CINXE.COM
Search results for: pesticide exposure
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pesticide exposure</title> <meta name="description" content="Search results for: pesticide exposure"> <meta name="keywords" content="pesticide exposure"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pesticide exposure" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pesticide exposure"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2115</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pesticide exposure</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2115</span> Dietary Exposure to Pesticide Residues by Various Physiological Groups of Population in Andhra Pradesh, South India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Padmaja%20R.%20Jonnalagadda">Padmaja R. Jonnalagadda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dietary exposure assessment of fifteen pesticide residues was done in Andhra Pradesh. Twelve commonly consumed foods including water, which were representative of the diet, were collected, processed as table ready and analysed for the presence of various Organochlorines, organophosphates and synthetic pyrethroids. All the samples were contaminated with one or more of the 15 pesticide residues and all of them were within the MRLs. DDT and its isomers, Chlorpyriphos and Cypermethrin were frequently detected in many of the food samples. The mean concentration of the pesticide residues ranged from 0.02 μg kg-1 to 5.1 μg kg-1 (fresh weight) in the analysed foods. When exposure assessments was carried out for different age, sex and physiological groups it was found that the estimates of daily dietary intakes of the analysed pesticide residues in the present study are much lower than the violative levels in all age groups that were computed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=table%20ready%20foods" title="table ready foods">table ready foods</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20residues" title=" pesticide residues"> pesticide residues</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20intake" title=" dietary intake"> dietary intake</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20groups" title=" physiological groups"> physiological groups</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a> </p> <a href="https://publications.waset.org/abstracts/31211/dietary-exposure-to-pesticide-residues-by-various-physiological-groups-of-population-in-andhra-pradesh-south-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2114</span> Self-reported Acute Pesticide Intoxication in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amare%20Nigatu">Amare Nigatu</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A5gne%20Bratveit"> Mågne Bratveit</a>, <a href="https://publications.waset.org/abstracts/search?q=Bente%20E.%20Moen"> Bente E. Moen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Pesticide exposure is an important public health concern in Ethiopia, but there is limited information on pesticide intoxications. Residents may have an increased risk of pesticide exposure through proximity of their homes to farms using pesticides. Also the pesticide exposure might be related to employment at these farms. This study investigated the prevalence of acute pesticide intoxications (API) by residence proximity to a nearby flower farm and assessed if intoxications are related to working there or not. Methods: A cross-sectional survey involving 516 persons was conducted. Participants were grouped according to their residence proximity from a large flower farm; living within 5 kilometers and 5-12 kilometers away, respectively. In a structured interview, participants were asked if they had health symptoms within 48 hours of pesticide exposure in the past year. Those, who had experienced this and reported two or more typical pesticide intoxication symptoms, were considered as having had API. Chi-square and independent t-tests were used to compare categorical and continuous variables, respectively. Confounding variables were adjusted by using binomial regression model. Results: The prevalence of API in the past year among the residents in the study area was 26%, and it was higher in the population living close to the flower farm (42%) compared to those living far away (11%), prevalence ratio (PR) = 3.2, 95% CI: 2.2-4.8, adjusted for age, gender & education. A subgroup living close to the farm & working there had significantly more API (56%) than those living close & did not work there (16%), adjusted PR = 3.0, 95% CI: 1.8-4.9. Flower farm workers reported more API (56%) than those not working there (13%,), adjusted PR = 4.0, 95% CI: 2.9-5.6. Conclusion: The residents living closer than 5 kilometers to the flower farm reported significantly higher prevalence of API than those living 5-12 kilometers away. This increased risk of API was associated with work at the flower farm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20pesticide%20intoxications" title="acute pesticide intoxications">acute pesticide intoxications</a>, <a href="https://publications.waset.org/abstracts/search?q=self-reported%20symptoms" title=" self-reported symptoms"> self-reported symptoms</a>, <a href="https://publications.waset.org/abstracts/search?q=flower%20farm%20workers" title=" flower farm workers"> flower farm workers</a>, <a href="https://publications.waset.org/abstracts/search?q=living%20proximity" title=" living proximity"> living proximity</a> </p> <a href="https://publications.waset.org/abstracts/42370/self-reported-acute-pesticide-intoxication-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2113</span> Refinery Sulfur as an Alternative Agent to Decrease Pesticide Exposure in Pistachio Orchards and Common Pistachio Psylla’s Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Basirat">Mehdi Basirat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Rouhani"> Mohammad Rouhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahla%20Borzouei"> Shahla Borzouei</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Zarangi"> Majid Zarangi</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Abolghasemi"> Asma Abolghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Fazel%20Soltani"> Mohammad Fazel Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Gorji"> Mohammad Gorji</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Amin%20Samih"> Mohammad Amin Samih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The common pistachio psylla, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Aphalaridae), as one of the most detrimental pests in all pistachio producing regions, causes great economic damages to pistachio trees. Nowadays, various pesticides are used to control the common pistachio psylla and robust pesticide exposure has occurred in orchards. In this study, field experiments were conducted during 2018–2021 to assess the effects of sulfur on A. pistaciae. This study compared sulfur with asafoetida extract and pesticide (acetamiprid) on A. pistaciae based on complete randomized blocks with three replications. The analysis results of variance showed that the effect of treatments on egg (F2,24 = 17.61, P = 0.00) and nymphs (F2,24 = 18.29, P = 0.00) had a significant difference at a 1% level. The results demonstrated that sulfur had the highest measure of control on eggs and nymphs significantly compared to the plant extract and pesticide (negative control). These results provide support to the potential use of sulfur as an alternative pest management tool against A. pistaciae. The results clearly indicated that sulfur could control the common pistachio psylla population for six weeks at least. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agonoscena%20pistaciae" title="Agonoscena pistaciae">Agonoscena pistaciae</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure" title=" pesticide exposure"> pesticide exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=pistachio" title=" pistachio"> pistachio</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur" title=" sulfur"> sulfur</a> </p> <a href="https://publications.waset.org/abstracts/148558/refinery-sulfur-as-an-alternative-agent-to-decrease-pesticide-exposure-in-pistachio-orchards-and-common-pistachio-psyllas-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2112</span> Evaluating an Educational Intervention to Reduce Pesticide Exposure Among Farmers in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gift%20Udoh">Gift Udoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Diane%20S.%20Rohlman"> Diane S. Rohlman</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Sindt"> Benjamin Sindt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> BACKGROUND: There is concern regarding the widespread use of pesticides and impacts on public health. Farmers in Nigeria frequently apply pesticides, including organophosphate pesticides which are known neurotoxicants. They receive little guidance on how much to apply or information about safe handling practices. Pesticide poisoning is one of the major hazards that farmers face in Nigeria. Farmers continue to use highly neurotoxic pesticides for agricultural activities. Because farmers receive little or no information on safe handling and how much to apply, they continue to develop severe and mild illnesses caused by high exposures to pesticides. The project aimed to reduce pesticide exposure among rural farmers in Nigeria by identifying hazards associated with pesticide use and developing and pilot testing training to reduce exposures to pesticides utilizing the hierarchy of controls system. METHODS: Information on pesticide knowledge, behaviors, barriers to safety, and prevention methods was collected from farmers in Nigeria through workplace observations, questionnaires, and interviews. Pre and post-surveys were used to measure farmer’s knowledge before and after the delivery of pesticide safety training. Training topics included the benefits and risks of using pesticides, routes of exposure and health effects, pesticide label activity, use and selection of PPE, ways to prevent exposure and information on local resources. The training was evaluated among farmers and changes in knowledge, attitudes and behaviors were collected prior to and following the training. RESULTS: The training was administered to 60 farmers, a mean age of 35, with a range of farming experience (<1 year to > 50 years). There