CINXE.COM

Search results for: traffic signal

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: traffic signal</title> <meta name="description" content="Search results for: traffic signal"> <meta name="keywords" content="traffic signal"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="traffic signal" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="traffic signal"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2760</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: traffic signal</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2550</span> Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tokihiko%20Akita">Tokihiko Akita</a>, <a href="https://publications.waset.org/abstracts/search?q=Seiichi%20Mita"> Seiichi Mita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=millimeter-wave%20radar" title="millimeter-wave radar">millimeter-wave radar</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20classification" title=" object classification"> object classification</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20adaptation" title=" domain adaptation"> domain adaptation</a> </p> <a href="https://publications.waset.org/abstracts/164634/accuracy-improvement-of-traffic-participant-classification-using-millimeter-wave-radar-by-leveraging-simulator-based-on-domain-adaptation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2549</span> Real Time Traffic Performance Study over MPLS VPNs with DiffServ</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ghani">Naveed Ghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the arrival of higher speed communication links and mature application running over the internet, the requirement for reliable, efficient and robust network designs rising day by day. Multi-Protocol Label Switching technology (MPLS) Virtual Private Networks (VPNs) have committed to provide optimal network services. They are gaining popularity in industry day by day. Enterprise customers are moving to service providers that offer MPLS VPNs. The main reason for this shifting is the capability of MPLS VPN to provide built in security features and any-to-any connectivity. MPLS VPNs improved the network performance due to fast label switching as compare to traditional IP Forwarding but traffic classification and policing was still required on per hop basis to enhance the performance of real time traffic which is delay sensitive (particularly voice and video). QoS (Quality of service) is the most important factor to prioritize enterprise networks’ real time traffic such as voice and video. This thesis is focused on the study of QoS parameters (e.g. delay, jitter and MOS (Mean Opinion Score)) for the real time traffic over MPLS VPNs. DiffServ (Differentiated Services) QoS model will be used over MPLS VPN network to get end-to-end service quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=network" title="network">network</a>, <a href="https://publications.waset.org/abstracts/search?q=MPLS" title=" MPLS"> MPLS</a>, <a href="https://publications.waset.org/abstracts/search?q=VPN" title=" VPN"> VPN</a>, <a href="https://publications.waset.org/abstracts/search?q=DiffServ" title=" DiffServ"> DiffServ</a>, <a href="https://publications.waset.org/abstracts/search?q=MPLS%20VPN" title=" MPLS VPN"> MPLS VPN</a>, <a href="https://publications.waset.org/abstracts/search?q=DiffServ%20QoS" title=" DiffServ QoS"> DiffServ QoS</a>, <a href="https://publications.waset.org/abstracts/search?q=QoS%20Model" title=" QoS Model"> QoS Model</a>, <a href="https://publications.waset.org/abstracts/search?q=GNS2" title=" GNS2"> GNS2</a> </p> <a href="https://publications.waset.org/abstracts/2552/real-time-traffic-performance-study-over-mpls-vpns-with-diffserv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2548</span> Mobile Traffic Management in Congested Cells using Fuzzy Logic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Balkhi">A. A. Balkhi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Mir"> G. M. Mir</a>, <a href="https://publications.waset.org/abstracts/search?q=Javid%20A.%20Sheikh"> Javid A. Sheikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To cater the demands of increasing traffic with new applications the cellular mobile networks face new changes in deployment in infrastructure for making cellular networks heterogeneous. To reduce overhead processing the densely deployed cells require smart behavior with self-organizing capabilities with high adaptation to the neighborhood. We propose self-organization of unused resources usually excessive unused channels of neighbouring cells with densely populated cells to reduce handover failure rates. The neighboring cells share unused channels after fulfilling some conditional candidature criterion using threshold values so that they are not suffered themselves for starvation of channels in case of any abrupt change in traffic pattern. The cells are classified as ‘red’, ‘yellow’, or ‘green’, as per the available channels in cell which is governed by traffic pattern and thresholds. To combat the deficiency of channels in red cell, migration of unused channels from under-loaded cells, hierarchically from the qualified candidate neighboring cells is explored. The resources are returned back when the congested cell is capable of self-contained traffic management. In either of the cases conditional sharing of resources is executed for enhanced traffic management so that User Equipment (UE) is provided uninterrupted services with high Quality of Service (QoS). The fuzzy logic-based simulation results show that the proposed algorithm is efficiently in coincidence with improved successful handoffs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=candidate%20cell" title="candidate cell">candidate cell</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20sharing" title=" channel sharing"> channel sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=handover" title=" handover"> handover</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20cells" title=" small cells"> small cells</a> </p> <a href="https://publications.waset.org/abstracts/144950/mobile-traffic-management-in-congested-cells-using-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2547</span> Analysis of the Impact of Refractivity on Ultra High Frequency Signal Strength over Gusau, North West, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Ayantunji">B. G. Ayantunji</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Musa"> B. Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mai-Unguwa"> H. Mai-Unguwa</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20A.%20Sunmonu"> L. A. Sunmonu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Adewumi"> A. S. Adewumi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Sa%27ad"> L. Sa&#039;ad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kado"> A. Kado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For achieving reliable and efficient communication system, both terrestrial and satellite communication, surface refractivity is critical in planning and design of radio links. This study analyzed the impact of atmospheric parameters on Ultra High Frequency (UHF) signal strength over Gusau, North West, Nigeria. The analysis exploited meteorological data measured simultaneously with UHF signal strength for the month of June 2017 using a Davis Vantage Pro2 automatic weather station and UHF signal strength measuring devices respectively. The instruments were situated at the premise of Federal University, Gusau (6° 78' N, 12° 13' E). The refractivity values were computed using ITU-R model. The result shows that the refractivity value attained the highest value of 366.28 at 2200hr and a minimum value of 350.66 at 2100hr local time. The correlation between signal strength and refractivity is 0.350; Humidity is 0.532 and a negative correlation of -0.515 for temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refractivity" title="refractivity">refractivity</a>, <a href="https://publications.waset.org/abstracts/search?q=UHF%20%28ultra%20high%20frequency%29%20signal%20strength" title=" UHF (ultra high frequency) signal strength"> UHF (ultra high frequency) signal strength</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20space" title=" free space"> free