CINXE.COM

Search results for: thermal cycle simulator

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thermal cycle simulator</title> <meta name="description" content="Search results for: thermal cycle simulator"> <meta name="keywords" content="thermal cycle simulator"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thermal cycle simulator" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thermal cycle simulator"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5741</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thermal cycle simulator</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5741</span> Investigation of Heat Affected Zone of Steel P92 Using the Thermal Cycle Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petr%20Mohyla">Petr Mohyla</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivo%20Hlavat%C3%BD"> Ivo Hlavatý</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Hrub%C3%BD"> Jiří Hrubý</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucie%20Krej%C4%8D%C3%AD"> Lucie Krejčí</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is focused on mechanical properties and microstructure of heat affected zone (HAZ) of steel P92. The thermal cycle simulator was used for modeling a fine grained zone of HAZ. Hardness and impact toughness were measured on simulated samples. Microstructural analysis using optical microscopy was performed on selected samples. Achieved results were compared with the values of a real welded joint. The thermal cycle simulator allows transferring the properties of very small HAZ to the sufficiently large sample where the tests of the mechanical properties can be performed. A satisfactory accordance was found when comparing the microstructure and mechanical properties of real welds and simulated samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20affected%20zone" title="heat affected zone">heat affected zone</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20test" title=" impact test"> impact test</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cycle%20simulator" title=" thermal cycle simulator"> thermal cycle simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20of%20tempering" title=" time of tempering"> time of tempering</a> </p> <a href="https://publications.waset.org/abstracts/67694/investigation-of-heat-affected-zone-of-steel-p92-using-the-thermal-cycle-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5740</span> A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Fra%C5%88a">K. Fraňa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M%C3%BCller"> M. Müller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A presentation of the design of the Organic Rankine Cycle (ORC) with heat regeneration and super-heating processes is a subject of this paper. The maximum temperature level in the ORC is considered to be 110°C and the maximum pressure varies up to 2.5MPa. The selection process of the appropriate working fluids, thermal design and calculation of the cycle and its components are described. With respect to the safety, toxicity, flammability, price and thermal cycle efficiency, the working fluid selected is R134a. As a particular example, the thermal design of the condenser used for the ORC engine with a theoretical thermal power of 179 kW was introduced. The minimal heat transfer area for a completed condensation was determined to be approximately 520m2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20rankine%20cycle" title="organic rankine cycle">organic rankine cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency" title=" thermal efficiency"> thermal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20fluids" title=" working fluids"> working fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20engineering" title=" environmental engineering"> environmental engineering</a> </p> <a href="https://publications.waset.org/abstracts/2120/a-design-of-the-organic-rankine-cycle-for-the-low-temperature-waste-heat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5739</span> Research on Level Adjusting Mechanism System of Large Space Environment Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Xiao">Han Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei"> Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Huang%20Hai"> Huang Hai</a>, <a href="https://publications.waset.org/abstracts/search?q=Lv%20Shizeng"> Lv Shizeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space environment simulator is a device for spacecraft test. KM8 large space environment simulator built in Tianjing Space City is the largest as well as the most advanced space environment simulator in China. Large deviation of spacecraft level will lead to abnormally work of the thermal control device in spacecraft during the thermal vacuum test. In order to avoid thermal vacuum test failure, level adjusting mechanism system is developed in the KM8 large space environment simulator as one of the most important subsystems. According to the level adjusting requirements of spacecraft’s thermal vacuum tests, the four fulcrums adjusting model is established. By means of collecting level instruments and displacement sensors data, stepping motors controlled by PLC drive four supporting legs simultaneous movement. In addition, a PID algorithm is used to control the temperature of supporting legs and level instruments which long time work under the vacuum cold and black environment in KM8 large space environment simulator during thermal vacuum tests. Based on the above methods, the data acquisition and processing, the analysis and calculation, real time adjustment and fault alarming of the level adjusting mechanism system are implemented. The level adjusting accuracy reaches 1mm/m, and carrying capacity is 20 tons. Debugging showed that the level adjusting mechanism system of KM8 large space environment simulator can meet the thermal vacuum test requirement of the new generation spacecraft. The performance and technical indicators of the level adjusting mechanism system which provides important support for the development of spacecraft in China have been ahead of similar equipment in the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator" title="space environment simulator">space environment simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20vacuum%20test" title=" thermal vacuum test"> thermal vacuum test</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20adjusting" title=" level adjusting"> level adjusting</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20mechanism" title=" parallel mechanism"> parallel mechanism</a> </p> <a href="https://publications.waset.org/abstracts/69565/research-on-level-adjusting-mechanism-system-of-large-space-environment-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5738</span> Structure Design of Vacuum Vessel with Large Openings for Spacecraft Thermal