was an overall increase in knowledge after the training. In addition, farmers perceived a greater immediate risk from exposure to pesticides and their perception of their personal risk increased. For example, farmers believed that pesticide risk is greater to children than to adults, recognized that just because a pesticide is put on the market doesn’t mean it is safe, and they were more confident that they could get advice about handling pesticides. Also, there was greater awareness about behaviors that can increase their exposure (mixing pesticides with bare hands, eating food in the field, not washing hands before eating after applying pesticides, walking in fields recently sprayed, splashing pesticides on their clothes, pesticide storage). CONCLUSION: These results build on existing evidence from a 2022 article highlighting the need for pesticide safety training in Nigeria which suggested that pesticide safety educational programs should focus on community-based, grassroots-style, and involve a family-oriented approach. Educating farmers on agricultural safety while letting them share their experiences with their peers is an effective way of creating awareness on the dangers associated with handling pesticides. Also, for rural communities, especially in Nigeria, pesticide safety pieces of training may not be able to reach some locations, so intentional scouting of rural farming communities and delivering pesticide safety training will improve knowledge of pesticide hazards. There is a need for pesticide information centers to be situated in rural farming communities or agro supply stores, which gives rural farmers information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure" title="pesticide exposure">pesticide exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20safety" title=" pesticide safety"> pesticide safety</a>, <a href="https://publications.waset.org/abstracts/search?q=nigeria" title=" nigeria"> nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20farming" title=" rural farming"> rural farming</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20education" title=" pesticide education"> pesticide education</a> </p> <a href="https://publications.waset.org/abstracts/164295/evaluating-an-educational-intervention-to-reduce-pesticide-exposure-among-farmers-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2111</span> Farmers’ Awareness and Behavior of Chemical Pesticide Uses in Suan Luang Sub-District Municipality, Ampawa, Samut Songkram, Thailand </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paiboon%20Jeamponk">Paiboon Jeamponk</a>, <a href="https://publications.waset.org/abstracts/search?q=Tikamporn%20Thipsaeng"> Tikamporn Thipsaeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is aimed to investigate farmers’ level of awareness and behavior of chemical pesticide uses, by using a case study of Suan Luang Sub- District Municipality, Ampawa, Samut Songkram Province. Questionnaire was employed in this study with the farmers from 46 households to explore their level of awareness in chemical pesticide uses, while interview and observation were adopted in exploring their behavior of chemical pesticide uses. The findings reflected the farmers’ high level of awareness in chemical pesticide uses in the hazardous effects of the chemical to human and environmental health, while their behavior of chemical pesticide uses explained their awareness paid to the right way of using pesticides, for instance reading the direction on the label, keeping children and animals away from the area of pesticide mixing, covering body with clothes and wearing hat and mask, no smoking, eating or drinking during pesticide spray or standing in windward direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=awareness" title="awareness">awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior" title=" behavior"> behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide" title=" pesticide"> pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=farmers" title=" farmers"> farmers</a> </p> <a href="https://publications.waset.org/abstracts/8902/farmers-awareness-and-behavior-of-chemical-pesticide-uses-in-suan-luang-sub-district-municipality-ampawa-samut-songkram-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2110</span> Hepatological Alterations in Market Gardeners Occupationally Exposed to Pesticides in the Western Highlands of Cameroon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Tanga">M. G. Tanga</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20B.%20Telefo"> P. B. Telefo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20N.%20Tarla"> D. N. Tarla </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though the WHO, the EPA and other regulatory bodies have recognized the effects of acute pesticide poisoning little data exists on health effects after long-term low-dose exposures especially in Africa and Cameroon. The aim of this study was to evaluate the impact of pesticides on the hepatic functions of market gardeners in the Western Region of Cameroon by studying some biochemical parameters. Sixty six male market gardeners in Foumbot, Massangam, and Bantoum were interviewed on their health status, habits and pesticide use in agriculture, including the spray frequency, application method, and pesticide dosage. Thirty men with no history of pesticide exposure were recruited as control group. Thereafter, their blood samples were collected for assessment of hepatic function biomarkers (ALT, AST, and albumin). The results showed that 56 pesticides containing 25 active ingredients were currently used by market gardeners enrolled in our study and most of their symptoms (headache, fatigue, skin rashes, eye irritation, and nausea) were related to the use of these chemicals. Compared to the control subjects market gardeners’ ALT levels (32.9 ± 7.19 UL-1 vs. 82.11 ± 35.40 UL-1; P < 0.001) and, AST levels (40.63 ± 6.52 UL-1 vs. 112.11 UL-1 ± 47.15 UL-1; P < 0.001) were significantly increased. These results suggest that liver function tests can be used as biomarkers to indicate toxicity before overt clinical signs occur. The market gardeners’ chronic exposure to pesticides due to poor application measures could lead to hepatic function impairment. Further research on larger scale is needed to confirm these findings and to establish a mechanism of toxicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=liver" title=" liver"> liver</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20exposure" title=" occupational exposure"> occupational exposure</a> </p> <a href="https://publications.waset.org/abstracts/30303/hepatological-alterations-in-market-gardeners-occupationally-exposed-to-pesticides-in-the-western-highlands-of-cameroon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2109</span> Pesticide Residue Determination on Cumin Plant (Nigella orientalis L.) with LC-MS/MS and GC-MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilda%20Ersoy">Nilda Ersoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevin%C3%A7%20%C5%9Eener"> Sevinç Şener</a>, <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fe%20Yal%C3%A7%C4%B1n%20Elidemir"> Ayşe Yalçın Elidemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebru%20Evcil"> Ebru Evcil</a>, <a href="https://publications.waset.org/abstracts/search?q=Erg%C3%BCn%20D%C3%B6%C4%9Fen"> Ergün Döğen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, pesticide residues were investigated in black cumin (Nigella orientalis L.) seeds grown in Turkey. GC-MS and LC-MS/MS analytical instruments are used in high precision when determining residue limits. A total of 100 pesticide active ingredients in LC-MS/MS devices have been performed in Nigella orientalis L. seeds samples. Also for the same aim, 103 pesticide active ingredients were analyzed in GC-MS. This study was conducted in 2012 and 2013. Sample residues were not found in detectable levels for two years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticide" title="pesticide">pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=residue" title=" residue"> residue</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20cumin" title=" black cumin"> black cumin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20orientalis%20L." title=" Nigella orientalis L."> Nigella orientalis L.</a> </p> <a href="https://publications.waset.org/abstracts/14955/pesticide-residue-determination-on-cumin-plant-nigella-orientalis-l-with-lc-msms-and-gc-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2108</span> Pesticide Residue Determination on Cumin Plant (Nigella orientalis L.) Grown through Agricultural Practices with LC-MS/MS and GC-MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilda%20Ersoy">Nilda Ersoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevin%C3%A7%20%C5%9Eener"> Sevinç Şener</a>, <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fe%20Yal%C3%A7%C4%B1n%20Elidemir"> Ayşe Yalçın Elidemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebru%20Evcil"> Ebru Evcil</a>, <a href="https://publications.waset.org/abstracts/search?q=Erg%C3%BCn%20D%C3%B6%C4%9Fen"> Ergün Döğen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, pesticide residues were investigated in black cumin (Nigella orientalis L.) seeds which grown in Turkey. GC-MS and LC-MS/MS analytical instruments are used in high precision, when determining residue limits. A total of 100 pesticide active ingredients in LC-MS/MS devices have been performed in Nigella orientalis L. seeds samples. Moreover, for same aim, 103 pesticide active ingredients were analyzed in GC-MS. This study conducted in 2012 and 2013. Samples residues were not found in detectable levels for two years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticide" title="pesticide">pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=residue" title=" residue"> residue</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20cumin" title=" black cumin"> black cumin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20orientalis%20L." title=" Nigella orientalis L."> Nigella orientalis L.