CINXE.COM
Search results for: P. Schneider
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: P. Schneider</title> <meta name="description" content="Search results for: P. Schneider"> <meta name="keywords" content="P. Schneider"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="P. Schneider" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="P. Schneider"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 43</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: P. Schneider</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Comparison of Psychological Well-Being, Hope, and Health Concern in Leukemia Patients before and After Receiving Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahereh%20Yavari">Tahereh Yavari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Norozi%20Far"> Sara Norozi Far</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to compare psychological well-being, hope, and health concerns in leukemia patients before and after receiving stem cells. The statistical population of the present study was made up of leukemia patients in Tehran, and the research sample was among the patients referred to the Bone Marrow Transplant Center of Shariati Hospital in Tehran, and they were placed in two experimental and control groups (15 people in each group), which were selected by purposive sampling method. In order to collect the data for the research, three psychological well-being questionnaires were used by Riff (2002), Schneider's Hope Scale (SHS), and Schneider's Health Concern Questionnaire (HCQ). In order to analyze the data in this research, according to the "pre-test-post-test design with a control group," covariance analysis was used. Based on the research findings, it was concluded that receiving stem cells increases hope and psychological well-being in leukemia patients and significantly reduces health concerns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=psychological%20well-being" title="psychological well-being">psychological well-being</a>, <a href="https://publications.waset.org/abstracts/search?q=hope" title=" hope"> hope</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20concerns" title=" health concerns"> health concerns</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20cancer" title=" blood cancer"> blood cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title=" stem cells"> stem cells</a> </p> <a href="https://publications.waset.org/abstracts/153809/comparison-of-psychological-well-being-hope-and-health-concern-in-leukemia-patients-before-and-after-receiving-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Shopping Cart System: Load Balancing and Fault Tolerance in the OSGi Service Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irina%20Astrova">Irina Astrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Arne%20Koschel"> Arne Koschel</a>, <a href="https://publications.waset.org/abstracts/search?q=Thole%20Schneider"> Thole Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Westhuis"> Johannes Westhuis</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%BCrgen%20Westerkamp"> Jürgen Westerkamp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this paper was to find a simple solution for load balancing and fault tolerance in OSGi. The challenge was to implement a highly available web application such as a shopping cart system with load balancing and fault tolerance, without having to change the core of OSGi. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerance" title="fault tolerance">fault tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20balancing" title=" load balancing"> load balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=OSGi" title=" OSGi"> OSGi</a>, <a href="https://publications.waset.org/abstracts/search?q=shopping%20cart%20system" title=" shopping cart system"> shopping cart system</a> </p> <a href="https://publications.waset.org/abstracts/6339/shopping-cart-system-load-balancing-and-fault-tolerance-in-the-osgi-service-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Propagation of Simmondsia chinensis (Link) Schneider by Stem Cuttings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Eed">Ahmed M. Eed</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20H.%20Burgoyne"> Adam H. Burgoyne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jojoba (Simmondsia chinensis (Link) Schneider), is a desert shrub which tolerates saline, alkyle soils and drought. The seeds contain a characteristic liquid wax of economic importance in industry as a machine lubricant and cosmetics. A major problem in seed propagation is that jojoba is a dioecious plant whose sex is not easily determined prior to flowering (3-4 years from germination). To overcome this phenomenon, asexual propagation using vegetative methods such as cutting can be used. This research was conducted to find out the effect of different Plant Growth Regulators (PGRs) and rooting media on Jojoba rhizogenesis. An experiment was carried out in a Factorial Completely Randomized Design (FCRD) with three replications, each with sixty cuttings per replication in fiberglass house of Natural Jojoba Corporation at Yemen. The different rooting media used were peat moss + perlite + vermiculite (1:1:1), peat moss + perlite (1:1) and peat moss + sand (1:1). Plant materials used were semi-hard wood cuttings of jojoba plants with length of 15 cm. The cuttings were collected in the month of June during 2012 and 2013 from the sub-terminal growth of the mother plants of Amman farm and introduced to Yemen. They were wounded, treated with Indole butyric acid (IBA), α-naphthalene acetic acid (NAA) or Indole-3-acetic acid (IAA) all @ 4000 ppm (part per million) and cultured on different rooting media under intermittent mist propagation conditions. IBA gave significantly higher percentage of rooting (66.23%) compared to NAA and IAA in all media used. However, the lowest percentage of rooting (5.33%) was recorded with IAA in the medium consisting of peat moss and sand (1:1). No significant difference was observed at all types of PGRs used with rooting media in respect of root length. Maximum number of roots was noticed in medium consisting of peat moss, perlite and vermiculite (1:1:1); peat moss and perlite (1:1) and peat moss and sand (1:1) using IBA, NAA and IBA, respectively. The interaction among rooting media was statistically significant with respect to rooting percentage character. Similarly, the interactions among PGRs were significant in terms of rooting percentage and also root length characters. The results demonstrated suitability of propagation of jojoba plants by semi-hard wood cuttings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting" title="cutting">cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=IBA" title=" IBA"> IBA</a>, <a href="https://publications.waset.org/abstracts/search?q=Jojoba" title=" Jojoba"> Jojoba</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation" title=" propagation"> propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizogenesis" title=" rhizogenesis"> rhizogenesis</a> </p> <a href="https://publications.waset.org/abstracts/9097/propagation-of-simmondsia-chinensis-link-schneider-by-stem-cuttings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Percolation Transition in an Agglomeration of Spherical Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johannes%20J.%20Schneider">Johannes J. Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20S.%20Weyland"> Mathias S. Weyland</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Eggenberger%20Hotz"> Peter Eggenberger Hotz</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20D.%20Jamieson"> William D. Jamieson</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Castell"> Oliver Castell</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessia%20Faggian"> Alessia Faggian</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudolf%20M.