space</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20weather%20station" title=" automatic weather station"> automatic weather station</a> </p> <a href="https://publications.waset.org/abstracts/83775/analysis-of-the-impact-of-refractivity-on-ultra-high-frequency-signal-strength-over-gusau-north-west-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2546</span> TRAC: A Software Based New Track Circuit for Traffic Regulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J%C3%A9r%C3%B4me%20de%20Reffye">Jérôme de Reffye</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20Antoni"> Marc Antoni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Following the development of the ERTMS system, we think it is interesting to develop another software-based track circuit system which would fit secondary railway lines with an easy-to-work implementation and a low sensitivity to rail-wheel impedance variations. We called this track circuit 'Track Railway by Automatic Circuits.' To be internationally implemented, this system must not have any mechanical component and must be compatible with existing track circuit systems. For example, the system is independent from the French 'Joints Isolants Collés' that isolate track sections from one another, and it is equally independent from component used in Germany called 'Counting Axles,' in French 'compteur d’essieux.' This track circuit is fully interoperable. Such universality is obtained by replacing the train detection mechanical system with a space-time filtering of train position. The various track sections are defined by the frequency of a continuous signal. The set of frequencies related to the track sections is a set of orthogonal functions in a Hilbert Space. Thus the failure probability of track sections separation is precisely calculated on the basis of signal-to-noise ratio. SNR is a function of the level of traction current conducted by rails. This is the reason why we developed a very powerful algorithm to reject noise and jamming to obtain an SNR compatible with the precision required for the track circuit and SIL 4 level. The SIL 4 level is thus reachable by an adjustment of the set of orthogonal functions. Our major contributions to railway engineering signalling science are i) Train space localization is precisely defined by a calibration system. The operation bypasses the GSM-R radio system of the ERTMS system. Moreover, the track circuit is naturally protected against radio-type jammers. After the calibration operation, the track circuit is autonomous. ii) A mathematical topology adapted to train space localization by following the train through a linear time filtering of the received signal. Track sections are numerically defined and can be modified with a software update. The system was numerically simulated, and results were beyond our expectations. We achieved a precision of one meter. Rail-ground and rail-wheel impedance sensitivity analysis gave excellent results. Results are now complete and ready to be published. This work was initialised as a research project of the French Railways developed by the Pi-Ramses Company under SNCF contract and required five years to obtain the results. This track circuit is already at Level 3 of the ERTMS system, and it will be much cheaper to implement and to work. The traffic regulation is based on variable length track sections. As the traffic growths, the maximum speed is reduced, and the track section lengths are decreasing. It is possible if the elementary track section is correctly defined for the minimum speed and if every track section is able to emit with variable frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=track%20section" title="track section">track section</a>, <a href="https://publications.waset.org/abstracts/search?q=track%20circuits" title=" track circuits"> track circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=space-time%20crossing" title=" space-time crossing"> space-time crossing</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20track%20section" title=" adaptive track section"> adaptive track section</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20railway%20signalling" title=" automatic railway signalling"> automatic railway signalling</a> </p> <a href="https://publications.waset.org/abstracts/68167/trac-a-software-based-new-track-circuit-for-traffic-regulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2545</span> Wavelet Based Signal Processing for Fault Location in Airplane Cable </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Rezaeipour%20Honarmandzad">Reza Rezaeipour Honarmandzad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wavelet%20analysis" title="wavelet analysis">wavelet analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20discrete%20wavelet" title=" orthogonal discrete wavelet"> orthogonal discrete wavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20cable%20fault%20signal" title=" aircraft cable fault signal"> aircraft cable fault signal</a> </p> <a href="https://publications.waset.org/abstracts/29799/wavelet-based-signal-processing-for-fault-location-in-airplane-cable" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2544</span> A Combined Feature Extraction and Thresholding Technique for Silence Removal in Percussive Sounds </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Kishore%20Kumar">B. Kishore Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pogula%20Rakesh"> Pogula Rakesh</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kishore%20Kumar"> T. Kishore Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The music analysis is a part of the audio content analysis used to analyze the music by using the different features of audio signal. In music analysis, the first step is to divide the music signal to different sections based on the feature profiles of the music signal. In this paper, we present a music segmentation technique that will effectively segmentize the signal and thresholding technique to remove silence from the percussive sounds produced by percussive instruments, which uses two features of music, namely signal energy and spectral centroid. The proposed method impose thresholds on both the features which will vary depends on the music signal. Depends on the threshold, silence part is removed and the segmentation is done. The effectiveness of the proposed method is analyzed using MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=percussive%20sounds" title="percussive sounds">percussive sounds</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20centroid" title=" spectral centroid"> spectral centroid</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20energy" title=" spectral energy"> spectral energy</a>, <a href="https://publications.waset.org/abstracts/search?q=silence%20removal" title=" silence removal"> silence removal</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a> </p> <a href="https://publications.waset.org/abstracts/25510/a-combined-feature-extraction-and-thresholding-technique-for-silence-removal-in-percussive-sounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">594</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2543</span> Effect of Traffic Composition on Delay and Saturation Flow at Signal Controlled Intersections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arpita%20Saha">Arpita Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Apoorv%20Jain"> Apoorv Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Chandra"> Satish Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Indrajit%20Ghosh"> Indrajit Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Level of service at a signal controlled intersection is directly measured from the delay. Similarly, saturation flow rate is a fundamental parameter to measure the intersection capacity. The present study calculates vehicle arrival rate, departure rate, and queue length for every five seconds interval in each cycle. Based on the queue lengths, the total delay of the cycle has been calculated using Simpson’s 1/3rd rule. Saturation flow has been estimated in terms of veh/hr of green/lane for every five seconds interval of the green period until at least three vehicles are left to cross the stop line. Vehicle composition shows an immense effect on total delay and saturation flow rate. The increase in two-wheeler proportion increases the saturation flow rate and reduces the total delay per vehicle significantly. Additionally, an increase in the heavy vehicle proportion reduces the saturation flow rate and increases the total delay for each vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay" title="delay">delay</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20flow" title=" saturation flow"> saturation flow</a>, <a href="https://publications.waset.org/abstracts/search?q=signalised%20intersection" title=" signalised intersection"> signalised intersection</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20composition" title=" vehicle composition"> vehicle composition</a> </p> <a href="https://publications.waset.org/abstracts/62341/effect-of-traffic-composition-on-delay-and-saturation-flow-at-signal-controlled-intersections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2542</span> EEG Signal Processing Methods to Differentiate Mental States</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sun%20H.