</a> </p> <a href="https://publications.waset.org/abstracts/14753/pesticide-residue-determination-on-cumin-plant-nigella-orientalis-l-grown-through-agricultural-practices-with-lc-msms-and-gc-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2107</span> Efficient Reduction of Organophosphate Pesticide from Fruits and Vegetables Using Cost Effective Neutralizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debjani%20Dasgupta">Debjani Dasgupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Aman%20Zalawadia"> Aman Zalawadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuj%20Thapa"> Anuj Thapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Pranjali%20Sing"> Pranjali Sing</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Dabade"> Ashish Dabade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organophosphate group pesticides are common pesticide group, which gain entry into food product due to incomplete removal of pesticide residues. The current food industry raw material handling process is not sufficient to eliminate pesticide residues. A neutralizer was used to neutralize the residues of pesticide on Vitis vinifera (Grapes). The water based dilution of neutralizer was demonstrated on fruits like grapes. Analysis for pesticides in water wash and neutralizer wash was carried out using GCMS. Fruits washed with neutralizer exhibited 72.95% removal of pesticides compared with normal water wash method. An economical chemical neutralizer can be used to remove such residues in raw material handling at industrial scale with minor modification in process to achieve minimum pesticide entry into final food products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GCMS" title="GCMS">GCMS</a>, <a href="https://publications.waset.org/abstracts/search?q=organophosphate" title=" organophosphate"> organophosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20material%20handling" title=" raw material handling"> raw material handling</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitis%20vinifera" title=" Vitis vinifera"> Vitis vinifera</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20neutralizer" title=" pesticide neutralizer"> pesticide neutralizer</a> </p> <a href="https://publications.waset.org/abstracts/75453/efficient-reduction-of-organophosphate-pesticide-from-fruits-and-vegetables-using-cost-effective-neutralizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2106</span> Pesticide Risk: A Study on the Effectiveness of Organic/Biopesticides in Sustainable Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berk%20K%C4%B1l%C4%B1%C3%A7">Berk Kılıç</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96mer%20Ayd%C4%B1n"> Ömer Aydın</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerem%20Mestani"> Kerem Mestani</a>, <a href="https://publications.waset.org/abstracts/search?q=Defne%20Uzun"> Defne Uzun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In agriculture and farming, pesticides are frequently used to kill off or fend off any pests (bugs, bacteria, fungi, etc.). However, traditional pesticides have proven to have harmful effects on both the environment and the human body, such as hazards in the endocrine, neurodevelopmental, and reproductive systems. This experiment aims to test the effectiveness of organic/bio-pesticides (environmentally friendly pesticides) compared to traditional pesticides. Black pepper and garlic will be used as biopesticides in this experiment. The results support that organic farming applying organic pesticides operates through non-toxic mechanisms, offering minimal threats to human well-being and the environment. Consequently, consuming organic produce can significantly diminish the dangers associated with pesticide intake. In this study, method is introduced to reduce pesticide-related risks by promoting organic farming techniques within organic/bio-pesticide usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticide" title="pesticide">pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic" title=" garlic"> garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20pepper" title=" black pepper"> black pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-pesticide" title=" bio-pesticide"> bio-pesticide</a> </p> <a href="https://publications.waset.org/abstracts/179368/pesticide-risk-a-study-on-the-effectiveness-of-organicbiopesticides-in-sustainable-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2105</span> Evaluation of Non-Destructive Application to Detect Pesticide Residue on Leaf Mustard Using Spectroscopic Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazmi%20Mat%20Nawi">Nazmi Mat Nawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Najib%20Mohamad%20Nor"> Muhamad Najib Mohamad Nor</a>, <a href="https://publications.waset.org/abstracts/search?q=Che%20Dini%20Maryani%20Ishkandar"> Che Dini Maryani Ishkandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to evaluate the capability of spectroscopic methods to detect the presence of pesticide residues on leaf mustard. A total of 105 leaf mustard used were divided into five batches, four batches were treated with four different types of pesticides whereas one batch with no pesticide applied. Spectral data were obtained using visible shortwave near infrared spectrometer (VSWNIRS) which is Ocean Optics HR4000 High-resolution Miniature Fiber Optic Spectrometer. Reflectance value was collected to determine the difference between one pesticide to the other. The obtained spectral data were pre-processed for optimum performance. The effective wavelength of approximate 880 nm, 675-710 nm also 550 and 700 nm indicates the overtones -CH stretching vibration, tannin, also chlorophyll content present in the leaf mustard respectively. This study has successfully demonstrated that the spectroscopic method was able to differentiate between leaf mustard sample with and without pesticide residue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detect" title="detect">detect</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20mustard" title=" leaf mustard"> leaf mustard</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive" title=" non-destructive"> non-destructive</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20residue" title=" pesticide residue"> pesticide residue</a> </p> <a href="https://publications.waset.org/abstracts/68852/evaluation-of-non-destructive-application-to-detect-pesticide-residue-on-leaf-mustard-using-spectroscopic-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2104</span> Studies on Pesticide Usage Pattern and Farmers Knowledge on Pesticide Usage and Technologies in Open Field and Poly House Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Raghu">B. Raghu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashi%20Vemuri"> Shashi Vemuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Sreenivasa%20Rao"> Ch. Sreenivasa Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The survey on pesticide use pattern was carried out by interviewing farmers growing chill in open fields and poly houses based on the questionnaire prepared to assess their knowledge and practices on crop cultivation, general awareness on pesticide recommendations and use. Education levels of poly house farmers are high compared to open field farmers, where 57.14% poly house farmers are high school educated, whereas 35% open field farmers are illiterates. Majority farmers use nursery of 35 days and grow in <0.5 acre poly house in summer and rabi and < 1 acre in open field during kharif. Awareness on pesticide related issues is varying among poly house and open field farmers with some commonality, where 28.57% poly house farmers know about recommended pesticides while only 10% open field farmers are aware of this issue. However, in general, all farmers contact pesticide dealer for recommendations, poly house farmers prefer to contact scientists (35.71%) and open field farmers prefer to contact agricultural officers (33.33). Most farmers are unaware about pesticide classification and toxicity symbols on packing. Farmers are aware about endosulfan ban, but only 21.42% poly house and 11.66% open field farmers know about ban of monocrotofos on vegetables. Very few farmers know about pesticide residues and related issues, but know washing helps to reduce contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20field" title="open field">open field</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20usage" title=" pesticide usage"> pesticide usage</a>, <a href="https://publications.waset.org/abstracts/search?q=polyhouses" title=" polyhouses"> polyhouses</a>, <a href="https://publications.waset.org/abstracts/search?q=residues%20survey" title=" residues survey"> residues survey</a> </p> <a href="https://publications.waset.org/abstracts/21476/studies-on-pesticide-usage-pattern-and-farmers-knowledge-on-pesticide-usage-and-technologies-in-open-field-and-poly-house-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2103</span> Blood Chemo-Profiling in Workers Exposed to Occupational Pyrethroid Pesticides to Identify Associated Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Sufyani">O. O. Sufyani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Oraiby"> M. E. Oraiby</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Qumaiy"> S. A. Qumaiy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Alaamri"> A. I. Alaamri</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20M.%20Eisa"> Z. M. Eisa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Hakami"> A. M. Hakami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Attafi"> M. A. Attafi</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Alhassan"> O. M. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20M.%20Elsideeg"> W. M. Elsideeg</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Noureldin"> E. M. Noureldin</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20A.%20Hobani"> Y. A. Hobani</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Q.