%20F%C3%BCchslin"> Rudolf M. Füchslin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agglomerations of polydisperse systems of spherical particles are created in computer simulations using a simplified stochastic-hydrodynamic model: Particles sink to the bottom of the cylinder, taking into account gravity reduced by the buoyant force, the Stokes friction force, the added mass effect, and random velocity changes. Two types of particles are considered, with one of them being able to create connections to neighboring particles of the same type, thus forming a network within the agglomeration at the bottom of a cylinder. Decreasing the fraction of these particles, a percolation transition occurs. The critical regime is determined by investigating the maximum cluster size and the percolation susceptibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20system" title="binary system">binary system</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20cluster%20size" title=" maximum cluster size"> maximum cluster size</a>, <a href="https://publications.waset.org/abstracts/search?q=percolation" title=" percolation"> percolation</a>, <a href="https://publications.waset.org/abstracts/search?q=polydisperse" title=" polydisperse"> polydisperse</a> </p> <a href="https://publications.waset.org/abstracts/182302/percolation-transition-in-an-agglomeration-of-spherical-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Empirical Analysis of Velocity Behavior for Collaborative Robots in Transient Contact Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Schneider">C. Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Seizmeir"> M. M. Seizmeir</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Suchanek"> T. Suchanek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hutter-Mironovova"> M. Hutter-Mironovova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bdiwi"> M. Bdiwi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Putz"> M. Putz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a suitable measurement setup is presented to conduct force and pressure measurements for transient contact cases at the example of lathe machine tending. Empirical measurements were executed on a selected collaborative robot’s behavior regarding allowable operating speeds under consideration of sensor- and workpiece-specific factors. Comparisons between the theoretic calculations proposed in ISO/TS 15066 and the practical measurement results reveal a basis for future research. With the created database, preliminary risk assessment and economic assessment procedures of collaborative machine tending cells can be facilitated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomechanical%20thresholds" title="biomechanical thresholds">biomechanical thresholds</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20robots" title=" collaborative robots"> collaborative robots</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20and%20pressure%20measurements" title=" force and pressure measurements"> force and pressure measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20tending" title=" machine tending"> machine tending</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20contact" title=" transient contact"> transient contact</a> </p> <a href="https://publications.waset.org/abstracts/136714/empirical-analysis-of-velocity-behavior-for-collaborative-robots-in-transient-contact-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Langa%20Hendrick%20Musawenkosi">Langa Hendrick Musawenkosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Twala%20Bhekisipho"> Twala Bhekisipho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FSASEC" title="FSASEC">FSASEC</a>, <a href="https://publications.waset.org/abstracts/search?q=academic%20environment%20model" title=" academic environment model"> academic environment model</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20trees" title=" decision trees"> decision trees</a>, <a href="https://publications.waset.org/abstracts/search?q=k-nearest%20neighbor" title=" k-nearest neighbor"> k-nearest neighbor</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=popularity%20index" title=" popularity index"> popularity index</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/77040/development-of-the-academic-model-to-predict-student-success-at-vut-fsasec-using-decision-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Synchrotron X-Ray Based Investigation of As and Fe Bonding Environment in Collard Green Tissue Samples at Different Growth Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Dehipawala">Sunil Dehipawala</a>, <a href="https://publications.waset.org/abstracts/search?q=Aregama%20Sirisumana"> Aregama Sirisumana</a>, <a href="https://publications.waset.org/abstracts/search?q=stephan%20Smith"> stephan Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Schneider"> P. Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Tremberger%20Jr"> G. Tremberger Jr</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Lieberman"> D. Lieberman</a>, <a href="https://publications.waset.org/abstracts/search?q=Todd%20Holden"> Todd Holden</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Cheung"> T. Cheung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The arsenic and iron environments in different growth stages have been studied with EXAFS and XANES using Brookhaven Synchrotron Light Source. Collard Greens plants were grown and tissue samples were harvested. The project studied the EXAFS and XANES of tissue samples using As and Fe K-edges. The Fe absorption and the Fourier transform bond length information were used as a control comparison. The Fourier transform of the XAFS data revealed the coexistence of As (III) and As (V) in the As bonding environment inside the studied plant tissue samples, although the soil only had As (III). The data suggests that Collard Greens has a novel pathway to handle arsenic absorption in soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EXAFS" title="EXAFS">EXAFS</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier%20transform" title=" fourier transform"> fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=metalloproteins" title=" metalloproteins"> metalloproteins</a>, <a href="https://publications.waset.org/abstracts/search?q=XANES" title=" XANES"> XANES</a> </p> <a href="https://publications.waset.org/abstracts/29476/synchrotron-x-ray-based-investigation-of-as-and-fe-bonding-environment-in-collard-green-tissue-samples-at-different-growth-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Transesterification of Jojoba Oil Wax Using Microwave Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moataz%20Elsawy">Moataz Elsawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20F.%20Naguib"> Hala F. Naguib</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilda%20A.%20Aziz"> Hilda A. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Eid%20A.%20Ismail"> Eid A. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Labiba%20I.%20Hussein"> Labiba I. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Maher%20Z.%20Elsabee"> Maher Z. Elsabee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jojoba oil-wax is extracted from the seeds of the jojoba (Simmondsia chinensis Link Schneider), a perennial shrub that grows in semi-desert areas in Egypt and in some parts of the world. The main uses of jojoba oil wax are in the cosmetics and pharmaceutical industry, but new uses could arise related to the search of new energetic crops. This paper summarizes a process to convert the jojoba oil wax to biodiesel by transesterification with ethanol and a series of aliphatic alcohols using a more economic and energy saving method in a domestic microwave. The effect of time and power of the microwave on the extent of the transesterification using ethanol and other aliphatic alcohols has been studied. The separation of the alkyl esters from the fatty alcohols rich fraction has been done in a single crystallization step at low temperature (−18°C) from low boiling point petroleum ether. Gas chromatography has been used to follow up the transesterification process. All products have been characterized by spectral analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jojoba%20oil" title="jojoba oil">jojoba oil</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20jojoba%20esters" title=" gas chromatography jojoba esters"> gas chromatography jojoba esters</a>, <a href="https://publications.waset.org/abstracts/search?q=jojoba%20alcohol" title=" jojoba alcohol"> jojoba alcohol</a> </p> <a href="https://publications.waset.org/abstracts/9506/transesterification-of-jojoba-oil-wax-using-microwave-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Kauffman Model on a Network of Containers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johannes%20J.%20Schneider">Johannes J. Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20S.%20Weyland"> Mathias S. Weyland</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Eggenberger%20Hotz"> Peter Eggenberger Hotz</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20D.%20Jamieson"> William D. Jamieson</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Castell"> Oliver Castell</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessia%20Faggian"> Alessia Faggian</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudolf%20M.