Vacuum Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Xiao">Han Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruan%20Qi"> Ruan Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei"> Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Yan"> Qi Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space environment simulator is a facility used to conduct thermal test for spacecraft, and vacuum vessel is the main body of it. According to the requirements for thermal tests of the spacecraft and its solar array panels, the primary vessel and the side vessels are designed to be a combinative structure connected with aperture, which ratio reaches 0.7. Since the vacuum vessel suffers 0.1MPa external pressure during the process of thermal test, in order to ensure the simulator’s reliability and safety, it’s necessary to calculate the vacuum vessel’s intensity and stability. Based on the impact of large openings to vacuum vessel structure, this paper explored the reinforce design and analytical way of vacuum vessel with large openings, using a large space environment simulator’s vacuum vessel design as an example. Tests showed that the reinforce structure is effective to fulfill the requirements of external pressure and the gravity. This ensured the reliability of the space environment simulator, providing a guarantee for developing the spacecraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum%20vessel" title="vacuum vessel">vacuum vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20opening" title=" large opening"> large opening</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator" title=" space environment simulator"> space environment simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20design" title=" structure design"> structure design</a> </p> <a href="https://publications.waset.org/abstracts/10540/structure-design-of-vacuum-vessel-with-large-openings-for-spacecraft-thermal-vacuum-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5737</span> A Trends Analysis of Yatch Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Neung%20Lee">Jae-Neung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Keun-Chang%20Kwak"> Keun-Chang Kwak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes an analysis of Yacht Simulator international trends and also explains about Yacht. Examples of yacht Simulator using Yacht Simulator include image processing for totaling the total number of vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT (scale invariant features transform) matching, and application of median filter and thresholding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yacht%20simulator" title="yacht simulator">yacht simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=simulator" title=" simulator"> simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=trends%20analysis" title=" trends analysis"> trends analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SIFT" title=" SIFT"> SIFT</a> </p> <a href="https://publications.waset.org/abstracts/23888/a-trends-analysis-of-yatch-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5736</span> Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saria%20Abed">Saria Abed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Khir"> Tahar Khir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Ben%20Brahim"> Ammar Ben Brahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exergy%20efficiency" title="exergy efficiency">exergy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=irreversibility" title=" irreversibility"> irreversibility</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerator" title=" regenerator"> regenerator</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency" title=" thermal efficiency"> thermal efficiency</a> </p> <a href="https://publications.waset.org/abstracts/68679/thermo-exergy-optimization-of-gas-turbine-cycle-with-two-different-regenerator-designs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5735</span> Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Akbari">R. Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ehyaei"> M. A. Ehyaei</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Shahi%20Shavvon"> R. Shahi Shavvon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis" title="exergy analysis">exergy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=rankine%20cycle" title=" rankine cycle"> rankine cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20and%20multi-objective%20function" title=" single and multi-objective function"> single and multi-objective function</a> </p> <a href="https://publications.waset.org/abstracts/110507/optimization-of-solar-rankine-cycle-by-exergy-analysis-and-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5734</span> Engineering Thermal-Hydraulic Simulator Based on Complex Simulation Suite “Virtual Unit of Nuclear Power Plant”</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Obraztsov">Evgeny Obraztsov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilya%20Kremnev"> Ilya Kremnev</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitaly%20Sokolov"> Vitaly Sokolov</a>, <a href="https://publications.waset.org/abstracts/search?q=Maksim%20Gavrilov"> Maksim Gavrilov</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Tretyakov"> Evgeny Tretyakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Kukhtevich"> Vladimir Kukhtevich</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Bezlepkin"> Vladimir Bezlepkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last decade, a specific set of connected software tools and calculation codes has been gradually developed. It allows simulating I&C systems, thermal-hydraulic, neutron-physical and electrical processes in elements and systems at the Unit of NPP (initially with WWER (pressurized water reactor)). In 2012 it was called a complex simulation suite “Virtual Unit of NPP” (or CSS “VEB” for short). Proper application of this complex tool should result in a complex coupled mathematical computational model. And for a specific design of NPP, it is called the Virtual Power Unit (or VPU for short). VPU can be used for comprehensive modelling of a power unit operation, checking operator's functions on a virtual main control room, and modelling complicated scenarios for normal modes and accidents. In addition, CSS “VEB” contains a combination of thermal hydraulic codes: the best-estimate (two-liquid) calculation codes KORSAR and CORTES and a homogenous calculation code TPP. So to analyze a specific technological system one can build thermal-hydraulic simulation models with different detalization levels up to a nodalization scheme with real geometry. And the result at some points is similar to the notion “engineering/testing simulator” described by the European utility requirements (EUR) for LWR nuclear power plants. The paper is dedicated to description of the tools mentioned above and an example of the application of the engineering thermal-hydraulic simulator in analysis of the boron acid concentration in the primary coolant (changed by the make-up and boron control system). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=best-estimate%20code" title="best-estimate code">best-estimate code</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20simulation%20suite" title=" complex simulation suite"> complex simulation suite</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20simulator" title=" engineering simulator"> engineering simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant" title=" power plant"> power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20hydraulic" title=" thermal hydraulic"> thermal hydraulic</a>, <a href="https://publications.waset.org/abstracts/search?q=VEB" title=" VEB"> VEB</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20power%20unit" title=" virtual power unit"> virtual power unit</a> </p> <a href="https://publications.waset.org/abstracts/63791/engineering-thermal-hydraulic-simulator-based-on-complex-simulation-suite-virtual-unit-of-nuclear-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5733</span> The Control System Architecture of Space Environment Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhan%20Haiyang">Zhan Haiyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gu%20Miao"> Gu Miao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article mainly introduces the control system architecture of space environment simulator, simultaneously also briefly introduce the automation control technology of industrial process and the measurement technology of vacuum and cold black environment. According to the volume of chamber, the space environment simulator is divided into three types of small, medium and large. According to the classification and application of space environment simulator, the control system is divided into the control system of small, medium, large space environment simulator and the centralized control system of multiple space environment simulators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator" title="space environment simulator">space environment simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=automation%20control%20technology" title=" automation control technology"> automation control technology</a> </p> <a href="https://publications.waset.org/abstracts/2428/the-control-system-architecture-of-space-environment-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5732</span> Thermodynamic Analysis of Zeotropic Mixture Used in Low Temperature Solar Rankine Cycle with Ejector for Power Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basma%20Hamdi">Basma Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakdar%20Kairouani"> Lakdar Kairouani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezzedine%20Nahdi"> Ezzedine Nahdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to present a thermodynamic analysis of low temperature solar Rankine cycle with ejector for power generation using zeotropic mixtures. Based on theoretical calculation, effects of zeotropic mixtures compositions on the performance of solar Rankine cycle with ejector are discussed and compared with corresponding pure fluids. Variations of net power output, thermal efficiency were calculating with changing evaporation temperature. The ejector coefficient had analyzed as independent variable. The result show that (R245fa/R152a) has a higher thermal efficiency than using pure fluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zeotropic%20mixture" title="zeotropic mixture">zeotropic mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20analysis" title=" thermodynamic analysis"> thermodynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ejector" title=" ejector"> ejector</a>, <a href="https://publications.waset.org/abstracts/search?q=low-temperature%20solar%20rankine%20cycle" title=" low-temperature solar rankine cycle"> low-temperature solar rankine cycle</a> </p> <a href="https://publications.waset.org/abstracts/58827/thermodynamic-analysis-of-zeotropic-mixture-used-in-low-temperature-solar-rankine-cycle-with-ejector-for-power-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5731</span> Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min">Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferritic%20stainless%20steel" title="ferritic stainless steel">ferritic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20exhaust" title=" automotive exhaust"> automotive exhaust</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20fatigue" title=" thermal fatigue"> thermal fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20relaxation" title=" load relaxation"> load relaxation</a> </p> <a href="https://publications.waset.org/abstracts/44161/thermal-fatigue-behavior-of-400-series-ferritic-stainless-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5730</span> Energy Matrices of Partially Covered Photovoltaic Thermal Flat Plate Water Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shyam">Shyam</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Tiwari"> G. N. Tiwari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy matrices of flate plate water collectors partially covered by PV module have been estimated in the present study. Photovoltaic thermal (PVT) water collector assembly is consisting of 5 water collectors having 2 m^2 area which are partially covered by photovoltaic module at its lower portion (inlet) and connected in series. The annual overall thermal energy and exergy are computed by using climatic data of New Delhi provided by Indian Meteorological Department (IMD) Pune, India. The Energy payback time on overall thermal and exergy basis are found to be 1.6 years and 17.8 years respectively. For 25 years of life time of system the energy production factor and life cycle conversion efficiency are estimated to be 15.8 and 0.04 respectively on overall thermal energy basis whereas for the same life time the energy production factor and life cycle conversion efficiency on exergy basis are obtained as 1.4 and 0.001. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=overall%20thermal%20energy" title="overall thermal energy">overall thermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20payback%20time" title=" energy payback time"> energy payback time</a>, <a href="https://publications.waset.org/abstracts/search?q=PVT%20water%20collectors" title=" PVT water collectors"> PVT water collectors</a> </p> <a href="https://publications.waset.org/abstracts/36909/energy-matrices-of-partially-covered-photovoltaic-thermal-flat-plate-water-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5729</span> Thermal Effect in Power Electrical for HEMTs Devices with InAlN/GaN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakarya%20Kourdi">Zakarya Kourdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Khaouani"> Mohammed Khaouani</a>, <a href="https://publications.waset.org/abstracts/search?q=Benyounes%20Bouazza"> Benyounes Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahlam%20Guen-Bouazza"> Ahlam Guen-Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Amine%20Boursali"> Amine Boursali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have evaluated the thermal effect for high electron mobility transistors (HEMTs) heterostructure InAlN/GaN with a gate length 30nm high-performance. It also shows the analysis and simulated these devices, and how can be used in different application. The simulator Tcad-Silvaco software has used for predictive results good for the DC, AC and RF characteristic, Devices offered max drain current 0.67A; transconductance is 720 mS/mm the unilateral power gain of 180 dB. A cutoff frequency of 385 GHz, and max frequency 810 GHz These results confirm the feasibility of using HEMTs with InAlN/GaN in high power amplifiers, as well as thermal places. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEMT" title="HEMT">HEMT</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20Effect" title=" Thermal Effect"> Thermal Effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvaco" title=" Silvaco"> Silvaco</a>, <a href="https://publications.waset.org/abstracts/search?q=InAlN%2FGaN" title=" InAlN/GaN"> InAlN/GaN</a> </p> <a href="https://publications.waset.org/abstracts/25974/thermal-effect-in-power-electrical-for-hemts-devices-with-inalngan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5728</span> Thermal Fatigue Behavior of Austenitic Stainless Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon">Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Continually increasing working temperature and growing need for greater efficiency and reliability of automotive exhaust require systematic investigation into the thermal fatigue properties especially of high temperature stainless steels. In this study, thermal fatigue properties of 300 series austenitic stainless steels have been evaluated in the temperature ranges of 200-800°C and 200-900°C. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. Load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title="austenitic stainless steel">austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20exhaust" title=" automotive exhaust"> automotive exhaust</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20fatigue" title=" thermal fatigue"> thermal fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20relaxation" title=" load relaxation"> load relaxation</a> </p> <a href="https://publications.waset.org/abstracts/9692/thermal-fatigue-behavior-of-austenitic-stainless-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5727</span> Thermal Performance of Reheat, Regenerative, Inter-Cooled Gas Turbine Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milind%20S.%20Patil">Milind S. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Purushottam%20S.%20Desale"> Purushottam S. Desale</a>, <a href="https://publications.waset.org/abstracts/search?q=Eknath%20R.%20Deore"> Eknath R. Deore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal analysis of reheat, regenerative, inter-cooled gas turbine cycle is presented. Specific work output, thermal efficiency and SFC is simulated with respect to operating conditions. Analytical formulas were developed taking into account the effect of operational parameters like ambient temperature, compression ratio, compressor efficiency, turbine efficiency, regenerator effectiveness, pressure loss in inter cooling, reheating and regenerator. Calculations were made for wide range of parameters using engineering equation solver and the results were presented here. For pressure ratio of 12, regenerator effectiveness 0.95, and maximum turbine inlet temperature 1200 K, thermal efficiency decreases by 27% with increase in ambient temperature (278 K to 328 K). With decrease in regenerator effectiveness thermal efficiency decreases linearly. With increase in ambient temperature (278 K to 328 K) for the same maximum temperature and regenerator effectiveness SFC decreases up to a pressure ratio of 10 and then increases. Sharp rise in SFC is noted for higher ambient temperature. With increase in isentropic efficiency of compressor and turbine, thermal efficiency increases by about 40% for low ambient temperature (278 K to 298 K) however, for higher ambient temperature (308 K to 328 K) thermal efficiency increases by about 70%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=reheating" title=" reheating"> reheating</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-cooled" title=" inter-cooled"> inter-cooled</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a> </p> <a href="https://publications.waset.org/abstracts/3990/thermal-performance-of-reheat-regenerative-inter-cooled-gas-turbine-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5726</span> Finite Element Method Analysis of Occluded-Ear Simulator and Natural Human Ear Canal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sasajima">M. Sasajima</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Yamaguchi"> T. Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hu"> Y. Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Koike"> Y. Koike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we discuss the propagation of sound in the narrow pathways of an occluded-ear simulator typically used for the measurement of insert-type earphones. The simulator has a standardized frequency response conforming to the international standard (IEC60318-4). In narrow pathways, the speed and phase of sound waves are modified by viscous air damping. In our previous paper, we proposed a new finite element method (FEM) to consider the effects of air viscosity in this type of audio equipment. In this study, we will compare the results from the ear simulator FEM model, and those from a three dimensional human ear canal FEM model made from computed tomography images, with the measured frequency response data from the ear canals of 18 people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ear%20simulator" title="ear simulator">ear simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20ear%20canal" title=" human ear canal"> human ear canal</a> </p> <a href="https://publications.waset.org/abstracts/39590/finite-element-method-analysis-of-occluded-ear-simulator-and-natural-human-ear-canal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5725</span> Optimization of Supercritical CO2 Power Cycle for Waste Heat Recovery from Gas Turbine with Respect to Cooling Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Min%20Kim">Young Min Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Lak%20Sohn"> Jeong Lak Sohn</a>, <a href="https://publications.waset.org/abstracts/search?q=Eui%20Soo%20Yoon"> Eui Soo Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes the optimization of supercritical carbon dioxide (S-CO2) power cycle for recovering waste heat from a gas turbine. An S-CO2 cycle that recovers heat from small industrial and aeroderivative