%20Majrabi"> Y. Q. Majrabi</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Khardali"> I. A. Khardali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Maashi"> A. B. Maashi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Al%20Mane"> A. A. Al Mane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Hakami"> A. H. Hakami</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Alkhyat"> I. M. Alkhyat</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Sahly"> A. A. Sahly</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Attafi"> I. M. Attafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the Food and Agriculture Organization (FAO) Pesticides Use Database, pesticide use in agriculture in Saudi Arabia has more than doubled from 4539 tons in 2009 to 10496 tons in 2019. Among pesticides, pyrethroids is commonly used in Saudi Arabia. Pesticides may increase susceptibility to a variety of diseases, particularly among pesticide workers, due to their extensive use, indiscriminate use, and long-term exposure. Therefore, analyzing blood chemo-profiles and evaluating the detected substances as biomarkers for pyrethroid pesticide exposure may assist to identify and predicting adverse effects of exposure, which may be used for both preventative and risk assessment purposes. The purpose of this study was to (a) analyze chemo-profiling by Gas Chromatography-Mass Spectrometry (GC-MS) analysis, (b) identify the most commonly detected chemicals in a time-exposure-dependent manner using a Venn diagram, and (c) identify their associated disease among pesticide workers using analyzer tools on the Comparative Toxicogenomics Database (CTD) website, (250 healthy male volunteers (20-60 years old) who deal with pesticides in the Jazan region of Saudi Arabia (exposure intervals: 1-2, 4-6, 6-8, more than 8 years) were included in the study. A questionnaire was used to collect demographic information, the duration of pesticide exposure, and the existence of chronic conditions. Blood samples were collected for biochemistry analysis and extracted by solid-phase extraction for gas chromatography-mass spectrometry (GC-MS) analysis. Biochemistry analysis reveals no significant changes in response to the exposure period; however, an inverse association between the albumin level and the exposure interval was observed. The blood chemo-profiling was differentially expressed in an exposure time-dependent manner. This analysis identified the common chemical set associated with each group and their associated significant occupational diseases. While some of these chemicals are associated with a variety of diseases, the distinguishing feature of these chemically associated disorders is their applicability for prevention measures. The most interesting finding was the identification of several chemicals; erucic acid, pelargonic acid, alpha-linolenic acid, dibutyl phthalate, diisobutyl phthalate, dodecanol, myristic Acid, pyrene, and 8,11,14-eicosatrienoic acid, associated with pneumoconiosis, asbestosis, asthma, silicosis and berylliosis. Chemical-disease association study also found that cancer, digestive system disease, nervous system disease, and metabolic disease were the most often recognized disease categories in the common chemical set. The hierarchical clustering approach was used to compare the expression patterns and exposure intervals of the chemicals found commonly. More study is needed to validate these chemicals as early markers of pyrethroid insecticide-related occupational disease, which might assist evaluate and reducing risk. The current study contributes valuable data and recommendations to public health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=occupational" title="occupational">occupational</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicology" title=" toxicology"> toxicology</a>, <a href="https://publications.waset.org/abstracts/search?q=chemo-profiling" title=" chemo-profiling"> chemo-profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide" title=" pesticide"> pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrethroid" title=" pyrethroid"> pyrethroid</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a> </p> <a href="https://publications.waset.org/abstracts/152422/blood-chemo-profiling-in-workers-exposed-to-occupational-pyrethroid-pesticides-to-identify-associated-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2102</span> Test of Biological Control against Date Moth Ectomyelois ceratoniae zeller (Lepidoptera, Pyralidae) by Spinosad</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadjeb%20Ayoub">Hadjeb Ayoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehaoua%20Med%20Seghir"> Mehaoua Med Seghir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouakid%20M.%20Laid"> Ouakid M. Laid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, chemical control is the only means used to control populations of the date moth (Ectomyelois ceratoniae) which is the most important and dangerous pest to palm groves in Algeria, conventional insecticides act faster, but their main drawback is it can’t be destroyed or degraded. In this context we conducted our work to explore the insecticidal activity of Spinpsad which is a bio-pesticide on the larval stages of Ectomyelois ceratoniae. The study of the effect of Spinosad on the mortality of different larval stages revealed that the doses used were significantly and positively correlated with mortality adjusted for different durations of exposure of larvae bio- pesticide. Lowest corrected mortality was observed in a short time and lethal in older larvae treated with the lowest concentration. While the higher mortality was observed in a longer duration of exposure in younger instars treated with the highest concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ectomyelois%20ceratoniae" title="Ectomyelois ceratoniae">Ectomyelois ceratoniae</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20palm" title=" date palm"> date palm</a>, <a href="https://publications.waset.org/abstracts/search?q=Spinosad" title=" Spinosad"> Spinosad</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicology" title=" toxicology"> toxicology</a> </p> <a href="https://publications.waset.org/abstracts/16591/test-of-biological-control-against-date-moth-ectomyelois-ceratoniae-zeller-lepidoptera-pyralidae-by-spinosad" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2101</span> Food Safety Aspects of Pesticide Residues in Spice Paprika</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sz.%20Kl%C3%A1tyik">Sz. Klátyik</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Darvas"> B. Darvas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M%C3%B6rtl"> M. Mörtl</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ottucs%C3%A1k"> M. Ottucsák</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Tak%C3%A1cs"> E. Takács</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20B%C3%A1n%C3%A1ti"> H. Bánáti</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Simon"> L. Simon</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Gyurcs%C3%B3"> G. Gyurcsó</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sz%C3%A9k%C3%A1cs"> A. Székács</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental and health safety of condiments used for spicing food products in food processing or by culinary means receive relatively low attention, even though possible contamination of spices may affect food quality and safety. Contamination surveys mostly focus on microbial contaminants or their secondary metabolites, mycotoxins. Chemical contaminants, particularly pesticide residues, however, are clearly substantial factors in the case of given condiments in the Capsicum family including spice paprika and chilli. To assess food safety and support the quality of the Hungaricum product spice paprika, the pesticide residue status of spice paprika and chilli is assessed on the basis of reported pesticide contamination cases and non-compliances in the Rapid Alert System for Food and Feed of the European Union since 1998. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spice%20paprika" title="spice paprika">spice paprika</a>, <a href="https://publications.waset.org/abstracts/search?q=Capsicum" title=" Capsicum"> Capsicum</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20residues" title=" pesticide residues"> pesticide residues</a>, <a href="https://publications.waset.org/abstracts/search?q=RASFF" title=" RASFF"> RASFF</a> </p> <a href="https://publications.waset.org/abstracts/46930/food-safety-aspects-of-pesticide-residues-in-spice-paprika" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2100</span> Carbendazim Toxicity and Ameliorative Effect of Vitamin E in African Giant Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Omonona">A. O. Omonona</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Jarikre"> T. A. Jarikre </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increase specialization in agriculture and use of pesticides may inadvertently cause ecosystem degradation and eventually loss of biodiversity. The populations of numerous wildlife species have undergone a precipitous decline. Many of these problems have been attributed directly to habitat loss and over exploitation resulting from unregulated pesticide uses. Carbendazim a broad spectrum benzimidazole fungicide and a metabolite of benomyl, is used to control plant disease in cereals and fruit. The effect of carbendazim exposure and the ameliorative effect of tocopherol (vitamin E) were assessed on African giant rat AGR. Hematological, biochemical and histological changes were used to determine the health condition of the animals exposed to pesticide. Sixteen AGR were stabilized, weighed and then divided into four experimental groups (A to D). Two groups were pretreated with vitamin. Group A was exposed to carbendazim only, B- carbendazim + vitamin, C- vitamin only, and D- blank (control). Packed cell volume PCV was estimated by the microhematocrit method, Leucocyte and Platelet counts were determined using the hemocytometric method. Cholinesterase (AchE) and markers of oxidative stress were quantified, and tissue changes examined microscopically. There were no behavioral changes observed in the animals, but there was a decrease in body weight and abortion after 23 days of exposure to carbendazim. There was significant differences in the packed cell volume, the hemoglobin concentration and the red blood cell counts (p < 0.05). The increases in malonyl aldehyde MDA was significant (p < 0.05) in the pesticide intoxicated rats compared to control. Vitamin E supplementation reduced MDA level significantly (p < 0.05). There was a sharp remarkable decrease in acetylcholinesterase levels in the pesticide intoxicated rats (p < 0.05). Vitamin E supplementation normalise the AchE levels comparable to that in control. Grossly, the vital organs appeared normal in the pesticide exposed and control groups except moderate pulmonary congestion. Microscopically, there was severe diffuse hepatocellular swelling in carbendazim exposed group. The severity of hepatocellular injury was reduced in the rats with vitamin E. This study