%20F%C3%BCchslin"> Rudolf M. Füchslin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the description of the origin of life, there are still some open gaps, e.g., the formation of macromolecules cannot be fully explained so far. The Kauffman model proposes the existence of autocatalytic sets of macromolecules which mutually catalyze reactions leading to each other’s formation. Usually, this model is simulated in one well-stirred pot only, with a continuous inflow of small building blocks, from which larger molecules are created by a set of catalyzed ligation and cleavage reactions. This approach represents the picture of the primordial soup. However, the conditions on the early Earth must have differed geographically, leading to spatially different outcomes whether a specific reaction could be performed or not. Guided by this picture, the Kauffman model is simulated in a large number of containers in parallel, with neighboring containers being connected by diffusion. In each container, only a subset of the overall reaction set can be performed. Under specific conditions, this approach leads to a larger probability for the existence of an autocatalytic metabolism than in the original Kauffman model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agglomeration" title="agglomeration">agglomeration</a>, <a href="https://publications.waset.org/abstracts/search?q=autocatalytic%20set" title=" autocatalytic set"> autocatalytic set</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20equation" title=" differential equation"> differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kauffman%20model" title=" Kauffman model"> Kauffman model</a> </p> <a href="https://publications.waset.org/abstracts/182310/kauffman-model-on-a-network-of-containers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Basic One-Dimensional Modelica®-Model for Simulation of Gas-Phase Adsorber Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Rettig">Adrian Rettig</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvan%20Schneider"> Silvan Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Reto%20Tamburini"> Reto Tamburini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirko%20Kleingries"> Mirko Kleingries</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulf%20Christian%20Muller">Ulf Christian Muller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial adsorption processes are, mainly due to si-multaneous heat and mass transfer, characterized by a high level of complexity. The conception of such processes often does not take place systematically; instead scale-up/down respectively number-up/down methods based on existing systems are used. This paper shows how Modelica® can be used to develop a transient model enabling a more systematic design of such ad- and desorption components and processes. The core of this model is a lumped-element submodel of a single adsorbent grain, where the thermodynamic equilibria and the kinetics of the ad- and desorption processes are implemented and solved on the basis of mass-, momentum and energy balances. For validation of this submodel, a fixed bed adsorber, whose characteristics are described in detail in the literature, was modeled and simulated. The simulation results are in good agreement with the experimental results from the literature. Therefore, the model development will be continued, and the extended model will be applied to further adsorber types like rotor adsorbers and moving bed adsorbers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=desorption" title=" desorption"> desorption</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20driving%20force" title=" linear driving force"> linear driving force</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title=" dynamic model"> dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=Modelica%C2%AE" title=" Modelica®"> Modelica®</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20equation%20approach" title=" integral equation approach"> integral equation approach</a> </p> <a href="https://publications.waset.org/abstracts/130750/basic-one-dimensional-modelica-model-for-simulation-of-gas-phase-adsorber-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Combining Impedance and Hydrodynamic Methods toward Hydrogen Evolution Reaction to Characterize Pt(pc), Pt5Gd, and Nanostructure Pd Electrocatalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kun-Ting%20Song">Kun-Ting Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Schott"> Christian Schott</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Schneider"> Peter Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Watzele"> Sebastian Watzele</a>, <a href="https://publications.waset.org/abstracts/search?q=Regina%20Kluge"> Regina Kluge</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Gubanova"> Elena Gubanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliaksandr%20S.%20Bandarenka"> Aliaksandr S. Bandarenka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The combination of electrochemical impedance spectroscopy (EIS) and the hydrodynamic technique like rotation disc electrode (RDE) provides a critical method for quantitively investigating mechanisms of hydrogen evolution reaction (HER) in acidic and alkaline media. Pt5Gd represented higher HER activities than polycrystalline Pt (Pt(pc)) by means of the surface strain effects. The model of the equivalent electric circuit to fit the impedance data under the RDE configurations is developed. To investigate the relative reaction contribution, the ratio of the charge transfer reactions of the Volmer-Heyrovsky and Volmer-Tafel pathways on Pt and Pt5Gd electrodes is determined. The ratio remains comparably similar in acidic media, but it changes in alkaline media with Volmer–Heyrovsky pathway dominating. This combined approach of EIS and RDE can help to study the electrolyte effects and other essential reactions for electrocatalysis in future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20evolution%20reaction" title="hydrogen evolution reaction">hydrogen evolution reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20impedance%20spectroscopy" title=" electrochemical impedance spectroscopy"> electrochemical impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20methods" title=" hydrodynamic methods"> hydrodynamic methods</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20interface" title=" electrochemical interface"> electrochemical interface</a> </p> <a href="https://publications.waset.org/abstracts/163419/combining-impedance-and-hydrodynamic-methods-toward-hydrogen-evolution-reaction-to-characterize-ptpc-pt5gd-and-nanostructure-pd-electrocatalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Length Weight Relationship and Relative Condition Factor of Atropus atropos (Bloch and Schneider, 1801) from Mangalore Coast, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20Rajesh">D. P. Rajesh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20N.%20Anjanayappa"> H. N. Anjanayappa</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Nayana"> P. Nayana</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Benakappa"> S. Benakappa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study deals with length-weight relationship of Atropus atropos for which no information is available on this aspect from Mangalore coast. Therefore the present investigation was undertaken. Fish samples were collected from fish landing center (Mangalore) and fish market. The regression co-efficient of male was found to be lower than female. From this observation it may be opined that female gained more weight with increase in length compared to male. Data on seasonal variation in condition factor (Kn) showed that Kn values were more or less similar in both the sexes, indicating almost identical metabolic activity. Gonadal development and high feeding intensity are the factors which influenced the condition factor. The seasonal fluctuations in the relative condition factor of both the sexes could be attributed to the sexual cycle, food intake and environmental factors. From the present study, it can be inferred that the variation in the condition of Atropus atropos was due to feeding activity and gonadal maturity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atropus%20atropos" title="Atropus atropos">Atropus atropos</a>, <a href="https://publications.waset.org/abstracts/search?q=length-weight%20relationship" title=" length-weight relationship"> length-weight relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=Mangalore%20coast" title=" Mangalore coast"> Mangalore coast</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20condition%20factor" title=" relative condition factor"> relative condition factor</a>, <a href="https://publications.waset.org/abstracts/search?q=Kn" title=" Kn"> Kn</a> </p> <a