%20Hwang">Sun H. Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20E.%20Lee"> Young E. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunhan%20Ga"> Yunhan Ga</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilwon%20Yoon"> Gilwon Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> EEG is a very complex signal with noises and other bio-potential interferences. EOG is the most distinct interfering signal when EEG signals are measured and analyzed. It is very important how to process raw EEG signals in order to obtain useful information. In this study, the EEG signal processing techniques such as EOG filtering and outlier removal were examined to minimize unwanted EOG signals and other noises. The two different mental states of resting and focusing were examined through EEG analysis. A focused state was induced by letting subjects to watch a red dot on the white screen. EEG data for 32 healthy subjects were measured. EEG data after 60-Hz notch filtering were processed by a commercially available EOG filtering and our presented algorithm based on the removal of outliers. The ratio of beta wave to theta wave was used as a parameter for determining the degree of focusing. The results show that our algorithm was more appropriate than the existing EOG filtering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EEG" title="EEG">EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=focus" title=" focus"> focus</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20state" title=" mental state"> mental state</a>, <a href="https://publications.waset.org/abstracts/search?q=outlier" title=" outlier"> outlier</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/62057/eeg-signal-processing-methods-to-differentiate-mental-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2541</span> Measuring and Evaluating the Effectiveness of Mobile High Efficiency Particulate Air Filtering on Particulate Matter within the Road Traffic Network of a Sample of Non-Sparse and Sparse Urban Environments in the UK</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Maguire">Richard Maguire </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research evaluates the efficiency of using mobile HEPA filters to reduce localized Particulate Matter (PM), Total Volatile Organic Chemical (TVOC) and Formaldehyde (HCHO) Air Pollution. The research is being performed using a standard HEPA filter that is tube fitted and attached to a motor vehicle. The velocity of the vehicle is used to generate the pressure difference that allows the filter to remove PM, VOC and HCOC pollution from the localized atmosphere of a road transport traffic route. The testing has been performed on a sample of traffic routes in Non-Sparse and Sparse urban environments within the UK. Pre and Post filter measuring of the PM2.5 Air Quality has been carried out along with demographics of the climate environment, including live filming of the traffic conditions. This provides a base line for future national and international research. The effectiveness measurement is generated through evaluating the difference in PM2.5 Air Quality measured pre- and post- the mobile filter test equipment. A series of further research opportunities and future exploitation options are made based on the results of the research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20efficiency%20particulate%20air" title="high efficiency particulate air">high efficiency particulate air</a>, <a href="https://publications.waset.org/abstracts/search?q=HEPA%20filter" title=" HEPA filter"> HEPA filter</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20pollution" title=" traffic pollution"> traffic pollution</a> </p> <a href="https://publications.waset.org/abstracts/104024/measuring-and-evaluating-the-effectiveness-of-mobile-high-efficiency-particulate-air-filtering-on-particulate-matter-within-the-road-traffic-network-of-a-sample-of-non-sparse-and-sparse-urban-environments-in-the-uk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2540</span> Traffic Safety and Risk Assessment Model by Analysis of Questionnaire Survey: A Case Study of S. G. Highway, Ahmedabad, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhijitsinh%20Gohil">Abhijitsinh Gohil</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaushal%20Wadhvaniya"> Kaushal Wadhvaniya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuldipsinh%20Jadeja"> Kuldipsinh Jadeja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Road Safety is a multi-sectoral and multi-dimensional issue. An effective model can assess the risk associated with highway safety. A questionnaire survey is very essential to identify the events or activities which are causing unsafe condition for traffic on an urban highway. A questionnaire of standard questions including vehicular, human and infrastructure characteristics can be made. Responses from the age wise group of road users can be taken on field. Each question or an event holds a specific risk weightage, which contributes in creating an inappropriate and unsafe flow of traffic. The probability of occurrence of an event can be calculated from the data collected from the road users. Finally, the risk score can be calculated by considering the risk factor and the probability of occurrence of individual event and addition of all risk score for the individual event will give the total risk score of a particular road. Standards for risk score can be made and total risk score can be compared with the standards. Thus road can be categorized based on risk associated and traffic safety on it. With this model, one can assess the need for traffic safety improvement on a given road, and qualitative data can be analysed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probability%20of%20occurrence" title="probability of occurrence">probability of occurrence</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factor" title=" risk factor"> risk factor</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20score" title=" risk score"> risk score</a> </p> <a href="https://publications.waset.org/abstracts/72400/traffic-safety-and-risk-assessment-model-by-analysis-of-questionnaire-survey-a-case-study-of-s-g-highway-ahmedabad-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2539</span> Mining Riding Patterns in Bike-Sharing System Connecting with Public Transportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chong%20Zhang">Chong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoming%20Tang"> Guoming Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Ge"> Bin Ge</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiuyang%20Tang"> Jiuyang Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the fast growing road traffic and increasingly severe traffic congestion, more and more citizens choose to use the public transportation for daily travelling. Meanwhile, the shared bike provides a convenient option for the first and last mile to the public transit. As of 2016, over one thousand cities around the world have deployed the bike-sharing system. The combination of these two transportations have stimulated the development of each other and made significant contribution to