrosion-behaviour-of-coatings-applied-in-a-high-strength-low-alloy-steel-in-different-climatic-cabinets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4561</span> An Investigation on the Role of Iwan as a Sustainable Element in the Traditional Houses of Different Climatic Regions of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Nejadriahi">H. Nejadriahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the performance of Iwan as one of the significant spaces in the traditional architecture of Iran. The aim of this study is to investigate on the role of Iwan in sustainability enhancement of traditional houses of different climatic regions of Iran. Iwan is considered as a semi-open space, which its form and location in the building highly depends to the climatic situation of that region. For that reason, Iwan is recognized as one of the sustainable elements in the traditional houses of Iran, which can provide more comfort with less use of energy. In this study, the history and emergence of Iwan in the traditional architecture of Iran as well as the concept of sustainability in architecture are explained briefly. Then, the change of performance or form of Iwan is analysed in different climatic regions of Iran in accordance to the sustainability concepts. The methods used in this study are descriptive and analytic. Results of this paper verify that studying the sustainability solutions in the traditional architecture of Iran, would be a valuable source of inspiration for the current designers to create an environmental and sustainable architecture for the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climatic%20regions%20of%20Iran" title="climatic regions of Iran">climatic regions of Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=Iwan" title=" Iwan"> Iwan</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20houses" title=" traditional houses"> traditional houses</a> </p> <a href="https://publications.waset.org/abstracts/51325/an-investigation-on-the-role-of-iwan-as-a-sustainable-element-in-the-traditional-houses-of-different-climatic-regions-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4560</span> Experimental Study of Semitransparent and Opaque Photovoltaic Modules with and without Air Duct</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Agrawal">Sanjay Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Trapti%20Varshney"> Trapti Varshney</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Tiwari"> G. N. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, thermal modeling has been developed for photovoltaic PV modules, namely; Case A: semitransparent PV module without duct, Case B: semitransparent PV module with duct, Case C: opaque PV module without duct, Case D: opaque PV module with duct for Delhi, India climatic condition. MATLAB 7.0 software has been used to solve mathematical models of the proposed system. For validation of proposed system, the experimental study has also been carried out for all above four cases, and then comparative analysis of all different type of PV module has been presented. The hybrid PVT module air collectors presented in this study are self sustaining the system and can be used for the electricity generation in remote areas where access of electricity is not economical due to high transmission and distribution losses. It has been found that overall annual thermal energy and exergy gain of semitransparent PV module is higher by 11.6% and7.32% in summer condition and 16.39% and 18% in winter condition respectively as compared to opaque PV module considering same area (0.61 m2) of PV module. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semitransparent%20PV%20module" title="semitransparent PV module">semitransparent PV module</a>, <a href="https://publications.waset.org/abstracts/search?q=overall%20exergy" title=" overall exergy"> overall exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=overall%20thermal%20energy" title=" overall thermal energy"> overall thermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=opaque" title=" opaque "> opaque </a> </p> <a href="https://publications.waset.org/abstracts/67088/experimental-study-of-semitransparent-and-opaque-photovoltaic-modules-with-and-without-air-duct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4559</span> Agro-Climatic Analysis in the Northern Areas of Khyber Pakhtunkhwa, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zia%20Ullah">Zia Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruh%20Ullah"> Ruh Ullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A research study was conceded in four locations (Swat, Dir, Kakul and Balakot) of Khyber Pakhtunkhwa, to find agro-climatic classes by using aridity index, Growing Degree Days of wheat and maize, crop growth index and Spatio-temporal analysis of rainfall by using long term climatic data (1970-2010). The climatic data used for research was acquired from Pakistan Meteorological Department (PMD) Islamabad, Agriculture Research Institute, Weather Station Peshawar and Tarnab Peshawar. Agro-climatic classes of each location were determined using three criteria mean temperature of the coldest month, mean temperature of the warmest month and aridity index. The agro-climatic classes of Dir, Swat, Kakul and Balakot were classified as Humid, Cold and very Warm (H-K-VW). Average aridity index of wheat for Dir, Swat, Kakul, and Balakot was 2.23, 2.67, 1.94 and 2.34 and for Maize was 1.31, 1.26, 1.97, and 2.83 respectively. The overall and decade-wise trend of GDD of Wheat and Maize was declined in Swat and Kakul while increased in Dir and Balakot.The average maximum CGI (1.26) and (0.73) of Wheat and Maize was observed for Balakot and Dir, while the minimum (1.09) and (0.62) was observed for Swat and Kakul. Spatio-temporal analysis of rainfall shows that the trend has increased in Swat while decreased in Dir, Kakul and Balakot. From the relation between rainfalls with altitude showed that there was an increasing trend between rainfalls with altitude. The maximum average rainfall was in Swat (2703mm) on altitude 2000m while the minimum average rainfall was observed in Kakul (1410mm) on altitude of 1255m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agro-climatic%20zones" title="agro-climatic zones">agro-climatic zones</a>, <a href="https://publications.waset.org/abstracts/search?q=aridity%20index" title=" aridity index"> aridity index</a>, <a href="https://publications.waset.org/abstracts/search?q=GDD" title=" GDD"> GDD</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a> </p> <a href="https://publications.waset.org/abstracts/87732/agro-climatic-analysis-in-the-northern-areas-of-khyber-pakhtunkhwa-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4558</span> Statistical Scientific Investigation of Popular Cultural Heritage in the Relationship between Astronomy and Weather Conditions in the State of Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20AlHasem">Ahmed M. AlHasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Kuwaiti society has long been aware of climatic changes and their annual dates and trying to link them to astronomy in an attempt to forecast the future weather conditions. The reason for this concern is that many of the economic, social and living activities of the society depend deeply on the nature of the weather conditions directly and