gas turbines can outperform a steam-bottoming cycle despite its simplicity and compactness. In using S-CO2 power cycles for waste heat recovery, a split cycle was studied to maximize the net output power by incorporating the utilization efficiency of the waste heat (lowering the temperature of the exhaust gas through the heater) along with the thermal efficiency of the cycle (minimizing the temperature difference for the heat transfer, exergy loss). The cooling condition of the S-CO2 WHR system has a great impact on the performance and the optimum low pressure of the system. Furthermore, the optimum high pressure of the S-CO2 WHR systems for the maximum power from the given heat sources is dependent on the temperature of the waste heat source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exergy%20loss" title="exergy loss">exergy loss</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20CO2%20power%20cycle" title=" supercritical CO2 power cycle"> supercritical CO2 power cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20cycle" title=" split cycle"> split cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20heat%20recovery" title=" waste heat recovery"> waste heat recovery</a> </p> <a href="https://publications.waset.org/abstracts/59112/optimization-of-supercritical-co2-power-cycle-for-waste-heat-recovery-from-gas-turbine-with-respect-to-cooling-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5724</span> Effect of Thermal Aging on Low Cycle Fatigue of Alloy 690</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kushal%20Gowda%20Jayaram">Kushal Gowda Jayaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Huret"> Joseph Huret</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Quibel"> Jonathan Quibel</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter-John%20Chitty"> Walter-John Chitty</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilbert%20Henaff"> Gilbert Henaff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal aging is one of the concerns for the long-term operation of nuclear power plants. Indeed, components in the primary circuit undergo thermal aging while exposed to the chemically active environment of Pressurized Water Reactors (PWRs) over time. Among the materials used in the reactor components, Alloy 690 can be found in some critical components for nuclear safety. Despite its importance, research on the effect of thermal aging on the microstructural changes and low cycle fatigue (LCF) behavior of Alloy 690 remains limited. This study aims to assess the impact of thermal aging on the fatigue life of Alloy 690. The as-received sample underwent aging at 420°C for 4000 hours, representing the equivalent aging of 60 years in reactor working conditions. First, the characterization of the area and density of intergranular and intragranular precipitates was performed to understand the microstructural changes in the aged specimen. Then, low cycle fatigue tests were conducted on the as received and aged samples at varying strain amplitudes. To investigate the influence of thermal aging on the fatigue behavior of Alloy 690, fracture surfaces were analyzed to estimate fatigue crack growth rates based on striation spacing measurements. Additionally, the axially cut fractured samples have undergone analysis using Electron Backscatter Diffraction (EBSD) to understand the effect of aging on strain localization near the crack path. Results indicate that while the characterization of the area and density of intergranular precipitates in the aged specimen (for 2000 hours, approximately 30 years) showed no significant changes, there was a slight increase in the area and density of intragranular precipitates under the same conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alloy%20690" title="alloy 690">alloy 690</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20aging" title=" thermal aging"> thermal aging</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20cycle%20fatigue" title=" low cycle fatigue"> low cycle fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitates" title=" precipitates"> precipitates</a> </p> <a href="https://publications.waset.org/abstracts/185273/effect-of-thermal-aging-on-low-cycle-fatigue-of-alloy-690" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5723</span> Performance Analysis of Hybrid Solar Photovoltaic-Thermal Collector with TRANSYS Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Lochan">Ashish Lochan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20K.%20Dahiya"> Anil K. Dahiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Verma"> Amit Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The idea of combining photovoltaic and solar thermal collector to provide electrical and heat energy is not new, however, it is an area of limited attention. Hybrid photovoltaic-thermals have become a focus point of interest in the field of solar energy. Integration of both (photovoltaic and thermal collector) provide greater opportunity for the use of renewable solar energy. This system converts solar energy into electricity and heat energy simultaneously. Theoretical performance analyses of hybrid PV/Ts have been carried out. Also, the temperature of water (as a heat carrier) have been calculated for different seasons with the help of TRANSYS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic-thermal" title="photovoltaic-thermal">photovoltaic-thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20performance%20analysis" title=" seasonal performance analysis"> seasonal performance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TRANSYS" title=" TRANSYS"> TRANSYS</a> </p> <a href="https://publications.waset.org/abstracts/5389/performance-analysis-of-hybrid-solar-photovoltaic-thermal-collector-with-transys-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5722</span> Verification and Validation of Simulated Process Models of KALBR-SIM Training Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Jayanthi">T. Jayanthi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Velusamy"> K. Velusamy</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Seetha"> H. Seetha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20V.