the reduction of carbon footprint. A lot of work has been done on mining the riding behaviors in various bike-sharing systems. Most of them, however, treated the bike-sharing system as an isolated system and thus their results provide little reference for the public transit construction and optimization. In this work, we treat the bike-sharing and public transit as a whole and investigate the customers’ bike-and-ride behaviors. Specifically, we develop a spatio-temporal traffic delivery model to study the riding patterns between the two transportation systems and explore the traffic characteristics (e.g., distributions of customer arrival/departure and traffic peak hours) from the time and space dimensions. During the model construction and evaluation, we make use of large open datasets from real-world bike-sharing systems (the CitiBike in New York, GoBike in San Francisco and BIXI in Montreal) along with corresponding public transit information. The developed two-dimension traffic model, as well as the mined bike-and-ride behaviors, can provide great help to the deployment of next-generation intelligent transportation systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=riding%20pattern%20mining" title="riding pattern mining">riding pattern mining</a>, <a href="https://publications.waset.org/abstracts/search?q=bike-sharing%20system" title=" bike-sharing system"> bike-sharing system</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20transportation" title=" public transportation"> public transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=bike-and-ride%20behavior" title=" bike-and-ride behavior"> bike-and-ride behavior</a> </p> <a href="https://publications.waset.org/abstracts/81820/mining-riding-patterns-in-bike-sharing-system-connecting-with-public-transportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">783</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2538</span> Research on Road Openness in the Old Urban Residential District Based on Space Syntax: A Case Study on Kunming within the First Loop Road </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haoyang%20Liang">Haoyang Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dandong%20Ge"> Dandong Ge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid development of Chinese cities, traffic congestion has become more and more serious. At the same time, there are many closed old residential area in Chinese cities, which seriously affect the connectivity of urban roads and reduce the density of urban road networks. After reopening the restricted old residential area, the internal roads in the original residential area were transformed into urban roads, which was of great help to alleviate traffic congestion. This paper uses the spatial syntactic theory to analyze the urban road network and compares the roads with the integration and connectivity degree to evaluate whether the opening of the roads in the residential areas can improve the urban traffic. Based on the road network system within the first loop road in Kunming, the Space Syntax evaluation model is established for status analysis. And comparative analysis method will be used to compare the change of the model before and after the road openness of the old urban residential district within the first-ring road in Kunming. Then it will pick out the areas which indicate a significant difference for the small dimensions model analysis. According to the analyzed results and traffic situation, the evaluation of road openness in the old urban residential district will be proposed to improve the urban residential districts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Space%20Syntax" title="Space Syntax">Space Syntax</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunming" title=" Kunming"> Kunming</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20renovation" title=" urban renovation"> urban renovation</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20jam" title=" traffic jam"> traffic jam</a> </p> <a href="https://publications.waset.org/abstracts/112801/research-on-road-openness-in-the-old-urban-residential-district-based-on-space-syntax-a-case-study-on-kunming-within-the-first-loop-road" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2537</span> Analog Railway Signal Object Controller Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ercan%20K%C4%B1z%C4%B1lay">Ercan Kızılay</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Demi%CC%87rel"> Mustafa Demi̇rel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sel%C3%A7uk%20Co%C5%9Fkun"> Selçuk Coşkun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Railway signaling systems consist of vital products that regulate railway traffic and provide safe route arrangements and maneuvers of trains. SIL 4 signal lamps are produced by many manufacturers today. There is a need for systems that enable these signal lamps to be controlled by commands from the interlocking. These systems should act as fail-safe and give error indications to the interlocking system when an unexpected situation occurs for the safe operation of railway systems from the RAMS perspective. In the past, driving and proving the lamp in relay-based systems was typically done via signaling relays. Today, the proving of lamps is done by comparing the current values read over the return circuit, the lower and upper threshold values. The purpose is an analog electronic object controller with the possibility of easy integration with vital systems and the signal lamp itself. During the study, the EN50126 standard approach was considered, and the concept, definition, risk analysis, requirements, architecture, design, and prototyping were performed throughout this study. FMEA (Failure Modes and Effects Analysis) and FTA (Fault Tree) Analysis) have been used for safety analysis in accordance with EN 50129. Concerning these analyzes, the 1oo2D reactive fail-safe hardware design of a controller has been researched. Electromagnetic compatibility (EMC) effects on the functional safety of equipment, insulation coordination, and over-voltage protection were discussed during hardware design according to EN 50124 and EN 50122 standards. As vital equipment for railway signaling, railway signal object controllers should be developed according to EN 50126 and EN 50129 standards which identify the steps and requirements of the development in accordance with the SIL 4(Safety Integrity Level) target. In conclusion of this study, an analog railway signal object controller, which takes command from the interlocking system, is processed in driver cards. Driver cards arrange the voltage level according to desired visibility by means of semiconductors. Additionally, prover cards evaluate the current upper and lower thresholds. Evaluated values are processed via logic gates which are composed as 1oo2D by means of analog electronic technologies. This logic evaluates the voltage level of the lamp and mitigates the risks of undue dimming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=object%20controller" title="object controller">object controller</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20electronic" title=" railway electronic"> railway electronic</a>, <a href="https://publications.waset.org/abstracts/search?q=analog%20electronic" title=" analog electronic"> analog electronic</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20signal" title=" railway signal"> railway signal</a> </p> <a href="https://publications.waset.org/abstracts/159408/analog-railway-signal-object-controller-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2536</span> Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olesya%20Bolkhovskaya">Olesya Bolkhovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Maltsev"> Alexander Maltsev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signal is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GLRT" title="GLRT">GLRT</a>, <a href="https://publications.waset.org/abstracts/search?q=Neumann-Pearson%E2%80%99s%20criterion" title=" Neumann-Pearson’s criterion"> Neumann-Pearson’s criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=Test-statistics" title=" Test-statistics"> Test-statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20processing" title=" spatial