ascertained the toxic effect of carbendazim and antioxidative properties of vitamins in the Africa giant rat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=African%20giant%20rat" title="African giant rat">African giant rat</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=carbendazim" title=" carbendazim"> carbendazim</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/26567/carbendazim-toxicity-and-ameliorative-effect-of-vitamin-e-in-african-giant-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2099</span> Physicochemical Studies and Screening of Aflatoxins and Pesticide Residues in Some 'Honey Pastes' Marketed in Jeddah, Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashad%20Al-Hindi">Rashad Al-Hindi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aimed at investigating and screening of some contaminants in some honey-based products. Sixty-nine 'honey paste' samples marketed in Jeddah, Saudi Arabia, were subjected to physicochemical studies and screening of aflatoxins and pesticide residues. The physicochemical parameters studied were mainly: moisture content, total sugars, total ash, total nitrogen, fibres, total acidity as citric acid and pH. These parameters were investigated using standard methods of analysis. Mycotoxins (aflatoxins) and pesticide residues were by an enzyme-linked immunosorbent assay (ELISA) according to official methods. Results revealed that mean values of the examined criteria were: 15.44±0.36%; 74±4.30%; 0.40±0.062%; 0.22±0.05%; 6.93±1.30%; 2.53±0.161 mmol/kg; 4.10±0.158, respectively. Overall results proved that all tested honey pastes samples were free from mycotoxins (aflatoxins) and pesticide residues. Therefore, we conclude that 'honey pastes' marketed in Jeddah city, Saudi Arabia were safe for human consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxins" title="aflatoxins">aflatoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=honey%20mixtures" title=" honey mixtures"> honey mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20residues" title=" pesticide residues"> pesticide residues</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical"> physicochemical</a> </p> <a href="https://publications.waset.org/abstracts/96021/physicochemical-studies-and-screening-of-aflatoxins-and-pesticide-residues-in-some-honey-pastes-marketed-in-jeddah-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2098</span> Occurrence and Spatial Distribution of Pesticide Residues in Butter and Ghee (Clarified Butter Fat) in Punjab (India)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Bedi">J. S. Bedi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20S.%20Gill"> J. P. S. Gill</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Aulakh"> R. S. Aulakh</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhjit%20Kaur"> Prabhjit Kaur </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was undertaken to monitor organochlorine, organophosphate and synthetic pyrethroid pesticide residues in butter and ghee samples collected from six different districts of Punjab. The estimation of pesticide residues was done by multiple residue analytical technique using gas chromatography equipped with GC-ECD and GC-FTD. The confirmation of residues was done on gas chromatography mass spectrometry in both SIM and Scan mode. Results indicated the presence of HCH and pp DDE as predominant contaminant in both butter and ghee even after their ban/restriction on usage in India. Residues of HCH were detected in 25.5 and 23.2 % samples of butter and ghee, respectively, while residues of pp DDE were recorded in 29.3 and 25.0 % butter and ghee samples, respectively. More importantly, the presence of endosulfan, cypermethrin, fenvalerate, deltamethrin and chlorpyrifos was observed in few butter and ghee samples indicating the serious concerns. The spatial variation of pesticide residues occurrence indicated the cotton belt of Punjab as most affected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=butter" title="butter">butter</a>, <a href="https://publications.waset.org/abstracts/search?q=ghee" title=" ghee"> ghee</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides%20residues" title=" pesticides residues"> pesticides residues</a>, <a href="https://publications.waset.org/abstracts/search?q=Punjab" title=" Punjab"> Punjab</a> </p> <a href="https://publications.waset.org/abstracts/24490/occurrence-and-spatial-distribution-of-pesticide-residues-in-butter-and-ghee-clarified-butter-fat-in-punjab-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2097</span> Chronic Pesticides Exposure and Certain Endocrine Functions Among Farmers in East Almnaif District, Ismailia, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amani%20Waheed">Amani Waheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Kofi"> Mostafa Kofi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaymaa%20Attia"> Shaymaa Attia</a>, <a href="https://publications.waset.org/abstracts/search?q=Soha%20Younis"> Soha Younis</a>, <a href="https://publications.waset.org/abstracts/search?q=Basma%20Abdel%20Hadi"> Basma Abdel Hadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Exposure to pesticides is one of the most important occupational risks among farmers in developing countries. Along with the wide use of pesticides in the world, the concerns over their health impacts are rapidly growing. Objective: To investigate thyroid and reproductive hormones and fasting blood glucose levels among farmers chronically exposed to pesticide from East Almnaif district, Ismailia governorate. Methods: An analytical cross-sectional study was conducted on 43 farmers with active involvement pesticides handling and 43 participants not occupationally exposed to pesticides as the control group. A structured interview questionnaire measuring the sociodemographic characteristics, pesticides exposure characteristics, and safety measures was used. General examination including measurements of height, weight, and blood pressure was done. Moreover, levels of plasma cholinesterase enzyme (PChE), glucose, as well as reproductive and thyroid hormones (TSH, T4, and testosterone) were determined. Results: There were no statistically significant differences between both groups regarding their age, educational level, smoking status, and body mass index. The mean duration of exposure was 20.60 11.06 years. Majority of farmers (76.7%) did not use any personal protective equipment (PPE) during pesticides handling. The mean systolic blood pressure among exposed farmers was greater (134.88 17.18 mm Hg) compared to control group (125 14.69 mm Hg) with statistically significant difference (p = 0.003). The mean diastolic blood pressure was higher (84.02 8.69 mm Hg) compared to control group (78.79 8.98 mm Hg) with statistically significant difference (p = 0.006). The pesticide exposed farmers had statistically significant lower level of PChE (3969.93 1841U/L) than control group (4879.29 1950.08 U/L). Additionally, TSH level was significantly higher in exposed farmers (median =1.39µIU/ml) compared to controls (median = 0.91 µIU/ml) (p=0.032). While, the exposed group had a lower T4 level (6.91 1.91 µg/dl) compared to the control group (7.79 2.10µg/dl), with the statistically significant difference between the two groups (p = 0.045). The exposed group had significantly lower level of testosterone hormone (median=3.37 ng/ml) compared to the control group (median= 6.22 ng/ml) (p=0.003). While, the exposed farmers had statistically insignificant higher level of fasting blood glucose (median =89 mg/dl) than the controls (median=88 mg/dl). Furthermore, farmers who did not use PPE had statistically significant lower level of T4 (6.57 1.81µg/dl) than farmers who used PPE during handling of pesticides (8.01 1.89 µg/dl). Conclusion: Chronic exposure to pesticides exerts disturbing action on reproductive function and thyroid function of the male farmers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20occupational%20pesticide%20exposure" title="chronic occupational pesticide exposure">chronic occupational pesticide exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=Diabetes%20mellitus" title=" Diabetes mellitus"> Diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=male%20reproductive%20hormones" title=" male reproductive hormones"> male reproductive hormones</a>, <a href="https://publications.waset.org/abstracts/search?q=thyroid%20function" title=" thyroid function"> thyroid function</a> </p> <a href="https://publications.waset.org/abstracts/96334/chronic-pesticides-exposure-and-certain-endocrine-functions-among-farmers-in-east-almnaif-district-ismailia-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2096</span> Transcriptomic Response of Calmodulin Encoding Gene (CaM) in Pesticide Utilizing Talaromyces Fungal Strains </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Asemoloye">M. D. Asemoloye</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Jonathan"> S. G. Jonathan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rafiq"> A. Rafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20J.%20Olawuyi"> O. J. Olawuyi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20O.