CINXE.COM

{"id":"https://openalex.org/W2963460174","doi":"https://doi.org/10.1109/cvpr.2019.00494","title":"SpotTune: Transfer Learning Through Adaptive Fine-Tuning","display_name":"SpotTune: Transfer Learning Through Adaptive Fine-Tuning","publication_year":2019,"publication_date":"2019-06-01","ids":{"openalex":"https://openalex.org/W2963460174","doi":"https://doi.org/10.1109/cvpr.2019.00494","mag":"2963460174"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2019.00494","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1811.08737","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5012033269","display_name":"Yunhui Guo","orcid":null},"institutions":[{"id":"https://openalex.org/I36258959","display_name":"University of California, San Diego","ror":"https://ror.org/0168r3w48","country_code":"US","type":"education","lineage":["https://openalex.org/I36258959"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yunhui Guo","raw_affiliation_strings":["IBM Research & MIT-IBM Watson AI Lab","University of California, San Diego"],"affiliations":[{"raw_affiliation_string":"IBM Research & MIT-IBM Watson AI Lab","institution_ids":[]},{"raw_affiliation_string":"University of California, San Diego","institution_ids":["https://openalex.org/I36258959"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002072267","display_name":"Humphrey Shi","orcid":"https://orcid.org/0000-0002-2922-5663"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Honghui Shi","raw_affiliation_strings":["IBM Research & MIT-IBM Watson AI Lab"],"affiliations":[{"raw_affiliation_string":"IBM Research & MIT-IBM Watson AI Lab","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012487013","display_name":"Abhishek Kumar","orcid":"https://orcid.org/0000-0002-6022-3068"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Abhishek Kumar","raw_affiliation_strings":["IBM Research & MIT-IBM Watson AI Lab"],"affiliations":[{"raw_affiliation_string":"IBM Research & MIT-IBM Watson AI Lab","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012765543","display_name":"Kristen Grauman","orcid":"https://orcid.org/0000-0002-9591-5873"},"institutions":[{"id":"https://openalex.org/I86519309","display_name":"The University of Texas at Austin","ror":"https://ror.org/00hj54h04","country_code":"US","type":"education","lineage":["https://openalex.org/I86519309"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kristen Grauman","raw_affiliation_strings":["The University of Texas at Austin"],"affiliations":[{"raw_affiliation_string":"The University of Texas at Austin","institution_ids":["https://openalex.org/I86519309"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025573294","display_name":"Tajana Rosing","orcid":"https://orcid.org/0000-0002-6954-997X"},"institutions":[{"id":"https://openalex.org/I36258959","display_name":"University of California, San Diego","ror":"https://ror.org/0168r3w48","country_code":"US","type":"education","lineage":["https://openalex.org/I36258959"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tajana Rosing","raw_affiliation_strings":["University of California, San Diego"],"affiliations":[{"raw_affiliation_string":"University of California, San Diego","institution_ids":["https://openalex.org/I36258959"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5052325109","display_name":"Rog\u00e9rio Feris","orcid":"https://orcid.org/0000-0001-6399-0679"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rogerio Feris","raw_affiliation_strings":["IBM Research & MIT-IBM Watson AI Lab"],"affiliations":[{"raw_affiliation_string":"IBM Research & MIT-IBM Watson AI Lab","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":370,"citation_normalized_percentile":{"value":0.999926,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Visual Question Answering in Images and Videos","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/fine-tuning","display_name":"Fine-tuning","score":0.72621894},{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.6795254},{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.644699},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.535082},{"id":"https://openalex.org/keywords/semi-supervised-learning","display_name":"Semi-Supervised Learning","score":0.511092},{"id":"https://openalex.org/keywords/domain-adaptation","display_name":"Domain Adaptation","score":0.506553},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.506044},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep neural networks","score":0.44460717}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8046627},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.75618845},{"id":"https://openalex.org/C157524613","wikidata":"https://www.wikidata.org/wiki/Q2828883","display_name":"Fine-tuning","level":2,"score":0.72621894},{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.6795254},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.61825365},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.535715},{"id":"https://openalex.org/C28006648","wikidata":"https://www.wikidata.org/wiki/Q6934509","display_name":"Multi-task learning","level":3,"score":0.50945145},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.49070728},{"id":"https://openalex.org/C2776175482","wikidata":"https://www.wikidata.org/wiki/Q1195816","display_name":"Transfer (computing)","level":2,"score":0.4738434},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.44460717},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.42489943},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35410804},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.06965554},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/cvpr.2019.00494","pdf_url":null,"source":{"id":"https://openalex.org/S4363607701","display_name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1811.08737","pdf_url":"https://arxiv.org/pdf/1811.08737","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1811.08737","pdf_url":"https://arxiv.org/pdf/1811.08737","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions","score":0.44}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":66,"referenced_works":["https://openalex.org/W1566538838","https://openalex.org/W1731081199","https://openalex.org/W1797268635","https://openalex.org/W1942758450","https://openalex.org/W1946323491","https://openalex.org/W1972420097","https://openalex.org/W2062118960","https://openalex.org/W2102605133","https://openalex.org/W2118099552","https://openalex.org/W2123257246","https://openalex.org/W2138011018","https://openalex.org/W2149933564","https://openalex.org/W2155541015","https://openalex.org/W2159291411","https://openalex.org/W2163605009","https://openalex.org/W2165698076","https://openalex.org/W2179423374","https://openalex.org/W2186054958","https://openalex.org/W2186639548","https://openalex.org/W2194775991","https://openalex.org/W2203224402","https://openalex.org/W2242818861","https://openalex.org/W2295582178","https://openalex.org/W2346062110","https://openalex.org/W2426267443","https://openalex.org/W2473930607","https://openalex.org/W2533598788","https://openalex.org/W2541674938","https://openalex.org/W2547875792","https://openalex.org/W2548228487","https://openalex.org/W2549401308","https://openalex.org/W2562731582","https://openalex.org/W2581624817","https://openalex.org/W2581955877","https://openalex.org/W2590953969","https://openalex.org/W2591924527","https://openalex.org/W2616180702","https://openalex.org/W2756073160","https://openalex.org/W2784755822","https://openalex.org/W2804935296","https://openalex.org/W2808344987","https://openalex.org/W2884751099","https://openalex.org/W2890336707","https://openalex.org/W2949664970","https://openalex.org/W2950635901","https://openalex.org/W2952165242","https://openalex.org/W2962707369","https://openalex.org/W2962935523","https://openalex.org/W2962944050","https://openalex.org/W2962945654","https://openalex.org/W2963211188","https://openalex.org/W2963410064","https://openalex.org/W2963446712","https://openalex.org/W2963704251","https://openalex.org/W2963877604","https://openalex.org/W2964186069","https://openalex.org/W2964332173","https://openalex.org/W3021931813","https://openalex.org/W4285719527","https://openalex.org/W4293718192","https://openalex.org/W4293845576","https://openalex.org/W4294375521","https://openalex.org/W4295116917","https://openalex.org/W4299514530","https://openalex.org/W4299518610","https://openalex.org/W4319988532"],"related_works":["https://openalex.org/W4387770285","https://openalex.org/W4382138864","https://openalex.org/W3135975972","https://openalex.org/W3043695725","https://openalex.org/W3022215768","https://openalex.org/W3016888008","https://openalex.org/W2979252633","https://openalex.org/W2963548962","https://openalex.org/W2821676139","https://openalex.org/W2578444090"],"abstract_inverted_index":{"Transfer":[0],"learning,":[1],"which":[2,60],"allows":[3],"a":[4,36,81],"source":[5,41],"task":[6,42],"to":[7,34,86,92,108],"affect":[8],"the":[9,13,40,46,62,69,78,94,97,101,110,113,119,143,150,154],"inductive":[10],"bias":[11],"of":[12,25,112,126],"target":[14,47,70,79],"task,":[15,80],"is":[16,33,84],"widely":[17],"used":[18,85],"in":[19],"computer":[20],"vision.":[21],"The":[22],"typical":[23],"way":[24],"conducting":[26],"transfer":[27],"learning":[28],"with":[29,134],"deep":[30],"neural":[31],"networks":[32],"fine-tune":[35],"model":[37],"pretrained":[38],"on":[39,90,123],"using":[43],"data":[44],"from":[45,77],"task.":[48],"In":[49,72],"this":[50],"paper,":[51],"we":[52],"propose":[53],"an":[54,75],"adaptive":[55],"fine-tuning":[56,64,121,137],"approach,":[57],"called":[58],"SpotTune,":[59,73],"finds":[61],"optimal":[63],"strategy":[65],"per":[66],"instance":[67],"for":[68],"data.":[71],"given":[74],"image":[76,95],"policy":[82],"network":[83],"make":[87],"routing":[88],"decisions":[89],"whether":[91],"pass":[93],"through":[96],"fine-tuned":[98],"layers":[99],"or":[100],"pre-trained":[102],"layers.":[103],"We":[104,130],"conduct":[105],"extensive":[106],"experiments":[107],"demonstrate":[109],"effectiveness":[111],"proposed":[114],"approach.":[115],"Our":[116],"method":[117,148],"outperforms":[118],"traditional":[120],"approach":[122],"12":[124],"out":[125],"14":[127],"standard":[128],"datasets.":[129],"also":[131],"compare":[132],"SpotTune":[133],"other":[135],"state-of-the-art":[136],"strategies,":[138],"showing":[139],"superior":[140],"performance.":[141],"On":[142],"Visual":[144],"Decathlon":[145],"datasets,":[146],"our":[147],"achieves":[149],"highest":[151],"score":[152],"across":[153],"board":[155],"without":[156],"bells":[157],"and":[158],"whistles.":[159]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963460174","counts_by_year":[{"year":2024,"cited_by_count":51},{"year":2023,"cited_by_count":90},{"year":2022,"cited_by_count":66},{"year":2021,"cited_by_count":91},{"year":2020,"cited_by_count":49},{"year":2019,"cited_by_count":10}],"updated_date":"2024-11-18T23:21:23.133771","created_date":"2019-07-30"}