indirectly. In other words, Kuwaiti society, like the case of many human societies, has in the past tried to predict climatic conditions by linking them to astronomy or popular statements to indicate the timing of climate changes. Accordingly, this study was devoted to scientific investigation based on the statistical analysis of climatic data to show the accuracy and compatibility of some of the most important elements of the cultural heritage in relation to climate change and to relate it scientifically to precise climatic measurements for decades. The research has been divided into 10 topics, each topic has been focused on one legacy, whether by linking climate changes to the appearance/disappearance of star or a popular statement inherited through generations, through explain the nature and timing and thereby statistical analysis to indicate the proportion of accuracy based on official climatic data since 1962. The study's conclusion is that the relationship is weak and, in some cases, non-existent between the popular heritage and the actual climatic data. Therefore, it does not have a dependable relationship and a reliable scientific prediction between both the popular heritage and the forecast of weather conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=astronomy" title="astronomy">astronomy</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20heritage" title=" cultural heritage"> cultural heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20prediction" title=" weather prediction"> weather prediction</a> </p> <a href="https://publications.waset.org/abstracts/102495/statistical-scientific-investigation-of-popular-cultural-heritage-in-the-relationship-between-astronomy-and-weather-conditions-in-the-state-of-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4557</span> Detection of Trends and Break Points in Climatic Indices: The Case of Umbria Region in Italy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Flammini">A. Flammini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Morbidelli"> R. Morbidelli</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Saltalippi"> C. Saltalippi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase of air surface temperature at global scale is a fact, with values around 0.85 ºC since the late nineteen century, as well as a significant change in main features of rainfall regime. Nevertheless, the detected climatic changes are not equally distributed all over the world, but exhibit specific characteristics in different regions. Therefore, studying the evolution of climatic indices in different geographical areas with a prefixed standard approach becomes very useful in order to analyze the existence of climatic trend and compare results. In this work, a methodology to investigate the climatic change and its effects on a wide set of climatic indices is proposed and applied at regional scale in the case study of a Mediterranean area, Umbria region in Italy. From data of the available temperature stations, nine temperature indices have been obtained and the existence of trends has been checked by applying the non-parametric Mann-Kendall test, while the non-parametric Pettitt test and the parametric Standard Normal Homogeneity Test (SNHT) have been applied to detect the presence of break points. In addition, aimed to characterize the rainfall regime, data from 11 rainfall stations have been used and a trend analysis has been performed on cumulative annual rainfall depth, daily rainfall, rainy days, and dry periods length. The results show a general increase in any temperature indices, even if with a trend pattern dependent of indices and stations, and a general decrease of cumulative annual rainfall and average daily rainfall, with a time rainfall distribution over the year different from the past. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climatic%20change" title="climatic change">climatic change</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20regime" title=" rainfall regime"> rainfall regime</a>, <a href="https://publications.waset.org/abstracts/search?q=trend%20analysis" title=" trend analysis"> trend analysis</a> </p> <a href="https://publications.waset.org/abstracts/103493/detection-of-trends-and-break-points-in-climatic-indices-the-case-of-umbria-region-in-italy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4556</span> A Comparison of Air Quality in Arid and Temperate Climatic Conditions – a Case Study of Leeds and Makkah</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Turki%20M.%20Habeebullah">Turki M. Habeebullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Munir"> Said Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=Karl%20Ropkins"> Karl Ropkins</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20A.%20Morsy"> Essam A. Morsy</a>, <a href="https://publications.waset.org/abstracts/search?q=Atef%20M.%20F.%20Mohammed"> Atef M. F. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulaziz%20R.%20Seroji"> Abdulaziz R. Seroji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper air quality conditions in Makkah and Leeds are compared. These two cities have totally different climatic conditions. Makkah climate is characterised as hot and dry (arid) whereas that of Leeds is characterised as cold and wet (temperate). This study uses air quality data from year 2012 collected in Makkah, Saudi Arabia and Leeds, UK. The concentrations of all pollutants, except NO are higher in Makkah. Most notable, the concentrations of PM10 are much higher in Makkah than in Leeds. This is probably due to the arid nature of climatic conditions in Makkah and not solely due to anthropogenic emission sources, otherwise like PM10 some of the other pollutants, such as CO, NO, and SO2 would have shown much greater difference between Leeds and Makkah. Correlation analysis is performed between different pollutants at the same site and the same pollutants at different sites. In Leeds the correlation between PM10 and other pollutants is significantly stronger than in Makkah. Weaker correlation in Makkah is probably due to the fact that in Makkah most of the gaseous pollutants are emitted by combustion processes, whereas most of the PM10 is generated by other sources, such as windblown dust, re-suspension, and construction activities. This is in contrast to Leeds where all pollutants including PM10 are predominantly emitted by combustions, such as road traffic. Furthermore, in Leeds frequent rains wash out most of the atmospheric particulate matter and supress re-suspension of dust. Temporal trends of various pollutants are compared and discussed. This study emphasises the role of climatic conditions in managing air quality, and hence the need for region-specific controlling strategies according to the local climatic and meteorological conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20conditions" title=" climatic conditions"> climatic conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=Makkah" title=" Makkah"> Makkah</a>, <a href="https://publications.waset.org/abstracts/search?q=Leeds" title=" Leeds"> Leeds</a> </p> <a href="https://publications.waset.org/abstracts/19619/a-comparison-of-air-quality-in-arid-and-temperate-climatic-conditions-a-case-study-of-leeds-and-makkah" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4555</span> Reducing Uncertainty in Climate Projections