href="https://publications.waset.org/abstracts/68160/length-weight-relationship-and-relative-condition-factor-of-atropus-atropos-bloch-and-schneider-1801-from-mangalore-coast-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Investigation of Medicinal Applications of Maclura Pomifera Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Asghari%20Ozma">Mahdi Asghari Ozma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objective:Maclurapomifera (Rafin.) Schneider, known as osage orange, is a north american native plant which has multiple applications in herbal medicine. The extract of this plant has many therapeutic effects, including antimicrobial, anti-tumor, anti-inflammation, etc., that discussed in this study. Materials and Methods: For this study, the keywords "Maclurapomifera", "osage orange, ""herbal medicine ", and "plant extract" in the databases PubMed and Google Scholar between 2002 and 2021 were searched, and 20 articles were chosen, studied and analyzed. Results: Due to the increased resistance of microbes to antibiotics, the need for antimicrobial plants is increasing. Maclurapomifera is one of the plants with antimicrobial properties that can affect all microbes, especially Gram-negative bacteria, and fungi. This plant also has anti-tumor, anti-inflammatory, anti-oxidant, anti-aging, antiviral, anti-fungal, anti-ulcerogenic, anti-diabetic, and anti-nociceptive effects, which can be used as a substance with many amazing therapeutic applications. Conclusion: These results suggest that the extract of Maclurapomifera can be used in clinical medicine as a remedial agent, which can be substituted for chemical drugs or help them in the treatment of diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maclura%20pomifera" title="maclura pomifera">maclura pomifera</a>, <a href="https://publications.waset.org/abstracts/search?q=osage%20orange" title=" osage orange"> osage orange</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20medicine" title=" herbal medicine"> herbal medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extract" title=" plant extract"> plant extract</a> </p> <a href="https://publications.waset.org/abstracts/143938/investigation-of-medicinal-applications-of-maclura-pomifera-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Validating Condition-Based Maintenance Algorithms through Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcel%20Chevalier">Marcel Chevalier</a>, <a href="https://publications.waset.org/abstracts/search?q=L%C3%A9o%20Dupont"> Léo Dupont</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Mari%C3%A9"> Sylvain Marié</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9rique%20Roffet"> Frédérique Roffet</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Stolyarova"> Elena Stolyarova</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Templier"> William Templier</a>, <a href="https://publications.waset.org/abstracts/search?q=Costin%20Vasile"> Costin Vasile</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation%20models" title="degradation models">degradation models</a>, <a href="https://publications.waset.org/abstracts/search?q=ageing" title=" ageing"> ageing</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title=" anomaly detection"> anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20sensor" title=" soft sensor"> soft sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20learning" title=" incremental learning"> incremental learning</a> </p> <a href="https://publications.waset.org/abstracts/150870/validating-condition-based-maintenance-algorithms-through-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Smart-Textile Containers for Urban Mobility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ren%C3%A9%20Vieroth">René Vieroth</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Dils"> Christian Dils</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Krshiwoblozki"> M. V. Krshiwoblozki</a>, <a href="https://publications.waset.org/abstracts/search?q=Christine%20Kallmayer"> Christine Kallmayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Schneider-Ramelow"> Martin Schneider-Ramelow</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus-Dieter%20Lang"> Klaus-Dieter Lang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green urban mobility in commercial and private contexts is one of the great challenges for the continuously growing cities all over the world. Bicycle based solutions are already and since a long time the key to success. Modern developments like e-bikes and high-end cargo-bikes complement the portfolio. Weight, aerodynamic drag, and security for the transported goods are the key factors for working solutions. Recent achievements in the field of smart-textiles allowed the creation of a totally new generation of intelligent textile cargo containers, which fulfill those demands. The fusion of technical textiles, design and electrical engineering made it possible to create an ecological solution which is very near to become a product. This paper shows all the details of this solution that includes an especially developed sensor textile for cut detection, a protective textile layer for intrusion prevention, an universal-charging-unit for energy harvesting from diverse sources and a low-energy alarm system with GSM/GPRS connection, GPS location and RFID interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cargo-bike" title="cargo-bike">cargo-bike</a>, <a href="https://publications.waset.org/abstracts/search?q=cut-detection" title=" cut-detection"> cut-detection</a>, <a href="https://publications.waset.org/abstracts/search?q=e-bike" title=" e-bike"> e-bike</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-harvesting" title=" energy-harvesting"> energy-harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20urban%20mobility" title=" green urban mobility"> green urban mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=logistics" title=" logistics"> logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=smart-textiles" title=" smart-textiles"> smart-textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=textile-integrity%20sensor" title=" textile-integrity sensor"> textile-integrity sensor</a> </p> <a href="https://publications.waset.org/abstracts/77783/smart-textile-containers-for-urban-mobility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Perspectives on Sustainable Bioeconomy in the Baltic Sea Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Susanna%20Vanham%C3%A4ki">Susanna Vanhamäki</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabor%20Schneider"> Gabor Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Kati%20Manskinen"> Kati Manskinen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ‘Bioeconomy’ is a complex concept that cuts across many sectors and covers several policy areas. To achieve an overall understanding and support a successful bioeconomy, a cross-sectorial approach is necessary. In practice, due to the concept’s wide scope and varying international approaches, fully understanding bioeconomy is challenging on policy level. This paper provides a background of the topic through an analysis of bioeconomy strategies in the Baltic Sea region. Expert interviews and a small survey were conducted to discover the current and intended focuses of these countries’ bioeconomy sectors. The research shows that supporting sustainability is one of the keys in developing the future bioeconomy. The results highlighted that the bioeconomy has to be sustainable and based on circular economy principles. Currently, traditional bioeconomy sectors like food, wood, fish & waters as well as fuel & energy, which are in the core of national bioeconomy strategies, are best known and are considered more relevant than other bioeconomy industries. However, there is increasing potential for novel sectors, such as textiles and pharmaceuticals. The present research indicates that the opportunities presented by these bioeconomy sectors should be recognised and promoted. Education, research and innovation can play key roles in developing transformative and sustainable improvements in primary production and renewable resources. Furthermore, cooperation between businesses and educators is important. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioeconomy" title="bioeconomy">bioeconomy</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title=" circular economy"> circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=policy" title=" policy"> policy</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a> </p> <a href="https://publications.waset.org/abstracts/105426/perspectives-on-sustainable-bioeconomy-in-the-baltic-sea-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Railway Accidents: Using the Global Railway Accident Database and Evaluation for Risk Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Linden">Mathias Linden</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Schneider"> André Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20F.