processing"> spatial processing</a>, <a href="https://publications.waset.org/abstracts/search?q=multielement%20antenna%20array" title=" multielement antenna array"> multielement antenna array</a> </p> <a href="https://publications.waset.org/abstracts/1985/performance-degradation-for-the-glr-test-statistics-for-spatial-signal-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2535</span> Activating Psychological Resources of DUI (Drivers under the Influence of Alcohol) Using the Traffic Psychology Intervention (IFT Course), Germany</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parichehr%20Sharifi">Parichehr Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Reschke"> Konrad Reschke</a>, <a href="https://publications.waset.org/abstracts/search?q=Hans-Liudger%20Dienel"> Hans-Liudger Dienel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Psychological intervention generally targets changes in attitudes and behavior. Working with DUIs is part of traffic psychologists’ work. The primary goal of this field is to reduce the probability of re-conspicuous of the delinquent driver. One of these measurements in Germany is IFT courses for DUI s. The IFT course was designed by the Institute for Therapy Research. Participants are drivers who have fallen several times or once with a blood alcohol concentration of 1.6 per mill and who have completed a medical-psychological assessment (MPU) with the result of the course recommendation. The course covers four sessions of 3.5 hours each (1 hour / 60 m) and in a period of 3 to 4 weeks in the group discussion. This work analyzes interventions for the rehabilitation of DUI (Drunk Drivers offenders) offenders in groups under the aspect of activating psychological resources. From the aspect of sustainability, they should also have long-term consequences for the maintenance of unproblematic driving behavior in terms of the activation of resources. It is also addressing a selected consistency-theory-based intervention effect, activating psychological resources. So far, this has only been considered in the psychotherapeutic field but never in the field of traffic psychology. The methodology of this survey is one qualitative and three quantitative. In four sub-studies, it will be examined which measurements can determine the resources and how traffic psychological interventions can strengthen resources. The results of the studies have the following implications for traffic psychology research and practice: (1) In the field of traffic psychology intervention for the restoration of driving fitness, it can be stated that aspects of resource activation in this work have been investigated for the first time by qualitative and quantitative methods. (2) The resource activation could be confirmed based on the determined results as an effective factor of traffic psychological intervention. (3) Two sub-studies show a range of resources and resource activation options that must be given greater emphasis in traffic psychology interventions: - Social resource activation - improvement of the life skills of participants - Reactivation of existing social support options - Re-experiencing self-esteem, self-assurance, and acceptance of traffic-related behaviors. (4) In revising the IFT-§70 course, as well as other courses on recreating aptitude for DUI, new traffic-specific resource-enabling interventions against alcohol abuse should be developed to further enhance the courses through motivational, cognitive, and behavioral effects of resource activation, Resource-activating interventions can not only be integrated into behavioral group interventions but can also be applied in psychodynamic, psychodynamic (individual psychological) and other contexts of individual traffic psychology. The results are indicative but clearly show that personal resources can be strengthened through traffic psychology interventions. In the research, practice, training, and further education of traffic psychology, the aspect of primary resource activation (Grawe, 1999), therefore, always deserves the greatest attention for the rehabilitation of DUIs and Traffic safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20safety" title="traffic safety">traffic safety</a>, <a href="https://publications.waset.org/abstracts/search?q=psychological%20resources" title=" psychological resources"> psychological resources</a>, <a href="https://publications.waset.org/abstracts/search?q=activating%20of%20resources" title=" activating of resources"> activating of resources</a>, <a href="https://publications.waset.org/abstracts/search?q=intervention%20programs%20for%20alcohol%20offenders" title=" intervention programs for alcohol offenders"> intervention programs for alcohol offenders</a>, <a href="https://publications.waset.org/abstracts/search?q=empowerment" title=" empowerment"> empowerment</a> </p> <a href="https://publications.waset.org/abstracts/156389/activating-psychological-resources-of-dui-drivers-under-the-influence-of-alcohol-using-the-traffic-psychology-intervention-ift-course-germany" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2534</span> Emergency Management and Patient Transportation of Road Traffic Accident Victims Admitted to the District General Hospital, Matale, Sri Lanka </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asanka%20U.%20K.%20Godamunne">Asanka U. K. Godamunne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Road traffic accidents (RTA) are a leading cause of death globally as well as in Sri Lanka and results in a large proportion of disability especially among young people. Ninety-percent of world’s road traffic deaths occur in low- and middle-income countries. The gross disparities in injury outcomes relate to immediate post-crash and hospital management. Emergency management, methods of patient transportation following road traffic accidents and safety measures are important factors to reduce mortality and morbidity. Studies in this area are limited in Sri Lanka. The main objective of this research was to assess the emergency management and proper method of transportation of road traffic accident victims. This offers the best way to explore the ways to reduce the mortality and morbidity and raise the public awareness. This study was conducted as a descriptive cross-sectional study. All the consecutive road traffic accident victims admitted to surgical wards at District General Hospital, Matale, Sri Lanka, over a period of three months were included in the study. Data from 387 victims were analyzed. The majority were in the 20-30 year age group. Seventy six percent of the patients were males. Motorcycles and trishaws were most affected. First-aid was given to only 2% of patients and it was given by non-medical persons. A significant proportion of patients (75%) were transported to the hospital by trishaws and only 1% transported by ambulance. About 86% of the patients were seated while transport and 14% were flat. Limbs and head were the most affected areas of the body. As per this study, immediate post-crash management and patient transportation were not satisfactory. There is a need to strengthen certain road safety laws and make sure people follow them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergency%20management" title="emergency management">emergency management</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20transportation" title=" patient transportation"> patient transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20traffic%20accident%20victims" title=" road traffic accident victims"> road traffic accident victims</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Lanka" title=" Sri Lanka"> Sri Lanka</a> </p> <a href="https://publications.waset.org/abstracts/87073/emergency-management-and-patient-transportation-of-road-traffic-accident-victims-admitted-to-the-district-general-hospital-matale-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2533</span> Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ma%20Lei-Lei">Ma Lei-Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhou%20You"> Zhou You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer" title=" transformer"> transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20pyramid%20networks" title=" feature pyramid networks"> feature pyramid networks</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20function" title=" loss function"> loss function</a> </p> <a href="https://publications.waset.org/abstracts/159678/algorithm-research-on-traffic-sign-detection-based-on-improved-efficientdet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2532</span> An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miljan%20B.