over Uganda by Numerical Models Using Bias Correction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Mugume">Isaac Mugume</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the beginning of the 21st century, climate change has been an issue due to the reported rise in global temperature and changes in the frequency as well as severity of extreme weather and climatic events. The changing climate has been attributed to rising concentrations of greenhouse gases, including environmental changes such as ecosystems and land-uses. Climatic projections have been carried out under the auspices of the intergovernmental panel on climate change where a couple of models have been run to inform us about the likelihood of future climates. Since one of the major forcings informing the changing climate is emission of greenhouse gases, different scenarios have been proposed and future climates for different periods presented. The global climate models project different areas to experience different impacts. While regional modeling is being carried out for high impact studies, bias correction is less documented. Yet, the regional climate models suffer bias which introduces uncertainty. This is addressed in this study by bias correcting the regional models. This study uses the Weather Research and Forecasting model under different representative concentration pathways and correcting the products of these models using observed climatic data. This study notes that bias correction (e.g., the running-mean bias correction; the best easy systematic estimator method; the simple linear regression method, nearest neighborhood, weighted mean) improves the climatic projection skill and therefore reduce the uncertainty inherent in the climatic projections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bias%20correction" title="bias correction">bias correction</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20projections" title=" climatic projections"> climatic projections</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20models" title=" numerical models"> numerical models</a>, <a href="https://publications.waset.org/abstracts/search?q=representative%20concentration%20pathways" title=" representative concentration pathways"> representative concentration pathways</a> </p> <a href="https://publications.waset.org/abstracts/111018/reducing-uncertainty-in-climate-projections-over-uganda-by-numerical-models-using-bias-correction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4554</span> Modeling Karachi Dengue Outbreak and Exploration of Climate Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Afrozuddin%20Ahmed">Syed Afrozuddin Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Saghir%20Siddiqi"> Junaid Saghir Siddiqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabah%20Quaiser"> Sabah Quaiser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various studies have reported that global warming causes unstable climate and many serious impact to physical environment and public health. The increasing incidence of dengue incidence is now a priority health issue and become a health burden of Pakistan. In this study it has been investigated that spatial pattern of environment causes the emergence or increasing rate of dengue fever incidence that effects the population and its health. The climatic or environmental structure data and the Dengue Fever (DF) data was processed by coding, editing, tabulating, recoding, restructuring in terms of re-tabulating was carried out, and finally applying different statistical methods, techniques, and procedures for the evaluation. Five climatic variables which we have studied are precipitation (P), Maximum temperature (Mx), Minimum temperature (Mn), Humidity (H) and Wind speed (W) collected from 1980-2012. The dengue cases in Karachi from 2010 to 2012 are reported on weekly basis. Principal component analysis is applied to explore the climatic variables and/or the climatic (structure) which may influence in the increase or decrease in the number of dengue fever cases in Karachi. PC1 for all the period is General atmospheric condition. PC2 for dengue period is contrast between precipitation and wind speed. PC3 is the weighted difference between maximum temperature and wind speed. PC4 for dengue period contrast between maximum and wind speed. Negative binomial and Poisson regression model are used to correlate the dengue fever incidence to climatic variable and principal component score. Relative humidity is estimated to positively influence on the chances of dengue occurrence by 1.71% times. Maximum temperature positively influence on the chances dengue occurrence by 19.48% times. Minimum temperature affects positively on the chances of dengue occurrence by 11.51% times. Wind speed is effecting negatively on the weekly occurrence of dengue fever by 7.41% times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title="principal component analysis">principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dengue%20fever" title=" dengue fever"> dengue fever</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20binomial%20regression%20model" title=" negative binomial regression model"> negative binomial regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=poisson%20regression%20model" title=" poisson regression model"> poisson regression model</a> </p> <a href="https://publications.waset.org/abstracts/30305/modeling-karachi-dengue-outbreak-and-exploration-of-climate-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4553</span> Climatic Roots of Piracy in Red Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Karami">Nasser Karami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piracy in the North West of Indian Ocean and the Red Sea has become a global crisis in recent years. Pirates of this area are often very poor people from the Horn of Africa and the western coast of the Red Sea. Climatic and geographical evidence suggests that poverty and destruction of social structures in the region have directly relation to prolonged-drought. Indeed, after the seventies (more than 40 years ago) due to the long-term drought in the region, all political, economic and social structures had declined. Spread of terrorism, violent extremism and of course piracy, are main effects of climate change and drought of this regression. It is disturbing to say the climatic documents say that because of global climate change, severe drought will continue in this region. This mean that the dangers worse than piracy threatens the future of this area. Forty-year data that has assessed in this study indicate that there is direct relationship between spread of drought and piracy in the Red Sea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate" title="climate">climate</a>, <a href="https://publications.waset.org/abstracts/search?q=poverty" title=" poverty"> poverty</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=piracy%20in%20red%20sea" title=" piracy in red sea"> piracy in red sea</a> </p> <a href="https://publications.waset.org/abstracts/30771/climatic-roots-of-piracy-in-red-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4552</span> Performance Analysis of Modified Solar Water Heating System for Climatic Condition of Allahabad, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirti%20Tewari">Kirti