%20Adejoye"> D. O. Adejoye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calmodulin is one of the intracellular calcium proteins that regulates large spectrum of enzymes and cellular functions including metabolism of cyclic nucleotides and glycogen. The potentials of calmodulin gene in fungi necessitates their genetic response and their strong cassette of enzyme secretions for pesticide degradation. Therefore, this study was carried out to investigate the ‘Transcriptomic’ response of calmodulin encoding genes in Talaromyces fungi in response to 2, 2-dichlorovinyl dimethyl phosphate (DDVP or Dichlorvos) an organophosphate pesticide and γ-Hexachlorocyclohexane (Lindane) an organochlorine pesticide. Fungi strains isolated from rhizosphere from grasses rhizosphere in pesticide polluted sites were subjected to percentage incidence test. Two most frequent fungi were further characterized using ITS gene amplification (ITS1 and ITS4 combinations), they were thereafter subjected to In-vitro DDVP and lindane tolerance tests at different concentrations. They were also screened for presence and expression of calmodulin gene (caM) using RT-PCR technique. The two Talaromyces strains had the highest incidence of 50-72% in pesticide polluted site, they were both identified as Talaromyces astroroseus asemoG and Talaromyces purpurogenum asemoN submitted in NCBI gene-bank with accession numbers KY488464 and KY488468 respectively. T. astroroseus KY488464 tolerated DDVP (1.23±0.023 cm) and lindane (1.11±0.018 cm) at 25 % concentration while T. purpurogenum KY488468 tolerated DDVP (1.33±0.061 cm) and lindane (1.54±0.077 cm) at this concentration. Calmodulin gene was detected in both strains, but RT-PCR expression of caM gene revealed at 900-1000 bp showed an under-expression of caM in T. astrorosues KY488464 but overexpressed in T. purpurogenum KY488464. Thus, the calmodulin gene response of these fungal strains to both pesticides could be considered in monitoring the potentials of fungal strains to pesticide tolerance and bioremediation of pesticide in polluted soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Calmodulin%20gene" title="Calmodulin gene">Calmodulin gene</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide" title=" pesticide"> pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-PCR" title=" RT-PCR"> RT-PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=talaromyces" title=" talaromyces"> talaromyces</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a> </p> <a href="https://publications.waset.org/abstracts/77765/transcriptomic-response-of-calmodulin-encoding-gene-cam-in-pesticide-utilizing-talaromyces-fungal-strains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2095</span> Adsorption Mechanism of Heavy Metals and Organic Pesticide on Industrial Construction and Demolition Waste and Its Runoff Behaviors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng%20Huang">Sheng Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Zhao"> Xin Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20Gao"> Xiaofeng Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Zhou"> Tao Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Shijin%20Dai"> Shijin Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Youcai%20Zhao"> Youcai Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adsorption of heavy metal pollutants (Zn, Cd, Pb, Cr, Cu) and organic pesticide (phorate, dithiophosphate diethyl, triethyl phosphorothioate), along with their multi-contamination on the surface of industrial construction & demolition waste (C&D waste) was investigated. Brick powder was selected as the appropriate waste while its maximum equilibrium adsorption amount of heavy metal under single controlled contamination matrix reached 5.41, 0.81, 0.45, 1.13 and 0.97 mg/g, respectively. Effects of pH and spiking dose of ICDW was also investigated. Equilibrium adsorption amount of organic pesticide varied from 0.02 to 0.97 mg/g, which was negatively correlated to the size distribution and hydrophilism. Existence of organic pesticide on surface of ICDW caused various effects on the heavy metal adsorption, mainly due to combination of metal ions and the floccule formation along with wrapping behaviors by pesticide pollutants. Adsorption of Zn was sharply decreased from 7.1 to 0.15 mg/g compared with clean ICDW and phorate contaminated ICDW, while that of Pb, Cr and Cd experienced an increase- then decrease procedure. On the other hand, runoff of pesticide contaminants was investigated under 25 mm/h simulated rainfall. Results showed that the cumulative runoff amount fitted well with curve obtained from a power function, of which r2=0.95 and 0.91 for 1DAA (1 day between contamination and runoff) and 7DAA, respectively. This study helps provide evaluation of industrial construction and demolition waste contamination into aquatic systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20mechanism" title="adsorption mechanism">adsorption mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20construction%20waste" title=" industrial construction waste"> industrial construction waste</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide" title=" pesticide"> pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a> </p> <a href="https://publications.waset.org/abstracts/70934/adsorption-mechanism-of-heavy-metals-and-organic-pesticide-on-industrial-construction-and-demolition-waste-and-its-runoff-behaviors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2094</span> Consumer’ Knowledge, Attitude and Behavior on Food Safety Issues Related to Pesticide Residues in Cabbage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dekie%20Rawung">Dekie Rawung</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20L.%20Abadi"> Abdul L. Abadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toto%20Himawan"> Toto Himawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Siegfried%20Berhimpon"> Siegfried Berhimpon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A case study on consumer' knowledge, attitude, and behavior on food safety issue related to pesticide residues in cabbage was conducted in the area of Manado and Tomohon city, North Sulawesi. A sample of 150 consumers were selected randomly on location (open market and supermarket) while they were purchasing vegetables. The data on consumers’ perception, knowledge, attitude and behavior on food safety issue regarding pesticide residues were collected using a 5-point, two-section Likert-Scale questionnaire, and the relationship of knowledge, attitude, and behavior on food safety issues were analyzed using Structural Equation Modeling (SEM). It was found that, among many food safety issues, the illegal, non-food chemical preservatives were considered the most important one (by more than 35% respondents), followed by high cholesterol content and textile coloring chemical (> 27% respondents). The pesticide residues issue was only in the 4th place. The same results were seen on the issue of quality factors that determine the product selection during purchasing. The pesticide-free and organic products labels were considered much less important quality factors as compared with freshness and nutrition value which were considered the most and the second most important quality factors (almost 65% of respondents). SEM analysis showed that only knowledge and attitude on food safety that had the significant relation (coefficient value of 0.38), whereas those with behaviors were not significant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cabbage" title="cabbage">cabbage</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer" title=" consumer"> consumer</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title=" food safety"> food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20residues" title=" pesticide residues"> pesticide residues</a> </p> <a href="https://publications.waset.org/abstracts/35823/consumer-knowledge-attitude-and-behavior-on-food-safety-issues-related-to-pesticide-residues-in-cabbage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2093</span> Investigation of Operational Conditions for Treatment of Industrial Wastewater Contaminated with Pesticides Using Electro-Fenton Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Gar%20Alalm">Mohamed Gar Alalm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to investigate various operating conditions that affect the performance of the electro-Fenton process for degradation of pesticides. Stainless steel electrodes were utilized in the electro-Fenton cell due to their relatively low cost. The favored conditions of current intensity, pH, iron loading, and pesticide concentration were deeply discussed. Complete removal of pesticide was attained at the optimum conditions. The degradation kinetics were described by pseudo- first-order pattern. In addition, a response surface model was developed to describe the performance of electro-Fenton process under different operational conditions. The model indicated that the coefficient of determination was (R² = 0.995). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro-Fenton" title="electro-Fenton">electro-Fenton</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide" title=" pesticide"> pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/96760/investigation-of-operational-conditions-for-treatment-of-industrial-wastewater-contaminated-with-pesticides-using-electro-fenton-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2092</span> Farmers Perception in Pesticide Usage in Curry Leaf (Murraya koeinigii (L.))</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swarupa%20Shashi%20Senivarapu%20Vemuri">Swarupa Shashi Senivarapu Vemuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Curry leaf (Murraya koeinigii (L.)) exported from India had insecticide residues above maximum residue limits, which are hazardous to consumer health and caused rejection of the commodity at the point of entry in Europe and middle east resulting in a check on export of curry leaf. Hence to study current pesticide usage patterns in major curry leaf growing areas, a survey on pesticide use pattern was carried out in curry leaf growing areas in Guntur districts of Andhra Pradesh during 2014-15, by interviewing farmers growing curry leaf utilizing the questionnaire to assess their knowledge and practices on crop cultivation, general awareness on pesticide recommendations and use. Education levels of farmers are less, where 13.96 per cent were only high school educated, and 13.96% were illiterates. 18.60% farmers were found cultivating curry leaf crop in less than 1 acre of land, 32.56% in 2-5 acres, 20.93% in 5-10 acres and 27.91% of the farmers in more than 10 acres of land. Majority of the curry leaf farmers (93.03%) used pesticide mixtures rather than applying single pesticide at a time, basically to save time, labour, money and to combat two or more pests with single spray. About 53.48% of farmers applied pesticides at 2 days interval followed by 34.89% of the farmers at 4 days interval, and about 11.63% of the farmers sprayed at weekly intervals. Only 27.91% of farmers thought that the quantity of pesticides used at their farm is adequate, 90.69% of farmers had perception that pesticides are helpful in getting good returns. 