%20O.%20von%20Korflesch"> Harald F. O. von Korflesch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The risk of train accidents is an ongoing concern for railway organizations, governments, insurance companies and other depended sectors. Safety technologies are installed to reduce and to prevent potential damages of train accidents. Since the budgetary for the safety of railway organizations is limited, it is necessary not only to achieve a high availability and high safety standard but also to be cost effective. Therefore, an economic assessment of safety technologies is fundamental to create an accurate risk analysis. In order to conduct an economical assessment of a railway safety technology and a quantification of the costs of the accident causes, the Global Railway Accident Database & Evaluation (GRADE) has been developed. The aim of this paper is to describe the structure of this accident database and to show how it can be used for risk analyses. A number of risk analysis methods, such as the probabilistic safety assessment method (PSA), was used to demonstrate this accident database’s different possibilities of risk analysis. In conclusion, it can be noted that these analyses would not be as accurate without GRADE. The information gathered in the accident database was not available in this way before. Our findings are relevant for railway operators, safety technology suppliers, assurances, governments and other concerned railway organizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accident%20causes" title="accident causes">accident causes</a>, <a href="https://publications.waset.org/abstracts/search?q=accident%20costs" title=" accident costs"> accident costs</a>, <a href="https://publications.waset.org/abstracts/search?q=accident%20database" title=" accident database"> accident database</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20railway%20accident%20database%20%26%20evaluation" title=" global railway accident database & evaluation"> global railway accident database & evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=GRADE" title=" GRADE"> GRADE</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20safety%20assessment" title=" probabilistic safety assessment"> probabilistic safety assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=PSA" title=" PSA"> PSA</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20accidents" title=" railway accidents"> railway accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20analysis" title=" risk analysis"> risk analysis</a> </p> <a href="https://publications.waset.org/abstracts/68572/railway-accidents-using-the-global-railway-accident-database-and-evaluation-for-risk-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Influence of Annealing on the Mechanical αc-Relaxation of Isotactic-Polypropylene: A Study from the Intermediate Phase Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baobao%20Chang">Baobao Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Schneider"> Konrad Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Vogel%20Roland"> Vogel Roland</a>, <a href="https://publications.waset.org/abstracts/search?q=Gert%20Heinrich"> Gert Heinrich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the influence of annealing on the mechanical αc-relaxation behavior of isotactic polypropylene (iPP) was investigated. The results suggest that the mechanical αc-relaxation behavior depends strongly on the confinement force on the polymer chains in the intermediate phase and the thickness of the intermediate phase. After quenching at 10°C, abundant crystallites with a wide size distribution are formed. The polymer chains in the intermediate phase are constrained by the crystallites, giving rise to one broad αc-relaxation peak. With an annealing temperature between 60°C~105°C, imperfect lamellae melting releases part of the constraint force, which reduces the conformational ordering of the polymer chains neighboring the amorphous phase. Consequently, two separate αc-relaxation peaks could be observed which are labeled as αc1-relaxation and αc2-relaxation. αc1-relaxation and αc2-relaxation describe the relaxation behavior of polymer chains in the region close to the amorphous phase and the crystalline phase, respectively. Both relaxation peaks shift to a higher temperature as annealing temperature increases. With an annealing temperature higher than 105°C, the new crystalline phase is formed in the intermediate phase, which enhances the constraint force on the polymer chains. αc1-relaxation peak is broadened obviously and its position shifts to a higher temperature as annealing temperature increases. Moreover, αc2-relaxation is undetectable because that the polymer chains in the region between the initial crystalline phase and the newly formed crystalline phase are strongly confined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annealing" title="annealing">annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1c-relaxation" title=" αc-relaxation"> αc-relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=isotactic-polypropylene" title=" isotactic-polypropylene"> isotactic-polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=intermediate%20phase" title=" intermediate phase"> intermediate phase</a> </p> <a href="https://publications.waset.org/abstracts/67006/influence-of-annealing-on-the-mechanical-ac-relaxation-of-isotactic-polypropylene-a-study-from-the-intermediate-phase-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Drug-Drug Plasma Protein Binding Interactions of Ivacaftor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20K.%20Schneider">Elena K. Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnny%20X.%20Huang"> Johnny X. Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincenzo%20Carbone"> Vincenzo Carbone</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Baker"> Mark Baker</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20K.%20Azad"> Mohammad A. K. Azad</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20A.%20Cooper"> Matthew A. Cooper</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Li"> Jian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tony%20Velkov"> Tony Velkov </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ivacaftor is a novel CF trans-membrane conductance regulator (CFTR) potentiator that improves the pulmonary function for cystic fibrosis patients bearing a G551D CFTR-protein mutation. Because ivacaftor is highly bound (>97%) to plasma proteins, there is the strong possibility that co-administered CF drugs that compete for the same plasma protein binding sites and impact the free drug concentration. This in turn could lead to drastic changes in the in vivo efficacy of ivacaftor and therapeutic outcomes. This study compares the binding affinity of ivacaftor and co-administered CF drugs for human serum albumin (HSA) and α1-acid glycoprotein (AGP) using surface plasmon resonance and fluorimetric binding assays that measure the displacement of site selective probes. Due to their high plasma protein binding affinities, drug-drug interactions between ivacaftor are to be expected with ducosate, montelukast, ibuprofen, dicloxacillin, omeprazole and loratadine. The significance of these drug-drug interactions is interpreted in terms of the pharmacodynamic/pharmacokinetic parameters and molecular docking simulations. The translational outcomes of the data are presented as recommendations for a staggered treatment regimen for future clinical trials which aims to maximize the effective free drug concentration and clinical efficacy of ivacaftor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20%CE%B1-1-acid%20glycoprotein" title="human α-1-acid glycoprotein">human α-1-acid glycoprotein</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20affinity" title=" binding affinity"> binding affinity</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20serum%20albumin" title=" human serum albumin"> human serum albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=ivacaftor" title=" ivacaftor"> ivacaftor</a>, <a href="https://publications.waset.org/abstracts/search?q=cystic%20fibrosis" title=" cystic fibrosis"> cystic fibrosis</a> </p> <a href="https://publications.waset.org/abstracts/15176/drug-drug-plasma-protein-binding-interactions-of-ivacaftor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Simulation of Glass Breakage Using Voronoi Random Field Tessellations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20A.