%20Satya%20Murty"> S. A. V. Satya Murty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Verification and Validation of Simulated Process Model is the most important phase of the simulator life cycle. Evaluation of simulated process models based on Verification and Validation techniques checks the closeness of each component model (in a simulated network) with the real system/process with respect to dynamic behaviour under steady state and transient conditions. The process of Verification and validation helps in qualifying the process simulator for the intended purpose whether it is for providing comprehensive training or design verification. In general, model verification is carried out by comparison of simulated component characteristics with the original requirement to ensure that each step in the model development process completely incorporates all the design requirements. Validation testing is performed by comparing the simulated process parameters to the actual plant process parameters either in standalone mode or integrated mode. A Full Scope Replica Operator Training Simulator for PFBR - Prototype Fast Breeder Reactor has been developed at IGCAR, Kalpakkam, INDIA named KALBR-SIM (Kalpakkam Breeder Reactor Simulator) wherein the main participants are engineers/experts belonging to Modeling Team, Process Design and Instrumentation and Control design team. This paper discusses the Verification and Validation process in general, the evaluation procedure adopted for PFBR operator training Simulator, the methodology followed for verifying the models, the reference documents and standards used etc. It details out the importance of internal validation by design experts, subsequent validation by external agency consisting of experts from various fields, model improvement by tuning based on expert’s comments, final qualification of the simulator for the intended purpose and the difficulties faced while co-coordinating various activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Verification%20and%20Validation%20%28V%26V%29" title="Verification and Validation (V&amp;V)">Verification and Validation (V&amp;V)</a>, <a href="https://publications.waset.org/abstracts/search?q=Prototype%20Fast%20Breeder%20Reactor%20%28PFBR%29" title=" Prototype Fast Breeder Reactor (PFBR)"> Prototype Fast Breeder Reactor (PFBR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalpakkam%20Breeder%20Reactor%20Simulator%20%28KALBR-SIM%29" title=" Kalpakkam Breeder Reactor Simulator (KALBR-SIM)"> Kalpakkam Breeder Reactor Simulator (KALBR-SIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state" title=" steady state"> steady state</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20state" title=" transient state"> transient state</a> </p> <a href="https://publications.waset.org/abstracts/16092/verification-and-validation-of-simulated-process-models-of-kalbr-sim-training-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5721</span> Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isa%20Moazen">Isa Moazen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Nahvi"> Ali Nahvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20driver%20assistance%20systems" title="advanced driver assistance systems">advanced driver assistance systems</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20imaging" title=" thermal imaging"> thermal imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%20drowsiness%20detection" title=" driver drowsiness detection"> driver drowsiness detection</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a> </p> <a href="https://publications.waset.org/abstracts/131366/implementation-of-a-low-cost-driver-drowsiness-evaluation-system-using-a-thermal-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5720</span> Analysis of Solar Thermal Power Plant in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Laissaoui">M. Laissaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work has for objective the simulation of a hybrid solar combined cycle power plant, compared with combined cycle conventional (gas turbine and steam turbine), this type of power plants disposed an solar tour (heliostat field and volumetric receiver) insurant a part of the thermal energy necessary for the functioning of the gas turbine. This solar energy serves to feed with heat the combustion air of the gas turbine when he out of the compressor and the front entered the combustion chamber. The simulation of even central and made for three zones deferential to know the zone of Hassi R' mel, Bechare, and the zone of Messaad wilaya of El djelfa. The radiometric and meteorological data arise directly from the software meteonorme 7. The simulation of the energy performances is made by the software TRNSYS 16.1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrating%20solar%20power" title="concentrating solar power">concentrating solar power</a>, <a href="https://publications.waset.org/abstracts/search?q=heliostat" title=" heliostat"> heliostat</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/17428/analysis-of-solar-thermal-power-plant-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5719</span> FEM Analysis of an Occluded Ear Simulator with Narrow Slit Pathway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manabu%20Sasajima">Manabu Sasajima</a>, <a href="https://publications.waset.org/abstracts/search?q=Takao%20Yamaguchi"> Takao Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshio%20Koike"> Yoshio Koike</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitsuharu%20Watanabe"> Mitsuharu Watanabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the propagation of sound waves in air, specifically in narrow rectangular pathways of an occluded-ear simulator for acoustic measurements. In narrow pathways, both the speed of sound and the phase of the sound waves are affected by the damping of the air viscosity. Herein, we propose a new finite-element method (FEM) that considers the effects of the air viscosity. The method was developed as an extension of existing FEMs for porous, sound-absorbing materials. The results of a numerical calculation for a three-dimensional ear-simulator model using the proposed FEM were validated by comparing with theoretical lumped-parameter modeling analysis and standard values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ear%20simulator" title="ear simulator">ear simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/30896/fem-analysis-of-an-occluded-ear-simulator-with-narrow-slit-pathway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5718</span> Similitude for Thermal Scale-up of a Multiphase Thermolysis Reactor in the Cu-Cl Cycle of a Hydrogen Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20W.