83.72% of farmers felt that crop change is the only way to control sucking pests which damages whole crop. About 4.65% of the curry leaf farmers opined that integrated pest management practices are alternative to pesticides and only 11.63% of farmers felt natural control as an alternative to pesticides. About 65.12% of farmers had perception that high pesticide dose will give higher yields. However, in general, Curry leaf farmers preferred to contact pesticide dealers (100%) and were not interested in contacting either agricultural officer or a scientist. Farmers were aware of endosulfan ban 93.04%), in contrast, only 65.12, per cent of farmers knew about the ban of monocrotophos on vegetables. Very few farmers knew about pesticide residues and decontamination by washing. Extension educational interventions are necessary to produce fresh curry leaf free from pesticide residues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Curry%20leaf" title="Curry leaf">Curry leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=decontamination" title=" decontamination"> decontamination</a>, <a href="https://publications.waset.org/abstracts/search?q=endosulfan" title=" endosulfan"> endosulfan</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20roller" title=" leaf roller"> leaf roller</a>, <a href="https://publications.waset.org/abstracts/search?q=psyllids" title=" psyllids"> psyllids</a>, <a href="https://publications.waset.org/abstracts/search?q=tetranychid%20mite" title=" tetranychid mite"> tetranychid mite</a> </p> <a href="https://publications.waset.org/abstracts/69707/farmers-perception-in-pesticide-usage-in-curry-leaf-murraya-koeinigii-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2091</span> Efficacy of Some Plant Extract against Larvae and Pupae of American Bollworm (Helicoverpa armigera) including the Effect on Peritropme Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepali%20Lal">Deepali Lal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudha%20Summerwar"> Sudha Summerwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoutsna%20Pandey"> Jyoutsna Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The resistance of pesticide by the pest is an important matter of concern.The pesticide of plant origin having nontoxic biodegradable and environmentally friendly qualities. The frequent spraying of toxic chemicals is developing resistance to the pesticide. Leaf powder of the plants like Argimone mexicana and Calotropis procera is prepared, Different doses of these plant extracts are given to the Fourth in star stages of Helicoverpa armigera through feeding methods, to find their efficacy the experimental findings will be put under analysis using various parameters. The effect on paritrophic membrane is also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation%20plant" title="distillation plant">distillation plant</a>, <a href="https://publications.waset.org/abstracts/search?q=acetone" title=" acetone"> acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohol" title=" alcohol"> alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=pipette" title=" pipette"> pipette</a>, <a href="https://publications.waset.org/abstracts/search?q=castor%20leaves" title=" castor leaves"> castor leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=grams%20pods" title=" grams pods"> grams pods</a>, <a href="https://publications.waset.org/abstracts/search?q=larvae%20of%20helicoverpa%20armigera" title=" larvae of helicoverpa armigera"> larvae of helicoverpa armigera</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extract" title=" plant extract"> plant extract</a>, <a href="https://publications.waset.org/abstracts/search?q=vails" title=" vails"> vails</a>, <a href="https://publications.waset.org/abstracts/search?q=jars" title=" jars"> jars</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a> </p> <a href="https://publications.waset.org/abstracts/48194/efficacy-of-some-plant-extract-against-larvae-and-pupae-of-american-bollworm-helicoverpa-armigera-including-the-effect-on-peritropme-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2090</span> Organochlorine and Organophosphorus Pesticide Residues in Fish Samples from Lake Chad, Baga, North Eastern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Akan">J. C. Akan</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20I.%20%20Abdulrahman"> F. I. Abdulrahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20M.%20Chellube"> Z. M. Chellube</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine the levels of some organochlorine (o, p-DDE, p,p’-DDD, o,p’-DDD, p,p’-DDT, p,p’-DDT, α-BHC, γ-BHC, lindane, Endosulfan sulphate, dieldrin and aldrin and organophosphorus (Dichlorvos, Diazinon, Chlorpyrifos, fenitrothion and Fenitrothion) pesticide residues in the gills, liver, stomach, kidney and flesh of four fish species (Tilapia zilli, Clarias anguillaris Hetrotis niloticus and Oreochronmis niloticus) between the periods of September 2010 to October, 2011. Samples were collected from Kwantan turare in Lake Chad, Baga, Borno State, Nigeria. Extraction of the fish samples and de-fattening of the fish sample extracts were performed using standard procedures. Analysis of the fish samples for pesticide residues were carried out using Shimadzu GC/MS (GC – 17A), equipped with fluorescence detector. Large differences in the levels of pesticide residues were observed between tissues within each fish. The concentrations of all the organophosphorus pesticides were higher in the organs of Oreochronmis niloticus, while Hetrotis niloticus shows the lowest. For organochlorine pesticides, the organs of Tilapia zilli showed the highest concentrations, while Hetrotis niloticus shows the lowest. The highest pesticide concentrations were observed in gills and liver tissues of all the species of fish study, while the lowest concentrations were observed in flesh. Based on the above results, it can therefore be concluded that the concentrations of pesticide in the four fish species study did exceed the permissible limits set by FAO and FEPA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organochlorine" title="organochlorine">organochlorine</a>, <a href="https://publications.waset.org/abstracts/search?q=organophosphorus" title=" organophosphorus"> organophosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=accumulation" title=" accumulation"> accumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=lake%20chad" title=" lake chad"> lake chad</a> </p> <a href="https://publications.waset.org/abstracts/1908/organochlorine-and-organophosphorus-pesticide-residues-in-fish-samples-from-lake-chad-baga-north-eastern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">700</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2089</span> Determination of Pesticides Residues in Tissue of Two Freshwater Fish Species by Modified QuEChERS Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iwona%20Cie%C5%9Blik">Iwona Cieślik</a>, <a href="https://publications.waset.org/abstracts/search?q=W%C5%82adys%C5%82aw%20Migda%C5%82"> Władysław Migdał</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinga%20Topolska"> Kinga Topolska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ewa%20Cie%C5%9Blik"> Ewa Cieślik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The consumption of fish is recommended as a means of preventing serious diseases, especially cardiovascular problems. Fish is known to be a valuable source of protein (rich in essential amino acids), unsaturated fatty acids, fat-soluble vitamins, macro- and microelements. However, it can also contain several contaminants (e.g. pesticides, heavy metals) that may pose considerable risks for humans. Among others, pesticide are of special concern. Their widespread use has resulted in the contamination of environmental compartments, including water. The occurrence of pesticides in the environment is a serious problem, due to their potential toxicity. Therefore, a systematic monitoring is needed. The aim of the study was to determine the organochlorine and organophosphate pesticide residues in fish muscle tissues of the pike (Esox lucius, L.) and the rainbow trout (Oncorhynchus mykkis, Walbaum) by a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, using Gas Chromatography Quadrupole Mass Spectrometry (GC/Q-MS), working in selected-ion monitoring (SIM) mode. The analysis of α-HCH, β-HCH, lindane, diazinon, disulfoton, δ-HCH, methyl parathion, heptachlor, malathion, aldrin, parathion, heptachlor epoxide, γ-chlordane, endosulfan, α-chlordane, o,p'-DDE, dieldrin, endrin, 4,4'-DDD, ethion, endrin aldehyde, endosulfan sulfate, 4,4'-DDT, and metoxychlor was performed in the samples collected in the Carp Valley (Malopolska region, Poland). The age of the pike (n=6) was 3 years and its weight was 2-3 kg, while the age of the rainbow trout (n=6) was 0.5 year and its weight was 0.5-1.0 kg. Detectable pesticide (HCH isomers, endosulfan isomers, DDT and its metabolites as well as metoxychlor) residues were present in fish samples. However, all these compounds were below the limit of quantification (LOQ). The other examined pesticide residues were below the limit of detection (LOD). Therefore, the levels of contamination were - in all cases - below the default Maximum Residue Levels (MRLs), established by Regulation (EC) No 396/2005 of the European Parliament and of the Council. The monitoring of pesticide residues content in fish is required to minimize potential adverse effects on the environment and human exposure to these contaminants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminants" title="contaminants">contaminants</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides%20residues" title=" pesticides residues"> pesticides residues</a>, <a href="https://publications.waset.org/abstracts/search?q=QuEChERS%20method" title=" QuEChERS method"> QuEChERS method</a> </p> <a href="https://publications.waset.org/abstracts/46809/determination-of-pesticides-residues-in-tissue-of-two-freshwater-fish-species-by-modified-quechers-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2088</span> Evaluation of Pesticide Residues in Honey from Cocoa and Forest Ecosystems in Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20G.