%20Kraus">Michael A. Kraus</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Pourmoghaddam"> Navid Pourmoghaddam</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Botz"> Martin Botz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Schneider"> Jens Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Geralt%20Siebert"> Geralt Siebert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fragmentation analysis of tempered glass gives insight into the quality of the tempering process and defines a certain degree of safety as well. Different standard such as the European EN 12150-1 or the American ASTM C 1048/CPSC 16 CFR 1201 define a minimum number of fragments required for soda-lime safety glass on the basis of fragmentation test results for classification. This work presents an approach for the glass breakage pattern prediction using a Voronoi Tesselation over Random Fields. The random Voronoi tessellation is trained with and validated against data from several breakage patterns. The fragments in observation areas of 50 mm x 50 mm were used for training and validation. All glass specimen used in this study were commercially available soda-lime glasses at three different thicknesses levels of 4 mm, 8 mm and 12 mm. The results of this work form a Bayesian framework for the training and prediction of breakage patterns of tempered soda-lime glass using a Voronoi Random Field Tesselation. Uncertainties occurring in this process can be well quantified, and several statistical measures of the pattern can be preservation with this method. Within this work it was found, that different Random Fields as basis for the Voronoi Tesselation lead to differently well fitted statistical properties of the glass breakage patterns. As the methodology is derived and kept general, the framework could be also applied to other random tesselations and crack pattern modelling purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20breakage%20predicition" title="glass breakage predicition">glass breakage predicition</a>, <a href="https://publications.waset.org/abstracts/search?q=Voronoi%20Random%20Field%20Tessellation" title=" Voronoi Random Field Tessellation"> Voronoi Random Field Tessellation</a>, <a href="https://publications.waset.org/abstracts/search?q=fragmentation%20analysis" title=" fragmentation analysis"> fragmentation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20parameter%20identification" title=" Bayesian parameter identification"> Bayesian parameter identification</a> </p> <a href="https://publications.waset.org/abstracts/91308/simulation-of-glass-breakage-using-voronoi-random-field-tessellations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> A Bayesian Parameter Identification Method for Thermorheological Complex Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Anton%20Kraus">Michael Anton Kraus</a>, <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Schuster"> Miriam Schuster</a>, <a href="https://publications.waset.org/abstracts/search?q=Geralt%20Siebert"> Geralt Siebert</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Schneider"> Jens Schneider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymers increasingly gained interest in construction materials over the last years in civil engineering applications. As polymeric materials typically show time- and temperature dependent material behavior, which is accounted for in the context of the theory of linear viscoelasticity. Within the context of this paper, the authors show, that some polymeric interlayers for laminated glass can not be considered as thermorheologically simple as they do not follow a simple TTSP, thus a methodology of identifying the thermorheologically complex constitutive bahavioir is needed. ‘Dynamical-Mechanical-Thermal-Analysis’ (DMTA) in tensile and shear mode as well as ‘Differential Scanning Caliometry’ (DSC) tests are carried out on the interlayer material ‘Ethylene-vinyl acetate’ (EVA). A navoel Bayesian framework for the Master Curving Process as well as the detection and parameter identification of the TTSPs along with their associated Prony-series is derived and applied to the EVA material data. To our best knowledge, this is the first time, an uncertainty quantification of the Prony-series in a Bayesian context is shown. Within this paper, we could successfully apply the derived Bayesian methodology to the EVA material data to gather meaningful Master Curves and TTSPs. Uncertainties occurring in this process can be well quantified. We found, that EVA needs two TTSPs with two associated Generalized Maxwell Models. As the methodology is kept general, the derived framework could be also applied to other thermorheologically complex polymers for parameter identification purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bayesian%20parameter%20identification" title="bayesian parameter identification">bayesian parameter identification</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20Maxwell%20model" title=" generalized Maxwell model"> generalized Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20viscoelasticity" title=" linear viscoelasticity"> linear viscoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermorheological%20complex" title=" thermorheological complex "> thermorheological complex </a> </p> <a href="https://publications.waset.org/abstracts/93017/a-bayesian-parameter-identification-method-for-thermorheological-complex-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> The Adaptation and Evaluation of a Psychoeducational Program for Patients with Depression in General Practices in Germany</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feyza%20G%C3%B6kce">Feyza Gökce</a>, <a href="https://publications.waset.org/abstracts/search?q=Jochen%20Gensichen"> Jochen Gensichen</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonius%20Schneider"> Antonius Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Karolina%20de%20Valerio"> Karolina de Valerio</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20Pitschel-Walz"> Gabriele Pitschel-Walz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> People with depressive symptoms often first consult a General Practitioner (GP) before making use of other treatment options. The present study shows the adaptation and evaluation of a psychoeducational program for patients with depressive symptoms that are treated by GPs in Bavaria, Germany. The adaptation of an existing psychoeducational program, that is used in inpatient psychiatric settings, was performed in exchange with experts (psychotherapists, general practitioners, and a patient representative). As a result, a program consisting of 4 psychoeducational sessions was developed, which is carried out in individual settings in GP practices by the practitioners themselves. This program will be compared to treatment as usual that patients with depression receive by GPs. Data is collected at 3 measurement points (baseline, 3-months-follow-up, 6-months-follow-up) using different questionnaires (BDI-II, D-Lit-R German, FERUS, PAM13-D, PHQ-9, GAD-7, PHQ-15, PC-PTSD-5). In addition to the change in depressive symptoms, changes in depression knowledge, self-efficacy, and patient activation will be analyzed, and the feasibility of the program and the subjective benefit for GPs and patients will be assessed. By now, 84 patients have been recruited by 20 cluster-randomized GP practices, with 73.5% of the participants being female and 26.5% being males. The average age was M= 50.1 (SD= 14.67) years. The change in depression symptoms over the 3-month period will be compared between the two study conditions by using a linear mixed model by the end of data collection (December 2023). The subjective benefit for the patients and GPs will be assessed via feedback questionnaires. Results will be presentable by the beginning of 2024 and will provide indications for further development and barriers to the implementation of such a program for GP practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depression" title="depression">depression</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20practice" title=" general practice"> general practice</a>, <a href="https://publications.waset.org/abstracts/search?q=psychoeducation" title=" psychoeducation"> psychoeducation</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20care" title=" primary care"> primary care</a> </p> <a href="https://publications.waset.org/abstracts/174496/the-adaptation-and-evaluation-of-a-psychoeducational-program-for-patients-with-depression-in-general-practices-in-germany" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> VR