Tewari</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Dev"> Rahul Dev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar water heating is a thermodynamic process of heating water using sunlight with the help of solar water heater. Thus, solar water heater is a device used to harness solar energy. In this paper, a modified solar water heating system (MSWHS) has been proposed over flat plate collector (FPC) and Evacuated tube collector (ETC). The modifications include selection of materials other than glass, and glass wool which are conventionally used for fabricating FPC and ETC. Some modifications in design have also been proposed. Its collector is made of double layer of semi-cylindrical acrylic tubes and fibre reinforced plastic (FRP) insulation base. Water tank is made of double layer of acrylic sheet except base and north wall. FRP is used in base and north wall of the water tank. A concept of equivalent thickness has been utilised for calculating the dimensions of collector plate, acrylic tube and tank. A thermal model for the proposed design of MSWHS is developed and simulation is carried out on MATLAB for the capacity of 200L MSWHS having collector area of 1.6 m2, length of acrylic tubes of 2m at an inclination angle 25° which is taken nearly equal to the latitude of the given location. Latitude of Allahabad is 24.45° N. The results show that the maximum temperature of water in tank and tube has been found to be 71.2°C and 73.3°C at 17:00hr and 16:00hr respectively in March for the climatic data of Allahabad. Theoretical performance analysis has been carried out by varying number of tubes of collector, the tank capacity and climatic data for given months of winter and summer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylic" title="acrylic">acrylic</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20reinforced%20plastic" title=" fibre reinforced plastic"> fibre reinforced plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20water%20heating" title=" solar water heating"> solar water heating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20model" title=" thermal model"> thermal model</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20water%20heaters" title=" conventional water heaters"> conventional water heaters</a> </p> <a href="https://publications.waset.org/abstracts/37139/performance-analysis-of-modified-solar-water-heating-system-for-climatic-condition-of-allahabad-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4551</span> Investigating the Impact of Solar Radiation on Electricity Meters’ Accuracy Using A Modified Climatic Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hala%20M.%20Abdel%20Mageed">Hala M. Abdel Mageed</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20M.%20Hosny"> Eman M. Hosny</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20S.%20Nada"> Adel S. Nada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar radiation test is one of the essential tests performed on electricity meters that is carried out using solar simulators. In this work, the (MKF-240) climatic chamber has been modified to act as a solar simulator at the Egyptian national institute of standard, NIS. Quartz Tungsten Halogen (QTH) lamps and an Aluminum plate are added to the climatic chamber to realize the solar test conditions. Many experimental trials have been performed to reach the optimum number of lamps needed to fulfil the test requirements and to adjust the best uniform test area. The proposed solar simulator design is capable to produce irradiance up to 1066 W/m2. Its output radiation is controlled by changing the number of illuminated lamps as well as changing the distance between lamps and tested electricity meter. The uniformity of radiation within the simulator has been recognized to be 91.5 % at maximum irradiance. Three samples of electricity meters have been tested under different irradiances, temperatures, and electric loads. The electricity meters’ accuracies have been recorded and analyzedfor eachsample. Moreover, measurement uncertainty contribution has been considered in all tests to get precision value. There were noticeable changes in the accuracies of the electricity meters while exposed to solar radiation, although there were no noticeable distortions of their insulationsand outer surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation" title="solar radiation">solar radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20simulator" title=" solar simulator"> solar simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20chamber" title=" climatic chamber"> climatic chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=halogen%20lamp" title=" halogen lamp"> halogen lamp</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20meter" title=" electricity meter"> electricity meter</a> </p> <a href="https://publications.waset.org/abstracts/152458/investigating-the-impact-of-solar-radiation-on-electricity-meters-accuracy-using-a-modified-climatic-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4550</span> Assessing the Effects of Climate Change on Wheat Production, Ensuring Food Security and Loss Compensation under Crop Insurance Program in Punjab-Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirza%20Waseem%20Abbas">Mirza Waseem Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Qayyum"> Abdul Qayyum</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Islam"> Muhammad Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change has emerged as a significant threat to global food security, affecting crop production systems worldwide. This research paper aims to examine the specific impacts of climate change on wheat production in Pakistan, Punjab in particular, a country highly dependent on wheat as a staple food crop. Through a comprehensive review of scientific literature, field observations, and data analysis, this study assesses the key climatic factors influencing wheat cultivation and the subsequent implications for food security in the region. A comparison of two subsequent Wheat seasons in Punjab was examined through climatic conditions, area, yield, and production data. From the analysis, it is observed that despite a decrease in the area under cultivation in the Punjab during the Wheat 2023 season, the production and average yield increased due to favorable weather conditions. These uncertain climatic conditions have a direct impact on crop yields. Last year due to heat waves, Wheat crop in Punjab suffered a significant loss. Through crop insurance, Wheat growers were provided with yield loss protection keeping in view the devastating heat wave and floods last year. Under crop insurance by the Government of the Punjab, 534,587 Wheat growers were insured with a $1.6 million premium subsidy. However, due to better climatic conditions, no loss in the yield was recorded in the insured areas. Crop Insurance is one of the suitable options for policymakers to protect farmers against climatic losses in the future as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20insurance" title=" crop insurance"> crop insurance</a>, <a href="https://publications.waset.org/abstracts/search?q=heatwave" title=" heatwave"> heatwave</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20yield%20punjab" title=" wheat yield punjab"> wheat yield punjab</a> </p> <a