%20Abdulrahman">Mohammed W. Abdulrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermochemical copper-chlorine (Cu-Cl) cycle is considered as a sustainable and efficient technology for a hydrogen production, when linked with clean-energy systems such as nuclear reactors or solar thermal plants. In the Cu-Cl cycle, water is decomposed thermally into hydrogen and oxygen through a series of intermediate reactions. This paper investigates the thermal scale up analysis of the three phase oxygen production reactor in the Cu-Cl cycle, where the reaction is endothermic and the temperature is about 530 <sup>o</sup>C. The paper focuses on examining the size and number of oxygen reactors required to provide enough heat input for different rates of hydrogen production. The type of the multiphase reactor used in this paper is the continuous stirred tank reactor (CSTR) that is heated by a half pipe jacket. The thermal resistance of each section in the jacketed reactor system is studied to examine its effect on the heat balance of the reactor. It is found that the dominant contribution to the system thermal resistance is from the reactor wall. In the analysis, the Cu-Cl cycle is assumed to be driven by a nuclear reactor where two types of nuclear reactors are examined as the heat source to the oxygen reactor. These types are the CANDU Super Critical Water Reactor (CANDU-SCWR) and High Temperature Gas Reactor (HTGR). It is concluded that a better heat transfer rate has to be provided for CANDU-SCWR by 3-4 times than HTGR. The effect of the reactor aspect ratio is also examined in this paper and is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Finally, a comparison between the results of heat balance and existing results of mass balance is performed and is found that the size of the oxygen reactor is dominated by the heat balance rather than the material balance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title="sustainable energy">sustainable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20energy" title=" clean energy"> clean energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu-Cl%20cycle" title=" Cu-Cl cycle"> Cu-Cl cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a> </p> <a href="https://publications.waset.org/abstracts/45051/similitude-for-thermal-scale-up-of-a-multiphase-thermolysis-reactor-in-the-cu-cl-cycle-of-a-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5717</span> Developing a Driving Simulator with a Navigation System to Measure Driver Distraction, Workload, Driving Safety and Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamer%20E.%20Yared">Tamer E. Yared</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of driving simulators has made laboratory testing easier. It has been proven to be valid for testing driving ability by many researchers. One benefit of using driving simulators is keeping the human subjects away from traffic hazards, which drivers usually face in a real driving environment while performing a driving experiment. In this study, a driving simulator was developed with a navigation system using a game development software (Unity 3D) and C-sharp codes to measure and evaluate driving performance, safety, and workload for different driving tasks. The driving simulator hardware included a gaming steering wheel and pedals as well as a monitor to view the driving tasks. Moreover, driver distraction was evaluated by utilizing an eye-tracking system working in conjunction with the driving simulator. Twenty subjects were recruited to evaluate driver distraction, workload, driving safety, and performance, as well as provide their feedback about the driving simulator. The subjects’ feedback was obtained by filling a survey after conducting several driving tasks. The main question of that survey was asking the subjects to compare driving on the driving simulator with real driving. Furthermore, other aspects of the driving simulator were evaluated by the subjects in the survey. The survey revealed that the recruited subjects gave an average score of 7.5 out of 10 to the driving simulator when compared to real driving, where the scores ranged between 6 and 8.5. This study is a preliminary effort that opens the door for more improvements to the driving simulator in terms of hardware and software development, which will contribute significantly to driving ability testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=driver%20distraction" title="driver distraction">driver distraction</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20performance" title=" driving performance"> driving performance</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20safety" title=" driving safety"> driving safety</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20simulator" title=" driving simulator"> driving simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20workload" title=" driving workload"> driving workload</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20system" title=" navigation system"> navigation system</a> </p> <a href="https://publications.waset.org/abstracts/132536/developing-a-driving-simulator-with-a-navigation-system-to-measure-driver-distraction-workload-driving-safety-and-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5716</span> Sustainable Refrigerated Transport Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A">A. A</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Belmir"> F. Belmir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20El%20Bouari"> A. El Bouari</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Abboud"> Y. Abboud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a study of the thermal performance of a new solar mobile refrigeration prototype for the preservation of perishable foods. The simulation of the refrigeration cycle and the calculation of the thermal balances made it possible to estimate its consumption and to evaluate the capacity of each photovoltaic component necessary for the production of energy. The study provides a description of the refrigerator construction and operation, including an energy balance analysis of the refrigerator performance under typical loads. The photovoltaic system requirements are also detailed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigeration" title=" refrigeration"> refrigeration</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a> </p> <a href="https://publications.waset.org/abstracts/138620/sustainable-refrigerated-transport-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5715</span> Entropy Generation Analysis of Cylindrical Heat Pipe Using Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Ghanbarpour">Morteza Ghanbarpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmatollah%20Khodabandeh"> Rahmatollah Khodabandeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, second law of thermodynamic is employed to evaluate heat pipe thermal performance. In fact, nanofluids potential to decrease the entropy generation of cylindrical heat pipes are studied and the results are compared with experimental data. Some cylindrical copper heat pipes of 200 mm length and 6.35 mm outer diameter were fabricated and tested with distilled water and water based Al2O3 nanofluids with volume concentrations of 1-5% as working fluids. Nanofluids are nanotechnology-based colloidal suspensions fabricated by suspending nanoparticles in a base liquid. These fluids have shown potential to enhance heat transfer properties of the base liquids used in heat transfer application. When the working fluid undergoes between different states in heat pipe cycle the entropy is generated. Different sources of irreversibility in heat pipe thermodynamic cycle are investigated and nanofluid effect on each of these sources is studied. Both experimental and theoretical studies reveal that nanofluid is a good choice to minimize the entropy generation in heat pipe