CINXE.COM
Search results for: borate glasses
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: borate glasses</title> <meta name="description" content="Search results for: borate glasses"> <meta name="keywords" content="borate glasses"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="borate glasses" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="borate glasses"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 173</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: borate glasses</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">173</span> Lithium Oxide Effect on the Thermal and Physical Properties of the Ternary System Glasses (Li2O3-B2O3-Al2O3) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Aboutaleb">D. Aboutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Safi"> B. Safi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The borate glasses are known by their structural characterized by existence of unit’s structural composed by triangles and tetrahedrons boron in different configurations depending on the percentage of B2O3 in the glass chemical composition. In this paper, effect of lithium oxide addition on the thermal and physical properties of an alumina borate glass, was investigated. It was found that the boron abnormality has a significant effect in the change of glass properties according to the addition rate of lithium oxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=borate%20glasses" title="borate glasses">borate glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=triangles%20and%20tetrahedrons%20boron" title=" triangles and tetrahedrons boron"> triangles and tetrahedrons boron</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20oxide" title=" lithium oxide"> lithium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20anomaly" title=" boron anomaly"> boron anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a> </p> <a href="https://publications.waset.org/abstracts/13807/lithium-oxide-effect-on-the-thermal-and-physical-properties-of-the-ternary-system-glasses-li2o3-b2o3-al2o3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">172</span> Simulation of Acoustic Properties of Borate and Tellurite Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Gaafar">M. S. Gaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Marzouk"> S. Y. Marzouk</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20S.%20Mahmoud"> I. S. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Al-Zobaidi"> S. Al-Zobaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glasses" title="glasses">glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20wave%20velocities" title=" ultrasonic wave velocities"> ultrasonic wave velocities</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title=" elastic modulus"> elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=Makishima%20%26%20Mackenzie%20Model" title=" Makishima & Mackenzie Model"> Makishima & Mackenzie Model</a> </p> <a href="https://publications.waset.org/abstracts/43461/simulation-of-acoustic-properties-of-borate-and-tellurite-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">171</span> Spectroscopic Study of Eu³⁺ Ions Doped Potassium Lead Alumino Borate Glasses for Photonic Device Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Deopa">Nisha Deopa</a>, <a href="https://publications.waset.org/abstracts/search?q=Allam%20Srinivasa%20Rao"> Allam Srinivasa Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quaternary potassium lead alumino borate (KPbAlB) glasses doped with different concentration of Eu³⁺ ions have been synthesized by melt quench technique and characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Photoluminescence (PL), Time-resolved photoluminescence (TRPL) and CIE-chromaticity co-ordinates to study their luminescence behavior. A broad hump was observed in XRD spectrum confirms glassy nature of as-prepared glasses. By using Judd-Ofelt (J-O) theory, various radiative parameters for the prominent fluorescent levels of Eu³⁺ have been investigated. The intense emission peak was observed at 613 nm (⁵D₀→⁷F₂) under 393 nm excitation, matches well with the excitation of n-UV LED chips. The decay profiles observed for ⁵D₀ level were exponential for lower Eu³⁺ ion concentration while non-exponential for higher concentration, which may be due to efficient energy transfer between Eu³⁺-Eu³⁺ through cross relaxation and subsequent quenching observed. From the emission cross-sections, branching ratios, quantum efficiency and CIE coordinates, it was concluded that 7 mol % of Eu³⁺ ion concentration (glass B) is optimum in KPbAlB glasses for photonic device application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20transfer" title="energy transfer">energy transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=glasses" title=" glasses"> glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=J-O%20parameters" title=" J-O parameters"> J-O parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a> </p> <a href="https://publications.waset.org/abstracts/88460/spectroscopic-study-of-eu3-ions-doped-potassium-lead-alumino-borate-glasses-for-photonic-device-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> Spectroscopic Investigations of Nd³⁺ Doped Lithium Lead Alumino Borate Glasses for 1.06μM Laser Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Deopa">Nisha Deopa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Rao"> A. S. Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neodymium doped lithium lead alumino borate glasses were synthesized with the molar composition 10Li₂O – 10PbO – (10-x) Al₂O₃ – 70B₂O₃ – xNd₂O₃ (where, x = 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) via conventional melt quenching technique to understand their lasing potentiality. From the absorption spectra, Judd-Ofelt intensity parameters along with various spectroscopic parameters have been estimated. The emission spectra recorded for the as-prepared glasses under investigation exhibit two emission transitions, ⁴F₃/₂→⁴I₁₁/₂ (1063 nm) and ⁴F₃/₂→⁴I₉/₂ (1350 nm) for which radiative parameters have been evaluated. The emission intensity increases with increase in Nd³⁺ ion concentration up to 1 mol %, and beyond concentration quenching took place. The decay profile shows single exponential nature for lower Nd³⁺ ions concentration and non-exponential for higher concentration. To elucidate the nature of energy transfer process, non-exponential decay curves were well fitted to Inokuti-Hirayama model. The relatively high values of emission cross-section, branching ratio, lifetimes and quantum efficiency suggest that 1.0 mol% of Nd³⁺ in LiPbAlB glasses is aptly suitable to generate lasing action in NIR region at 1063 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20transfer" title="energy transfer">energy transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=glasses" title=" glasses"> glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=J-O%20parameters" title=" J-O parameters"> J-O parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a> </p> <a href="https://publications.waset.org/abstracts/78288/spectroscopic-investigations-of-nd3-doped-lithium-lead-alumino-borate-glasses-for-106mm-laser-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> Enhanced Optical Nonlinearity in Bismuth Borate Glass: Effect of Size of Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivani%20Singla">Shivani Singla</a>, <a href="https://publications.waset.org/abstracts/search?q=Om%20Prakash%20Pandey"> Om Prakash Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopi%20Sharma"> Gopi Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metallic nanoparticle doped glasses has lead to rapid development in the field of optics. Large third order non-linearity, ultrafast time response, and a wide range of resonant absorption frequencies make these metallic nanoparticles more important in comparison to their bulk material. All these properties are highly dependent upon the size, shape, and surrounding environment of the nanoparticles. In a quest to find a suitable material for optical applications, several efforts have been devoted to improve the properties of such glasses in the past. In the present study, bismuth borate glass doped with different size gold nanoparticles (AuNPs) has been prepared using the conventional melt-quench technique. Synthesized glasses are characterized by X-ray diffraction (XRD) and Fourier Transformation Infrared spectroscopy (FTIR) to observe the structural modification in the glassy matrix with the variation in the size of the AuNPs. Glasses remain purely amorphous