href="https://publications.waset.org/abstracts/174146/assessing-the-effects-of-climate-change-on-wheat-production-ensuring-food-security-and-loss-compensation-under-crop-insurance-program-in-punjab-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4549</span> Assessment of the Impacts of Climate Change on Climatic Zones over the Korean Peninsula for Natural Disaster Management Information</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sejin%20Jung">Sejin Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongho%20Kang"> Dongho Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungsik%20Kim"> Byungsik Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assessing the impact of climate change requires the use of a multi-model ensemble (MME) to quantify uncertainties between scenarios and produce downscaled outlines for simulation of climate under the influence of different factors, including topography. This study decreases climate change scenarios from the 13 global climate models (GCMs) to assess the impacts of future climate change. Unlike South Korea, North Korea lacks in studies using climate change scenarios of the CoupledModelIntercomparisonProject (CMIP5), and only recently did the country start the projection of extreme precipitation episodes. One of the main purposes of this study is to predict changes in the average climatic conditions of North Korea in the future. The result of comparing downscaled climate change scenarios with observation data for a reference period indicates high applicability of the Multi-Model Ensemble (MME). Furthermore, the study classifies climatic zones by applying the Köppen-Geiger climate classification system to the MME, which is validated for future precipitation and temperature. The result suggests that the continental climate (D) that covers the inland area for the reference climate is expected to shift into the temperate climate (C). The coefficient of variation (CVs) in the temperature ensemble is particularly low for the southern coast of the Korean peninsula, and accordingly, a high possibility of the shifting climatic zone of the coast is predicted. This research was supported by a grant (MOIS-DP-2015-05) of Disaster Prediction and Mitigation Technology Development Program funded by Ministry of Interior and Safety (MOIS, Korea). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MME" title="MME">MME</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20Korea" title=" North Korea"> North Korea</a>, <a href="https://publications.waset.org/abstracts/search?q=Koppen%E2%80%93Geiger" title=" Koppen–Geiger"> Koppen–Geiger</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20zones" title=" climatic zones"> climatic zones</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20variation" title=" coefficient of variation"> coefficient of variation</a>, <a href="https://publications.waset.org/abstracts/search?q=CV" title=" CV"> CV</a> </p> <a href="https://publications.waset.org/abstracts/112206/assessment-of-the-impacts-of-climate-change-on-climatic-zones-over-the-korean-peninsula-for-natural-disaster-management-information" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4548</span> Enhancement of Shelflife of Malta Fruit with Active Packaging </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishi%20Richa">Rishi Richa</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Shahi"> N. C. Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Pandey"> J. P. Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Kautkar"> S. S. Kautkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Citrus fruits rank third in area and production after banana and mango in India. Sweet oranges are the second largest citrus fruits cultivated in the country. Andhra Pradesh, Maharashtra, Karnataka, Punjab, Haryana, Rajasthan, and Uttarakhand are the main sweet orange-growing states. Citrus fruits occupy a leading position in the fruit trade of Uttarakhand, is casing about 14.38% of the total area under fruits and contributing nearly 17.75 % to the total fruit production. Malta is grown in most of the hill districts of the Uttarakhand. Malta common is having high acceptability due to its attractive colour, distinctive flavour, and taste. The excellent quality fruits are generally available for only one or two months. However due to its less shelf-life, Malta can not be stored for longer time under ambient conditions and cannot be transported to distant places. Continuous loss of water adversely affects the quality of Malta during storage and transportation. Method of picking, packaging, and cold storage has detrimental effects on moisture loss. The climatic condition such as ambient temperature, relative humidity, wind condition (aeration) and microbial attack greatly influences the rate of moisture loss and quality. Therefore, different agro-climatic zone will have different moisture loss pattern. The rate of moisture loss can be taken as one of the quality parameters in combination of one or more parameter such as RH, and aeration. The moisture contents of the fruits and vegetables determine their freshness. Hence, it is important to maintain initial moisture status of fruits and vegetable for prolonged period after the harvest. Keeping all points in views, effort was made to store Malta at ambient condition. In this study, the response surface method and experimental design were applied for optimization of independent variables to enhance the shelf life of four months stored malta. Box-Benkhen design, with, 12 factorial points and 5 replicates at the centre point were used to build a model for predicting and optimizing storage process parameters. The independent parameters, viz., scavenger (3, 4 and 5g), polythene thickness (75, 100 and 125 gauge) and fungicide concentration (100, 150 and 200ppm) were selected and analyzed. 5g scavenger, 125 gauge and 200ppm solution of fungicide are the optimized value for storage which may enhance life up to 4months. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malta%20fruit" title="Malta fruit">Malta fruit</a>, <a href="https://publications.waset.org/abstracts/search?q=scavenger" title=" scavenger"> scavenger</a>, <a href="https://publications.waset.org/abstracts/search?q=packaging" title=" packaging"> packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a> </p> <a href="https://publications.waset.org/abstracts/50519/enhancement-of-shelflife-of-malta-fruit-with-active-packaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4547</span> The White Stork (Ciconia ciconia) in the Wetlands of North East of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Beya%20Mammeria">Aicha Beya Mammeria</a>, <a href="https://publications.waset.org/abstracts/search?q=Idir%20Bitam"> Idir Bitam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our study focuses on the distribution of the white stork "Ciconia ciconia L. 1758" in the wetlands of El Tarf (North eastern of Algeria): recognized by its remarkable number of breeding pairs, monitoring of nesting, using a GPS has been performed in an attempt to explain the functioning of populations and population strategies for an overall design of its distribution, which has not so far been investigated in this region. Between 2012 and 2013, the number of breeding pairs has increased considerably from 174 in 1996 to 475 in 2007 and 968 in 2013. It should be noted that in the distribution of breeding pairs between 