%20Boakye">Richard G. Boakye</a>, <a href="https://publications.waset.org/abstracts/search?q=Dara%20A%20Stanley"> Dara A Stanley</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathavan%20Vickneswaran"> Mathavan Vickneswaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Blanaid%20White"> Blanaid White</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cultivation of cocoa (Theobroma cocoa), an important cash crop that contributes immensely towards the economic growth of several Western African countries, depends almost entirely on pesticide application owing to the plant’s vulnerability to pest and disease attacks. However, the extent to which pesticides inputted for cocoa cultivation impact bees and bee products has rarely received attention in research. Through this study, the effects of pesticides applied for cocoa cultivation on honey in Ghana were examined by evaluating honey samples from cocoa and forest ecosystems in Ghana. An analysis of five honey samples from each land use type confirmed pesticide contaminants from these land use types at measured concentrations for acetamiprid (0.051mg/kg); imidacloprid (0.004-0.02 mg/kg), thiamethoxam (0.013-0.017 mg/kg); indoxacarb (0.004-0.045 mg/kg) and sulfoxaflor (0.004-0.026 mg/kg). None of the observed pesticide concentrations exceeded EU maximum residue levels, indicating no compromise of the honey quality for human consumption. However, from the results, it could be inferred that toxic effects on bees may not be ruled out because observed concentrations largely exceeded the threshold of 0.001 mg/kg at which sublethal effects on bees have previously been reported. One of the most remarkable results to emerge from this study is the detection of imidacloprid in all honey samples analyzed, with sulfoxaflor and thiamethoxam also being detected in 93% and 73% of the honey samples, respectively. This suggests the probable prevalence of pesticide use in the landscape. However, the conclusions reached in this study should be interpreted within the scope of pesticide applications within Bia West District and not necessarily extended to other cocoa-producing districts in Ghana. Future studies should therefore include multiple cocoa-growing districts and other non-cocoa farming landscapes. Such an approach can give a broader outlook on pesticide residues in honey produced in Ghana. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honey" title="honey">honey</a>, <a href="https://publications.waset.org/abstracts/search?q=cocoa" title=" cocoa"> cocoa</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=bees" title=" bees"> bees</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape" title=" landscape"> landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=residues" title=" residues"> residues</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghana" title=" Ghana"> Ghana</a> </p> <a href="https://publications.waset.org/abstracts/163111/evaluation-of-pesticide-residues-in-honey-from-cocoa-and-forest-ecosystems-in-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2087</span> Pesticide Use Practices among Female Headed Households in the Amhara Region, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birtukan%20Atinkut%20Asmare">Birtukan Atinkut Asmare</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernhard%20Freyer"> Bernhard Freyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Jim%20Bingen"> Jim Bingen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Though it is possible to transform the farming system towards a healthy, sustainable, and toxic-free food system by reducing pesticide use both in the field and postharvest, pesticides, including those that have been banned or severely restricted from use in developed countries, are indiscriminately used in African agriculture. Drawing on social practice theory, this study is about pesticide use practices in smallholder farms and its adverse impacts on women’s health and the environment, with reference to Africa, with an empirical focus on Ethiopia. Data have been collected via integrating diverse quantitative and qualitative approaches such as household surveys (n= 318), focus group discussions (n=6), field observations (n=30), and key informant interviews (n=18), with people along the pesticide value chain, including sellers and extension workers up to women farmers. A binary logistic regression model was used to investigate the factors that influence the adoption of personal protective equipment among female headed households. The findings show that Female-headed households carried out risky and unsafe practices from pesticide purchasing up to disposal, largely motivated by material elements (such as labor, income, time, and the provisioning system) but were notably shaped by competences (skills and knowledge), and meanings (norms, values, rules, and shared ideas). The main meaning or material aspect for pesticide purchasing were the perceptions of efficacy on pests, diseases, and weeds (65%), cost and availability in smaller quantities (60.7%), and a woman’s available time and mobility (58.9%). Pesticide hazards to human health or the environment seem not to be relevant for most female headed households. Unsafe practices of pesticide use among women led to the loss of biodiversity and ecosystem degradation, let alone their and family’s health. As the regression results show, the significant factors that influenced PPE adoption among female headed households were age and retailer information (p < 0.05). In line with the empirical finding, in addition to changing individual competences through advisory services and training, a foundational shift is needed in the sociocultural environment (e.g., policy, advisory), or a change in the meanings (social norms), where women are living and working. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=competences" title=" competences"> competences</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystems" title=" ecosystems"> ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=ethiopia" title=" ethiopia"> ethiopia</a>, <a href="https://publications.waset.org/abstracts/search?q=female%20headed%20households" title=" female headed households"> female headed households</a>, <a href="https://publications.waset.org/abstracts/search?q=materials" title=" materials"> materials</a>, <a href="https://publications.waset.org/abstracts/search?q=meanings" title=" meanings"> meanings</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20purchasing" title=" pesticide purchasing"> pesticide purchasing</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20using" title=" pesticide using"> pesticide using</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20practice%20theory" title=" social practice theory"> social practice theory</a> </p> <a href="https://publications.waset.org/abstracts/173407/pesticide-use-practices-among-female-headed-households-in-the-amhara-region-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2086</span> Pesticides Monitoring in Surface Waters of the São Paulo State, Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabio%20N.%20Moreno">Fabio N. Moreno</a>, <a href="https://publications.waset.org/abstracts/search?q=Let%C3%ADcia%20B.%20Marinho"> Letícia B. Marinho</a>, <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20D.%20Ruiz"> Beatriz D. Ruiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Helena%20R.%20B.%20Martins"> Maria Helena R. B. Martins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brazil is a top consumer of pesticides worldwide, and the São Paulo State is one of the highest consumers among the Brazilian federative states. However, representative data about the occurrence of pesticides in surface waters of the São Paulo State is scarce. This paper aims to present the results of pesticides monitoring executed within the Water Quality Monitoring Network of CETESB (The Environmental Agency of the São Paulo State) between the 2018-2022 period. Surface water sampling points (21 to 25) were selected within basins of predominantly agricultural land-use (5 to 85% of cultivated areas). The samples were collected throughout the year, including high-flow and low-flow conditions. The frequency of sampling varied between 6 to 4 times per year. Selection of pesticide molecules for monitoring followed a prioritizing process from EMBRAPA (Brazilian Agricultural Research Corporation) databases of pesticide use. Pesticides extractions in aqueous samples were performed according to USEPA 3510C and 3546 methods following quality assurance and quality control procedures. Determination of pesticides in water (ng L-1) extracts were performed by high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and by gas chromatography with nitrogen phosphorus (GC-NPD) and electron capture detectors (GC-ECD). The results showed higher frequencies (20- 65%) in surface water samples for Carbendazim (fungicide), Diuron/Tebuthiuron (herbicides) and Fipronil/Imidaclopride (insecticides). The frequency of observations for these pesticides were generally higher in monitoring points located in sugarcane cultivated areas. The following pesticides were most frequently quantified above the Aquatic life benchmarks for freshwater (USEPA Office of Pesticide Programs, 2023) or Brazilian Federal Regulatory Standards (CONAMA Resolution no. 357/2005): Atrazine, Imidaclopride, Carbendazim, 2,4D, Fipronil, and Chlorpiryfos. Higher median concentrations for Diuron and Tebuthiuron in the rainy months (october to march) indicated pesticide transport through surface runoff. However, measurable concentrations in the dry season (april to september) for Fipronil and Imidaclopride also indicates pathways related to subsurface or base flow discharge after pesticide soil infiltration and leaching or dry deposition following pesticide air spraying. With exception to Diuron, no temporal trends related to median concentrations of the most frequently quantified pesticides were observed. These results are important to assist policymakers in the development of strategies aiming at reducing pesticides migration to surface waters from agricultural areas. Further studies will be carried out in selected points to investigate potential risks as a result of pesticides exposure on aquatic biota. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticides%20monitoring" title="pesticides monitoring">pesticides monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=s%C3%A3o%20paulo%20state" title=" são paulo state"> são paulo state</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20waters" title=" surface waters"> surface waters</a> </p> <a href="https://publications.waset.org/abstracts/177585/pesticides-monitoring-in-surface-waters-of-the-sao-paulo-state-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure&page=70">70</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure&page=71">71</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>