in nature even after the addition of AuNPs, whereas FTIR proposes that the main structure contains BO₃ and BO₄ units. Field emission scanning electron microscopy (FESEM) confirms the existence and variation in the size of AuNPs. Differential thermal analysis (DTA) depicts that prepared glasses are thermally stable and are highly suitable for the fabrication of optical fibers. The nonlinear optical parameters (nonlinear absorption coefficient and nonlinear refractive index) are calculated out by using the Z-scan technique with a Ti: sapphire laser at 800 nm. It has been concluded that the size of the nanoparticles highly influences the structural thermal and optical properties system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bismuth%20borate%20glass" title="bismuth borate glass">bismuth borate glass</a>, <a href="https://publications.waset.org/abstracts/search?q=different%20size" title=" different size"> different size</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinearity" title=" nonlinearity"> nonlinearity</a> </p> <a href="https://publications.waset.org/abstracts/110467/enhanced-optical-nonlinearity-in-bismuth-borate-glass-effect-of-size-of-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">168</span> Spectroscopic and 1.08mm Laser Properties of Nd3+ Doped Oxy-Fluoro Borate Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapna%20Koneru">Swapna Koneru</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20Allam"> Srinivasa Rao Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Prakash%20Gaddem"> Vijaya Prakash Gaddem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The different concentrations of neodymium-doped (Nd-doped) oxy fluoroborate (OFB) glasses were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements to understand the lasing potentialities of these glasses. Optical absorption spectra were recorded and have been analyzed using Judd–Ofelt theory. The dipole strengths are parameterized in terms of three phenomenological Judd–Ofelt intensity parameters Ωλ (λ=2, 4 and 6) to elucidate the glassy matrix around Nd3+ ion as well as to determine the 4F3/2 metastable state radiative properties such as the transition probability (AR), radiative lifetime (τR), branching ratios (βR) and integrated absorption cross-section (σa) have been measured for most of the fluorescent levels of Nd3+. The emission spectra recorded for these glasses exhibit two peaks at 1085 and 1328 nm corresponding to 4F3/2 to 4I11/2 and 4I13/2 transitions have been obtained for all the glasses upon 808 nm diode laser excitation in the near infrared region. The emission intensity of the 4F3/2 to 4I11/2 transition increases with increase of Nd3+ concentration up to 1 mol% and then concentration quenching is observed for 2.0 mol% of Nd3+ concentration. The lifetimes for the 4F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses due to the concentration quenching. The decay curves of all these glasses show single exponential behavior. The spectroscopy of Nd3+ in these glasses is well understood and laser properties can be accurately determined from measured spectroscopic properties. The results obtained are compared with reports on similar glasses. The results indicate that the present glasses could be useful for 1.08 µm laser applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glasses" title="glasses">glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence%20spectroscopy" title=" photoluminescence spectroscopy "> photoluminescence spectroscopy </a> </p> <a href="https://publications.waset.org/abstracts/47257/spectroscopic-and-108mm-laser-properties-of-nd3-doped-oxy-fluoro-borate-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">167</span> Zinc Borate Synthesis Using Hydrozincite and Boric Acid with Ultrasonic Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Vardar">D. S. Vardar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20T.%20Senberber"> F. T. Senberber</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Derun"> E. M. Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Piskin"> S. Piskin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tugrul"> N. Tugrul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc borate is an important inorganic hydrate borate material, which can be use as a flame retardant agent and corrosion resistance material. This compound can loss its structural water content at higher than 290°C. Due to thermal stability; Zinc Borate can be used as flame reterdant at high temperature process of plastic and gum. In this study, the ultrasonic reaction of zinc borates were studied using hydrozincite (Zn5(CO3)2•(OH)6) and boric acid (H3BO3) raw materials. Before the synthesis raw materials were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Ultrasonic method is a new application on the zinc borate synthesis. The synthesis parameters were set to 90°C reaction temperature and 55 minutes of reaction time, with 1:1, 1:2, 1:3, 1:4 and 1:5 molar ratio of starting materials (Zn5(CO3)2•(OH)6 : H3BO3). After the zinc borate synthesis, the products analyzed by XRD and FT-IR. As a result, optimum molar ratio of 1:5 (Zn5(CO3)2•(OH)6:H3BO3) is determined for the synthesis of zinc borates with ultrasonic method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=borate" title="borate">borate</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20method" title=" ultrasonic method"> ultrasonic method</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20borate" title=" zinc borate"> zinc borate</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20borate%20synthesis" title=" zinc borate synthesis"> zinc borate synthesis</a> </p> <a href="https://publications.waset.org/abstracts/32481/zinc-borate-synthesis-using-hydrozincite-and-boric-acid-with-ultrasonic-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> Photoluminescence and Energy Transfer Studies of Dy3+ Ions Doped Lithium Lead Alumino Borate Glasses for W-LED and Laser Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Deopa">Nisha Deopa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Rao"> A. S. Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lithium Lead Alumino Borate (LiPbAlB) glasses doped with different Dy3+ ions concentration were synthesized to investigate their viability in solid state lighting (SSL) technology by melt quenching techniques. From the absorption spectra, bonding parameters (ð) were investigated to study the nature of bonding between Dy3+ ions and its surrounding ligands. Judd-Ofelt (J-O) intensity parameters (Ω = 2, 4, 6), estimated from the experimental oscillator strengths (fex) of the absorption spectral features were used to evaluate the radiative parameters of different transition levels. From the decay curves, experimental lifetime (τex) were measured and coupled with the radiative lifetime to evaluate the quantum efficiency of the as-prepared glasses. As Dy3+ ions concentration increases, decay profile changes from exponential to non-exponential through energy transfer mechanism (ETM) in turn decreasing experimental lifetime. In order to investigate the nature of ETM, non-exponential decay curves were fitted to Inkuti–Hirayama (I-H) model which further confirms dipole-dipole interaction. Among all the emission transition, 4F9/2 6H15/2 transition (483 nm) is best suitable for lasing potentialities. By exciting titled glasses in n-UV to blue regions, CIE chromaticity coordinates and Correlated Color Temperature (CCT) were calculated to understand their capability in cool white light generation. From the evaluated radiative parameters, CIE co-ordinates, quantum efficiency and confocal images it was observed that glass B (0.5 mol%) is a potential candidate for developing w-LEDs and lasers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20transfer" title="energy transfer">energy transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=glasses" title=" glasses"> glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=J-O%20parameters" title=" J-O parameters"> J-O parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a> </p> <a href="https://publications.waset.org/abstracts/68473/photoluminescence-and-energy-transfer-studies-of-dy3-ions-doped-lithium-lead-alumino-borate-glasses-for-w-led-and-laser-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> Borate Crosslinked Fracturing Fluids: Laboratory Determination of Rheology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lalnuntluanga%20Hmar">Lalnuntluanga Hmar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hardik%20Vyas"> Hardik Vyas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydraulic fracturing has become an essential procedure to break apart the rock and release the oil or gas which are trapped tightly in the rock by pumping fracturing fluids at high pressure down into the well. To open the fracture and to transport propping agent along the fracture, proper selection of fracturing fluids is the most crucial components in fracturing operations. Rheology properties of the fluids are usually considered the most important. Among various fracturing fluids, Borate crosslinked fluids have proved to be highly effective. Borate in the form of Boric Acid, borate ion is the most commonly use to crosslink the hydrated polymers and to produce very viscous gels that can stable at high temperature. Guar and HPG (Hydroxypropyl Guar) polymers are the most often used in these fluids. Borate gel rheology is known to be a function of polymer concentration, borate ion concentration, pH, and temperature. The crosslinking using Borate is a function of pH which means it can be formed or reversed simply by altering the pH of the fluid system. The fluid system was prepared by mixing base polymer with water at pH ranging between 8 to 11 and the optimum borate crosslinker efficiency was found to be pH of about 10. The rheology of laboratory prepared Borate crosslinked fracturing fluid was determined using Anton Paar Rheometer and Fann Viscometer. The viscosity was measured at high temperature ranging from 200ᵒF to 250ᵒF and pressures in order to partially stimulate the downhole condition. Rheological measurements reported that the crosslinking increases the viscosity, elasticity and thus fluid capability to transport propping agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=borate" title="borate">borate</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslinker" title=" crosslinker"> crosslinker</a>, <a href="https://publications.waset.org/abstracts/search?q=Guar" title=" Guar"> Guar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydroxypropyl%20Guar%20%28HPG%29" title=" Hydroxypropyl Guar (HPG)"> Hydroxypropyl Guar (HPG)</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a> </p> <a href="https://publications.waset.org/abstracts/57948/borate-crosslinked-fracturing-fluids-laboratory-determination-of-rheology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">164</span> The Determination of the Zinc Sulfate, Sodium Hydroxide and Boric Acid Molar Ratio on the Production of Zinc Borates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Tugrul">N. Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Moroydor%20Derun"> E. Moroydor Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Piskin"> S. Piskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc borate is an important boron compound that can be used as multi-functional flame retardant additive due to its high dehydration temperature property. In this study, the raw materials of ZnSO4.7H2O, NaOH and H3BO3 were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) and used in the synthesis of zinc borates. The synthesis parameters were set to 100°C reaction temperature and 120 minutes of reaction time, with different molar ratio of starting materials (ZnSO4.7H2O:NaOH:H3BO3). After the zinc borate synthesis, the identifications of the products were conducted by XRD and FT-IR. As a result, Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], were synthesized at the molar ratios of 1:1:3, 1:1:4, 1:2:5 and 1:2:6. Among these ratios 1:2:6 had the best results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zinc%20borate" title="Zinc borate">Zinc borate</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnSO4.7H2O" title=" ZnSO4.7H2O"> ZnSO4.7H2O</a>, <a href="https://publications.waset.org/abstracts/search?q=NaOH" title=" NaOH"> NaOH</a>, <a href="https://publications.waset.org/abstracts/search?q=H3BO3" title=" H3BO3"> H3BO3</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title=" FT-IR"> FT-IR</a> </p> <a href="https://publications.waset.org/abstracts/7800/the-determination-of-the-zinc-sulfate-sodium-hydroxide-and-boric-acid-molar-ratio-on-the-production-of-zinc-borates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> Simulation of Immiscibility Regions in Sodium Borosilicate Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamila%20Aboutaleb">Djamila Aboutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Safi"> Brahim Safi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, sodium borosilicates glasses were prepared by melting in air. These heat-resistant transparent glasses have subjected subsequently isothermal treatments at different times, which have transformed them at opaque glass (milky white color). Such changes indicate that these glasses showed clearly phase separation (immiscibility). The immiscibility region in a sodium borosilicate ternary system was investigated in this work, i.e. to determine the regions from which some compositions can show phase separation. For this we went through the conditions of thermodynamic equilibrium, which were translated later by mathematical equations to find an approximate solution. The latter has been translated in a simulation which was established thereafter to find the immiscibility regions in this type of special glasses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sodium%20borosilicate" title="sodium borosilicate">sodium borosilicate</a>, <a href="https://publications.waset.org/abstracts/search?q=heat-resistant" title=" heat-resistant"> heat-resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20treatments" title=" isothermal treatments"> isothermal treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=immiscibility" title=" immiscibility"> immiscibility</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/6617/simulation-of-immiscibility-regions-in-sodium-borosilicate-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> Synthesis of Magnesium Borates from the Slurries of Magnesium Wastes by Microwave Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Tugrul">N. Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20T.%20Senberber"> F. T. Senberber</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Moroydor%20Derun"> E. Moroydor Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Piskin"> S. Piskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, it is aimed not only microwave synthesis of magnesium borates but also evaluation of magnesium wastes. Synthesis process can be described with the reaction of Mg wastes and boric acid using microwave energy. X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) were applied to synthesized minerals. According to XRD results, magnesium borate hydrate mixtures were obtained as mcallisterite (pdf# = 01-070-1902, Mg2(B6O7(OH)6)2.9(H2O)) at higher crystallinity properties was achieved at the mole ratio raw material 1:1. Also, other kinds of magnesium borate hydrates were obtained at lower crystallinity such as admontite (pdf # = 01-076-0540, MgO(B2O3)3.7(H2O)), inderite (pdf # = 01-072-2308, 2MgO.3B2O3.15(H2O)) and magnesium borate hydrates (pdf # = 01-076-0539, MgO(B2O3)3.6(H2O)). FT-IR spectrums indicated that minor changes were seen at the band values of characteristic stretching in each experiment. At the end of experiments it is seen that using microwave energy may contribute positive effects to design of synthesis process such as reducing reaction time and products at higher crystallinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20wastes" title="magnesium wastes">magnesium wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=boric%20acid" title=" boric acid"> boric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20borate" title=" magnesium borate"> magnesium borate</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20energy" title=" microwave energy"> microwave energy</a> </p> <a href="https://publications.waset.org/abstracts/7804/synthesis-of-magnesium-borates-from-the-slurries-of-magnesium-wastes-by-microwave-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Optical and Luminescence Studies on Dy³+ Singly Doped and Dy³+/Ce³+ Co-doped Alumina Borosilicate Glasses for Photonics Device Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Monisha">M. Monisha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudha%20D.