1996 and 2011, there is a significant development since the density of nests increased from 25.22 in 1996 to 84.16 couples/100 km² in 2013. More endemic bread apears in the region, this fluctuation is related to climatic change and changing season. Changes related to local climatic conditions might induce binding conditions for the development of this species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=white%20stork" title="white stork">white stork</a>, <a href="https://publications.waset.org/abstracts/search?q=Ciconia%20ciconia" title=" Ciconia ciconia"> Ciconia ciconia</a>, <a href="https://publications.waset.org/abstracts/search?q=wetland%20El%20Tarf" title=" wetland El Tarf"> wetland El Tarf</a>, <a href="https://publications.waset.org/abstracts/search?q=northeast%20Algeria" title=" northeast Algeria"> northeast Algeria</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20changing" title=" climatic changing"> climatic changing</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a> </p> <a href="https://publications.waset.org/abstracts/23717/the-white-stork-ciconia-ciconia-in-the-wetlands-of-north-east-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4546</span> Possibilities to Evaluate the Climatic and Meteorological Potential for Viticulture in Poland: The Case Study of the Jagiellonian University Vineyard</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oskar%20Sekowski">Oskar Sekowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current global warming causes changes in the traditional zones of viticulture worldwide. During 20th century, the average global air temperature increased by 0.89˚C. The models of climate change indicate that viticulture, currently concentrating in narrow geographic niches, may move towards the poles, to higher geographic latitudes. Global warming may cause changes in traditional viticulture regions. Therefore, there is a need to estimate the climatic conditions and climate change in areas that are not traditionally associated with viticulture, e.g., Poland. The primary objective of this paper is to prepare methodology to evaluate the climatic and meteorological potential for viticulture in Poland based on a case study. Moreover, the additional aim is to evaluate the climatic potential of a mesoregion where a university vineyard is located. The daily data of temperature, precipitation, insolation, and wind speed (1988-2018) from the meteorological station located in Łazy, southern Poland, was used to evaluate 15 climatological parameters and indices connected with viticulture. The next steps of the methodology are based on Geographic Information System methods. The topographical factors such as a slope gradient and slope exposure were created using Digital Elevation Models. The spatial distribution of climatological elements was interpolated by ordinary kriging. The values of each factor and indices were also ranked and classified. The viticultural potential was determined by integrating two suitability maps, i.e., the topographical and climatic ones, and by calculating the average for each pixel. Data analysis shows significant changes in heat accumulation indices that are driven by increases in maximum temperature, mostly increasing number of days with Tmax > 30˚C. The climatic conditions of this mesoregion are sufficient for vitis vinifera viticulture. The values of indicators and insolation are similar to those in the known wine regions located on similar geographical latitudes in Europe. The smallest threat to viticulture in study area is the occurrence of hail and the highest occurrence of frost in the winter. This research provides the basis for evaluating general suitability and climatologic potential for viticulture in Poland. To characterize the climatic potential for viticulture, it is necessary to assess the suitability of all climatological and topographical factors that can influence viticulture. The methodology used in this case study shows places where there is a possibility to create vineyards. It may also be helpful for wine-makers to select grape varieties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climatologic%20potential" title="climatologic potential">climatologic potential</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20classification" title=" climatic classification"> climatic classification</a>, <a href="https://publications.waset.org/abstracts/search?q=Poland" title=" Poland"> Poland</a>, <a href="https://publications.waset.org/abstracts/search?q=viticulture" title=" viticulture"> viticulture</a> </p> <a href="https://publications.waset.org/abstracts/110598/possibilities-to-evaluate-the-climatic-and-meteorological-potential-for-viticulture-in-poland-the-case-study-of-the-jagiellonian-university-vineyard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4545</span> Neural Networks Based Prediction of Long Term Rainfall: Nine Pilot Study Zones over the Mediterranean Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Racha%20El%20Kadiri">Racha El Kadiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sultan"> Mohamed Sultan</a>, <a href="https://publications.waset.org/abstracts/search?q=Henrique%20Momm"> Henrique Momm</a>, <a href="https://publications.waset.org/abstracts/search?q=Zachary%20Blair"> Zachary Blair</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Schultz"> Rachel Schultz</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamer%20Al-Bayoumi"> Tamer Al-Bayoumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Mediterranean Basin is a very diverse region of nationalities and climate zones, with a strong dependence on agricultural activities. Predicting long term (with a lead of 1 to 12 months) rainfall, and future droughts could contribute in a sustainable management of water resources and economical activities. In this study, an integrated approach was adopted to construct predictive tools with lead times of 0 to 12 months to forecast rainfall amounts over nine subzones of the Mediterranean Basin region. The following steps were conducted: (1) acquire, assess and intercorrelate temporal remote sensing-based rainfall products (e.g. The CPC Merged Analysis of Precipitation [CMAP]) throughout the investigation period (1979 to 2016), (2) acquire and assess monthly values for all of the climatic indices influencing the regional and global climatic patterns (e.g., Northern Atlantic Oscillation [NOI], Southern Oscillation Index [SOI], and Tropical North Atlantic Index [TNA]); (3) delineate homogenous climatic regions and select nine pilot study zones, (4) apply data mining methods (e.g. neural networks, principal component analyses) to extract relationships between the observed rainfall and the controlling factors (i.e. climatic indices with multiple lead-time periods) and (5) use the constructed predictive tools to forecast monthly rainfall and dry and wet periods. Preliminary results indicate that rainfall and dry/wet periods were successfully predicted with lead zones of 0 to 12 months using the adopted methodology, and that the approach is more accurately applicable in the southern Mediterranean region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rainfall" title="rainfall">rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=climatic%20indices" title=" climatic indices"> climatic indices</a>, <a