thermodynamic cycle which results in higher thermal performance and efficiency of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title="heat pipe">heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20generation" title=" entropy generation"> entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20resistance" title=" thermal resistance"> thermal resistance</a> </p> <a href="https://publications.waset.org/abstracts/8659/entropy-generation-analysis-of-cylindrical-heat-pipe-using-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5714</span> Fire and Explosion Consequence Modeling Using Fire Dynamic Simulator: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iftekhar%20%20Hassan">Iftekhar Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayedil%20Morsalin"> Sayedil Morsalin</a>, <a href="https://publications.waset.org/abstracts/search?q=Easir%20A%20Khan"> Easir A Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accidents involving fire occur frequently in recent times and their causes showing a great deal of variety which require intervention methods and risk assessment strategies are unique in each case. On September 4, 2020, a fire and explosion occurred in a confined space caused by a methane gas leak from an underground pipeline in Baitus Salat Jame mosque during Night (Esha) prayer in Narayanganj District, Bangladesh that killed 34 people. In this research, this incident is simulated using Fire Dynamics Simulator (FDS) software to analyze and understand the nature of the accident and associated consequences. FDS is an advanced computational fluid dynamics (CFD) system of fire-driven fluid flow which solves numerically a large eddy simulation form of the Navier–Stokes’s equations for simulation of the fire and smoke spread and prediction of thermal radiation, toxic substances concentrations and other relevant parameters of fire. This study focuses on understanding the nature of the fire and consequence evaluation due to thermal radiation caused by vapor cloud explosion. An evacuation modeling was constructed to visualize the effect of evacuation time and fractional effective dose (FED) for different types of agents. The results were presented by 3D animation, sliced pictures and graphical representation to understand fire hazards caused by thermal radiation or smoke due to vapor cloud explosion. This study will help to design and develop appropriate respond strategy for preventing similar accidents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consequence%20modeling" title="consequence modeling">consequence modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20and%20explosion" title=" fire and explosion"> fire and explosion</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20dynamics%20simulation%20%28FDS%29" title=" fire dynamics simulation (FDS)"> fire dynamics simulation (FDS)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20radiation" title=" thermal radiation "> thermal radiation </a> </p> <a href="https://publications.waset.org/abstracts/136628/fire-and-explosion-consequence-modeling-using-fire-dynamic-simulator-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5713</span> Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hakim%20T.%20Kadhim">Hakim T. Kadhim</a>, <a href="https://publications.waset.org/abstracts/search?q=Faris%20A.%20Jabbar"> Faris A. Jabbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aldo%20Rona"> Aldo Rona</a>, <a href="https://publications.waset.org/abstracts/search?q=Audrius%20Bagdanaviciu"> Audrius Bagdanaviciu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle &ndash; Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO<sub>2</sub> emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20flow%20turbine" title="axial flow turbine">axial flow turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20power%20plant" title=" gas turbine power plant"> gas turbine power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/93179/improving-the-performance-of-gas-turbine-power-plant-by-modified-axial-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5712</span> Thermodynamic Cycle Using Cyclopentane for Waste Heat Recovery Power Generation from Clinker Cooler Exhaust Flue Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijayakumar%20Kunche">Vijayakumar Kunche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste heat recovery from Pre Heater exhaust gases and Clinker cooler vent gases is now common place in Cement Industry. Most common practice is to use Steam Rankine cycle for heat to power conversion. In this process, waste heat from the flue gas is recovered through a Heat Recovery steam generator where steam is generated and fed to a conventional Steam turbine generator. However steam Rankine cycle tends to have lesser efficiency for smaller power plants with less than 5MW capacity and where the steam temperature at the inlet of the turbine is less than 350 deg C. further a steam Rankine cycle needs treated water and maintenance intensive. These problems can be overcome by using Thermodynamic cycle using Cyclopentane vapour in place of steam. This innovative cycle is best suited for Heat recovery in cement plants and results in best possible heat to power conversion efficiency. This paper discusses about Heat Recovery Power generation using innovative thermal cycle which uses Cyclopentane vapour in place of water- steam. And how this technology has been adopted for a Clinker cooler hot gas from mid-tap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinker%20cooler" title="clinker cooler">clinker cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20rankine%20cycle" title=" organic rankine cycle"> organic rankine cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20heat%20recovery" title=" waste heat recovery"> waste heat recovery</a> </p> <a href="https://publications.waset.org/abstracts/86064/thermodynamic-cycle-using-cyclopentane-for-waste-heat-recovery-power-generation-from-clinker-cooler-exhaust-flue-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20cycle%20simulator&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20cycle%20simulator&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20cycle%20simulator&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20cycle%20simulator&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20cycle%20simulator&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20cycle%20simulator&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20cycle%20simulator&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20cycle%20simulator&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20cycle%20simulator&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20cycle%20simulator&amp;page=191">191</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20cycle%20simulator&amp;page=192">192</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20cycle%20simulator&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10