%20Kamath"> Sudha D. Kamath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the optical and photoluminescence properties from Dy³+ singly doped and Dy³+ co-doped with Ce³+alumino borosilicate glasses prepared using high temperature melt-quenching technique. The glass composition formula is 25SiO₂-(40-x-y)B2O₃-10Al₂O₃-15NaF-10ZnO-xDy₂O₃ yCe₂O₃ where, x = 0.5 mol% and y = 0, 0.1, and 0.5 mol%. The XRD study reveals the amorphous nature of both singly doped and co-doped glasses. Absorption study on Dy3+ singly doped glass shows nearly twelve absorption peaks arising from the ground level of Dy³+ ions (⁶H₁₅/₂) to various upper levels, and for Dy³+/Ce³+ co-doped glasses, few of the transitions in the visible region are suppressed. The absorption band edge is shifted towards the higher wavelength region on increasing Ce3+concentration. The decrease in indirect energy bandgap and increase in Urbach energy of the prepared glasses is observed due to codoping with Ce3+ ions. The photoluminescence studies on singly doped glass under 350 nm excitation showed three peaks at the blue (482 nm), yellow (575 nm), and red (663 nm) region. For codoped glasses, the emission peak at 403 nm is raised due to the 4d to 5f transition of Ce3+ ions. Lifetime values (ms) of co-doped glass is found to be higher than singly doped glass. Under 350 nm excitation, CIE coordinates of the co-doped glasses moved towards the bright white light region. The correlated color temperature (CCT) values were obtained in the range 4500 – 4700 K. Thus, the prepared glasses can be used for photonics device applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20spectra" title="absorption spectra">absorption spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=borosilicate%20glasses" title=" borosilicate glasses"> borosilicate glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=Ce%C2%B3%2B" title=" Ce³+"> Ce³+</a>, <a href="https://publications.waset.org/abstracts/search?q=Dy%C2%B3%2B" title=" Dy³+"> Dy³+</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a> </p> <a href="https://publications.waset.org/abstracts/143577/optical-and-luminescence-studies-on-dy3-singly-doped-and-dy3ce3-co-doped-alumina-borosilicate-glasses-for-photonics-device-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> The Effect of Solution Density on the Synthesis of Magnesium Borate from Boron-Gypsum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Tugrul">N. Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Sariburun"> E. Sariburun</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20T.%20Senberber"> F. T. Senberber</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Moroydor%20Derun"> E. Moroydor Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Piskin"> S. Piskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boron-gypsum is a waste which occurs in the boric acid production process. In this study, the boron content of this waste is evaluated for the use in synthesis of magnesium borates and such evaluation of this kind of waste is useful more than storage or disposal. Magnesium borates, which are a sub-class of boron minerals, are useful additive materials for the industries due to their remarkable thermal and mechanical properties. Magnesium borates were obtained hydrothermally at different temperatures. Novelty of this study is the search of the solution density effects to magnesium borate synthesis process for the increasing the possibility of boron-gypsum usage as a raw material. After the synthesis process, products are subjected to XRD and FT-IR to identify and characterize their crystal structure, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron-gypsum" title="boron-gypsum">boron-gypsum</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20synthesis" title=" hydrothermal synthesis"> hydrothermal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20borate" title=" magnesium borate"> magnesium borate</a>, <a href="https://publications.waset.org/abstracts/search?q=solution%20density" title=" solution density"> solution density</a> </p> <a href="https://publications.waset.org/abstracts/12465/the-effect-of-solution-density-on-the-synthesis-of-magnesium-borate-from-boron-gypsum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Nondestructive Acoustic Microcharacterisation of Gamma Irradiation Effects on Sodium Oxide Borate Glass X2Na2O-X2B2O3 by Acoustic Signature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Al-Suraihy">Ibrahim Al-Suraihy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellaziz%20Doghmane"> Abdellaziz Doghmane</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahia%20Hadjoub"> Zahia Hadjoub </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We discuss in this work the elastic properties by using acoustic microscopes to measure Rayleigh and longitudinal wave velocities in a no radiated and radiated sodium borate glasses X2Na2O-X2B2O3 with 0 ≤ x ≤ 27 (mol %) at microscopic resolution. The acoustic material signatures were first measured, from which the characteristic surface velocities were determined.Longitudinal and shear ultrasonic velocities were measured in a different composition of sodium borate glass samples before and after irradiation with γ-rays. Results showed that the effect due to increasing sodium oxide content on the ultrasonic velocity appeared more clearly than due to γ-radiation. It was found that as Na2O composition increases, longitudinal velocities vary from 3832 to 5636 m/s in irradiated sample and it vary from 4010 to 5836 m/s in high radiated sample by 10 dose whereas shear velocities vary from 2223 to 3269 m/s in irradiated sample and it vary from 2326 m/s in low radiation to 3385 m/s in high radiated sample by 10 dose. The effect of increasing sodium oxide content on ultrasonic velocity was very clear. The increase of velocity was attributed to the gradual increase in the rigidity of glass and hence strengthening of network due to gradual change of boron atoms from the three-fold to the four-fold coordination of oxygen atoms. The ultrasonic velocities data of glass samples have been used to find the elastic modulus. It was found that ultrasonic velocity, elastic modulus and microhardness increase with increasing barium oxide content and increasing γ-radiation dose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20X2Na2O-X2B2O3" title="mechanical properties X2Na2O-X2B2O3">mechanical properties X2Na2O-X2B2O3</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20signature" title=" acoustic signature"> acoustic signature</a>, <a href="https://publications.waset.org/abstracts/search?q=SAW%20velocities" title=" SAW velocities"> SAW velocities</a>, <a href="https://publications.waset.org/abstracts/search?q=additives" title=" additives"> additives</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma-radiation%20dose" title=" gamma-radiation dose"> gamma-radiation dose</a> </p> <a href="https://publications.waset.org/abstracts/22062/nondestructive-acoustic-microcharacterisation-of-gamma-irradiation-effects-on-sodium-oxide-borate-glass-x2na2o-x2b2o3-by-acoustic-signature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Study and Analyze of Metallic Glasses for Biomedical Applications: From Soft to Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Monfared">A. Monfared</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Faghihi"> S. Faghihi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metallic glasses (MGs) are newcomers in the field of metals that show great potential for soft and bone tissue engineering due to the amorphous structure that endows unique properties. Up to now, various MGs based on Ti, Zr, Mg, Zn, Fe, Ca, and Sr in the form of a ribbon, bulk, thin-film, and powder have been investigated for biomedical purposes. This article reviews the compositions and biomedical properties of MGs as well as analyzes results in order to guide new approaches and future development of MGs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metallic%20glasses" title="metallic glasses">metallic glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title=" biocompatibility"> biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=biocorrosion" title=" biocorrosion"> biocorrosion</a> </p> <a href="https://publications.waset.org/abstracts/142754/study-and-analyze-of-metallic-glasses-for-biomedical-applications-from-soft-to-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Iron Doped Biomaterial Calcium Borate: Synthesis and Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20%C3%87elik%20G%C3%BCl">G. Çelik Gül</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Kurtulu%C5%9F"> F. Kurtuluş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colemanite is the most common borate mineral, and the main source of the boron required by plants, human, and earth. Transition metals exhibit optical and physical properties such as; non-linear optical character, structural diversity, thermal stability, long cycle life and luminescent radiation. The doping of colemanite with a transition metal, bring it very interesting and attractive properties which make them applicable in industry. Iron doped calcium borate was synthesized by conventional solid state method at 1200 °C for 12 h with a systematic pathway. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS) were used to characterize structural and morphological properties. Also, thermal properties were recorded by thermogravimetric-differential thermal analysis (TG/DTA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colemanite" title="colemanite">colemanite</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20synthesis" title=" conventional synthesis"> conventional synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20x-ray%20diffraction" title=" powder x-ray diffraction"> powder x-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=borates" title=" borates"> borates</a> </p> <a href="https://publications.waset.org/abstracts/60835/iron-doped-biomaterial-calcium-borate-synthesis-and-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Structural Investigation of Na2O–B2O3–SiO2 Glasses Doped with NdF3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Gaafar">M. S. Gaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Marzouk"> S. Y. Marzouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sodium borosilicate glasses doped with different content of NdF3 mol % have been prepared by rapid quenching method. Ultrasonic velocities (both longitudinal and shear) measurements have been carried out at room temperature and at ultrasonic frequency of 4 MHz. Elastic moduli, Debye temperature, softening temperature and Poisson's ratio have been obtained as a function of NdF3 modifier content. Results showed that the elastic moduli, Debye temperature, softening temperature and Poisson's ratio have very slight change with the change of NdF3 mol % content. Based on FTIR spectroscopy and theoretical (Bond compression) model, quantitative analysis has been carried out in order to obtain more information about the structure of these glasses. The study indicated that the structure of these glasses is mainly composed of SiO4 units with four bridging oxygens (Q4), and with three bridging and one nonbridging oxygens (Q3). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=borosilicate%20glasses" title="borosilicate glasses">borosilicate glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20velocity" title=" ultrasonic velocity"> ultrasonic velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20moduli" title=" elastic moduli"> elastic moduli</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR%20spectroscopy" title=" FTIR spectroscopy"> FTIR spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20compression%20model" title=" bond compression model"> bond compression model</a> </p> <a href="https://publications.waset.org/abstracts/43470/structural-investigation-of-na2o-b2o3-sio2-glasses-doped-with-ndf3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Physical Properties and Elastic Studies of Fluoroaluminate Glasses Based on Alkali</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Benhamideche">C. Benhamideche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluoroaluminate glasses have been reported as the earliest heavy metal fluoride glasses. By comparison with flurozirconate glasses, they offer a set of similar optical features, but also some differences in their elastic and chemical properties. In practice they have been less developed because their stability against devitrification is smaller than that of the most stable fluoroziconates. The purpose of this study was to investigate glass formation in systems AlF3-YF3-PbF2-MgF2-MF2 (M= Li, Na, K). Synthesis was implemented at room atmosphere using the ammonium fluoride processing. After fining, the liquid was into a preheated brass mold, then annealed below the glass transition temperature for several hours. The samples were polished for optical measurements. Glass formation has been investigated in a systematic way, using pseudo ternary systems in order to allow parameters to vary at the same time. We have chosen the most stable glass compositions for the determination of the physical properties. These properties including characteristic temperatures, density and proprieties elastic. Glass stability increases in multicomponent glasses. Bulk samples have been prepared for physical characterization. These glasses have a potential interest for passive optical fibers because they are less sensitive to water attack than ZBLAN glass, mechanically stronger. It is expected they could have a larger damage threshold for laser power transmission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluoride%20glass" title="fluoride glass">fluoride glass</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium%20fluoride" title=" aluminium fluoride"> aluminium fluoride</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=proprieties%20elastic" title=" proprieties elastic"> proprieties elastic</a> </p> <a href="https://publications.waset.org/abstracts/38380/physical-properties-and-elastic-studies-of-fluoroaluminate-glasses-based-on-alkali" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Composition Dependent Spectroscopic Studies of Sm3+-Doped Alkali Fluoro Tungsten Tellurite Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Swapna">K. Swapna</a>, <a href="https://publications.waset.org/abstracts/search?q=Sk.%20Mahamuda"> Sk. Mahamuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch"> Ch</a>, <a href="https://publications.waset.org/abstracts/search?q=Annapurna"> Annapurna</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Srinivasa%20Rao"> A. Srinivasa Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vijaya%20Prakash"> G. Vijaya Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Samarium ions doped Alkali Fluoro Tungsten Tellurite (AFTT) Glasses have been prepared by using the melt quenching technique and characterized through various spectroscopic techniques such as optical absorption, excitation, emission and decay spectral studies. From the measured absorption spectra of Sm3+ ions in AFTT glasses, the optical band gap and Urbach energies have been evaluated. The spectroscopic parameters such as oscillator strengths (f), Judd-Ofelt (J-O) intensity parameters (Ωλ), spontaneous emission probability (AR), branching ratios (βR) and radiative lifetimes (τR) of various excited levels have been determined from the absorption spectrum by using J-O analysis. A strong luminescence in the reddish-orange spectral region has been observed for all the Sm3+ ions doped AFTT glasses. It consisting four emission transitions occurring from the 4G5/2metastable state to the lower lying states 6H5/2, 6H7/2, 6H9/2 and 6H11/2 upon exciting the sample with a 478 nm line of an argon ion laser. The stimulated emission cross-sections (σe) and branching ratios (βmeas) were estimated from the emission spectra for all emission transitions. Correlation of the radiative lifetime with the experimental lifetime measured from the day curves allows us to measure the quantum efficiency of the prepared glasses. In order to know the colour emission of the prepared glasses under near UV excitation, the emission intensities were analyzed using CIE 1931 colour chromaticity diagram. The aforementioned spectral studies carried out on Sm3+ ions doped AFTT glasses allowed us to conclude that, these glasses are best suited for orange-red visible lasers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluoro%20tungsten%20tellurite%20glasses" title="fluoro tungsten tellurite glasses">fluoro tungsten tellurite glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=judd-ofelt%20intensity%20parameters" title=" judd-ofelt intensity parameters"> judd-ofelt intensity parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime" title=" lifetime"> lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=stimulated%20emission%20cross-section" title=" stimulated emission cross-section"> stimulated emission cross-section</a> </p> <a href="https://publications.waset.org/abstracts/43867/composition-dependent-spectroscopic-studies-of-sm3-doped-alkali-fluoro-tungsten-tellurite-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> In-Vitro and Antibacterial Studies for Silicate-Phosphate Glasses Formed with Biosynthesized Silica </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damandeep%20Kaur">Damandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=O.P.%20Pandey"> O.P. Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=M.S.%20Reddy"> M.S. Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present research, bio-synthesisation of silica particles has been carried out successfully. For this purpose, agriculture waste rice husk (RH) has been utilized. Among several types of agriculture waste, RH is considered to be cost-effective and easily accessible. In the present investigation, a chemical approach has been followed to extract silica nanoparticles. X-Ray Diffraction (XRD) patterns indicated the amorphous nature of silica at lower temperature range. Silica and other mineral contents have been found using energy dispersive spectroscopy (EDS). Morphological and structural studies have been carried out with the use of Field Emission Scanning Electron Microscopy (FE-SEM) and Fourier Transform Infrared Transmission (FTIR) spectroscopy. Further, extracted silica from RH has been used for preparation of the glasses. The appearance of broad humps in XRD patterns confirmed the amorphous nature of prepared glasses. These glasses exhibited enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria. The as-synthesized glass samples can be further used for physical and structural studies for drug loading applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title="rice husk">rice husk</a>, <a href="https://publications.waset.org/abstracts/search?q=biosynthesized%20silica" title=" biosynthesized silica"> biosynthesized silica</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20glasses" title=" bioactive glasses"> bioactive glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20studies" title=" antibacterial studies"> antibacterial studies</a> </p> <a href="https://publications.waset.org/abstracts/125359/in-vitro-and-antibacterial-studies-for-silicate-phosphate-glasses-formed-with-biosynthesized-silica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Photoluminescence and Spectroscopic Studies of Tm3+ Ions Doped Lead Tungsten Tellurite Glasses for Visible Red and Near-Ir Laser Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Venkateswarlu">M. Venkateswarlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20Allam"> Srinivasa Rao Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Mahamuda"> S. K. Mahamuda</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Swapna"> K. Swapna</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vijaya%20Prakash"> G. Vijaya Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead Tungsten Tellurite (LTT) glasses doped with different concentrations of Tm3+ ions were prepared by using melt quenching technique and characterized through optical absorption, photoluminescence and decay spectral studies to know the feasibility of using these glasses as luminescent devices in visible Red and NIR regions. By using optical absorption spectral data, the energy band gaps for all the glasses were evaluated and were found to be in the range of 2.34-2.59 eV; which is very useful for the construction of optical devices. Judd-Ofelt (J-O)theory has been applied to the optical absorption spectral profiles to calculate the J-O intensity parameters Ωλ (λ=2, 4 and 6) and consecutively used to evaluate various radiative properties such as radiative transition probability (AR), radiative lifetimes (τ_R) and branching ratios (β_R) for the prominent luminescent levels. The luminescence spectra for all the LTT glass samples have shown two intense peaks in bright red and Near Infrared regions at 650 nm (1G4→3F4) and 800 nm (3H4→3H6) respectively for which effective bandwidths (〖Δλ〗_P), experimental branching ratios (β_exp) and stimulated emission cross-sections (σ_se) are evaluated. The decay profiles for all the glasses were also recorded to measure the quantum efficiency of the prepared LTT glasses by coupling the radiative and experimental lifetimes. From the measured emission cross-sections, quantum efficiency and CIE chromaticity coordinates, it was found that 0.5 mol% of Tm3+ ions doped LTT glass is most suitable for generating bright visible red and NIR lasers to operate at 650 and 800 nm respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glasses" title="glasses">glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=JO%20parameters" title=" JO parameters"> JO parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20materials" title=" optical materials"> optical materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thullium" title=" thullium"> thullium</a> </p> <a href="https://publications.waset.org/abstracts/47260/photoluminescence-and-spectroscopic-studies-of-tm3-ions-doped-lead-tungsten-tellurite-glasses-for-visible-red-and-near-ir-laser-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Development of Boro-Tellurite Glasses Enhanced with HfO2 for Radiation Shielding: Examination of Optical and Physical Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sleman%20Yahya%20Rasul">Sleman Yahya Rasul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to their transparency, various types of glass are utilized in numerous applications where clear visibility is essential. One such application involves environments where radiography, radiotherapy, and X-ray devices are used, all of which involve exposure to radiation. As is well-known, radiation can be lethal to humans. Consequently, there is a need for glass that can absorb and block these harmful rays in such settings. Effective protection from radiation typically requires materials with high atomic numbers and densities. Currently, lead oxide-infused glasses are commonly used for this purpose, but due to the toxicity of lead oxide, there is a demand for safer alternatives. HfO2 has been selected as an additive for boro-tellurite (M1-M2-M3) glasses intended for radiation shielding because it has a high atomic number, high density, and is non-toxic. In this study, new glasses will be developed as alternatives to leaded glasses by incorporating x mol% HfO2 into the boro-tellurite glass structure. The glass compositions will be melted and quenched using the traditional method in an alumina crucible at temperatures between 900–1100°C. The resulting glasses will be evaluated for their elastic properties (including elastic modulus, shear modulus, bulk modulus, and Poisson ratio), density, hardness, and fracture toughness. X-ray diffraction (XRD) will be used to examine the amorphous nature of the glasses, while Differential Thermal Analysis (DTA) will provide thermal analysis. Optical properties will be assessed through UV-Vis and Photoluminescence Spectroscopy, and structural properties will be studied using Raman spectroscopy and FTIR spectroscopy. Additionally, the radiation shielding capabilities will be investigated by measuring parameters such as mass attenuation coefficient, half-value thickness, mean free path, effective atomic number (Z_eff), and effective electron density (N_e). The aim of this study is to develop new, lead-free glasses with excellent optical properties and high mechanical strength to replace the leaded glasses currently used for radiation shielding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boro-tellurite%20glasses" title="boro-tellurite glasses">boro-tellurite glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=hfo2" title=" hfo2"> hfo2</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20shielding" title=" radiation shielding"> radiation shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20properties" title=" elastic properties"> elastic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/186303/development-of-boro-tellurite-glasses-enhanced-with-hfo2-for-radiation-shielding-examination-of-optical-and-physical-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> The Determination of the Potassium Nitrate, Sodium Hydroxide and Boric Acid Molar Ratio in the Synthesis of Potassium Borates via Hydrothermal Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yildirim">M. Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20T.%20Senberber"> F. T. Senberber</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Asensio"> M. O. Asensio</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Derun"> E. M. Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Piskin"> S. Piskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potassium borates, which are widely used in welding and metal refining industry, as a lubricating oil additive, cement additive, fiberglass additive and insulation compound, are one of the important groups of borate minerals. In this study the production of a potassium borate mineral via hydrothermal method is aimed. The potassium source of potassium nitrate (KNO3) was used along with a sodium source of sodium hydroxide (NaOH) and boron source of boric acid (H3BO3). The constant parameters of reaction temperature and reaction time were determined as 80°C and 1 h, respectively. The molar ratios of 1:1:3 (as KNO3:NaOH:H3BO3), 1:1:4, 1:1:5, 1:1:6 and 1:1:7 were used. Following the synthesis the identifications of the produced products were conducted by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). The results of the experiments and analysis showed in the ratio of 1:1:6, the Santite mineral with powder diffraction file number (pdf no.) of 01-072-1688, which is known as potassium pentaborate (KB5O8•4H2O) was synthesized as best. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20synthesis" title="hydrothermal synthesis">hydrothermal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20borate" title=" potassium borate"> potassium borate</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20nitrate" title=" potassium nitrate"> potassium nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=santite" title=" santite"> santite</a> </p> <a href="https://publications.waset.org/abstracts/25561/the-determination-of-the-potassium-nitrate-sodium-hydroxide-and-boric-acid-molar-ratio-in-the-synthesis-of-potassium-borates-via-hydrothermal-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Implementing Two Rotatable Circular Polarized Glass Made Window to Reduce the Amount of Electricity Usage by Air Condition System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imtiaz%20Sarwar">Imtiaz Sarwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air conditioning in homes may account for one-third of the electricity during period in summer when most of the energy is required in large cities. It is not consuming only electricity but also has a serious impact on environment including greenhouse effect. Circular polarizer filter can be used to selectively absorb or pass clockwise or counter-clock wise circularly polarized light. My research is about putting two circular polarized glasses parallel to each other and make a circular window with it. When we will place two circular polarized glasses exactly same way (0 degree to each other) then nothing will be noticed rather it will work as a regular window through which all light and heat can pass on. While we will keep rotating one of the circular polarized glasses, the angle between the glasses will keep increasing and the window will keep blocking more and more lights. It will completely block all the lights and a portion of related heat when one of the windows will reach 90 degree to another. On the other hand, we can just open the window when fresh air is necessary. It will reduce the necessity of using Air condition too much or consumer will use electric fan rather than air conditioning system. Thus, we can save a significant amount of electricity and we can go green. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20polarizer" title="circular polarizer">circular polarizer</a>, <a href="https://publications.waset.org/abstracts/search?q=window" title=" window"> window</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20condition" title=" air condition"> air condition</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a> </p> <a href="https://publications.waset.org/abstracts/22141/implementing-two-rotatable-circular-polarized-glass-made-window-to-reduce-the-amount-of-electricity-usage-by-air-condition-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">607</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Dy3+ Ions Doped Single and Mixed Alkali Fluoro Tungstunate Tellurite Glasses for Laser and White LED Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allam%20Srinivasa%20Rao">Allam Srinivasa Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Annapurna%20Devi"> Ch. Annapurna Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Vijaya%20Prakash"> G. Vijaya Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new-fangled series of white light emitting 1 mol% of Dy3+ ions doped Single-Alklai and Mixed-Alkai fluoro tungstunate tellurite glasses have been prepared using melt quenching technique and their spectroscopic behaviour was investigated by studying XRD, optical absorption, photoluminescence and lifetime measurements. The bonding parameter studies reveal the ionic nature of the Dy-O bond in the present glasses. From the absorption spectra, the Judd–Ofelt (J-O) intensity parameters have been determined which are used to explore the nature of bonding and symmetry orientation of the Dy–ligand field environment. The evaluated J-O parameters (Ω_4>Ω_2>Ω_6) for all the glasses are following the same trend. The photoluminescence spectra of all the glasses exhibit two intensified peaks in blue and Yellow regions corresponding to the transitions 4F9/2→6H15/2 (483 nm) and 4F9/2→6H13/2 (575 nm) respectively. From the photoluminescence spectra, it is observed that the luminescence intensity is maximum for Dy3+ ion doped potassium combination of fluoro tungstunate tellurite glass (TeWK: 1Dy). The J-O intensity parameters have been used to determine the various radiative properties for the different emission transitions from the 4F9/2 fluorescent level. The highest emission cross-section and branching ratio values observed for the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions suggest the possible laser action in the visible region from these glasses. By using the experimental lifetimes (τ_exp) measured from the decay spectral features and radiative lifetimes (τ_R), the quantum efficiencies (η) for all the glasses have been evaluated. Among all the glasses, the potassium combined fluoro tungstunate tellurite (TeWK:1Dy) glass has the highest quantum efficiency (94.6%). The CIE colour chromaticity coordinates (x, y), (u, v), colour correlated temperature (CCT) and Y/B ratio were also estimated from the photoluminescence spectra for different compositions of glasses. The (x, y) and (u, v) chromaticity colour coordinates fall within the white light region and the white light can be tuned by varying the composition of the glass. From all these studies, we are suggesting that the 1 mol% of Dy3+ ions doped TeWK glass is more suitable for lasing and White-LED applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dysprosium" title="dysprosium">dysprosium</a>, <a href="https://publications.waset.org/abstracts/search?q=Judd-Ofelt%20parameters" title=" Judd-Ofelt parameters"> Judd-Ofelt parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=photo%20luminescence" title=" photo luminescence"> photo luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=tellurite%20glasses" title=" tellurite glasses"> tellurite glasses</a> </p> <a href="https://publications.waset.org/abstracts/46832/dy3-ions-doped-single-and-mixed-alkali-fluoro-tungstunate-tellurite-glasses-for-laser-and-white-led-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Spectroscopic Studies and Reddish Luminescence Enhancement with the Increase in Concentration of Europium Ions in Oxy-Fluoroborate Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahamuda%20Sk">Mahamuda Sk</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20Allam"> Srinivasa Rao Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Prakash%20G."> Vijaya Prakash G.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The different concentrations of Eu3+ ions doped in Oxy-fluoroborate glasses of composition 60 B2O3-10 BaF2-10 CaF2-15 CaF2- (5-x) Al2O3 -x Eu2O3 where x = 0.1, 0.5, 1.0 and 2.0 mol%, have been prepared by conventional melt quenching technique and are characterized through absorption and photoluminescence (PL), decay, color chromaticity and Confocal measurements. The absorption spectra of all the glasses consists of six peaks corresponding to the transitions 7F0→5D2, 7F0→5D1, 7F1→5D1, 7F1→5D0, 7F0→7F6 and 7F1→7F6 respectively. The experimental oscillator strengths with and without thermal corrections have been evaluated using absorption spectra. Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4) have been evaluated from the photoluminescence spectra of all the glasses. PL spectra of all the glasses have been recorded at excitation wavelengths 395 nm (conventional excitation source) and 410 nm (diode laser) to observe the intensity variation in the PL spectra. All the spectra consists of five emission peaks corresponding to the transitions 5D0→7FJ (J = 0, 1, 2, 3 and 4). Surprisingly no concentration quenching is observed on PL spectra. Among all the glasses the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum intensity for the transition 5D0→7F2 (612 nm) in bright red region. The JO parameters derived from the photoluminescence spectra have been used to evaluate the essential radiative properties such as transition probability (A), radiative lifetime (τR), branching ratio (βR) and peak stimulated emission cross-section (σse) for the 5D0→7FJ (J = 0, 1, 2, 3 and 4) transitions of the Eu3+ ions. The decay rates of the 5D0 fluorescent level of Eu3+ ions in the title glasses are found to be single exponential for all the studied Eu3+ ion concentrations. A marginal increase in lifetime of the 5D0 level has been noticed with increase in Eu3+ ion concentration from 0.1 mol% to 2.0 mol%. Among all the glasses, the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum values of branching ratio, stimulated emission cross-section and quantum efficiency for the transition 5D0→7F2 (612 nm) in bright red region. The color chromaticity coordinates are also evaluated to confirm the reddish luminescence from these glasses. These color coordinates exactly fall in the bright red region. Confocal images also recorded to confirm reddish luminescence from these glasses. From all the obtained results in the present study, it is suggested that the glass with 2.0 mol% of Eu3+ ion concentration is suitable to emit bright red color laser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Europium" title="Europium">Europium</a>, <a href="https://publications.waset.org/abstracts/search?q=Judd-Ofelt%20parameters" title=" Judd-Ofelt parameters"> Judd-Ofelt parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a> </p> <a href="https://publications.waset.org/abstracts/46830/spectroscopic-studies-and-reddish-luminescence-enhancement-with-the-increase-in-concentration-of-europium-ions-in-oxy-fluoroborate-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Spectroscopic Studies of Dy³⁺ Ions in Alkaline-Earth Boro Tellurite Glasses for Optoelectronic Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Swapna">K. Swapna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Series of Alkali-Earth Boro Tellurite (AEBT) glasses doped with different concentrations of Dy³⁺ ions have been prepared by using melt quenching technique and characterized through spectroscopic techniques such as optical absorption, excitation, emission and photoluminescence decay to understand their utility in optoelectronic devices such as lasers and white light emitting diodes (w-LEDs). Raman spectrum recorded for an undoped glass is used to measure the phonon energy of the host glass and various functional groups present in the host glass (AEBT). The intensities of the electronic transitions and the ligand environment around the Dy³⁺ ions were studied by applying Judd-Ofelt (J-O) theory to the recorded absorption spectra of the glasses. The evaluated J-O parameters are subsequently used to measure various radiative parameters such as transition probability (AR), radiative branching ratio (βR) and radiative lifetimes (τR) for the prominent fluorescent levels of Dy³⁺ ions in the as-prepared glasses. The luminescence spectra recorded at 387 nm excitation show three emission transitions (⁴F9/2→⁶H15/2 (blue), ⁴F9/2→⁶H13/2 (yellow) and ⁴F9/2 → ⁶H11/2 (red)) of which the yellow transition observed at 575 nm is found to be highly intense. The experimental branching ratio (βexp) and stimulated emission crosssection (σse) were measured from luminescence spectra. The experimental lifetimes (τexp) measured from the decay spectral profiles are combined with radiative lifetimes to measure quantum efficiencies of the as-prepared glasses. The yellow to blue intensity ratios and chromaticity color coordinates are found to vary with Dy³⁺ ion concentrations. The aforementioned results reveal that these glasses are aptly suitable for w-LEDs and laser devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glasses" title="glasses">glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=J-O%20parameters" title=" J-O parameters"> J-O parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=I-H%20model" title=" I-H model"> I-H model</a> </p> <a href="https://publications.waset.org/abstracts/88085/spectroscopic-studies-of-dy3-ions-in-alkaline-earth-boro-tellurite-glasses-for-optoelectronic-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Life Cycle Assessment: Drinking Glass Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devina%20Jain">Devina Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The choice between single-use drinking glasses and reusable glasses is of major concern to our lifestyles, and hence, the environment. This study is aimed at comparing three systems - a disposable paper cup, a disposable cup and a reusable stainless steel cup or glass - with respect to their effect on the environment to find out which one is more advantageous for reducing the impact on the environment. Life Cycle Assessment was conducted using modeling software, Umberto NXT Universal (Version 7.1). For the purpose of this study, the cradle to grave approach was considered. Results showed that cleaning is of a very strong influence on the environmental burden by these drinking systems, with a contribution of up to 90 to 100%. Thus, the burden is determined by the way in which the utensils are washed, and how much water is consumed. It maybe seems like a small, insignificant daily practice. In the short term, it would seem that paper and plastic cups are a better idea, since they are easy to acquire and do not need to be stored, but in the long run, we can say that steel cups will have less of an environmental impact. However, if the frequency of use and the number of glasses employed per use are of significance to decide the appropriateness of the usage, it is better to use disposable cups and glasses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disposable%20glass" title="disposable glass">disposable glass</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=paper" title=" paper"> paper</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic" title=" plastic"> plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=reusable%20glass" title=" reusable glass"> reusable glass</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/44612/life-cycle-assessment-drinking-glass-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Failure Analysis of Windshield Glass of Automobiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhupinder%20Kaur">Bhupinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Pandey"> O. P. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An automobile industry is using variety of materials for better comfort and utility. The present work describes the details of failure analysis done for windshield glass of a four-wheeler class. The failure occurred in two different models of the heavy duty class of four wheelers, which analysed separately. The company reported that the failure has occurred only in their rear windshield when vehicles parked under shade for several days. These glasses were characterised by dilatometer, differential thermal analyzer, and X-ray diffraction. The glasses were further investigated under scanning electron microscope with energy dispersive X-ray spectroscopy and X-ray dot mapping. The microstructural analysis of the glasses done at the surface as well as at the fractured area indicates that carbon as an impurity got segregated as banded structure throughout the glass. Since carbon absorbs higher heat, it causes thermal mismatch to the entire glass system, and glass shattered down. In this work, the details of sequential analysis done to predict the cause of failure are present. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure" title="failure">failure</a>, <a href="https://publications.waset.org/abstracts/search?q=windshield" title=" windshield"> windshield</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20mismatch" title=" thermal mismatch"> thermal mismatch</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a> </p> <a href="https://publications.waset.org/abstracts/122092/failure-analysis-of-windshield-glass-of-automobiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=borate%20glasses&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=borate%20glasses&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=borate%20glasses&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=borate%20glasses&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=borate%20glasses&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=borate%20glasses&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>