href="https://publications.waset.org/abstracts/search?q=Mediterranean" title=" Mediterranean"> Mediterranean</a> </p> <a href="https://publications.waset.org/abstracts/70457/neural-networks-based-prediction-of-long-term-rainfall-nine-pilot-study-zones-over-the-mediterranean-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4544</span> Investigation on the Physical Conditions of Façade Systems of Campus Buildings by Infrared Thermography Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20T%C3%BCrkmeno%C4%9Flu%20Bayraktar">N. Türkmenoğlu Bayraktar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kishal%C4%B1"> E. Kishalı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Campus buildings are educational facilities where various amount of energy consumption for lighting, heating, cooling and ventilation occurs. Some of the new universities in Turkey, where this investigation takes place, still continue their educational activities in existing buildings primarily designed for different architectural programs and converted to campus buildings via changes of function, space organizations and structural interventions but most of the time without consideration of appropriate micro climatic conditions. Reducing energy consumption in these structures not only contributes to the national economy but also mitigates the negative effects on environment. Furthermore, optimum thermal comfort conditions should be provided during the refurbishment of existing campus structures and their building envelope. Considering this issue, the first step is to investigate the climatic performance of building elements regarding refurbishment process. In the context of the study Kocaeli University, Faculty of Design and Architecture building constructed in 1980s in Anıtpark campus located in the central part of Kocaeli, Turkey was investigated. Climatic factors influencing thermal conditions; the deteriorations on building envelope; temperature distribution; heat losses from façade elements observed by thermography were presented in order to improve strategies for retrofit process for the building envelope. Within the scope of the survey, refurbishment strategies towards providing optimum climatic comfort conditions, increasing energy efficiency of building envelope were proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20envelope" title="building envelope">building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=IRT" title=" IRT"> IRT</a>, <a href="https://publications.waset.org/abstracts/search?q=refurbishment" title=" refurbishment"> refurbishment</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20test" title=" non-destructive test"> non-destructive test</a> </p> <a href="https://publications.waset.org/abstracts/63785/investigation-on-the-physical-conditions-of-facade-systems-of-campus-buildings-by-infrared-thermography-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4543</span> The Role of Climate-Smart Agriculture in the Contribution of Small-Scale Farming towards Ensuring Food Security in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20O.%20Abegunde">Victor O. Abegunde</a>, <a href="https://publications.waset.org/abstracts/search?q=Melusi%20Sibanda"> Melusi Sibanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is need for a great deal of attention on small-scale agriculture for livelihood and food security because of the expanding global population. Small-scale agriculture has been identified as a major driving force of agricultural and rural development. However, the high dependence of the sector on natural and climatic resources has made small-scale farmers highly vulnerable to the adverse impact of climatic change thereby necessitating the need for embracing practices or concepts that will help absorb shocks from changes in climatic condition. This study examines the strategic position of small-scale farming in South African agriculture and in ensuring food security in the country, the vulnerability of small-scale agriculture to climate change and the potential of the concept of climate-smart agriculture to tackle the challenge of climate change. The study carried out a systematic review of peer-reviewed literature touching small-scale agriculture, climate change, food security and climate-smart agriculture, employing the realist review method. Findings revealed that increased productivity in the small-scale agricultural sector has a great potential of improving the food security of households in South Africa and reducing dependence on food purchase in a context of high food price inflation. Findings, however, also revealed that climate change affects small-scale subsistence farmers in terms of productivity, food security and family income, categorizing the impact on smallholder livelihoods into three major groups; biological processes, environmental and physical processes and impact on health. Analysis of the literature consistently showed that climate-smart agriculture integrates the benefits of adaptation and resilience to climate change, mitigation, and food security. As a result, farming households adopting climate-smart agriculture will be better off than their counterparts who do not. This study concludes that climate-smart agriculture could be a very good bridge linking small-scale agricultural sector and agricultural productivity and development which could bring about the much needed food security. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=climate-smart%20agriculture" title=" climate-smart agriculture"> climate-smart agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a>, <a href="https://publications.waset.org/abstracts/search?q=small-scale" title=" small-scale"> small-scale</a> </p> <a href="https://publications.waset.org/abstracts/90590/the-role-of-climate-smart-agriculture-in-the-contribution-of-small-scale-farming-towards-ensuring-food-security-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4542</span> Forage Quality of Chickpea - Barley as Affected by Mixed Cropping System in Water Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rafiee">Masoud Rafiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the quality response of forage to chickpea-barley mixed cropping under drought stress and vermicompost consumption, an experiment was carried out under well watered and %70 water requirement (stress condition) in RCBD as split plot with four replications in temperate condition of Khorramabad in 2013. Chickpea-barley mix cropping (%100 chickpea, %75:25 chickpea:barley, %50:50 chickpea:barley, %25:75 chickpea:barley, and %100 barley) was studied. Results showed that wet and dry forage yield were significantly affected by environment and decreased in stress condition. Also, crude protein content decreased from %26.2 in well watered to %17.3 in stress condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20protein" title="crude protein">crude protein</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20forage%20yield" title=" wet forage yield"> wet forage yield</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20forage%20yield" title=" dry forage yield"> dry forage yield</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress%20condition" title=" water stress condition"> water stress condition</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20watered" title=" well watered"> well watered</a> </p> <a href="https://publications.waset.org/abstracts/31169/forage-quality-of-chickpea-barley-as-affected-by-mixed-cropping-system-in-water-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4541</span> Solar-Powered Adsorption Cooling System: A Case Study on the Climatic Conditions of Al Minya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El-Sadek%20H.