%20Petrovi%C4%87">Miljan B. Petrović</a>, <a href="https://publications.waset.org/abstracts/search?q=Du%C5%A1an%20B.%20Petrovi%C4%87"> Dušan B. Petrović</a>, <a href="https://publications.waset.org/abstracts/search?q=Goran%20S.%20Nikoli%C4%87"> Goran S. Nikolić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise" title="noise">noise</a>, <a href="https://publications.waset.org/abstracts/search?q=signal-to-noise%20ratio" title=" signal-to-noise ratio"> signal-to-noise ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20signals" title=" stochastic signals"> stochastic signals</a>, <a href="https://publications.waset.org/abstracts/search?q=variance%20estimation" title=" variance estimation"> variance estimation</a> </p> <a href="https://publications.waset.org/abstracts/39515/an-approach-to-noise-variance-estimation-in-very-low-signal-to-noise-ratio-stochastic-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2531</span> Injury Characteristics and Outcome of Road Traffic Accident among Victims at Adult Emergency Department of Tikur Anbesa Specialized Hospital, Addis Ababa, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Seid">Mohammed Seid</a>, <a href="https://publications.waset.org/abstracts/search?q=Aklilu%20Azazh"> Aklilu Azazh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fikre%20Enquselassie"> Fikre Enquselassie</a>, <a href="https://publications.waset.org/abstracts/search?q=Engida%20Yisma"> Engida Yisma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Road traffic injuries are the eighth leading cause of death globally, and the leading cause of death for young people. More than a million people die each year on the world’s roads, and the risk of dying as a result of a road traffic injury is highest in the Africa. Methods: A prospective hospital-based study was undertaken to assess injury characteristics and outcome of road traffic accident among victims at Adult Emergency Department of Tikur Anbesa specialized hospital, Addis Ababa, Ethiopia. A structured pre-tested questionnaire was used to gather the required data. The collected data were analyzed using SPSS version 16.0. Results: A total of 230 road traffic accident victims were studied. The majority of the study subjects were men 165 (71.7%) and the male/female ratio was 2.6:1. The victims’ ages ranged from 14 to 80 years with the mean and standard deviations of 32.15 and ± 14.38 years respectively. Daily laborers (95 (41.3%)) and students (28 (12.2%)) were the majority of road traffic accident victims. Long-distance travelling Minibus (16.5%) was responsible for the majority of road traffic crash followed by followed by Taxi (14.8%) and pedestrians (62.6%) accounted for the majority of road traffic accident. Head (50.4%) and musculoskeletal (extremities) (47.0%) were the most common body region injured. Fractures (78.0%) and open wounds (56.5%) were the most common type of injuries sustained. Treatment of fracture was the most common procedure performed in 57.7 % of the victims. The overall length of hospital stay (LOS) ranged from 1 day to 61 days with mean (± standard deviation) of 7.12 ± 10.5 days and the mortality rate was 7.4 %. A significant higher proportion of victims aged 14-55 years were had less likelihood of death compared to those victims aged more than 55 years of age [Adjusted OR = 0.1 (95% CI: 0.01, 0.82)]. Conclusions: This study showed diverse injury characteristics and high morbidity and mortality among the victims attending Adult Emergency Department of Tikur Anbesa specialized hospital, Addis Ababa, Ethiopia. The findings reflect that road traffic accident is a major public health problem. Urgent road traffic accident preventive measures and prompt treatment of the victims are warranted in order to reduce morbidity and mortality among the victims. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=road%20traffic%20accident" title="road traffic accident">road traffic accident</a>, <a href="https://publications.waset.org/abstracts/search?q=injury%20characteristics" title=" injury characteristics"> injury characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=outcome" title=" outcome"> outcome</a>, <a href="https://publications.waset.org/abstracts/search?q=Tikur%20Anbesa%20specialized%20hospital" title=" Tikur Anbesa specialized hospital"> Tikur Anbesa specialized hospital</a>, <a href="https://publications.waset.org/abstracts/search?q=Addis%20Ababa" title=" Addis Ababa"> Addis Ababa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethiopia" title=" Ethiopia"> Ethiopia</a> </p> <a href="https://publications.waset.org/abstracts/22194/injury-characteristics-and-outcome-of-road-traffic-accident-among-victims-at-adult-emergency-department-of-tikur-anbesa-specialized-hospital-addis-ababa-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2530</span> Design of Regular Communication Area for Infrared Electronic-Toll-Collection Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wern-Yarng%20Shieh">Wern-Yarng Shieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Qian"> Chao Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingnan%20Pei"> Bingnan Pei </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A design of communication area for infrared electronic-toll-collection systems to provide an extended communication interval in the vehicle traveling direction and regular boundary between contiguous traffic lanes is proposed. By utilizing two typical low-cost commercial infrared LEDs with different half-intensity angles Φ1/2 = 22° and 10°, the radiation pattern of the emitter is designed to properly adjust the spatial distribution of the signal power. The aforementioned purpose can be achieved with an LED array in a three-piece structure with appropriate mounting angles. With this emitter, the influence of the mounting parameters, including the mounting height and mounting angles of the on-board unit and road-side unit, on the system performance in terms of the received signal strength and communication area are investigated. The results reveal that, for our emitter proposed in this paper, the ideal "long-and-narrow" characteristic of the communication area is very little affected by these mounting parameters. An optimum mounting configuration is also suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dedicated%20short-range%20communication%20%28DSRC%29" title="dedicated short-range communication (DSRC)">dedicated short-range communication (DSRC)</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20toll%20collection%20%28ETC%29" title=" electronic toll collection (ETC)"> electronic toll collection (ETC)</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20communication" title=" infrared communication"> infrared communication</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transportation%20system%20%28ITS%29" title=" intelligent transportation system (ITS)"> intelligent transportation system (ITS)</a>, <a href="https://publications.waset.org/abstracts/search?q=multilane%20free%20flow" title=" multilane free flow "> multilane free flow </a> </p> <a href="https://publications.waset.org/abstracts/8678/design-of-regular-communication-area-for-infrared-electronic-toll-collection-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2529</span> Smart Speed Bump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Rahmani%20Rezaiyeh">Mohammad Rahmani Rezaiyeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Rahmani%20Rezaiyeh"> Mojtaba Rahmani Rezaiyeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Rahmani%20Rezaiyeh"> Mehrdad Rahmani Rezaiyeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smart speed bump is a new invention and I am invented it. Smart speed bump is a system that can change the position of speed bumps either active or passive in necessary situations. The basic system of smart speed bumps is based on a robotic system which includes mechanic, electronic and artificial intelligence. The smart speed bump is capable of smart decision making and can change its position by anticipating the peak of terrific hours. It can be noted to the advantages of this system such as preventing the waste of petrol while crossing speed bumps, traffic management, accelerating, flowing and securing traffic, reducing accidents and judicial records. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=invention" title="invention">invention</a>, <a href="https://publications.waset.org/abstracts/search?q=smart" title=" smart"> smart</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20system" title=" robotic system"> robotic system</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20bump" title=" speed bump"> speed bump</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic" title=" traffic"> traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a> </p> <a href="https://publications.waset.org/abstracts/2031/smart-speed-bump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2528</span> The Principle Probabilities of Space-Distance Resolution for a Monostatic Radar and Realization in Cylindrical Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anatoly%20D.%20Pluzhnikov">Anatoly D. Pluzhnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20N.%20Pribludova"> Elena N. Pribludova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20G.%20Ryndyk"> Alexander G. Ryndyk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In conjunction with the problem of the target selection on a clutter background, the analysis of the scanning rate influence on the spatial-temporal signal structure, the generalized multivariate correlation function and the quality of the resolution with the increase pulse repetition frequency is made. The possibility of the object space-distance resolution, which is conditioned by the range-to-angle conversion with an increased scanning rate, is substantiated. The calculations for the real cylindrical array at high scanning rate are presented. The high scanning rate let to get the signal to noise improvement of the order of 10 dB for the space-time signal processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna%20pattern" title="antenna pattern">antenna pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=array" title=" array"> array</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20resolution" title=" spatial resolution"> spatial resolution</a> </p> <a href="https://publications.waset.org/abstracts/98259/the-principle-probabilities-of-space-distance-resolution-for-a-monostatic-radar-and-realization-in-cylindrical-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2527</span> Information Requirements for Vessel Traffic Service Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fan%20Li">Fan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Hsien%20Chen"> Chun-Hsien Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Pheng%20Khoo"> Li Pheng Khoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Operators of vessel traffic service (VTS) center provides three different types of services; namely information service, navigational assistance and traffic organization to vessels. To provide these services, operators monitor vessel traffic through computer interface and provide navigational advice based on the information integrated from multiple sources, including automatic identification system (AIS), radar system, and closed circuit television (CCTV) system. Therefore, this information is crucial in VTS operation. However, what information the VTS operator actually need to efficiently and properly offer services is unclear. The aim of this study is to investigate into information requirements for VTS operation. To achieve this aim, field observation was carried out to elicit the information requirements for VTS operation. The study revealed that the most frequent and important tasks were handling arrival vessel report, potential conflict control and abeam vessel report. Current location and vessel name were used in all tasks. Hazard cargo information was particularly required when operators handle arrival vessel report. The speed, the course, and the distance of two or several vessels were only used in potential conflict control. The information requirements identified in this study can be utilized in designing a human-computer interface that takes into consideration what and when information should be displayed, and might be further used to build the foundation of a decision support system for VTS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vessel%20traffic%20service" title="vessel traffic service">vessel traffic service</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20requirements" title=" information requirements"> information requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchy%20task%20analysis" title=" hierarchy task analysis"> hierarchy task analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20observation" title=" field observation"> field observation</a> </p> <a href="https://publications.waset.org/abstracts/46052/information-requirements-for-vessel-traffic-service-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2526</span> Measured versus Default Interstate Traffic Data in New Mexico, USA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hasan">M. A. Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Islam"> M. R. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Tarefder"> R. A. Tarefder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates how the site specific traffic data differs from the Mechanistic Empirical Pavement Design Software default values. Two Weigh-in-Motion (WIM) stations were installed in Interstate-40 (I-40) and Interstate-25 (I-25) to developed site specific data. A computer program named WIM Data Analysis Software (WIMDAS) was developed using Microsoft C-Sharp (.Net) for quality checking and processing of raw WIM data. A complete year data from November 2013 to October 2014 was analyzed using the developed WIM Data Analysis Program. After that, the vehicle class distribution, directional distribution, lane distribution, monthly adjustment factor, hourly distribution, axle load spectra, average number of axle per vehicle, axle spacing, lateral wander distribution, and wheelbase distribution were calculated. Then a comparative study was done between measured data and AASHTOWare default values. It was found that the measured general traffic inputs for I-40 and I-25 significantly differ from the default values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AASHTOWare" title="AASHTOWare">AASHTOWare</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic" title=" traffic"> traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=weigh-in-motion" title=" weigh-in-motion"> weigh-in-motion</a>, <a href="https://publications.waset.org/abstracts/search?q=axle%20load%20distribution" title=" axle load distribution"> axle load distribution</a> </p> <a href="https://publications.waset.org/abstracts/42451/measured-versus-default-interstate-traffic-data-in-new-mexico-usa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2525</span> Lab Bench for Synthetic Aperture Radar Imaging System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karthiyayini%20Nagarajan">Karthiyayini Nagarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Ramakrishna"> P. V. Ramakrishna </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar (SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System (Lab Bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20aperture%20radar" title="synthetic aperture radar">synthetic aperture radar</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20reflection%20model" title=" radio reflection model"> radio reflection model</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20bench" title=" lab bench"> lab bench</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging%20engineering" title=" imaging engineering"> imaging engineering</a> </p> <a href="https://publications.waset.org/abstracts/29485/lab-bench-for-synthetic-aperture-radar-imaging-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2524</span> An Ultrasonic Signal Processing System for Tomographic Imaging of Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Forero-Garcia">Edwin Forero-Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Vitola"> Jaime Vitola</a>, <a href="https://publications.waset.org/abstracts/search?q=Brayan%20Cardenas"> Brayan Cardenas</a>, <a href="https://publications.waset.org/abstracts/search?q=Johan%20Casagua"> Johan Casagua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research article presents the integration of electronic and computer systems, which developed an ultrasonic signal processing system that performs the capture, adaptation, and analog-digital conversion to later carry out its processing and visualization. The capture and adaptation of the signal were carried out from the design and implementation of an analog electronic system distributed in stages: 1. Coupling of impedances; 2. Analog filter; 3. Signal amplifier. After the signal conditioning was carried out, the ultrasonic information was digitized using a digital microcontroller to carry out its respective processing. The digital processing of the signals was carried out in MATLAB software for the elaboration of A-Scan, B and D-Scan types of ultrasonic images. Then, advanced processing was performed using the SAFT technique to improve the resolution of the Scan-B-type images. Thus, the information from the ultrasonic images was displayed in a user interface developed in .Net with Visual Studio. For the validation of the system, ultrasonic signals were acquired, and in this way, the non-invasive inspection of the structures was carried out and thus able to identify the existing pathologies in them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acquisition" title="acquisition">acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=SAFT" title=" SAFT"> SAFT</a>, <a href="https://publications.waset.org/abstracts/search?q=HMI" title=" HMI"> HMI</a> </p> <a href="https://publications.waset.org/abstracts/162674/an-ultrasonic-signal-processing-system-for-tomographic-imaging-of-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2523</span> Design and Implementation of a Lab Bench for Synthetic Aperture Radar Imaging System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karthiyayini%20Nagarajan">Karthiyayini Nagarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20RamaKrishna"> P. V. RamaKrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radar Imaging techniques provides extensive applications in the field of remote sensing, majorly Synthetic Aperture Radar(SAR) that provide high resolution target images. This paper work puts forward the effective and realizable signal generation and processing for SAR images. The major units in the system include camera, signal generation unit, signal processing unit and display screen. The real radio channel is replaced by its mathematical model based on optical image to calculate a reflected signal model in real time. Signal generation realizes the algorithm and forms the radar reflection model. Signal processing unit provides range and azimuth resolution through matched filtering and spectrum analysis procedure to form radar image on the display screen. The restored image has the same quality as that of the optical image. This SAR imaging system has been designed and implemented using MATLAB and Quartus II tools on Stratix III device as a System(lab bench) that works in real time to study/investigate on radar imaging rudiments and signal processing scheme for educational and research purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20aperture%20radar" title="synthetic aperture radar">synthetic aperture radar</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20reflection%20model" title=" radio reflection model"> radio reflection model</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20bench" title=" lab bench"> lab bench</a> </p> <a href="https://publications.waset.org/abstracts/29475/design-and-implementation-of-a-lab-bench-for-synthetic-aperture-radar-imaging-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2522</span> Realization of a Temperature Based Automatic Controlled Domestic Electric Boiling System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shengqi%20Yu">Shengqi Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwei%20Zhao"> Jinwei Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a kind of analog circuit based temperature control system, which is mainly composed by threshold control signal circuit, synchronization signal circuit and trigger pulse circuit. Firstly, the temperature feedback signal function is realized by temperature sensor TS503F3950E. Secondly, the main control circuit forms the cycle controlled pulse signal to control the thyristor switching model. Finally two reverse paralleled thyristors regulate the output power by their switching state. In the consequence, this is a modernized and energy-saving domestic electric heating system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20base%20circuit" title="time base circuit">time base circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20control" title=" automatic control"> automatic control</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-crossing%20trigger" title=" zero-crossing trigger"> zero-crossing trigger</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20control" title=" temperature control"> temperature control</a> </p> <a href="https://publications.waset.org/abstracts/65423/realization-of-a-temperature-based-automatic-controlled-domestic-electric-boiling-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2521</span> Characteristics of Speed Dispersion in Urban Expressway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fujian%20Wang">Fujian Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubin%20Ruan"> Shubin Ruan</a>, <a href="https://publications.waset.org/abstracts/search?q=Meiwei%20Dai"> Meiwei Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speed dispersion has tight relation to traffic safety. In this paper, several kinds of indicating parameters (the standard speed deviation, the coefficient of variation, the deviation of V85 and V15, the mean speed deviations, and the difference between adjacent car speeds) are applied to investigate the characteristics of speed dispersion, where V85 and V15 are 85th and 15th percentile speed, respectively. Their relationships are into full investigations and the results show that: there exists a positive relation (linear) between mean speed and the deviation of V85 and V15; while a negative relation (quadratic) between traffic flow and standard speed deviation. The mean speed deviation grows exponentially with mean speed while the absolute speed deviation between adjacent cars grows linearly with the headway. The results provide some basic information for traffic management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=headway" title="headway">headway</a>, <a href="https://publications.waset.org/abstracts/search?q=indicating%20parameters" title=" indicating parameters"> indicating parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20dispersion" title=" speed dispersion"> speed dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20expressway" title=" urban expressway"> urban expressway</a> </p> <a href="https://publications.waset.org/abstracts/47095/characteristics-of-speed-dispersion-in-urban-expressway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20signal&amp;page=7" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20signal&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20signal&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20signal&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20signal&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20signal&amp;page=7">7</a></li> <li class="page-item active"><span class="page-link">8</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20signal&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20signal&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20signal&amp;page=11">11</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20signal&amp;page=91">91</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20signal&amp;page=92">92</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traffic%20signal&amp;page=9" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10