%20Nour%20El-deen">El-Sadek H. Nour El-deen</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Harby"> K. Harby </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy saving and environment friendly applications are turning out to be one of the most important topics nowadays. In this work, a simulation analysis using TRNSYS software has been carried out to study the benefit of employing a solar adsorption cooling system under the climatic conditions of Al-Minya city, Egypt. A theoretical model was carried out on a two bed adsorption cooling system employing granular activated carbon-HFC-404A as working pair. Temporal and averaged history of solar collector, adsorbent beds, evaporator and condenser has been shown. System performance in terms of daily average cooling capacity and average coefficient of performance around the year has been investigated. The results showed that maximum yearly average coefficient of performance (COP) and cooling capacity are about 0.26 and 8 kW respectively. The maximum value of the both average cooling capacity and COP cyclic is directly proportional to the maximum solar radiation. The system performance was found to be increased with the average ambient temperature. Finally, the proposed solar powered adsorption cooling systems can be used effectively under Al-Minya climatic conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling" title=" cooling"> cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/92060/solar-powered-adsorption-cooling-system-a-case-study-on-the-climatic-conditions-of-al-minya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4540</span> Integration of Climatic Factors in the Meta-Population Modelling of the Dynamic of Malaria Transmission, Case of Douala and Yaoundé, Two Cities of Cameroon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justin-Herve%20Noubissi">Justin-Herve Noubissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Claude%20Kamgang"> Jean Claude Kamgang</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Ramat"> Eric Ramat</a>, <a href="https://publications.waset.org/abstracts/search?q=Januarius%20Asongu"> Januarius Asongu</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Cambier"> Christophe Cambier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of our study is to analyse the impact of climatic factors in malaria transmission taking into account migration between Douala and Yaoundé, two cities of Cameroon country. We show how variations of climatic factors such as temperature and relative humidity affect the malaria spread. We propose a meta-population model of the dynamic transmission of malaria that evolves in space and time and that takes into account temperature and relative humidity and the migration between Douala and Yaoundé. We also integrate the variation of environmental factors as events also called mathematical impulsion that can disrupt the model evolution at any time. Our modelling has been done using the Discrete EVents System Specification (DEVS) formalism. Our implementation has been done on Virtual Laboratory Environment (VLE) that uses DEVS formalism and abstract simulators for coupling models by integrating the concept of DEVS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compartmental%20models" title="compartmental models">compartmental models</a>, <a href="https://publications.waset.org/abstracts/search?q=DEVS" title=" DEVS"> DEVS</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20events" title=" discrete events"> discrete events</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-population%20model" title=" meta-population model"> meta-population model</a>, <a href="https://publications.waset.org/abstracts/search?q=VLE" title=" VLE"> VLE</a> </p> <a href="https://publications.waset.org/abstracts/52388/integration-of-climatic-factors-in-the-meta-population-modelling-of-the-dynamic-of-malaria-transmission-case-of-douala-and-yaounde-two-cities-of-cameroon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4539</span> Analyzing the Impact of Spatio-Temporal Climate Variations on the Rice Crop Calendar in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Imran">Muhammad Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=Iqra%20Basit"> Iqra Basit</a>, <a href="https://publications.waset.org/abstracts/search?q=Mobushir%20Riaz%20Khan"> Mobushir Riaz Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajid%20Rasheed%20Ahmad"> Sajid Rasheed Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the space-time impact of climate change on the rice crop calendar in tropical Gujranwala, Pakistan. The climate change impact was quantified through the climatic variables, whereas the existing calendar of the rice crop was compared with the phonological stages of the crop, depicted through the time series of the Normalized Difference Vegetation Index (NDVI) derived from Landsat data for the decade 2005-2015. Local maxima were applied on the time series of NDVI to compute the rice phonological stages. Panel models with fixed and cross-section fixed effects were used to establish the relation between the climatic parameters and the time-series of NDVI across villages and across rice growing periods. Results show that the climatic parameters have significant impact on the rice crop calendar. Moreover, the fixed effect model is a significant improvement over cross-sectional fixed effect models (R-squared equal to 0.673 vs. 0.0338). We conclude that high inter-annual variability of climatic variables cause high variability of NDVI, and thus, a shift in the rice crop calendar. Moreover, inter-annual (temporal) variability of the rice crop calendar is high compared to the inter-village (spatial) variability. We suggest the local rice farmers to adapt this change in the rice crop calendar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Landsat%20NDVI" title="Landsat NDVI">Landsat NDVI</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20models" title=" panel models"> panel models</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a> </p> <a href="https://publications.waset.org/abstracts/83022/analyzing-the-impact-of-spatio-temporal-climate-variations-on-the-rice-crop-calendar-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20condition&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20condition&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20condition&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20condition&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20condition&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20condition&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20condition&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20condition&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20condition&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20condition&page=152">152</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20condition&page=153">153</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=climatic%20condition&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>