in the Middle School Classroom-An Experimental Study on Spatial Relations and Immersive Virtual Reality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danielle%20Schneider">Danielle Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Xie"> Ying Xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Middle school science, technology, engineering, and math (STEM) teachers experience an exceptional challenge in the expectation to incorporate curricula that builds strong spatial reasoning skills on rudimentary geometry concepts. Because spatial ability is so closely tied to STEM students’ success, researchers are tasked to determine effective instructional practices that create an authentic learning environment within the immersive virtual reality learning environment (IVRLE). This study looked to investigate the effect of the IVRLE on middle school STEM students’ spatial reasoning skills as a methodology to benefit the STEM middle school students’ spatial reasoning skills. This experimental study was comprised of thirty 7th-grade STEM students divided into a treatment group that was engaged in an immersive VR platform where they engaged in building an object in the virtual realm by applying spatial processing and visualizing its dimensions and a control group that built the identical object using a desktop computer-based, computer-aided design (CAD) program. Before and after the students participated in the respective “3D modeling” environment, their spatial reasoning abilities were assessed using the Middle Grades Mathematics Project Spatial Visualization Test (MGMP-SVT). Additionally, both groups created a physical 3D model as a secondary measure to measure the effectiveness of the IVRLE. The results of a one-way ANOVA in this study identified a negative effect on those in the IVRLE. These findings suggest that with middle school students, virtual reality (VR) proved an inadequate tool to benefit spatial relation skills as compared to desktop-based CAD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title="virtual reality">virtual reality</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20reasoning" title=" spatial reasoning"> spatial reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD" title=" CAD"> CAD</a>, <a href="https://publications.waset.org/abstracts/search?q=middle%20school%20STEM" title=" middle school STEM"> middle school STEM</a> </p> <a href="https://publications.waset.org/abstracts/162157/vr-in-the-middle-school-classroom-an-experimental-study-on-spatial-relations-and-immersive-virtual-reality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> INCIPIT-CRIS: A Research Information System Combining Linked Data Ontologies and Persistent Identifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Nogueiras%20Blanco">David Nogueiras Blanco</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Alwash"> Amir Alwash</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnaud%20Gaudinat"> Arnaud Gaudinat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ren%C3%A9%20Schneider"> René Schneider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At a time when the access to and the sharing of information are crucial in the world of research, the use of technologies such as persistent identifiers (PIDs), Current Research Information Systems (CRIS), and ontologies may create platforms for information sharing if they respond to the need of disambiguation of their data by assuring interoperability inside and between other systems. INCIPIT-CRIS is a continuation of the former INCIPIT project, whose goal was to set up an infrastructure for a low-cost attribution of PIDs with high granularity based on Archival Resource Keys (ARKs). INCIPIT-CRIS can be interpreted as a logical consequence and propose a research information management system developed from scratch. The system has been created on and around the Schema.org ontology with a further articulation of the use of ARKs. It is thus built upon the infrastructure previously implemented (i.e., INCIPIT) in order to enhance the persistence of URIs. As a consequence, INCIPIT-CRIS aims to be the hinge between previously separated aspects such as CRIS, ontologies and PIDs in order to produce a powerful system allowing the resolution of disambiguation problems using a combination of an ontology such as Schema.org and unique persistent identifiers such as ARK, allowing the sharing of information through a dedicated platform, but also the interoperability of the system by representing the entirety of the data as RDF triplets. This paper aims to present the implemented solution as well as its simulation in real life. We will describe the underlying ideas and inspirations while going through the logic and the different functionalities implemented and their links with ARKs and Schema.org. Finally, we will discuss the tests performed with our project partner, the Swiss Institute of Bioinformatics (SIB), by the use of large and real-world data sets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=current%20research%20information%20systems" title="current research information systems">current research information systems</a>, <a href="https://publications.waset.org/abstracts/search?q=linked%20data" title=" linked data"> linked data</a>, <a href="https://publications.waset.org/abstracts/search?q=ontologies" title=" ontologies"> ontologies</a>, <a href="https://publications.waset.org/abstracts/search?q=persistent%20identifier" title=" persistent identifier"> persistent identifier</a>, <a href="https://publications.waset.org/abstracts/search?q=schema.org" title=" schema.org"> schema.org</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20web" title="semantic web">semantic web</a> </p> <a href="https://publications.waset.org/abstracts/152059/incipit-cris-a-research-information-system-combining-linked-data-ontologies-and-persistent-identifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Persisting Gender Gap in the Field of Academic Entrepreneurship: The Case of Switzerland </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noemi%20Schneider">Noemi Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Blaese"> Richard Blaese</a>, <a href="https://publications.waset.org/abstracts/search?q=Pietro%20Morandi"> Pietro Morandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Brigitte%20Liebig"> Brigitte Liebig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While women are increasingly frequent among the founders of innovative companies and advanced researchers in many university research institutes today, they are still an exception among initiators of research-based spin-offs. This also applies to countries such as Switzerland, which does have a leading position in international innovation rankings. Starting from a gender-sensitive neo-institutionalist perspective, this paper examines formal and non-formal institutional framework conditions for academic spin-offs at Swiss universities of applied sciences. This field, which stresses vocational education and practice-oriented research, seems to conserve the gender gap in the area of establishing research-based spin-offs spin-off rates strongly. The analysis starts from a survey conducted in 2017 and 2018 at all seven public universities of applied sciences in Switzerland as well as on an evaluation of expert interviews performed with heads of start-up centers, where also spin-offs from universities of applied sciences get support. The results show the mechanisms, which contribute to gender gaps in academic entrepreneurship in higher education. University's female employees have hardly been discovered as target groups. Thus, only 10.5% of universities of applied sciences offer specific support measures for women in academia. And only 1 out of 7 universities of applied sciences offer mentoring programs for female entrepreneurs while in addition there are no financial resources available to support female founders in academia. Moreover, the awareness of the gender gap in academic entrepreneurship is low among founding commissioners. A consistent transfer strategy might be key for bringing in line the formal and non-formal preconditions relevant for the formation of research-based spin-offs and for providing an effective incentive structure to promote women. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gender" title="gender">gender</a>, <a href="https://publications.waset.org/abstracts/search?q=science-based%20spin-off" title=" science-based spin-off"> science-based spin-off</a>, <a href="https://publications.waset.org/abstracts/search?q=universities%20of%20applied%20sciences" title=" universities of applied sciences"> universities of applied sciences</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20transfer%20strategy" title=" knowledge transfer strategy "> knowledge transfer strategy </a> </p> <a href="https://publications.waset.org/abstracts/90666/persisting-gender-gap-in-the-field-of-academic-entrepreneurship-the-case-of-switzerland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Electrochemical Top-Down Synthesis of Nanostructured Support and Catalyst Materials for Energy Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20M.%20Schneider">Peter M. Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Batyr%20Garlyyev"> Batyr Garlyyev</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20A.%20Watzele"> Sebastian A. Watzele</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliaksandr%20S.%20Bandarenka"> Aliaksandr S. Bandarenka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Functional nanostructures such as nanoparticles are a promising class of materials for energy applications due to their unique properties. Bottom-up synthetic routes for nanostructured materials often involve multiple synthesis steps and the use of surfactants, reducing agents, or stabilizers. This results in complex and extensive synthesis protocols. In recent years, a novel top-down synthesis approach to form metal nanoparticles has been established, in which bulk metal wires are immersed in an electrolyte (primarily alkali earth metal based) and subsequently subjected to a high alternating potential. This leads to the generation of nanoparticles dispersed in the electrolyte. The main advantage of this facile top-down approach is that there are no reducing agents, surfactants, or precursor solutions. The complete synthesis can be performed in one pot involving one main step with consequent washing and drying of the nanoparticles. More recent studies investigated the effect of synthesis parameters such as potential amplitude, frequency, electrolyte composition, and concentration on the size and shape of the nanoparticles. Here, we investigate the electrochemical erosion of various metal wires such as Ti, Pt, Pd, and Sn in various electrolyte compositions via this facile top-down technique and its experimental optimization to successfully synthesize nanostructured materials for various energy applications. As an example, for Pt and Pd, homogeneously distributed nanoparticles on carbon support can be obtained. These materials can be used as electrocatalyst materials for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), respectively. In comparison, the top-down erosion of Sn wires leads to the formation of nanoparticles, which have great potential as oxygen evolution reaction (OER) support materials. The application of the technique on Ti wires surprisingly leads to the formation of nanowires, which show a high surface area and demonstrate great potential as an alternative support material to carbon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ORR" title="ORR">ORR</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title=" electrochemistry"> electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalyst" title=" electrocatalyst"> electrocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/163298/electrochemical-top-down-synthesis-of-nanostructured-support-and-catalyst-materials-for-energy-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> COVID-19 and Heart Failure Outcomes: Readmission Insights from the 2020 United States National Readmission Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Induja%20R.%20Nimma">Induja R. Nimma</a>, <a href="https://publications.waset.org/abstracts/search?q=Anand%20Reddy%20Maligireddy"> Anand Reddy Maligireddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20Schneider"> Artur Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Lyle"> Melissa Lyle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Although heart failure is one of the most common causes of hospitalization in adult patients, there is limited knowledge on outcomes following initial hospitalization for COVID-19 with heart failure (HCF-19). We felt it pertinent to analyze 30-day readmission causes and outcomes among patients with HCF-19 using the United States using real-world big data via the National readmission database. Objective: The aim is to describe the rate and causes of readmissions and morbidity of heart failure with coinciding COVID-19 (HFC-19) in the United States, using the 2020 National Readmission Database (NRD). Methods: A descriptive, retrospective study was conducted on the 2020 NRD, a nationally representative sample of all US hospitalizations. Adult (>18 years) inpatient admissions with COVID-19 with HF and readmissions in 30 days were selected based on the International Classification of Diseases-Tenth Revision, Procedure Code. Results: In 2020, 2,60,372 adult patients were hospitalized with COVID-19 and HF. The median age was 74 (IQR: 64-83), and 47% were female. The median length of stay was 7(4-13) days, and the total cost of stay was 62,025 (31,956 – 130,670) United States dollars, respectively. Among the index hospital admissions, 61,527 (23.6%) died, and 22,794 (11.5%) were readmitted within 30 days. The median age of patients readmitted in 30 days was 73 (63-82), 45% were female, and 1,962 (16%) died. The most common principal diagnosis for readmission in these patients was COVID-19= 34.8%, Sepsis= 16.5%, HF = 7.1%, AKI = 2.2%, respiratory failure with hypoxia =1.7%, and Pneumonia = 1%. Conclusion: The rate of readmission in patients with heart failure exacerbations is increasing yearly. COVID-19 was observed to be the most common principal diagnosis in patients readmitted within 30 days. Complicated hypertension, chronic pulmonary disease, complicated diabetes, renal failure, alcohol use, drug use, and peripheral vascular disorders are risk factors associated with readmission. Familiarity with the most common causes and predictors for readmission helps guide the development of initiatives to minimize adverse outcomes and the cost of medical care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Covid-19" title="Covid-19">Covid-19</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20failure" title=" heart failure"> heart failure</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20readmission%20database" title=" national readmission database"> national readmission database</a>, <a href="https://publications.waset.org/abstracts/search?q=readmission%20outcomes" title=" readmission outcomes"> readmission outcomes</a> </p> <a href="https://publications.waset.org/abstracts/162273/covid-19-and-heart-failure-outcomes-readmission-insights-from-the-2020-united-states-national-readmission-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Reproducibility of Shear Strength Parameters Determined from CU Triaxial Tests: Evaluation of Results from Regression of Different Failure Stress Combinations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henok%20Marie%20Shiferaw">Henok Marie Shiferaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Schneider-Muntau"> Barbara Schneider-Muntau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Test repeatability and data reproducibility are a concern in many geotechnical laboratory tests due to inherent soil variability, inhomogeneous sample preparation and measurement inaccuracy. Test results on comparable test specimens vary to a considerable extent. Thus, also the derived shear strength parameters from triaxial tests are affected. In this contribution, we present the reproducibility of effective shear strength parameters from consolidated undrained triaxial tests on plain soil and cement-treated soil specimens. Six remolded test specimens were prepared for the plain soil and for the cement-treated soil. Conventional three levels of consolidation pressure testing were considered with an effective consolidation pressure of 100 kPa, 200 kPa and 300 kPa, respectively. At each effective consolidation pressure, two tests were done on comparable test specimens. Focus was laid on the same mean dry density and same water content during sample preparation for the two specimens. The cement-treated specimens were tested after 28 days of curing. Shearing of test specimens was carried out at a deformation rate of 0.4 mm/min after sample saturation at a back pressure of 900 kPa, followed by consolidation. The effective peak and residual shear strength parameters were then estimated from regression analysis of 21 different combinations of the failure stresses from the six tests conducted for both the plain soil and cement-treated soil samples. The 21 different stress combinations were constructed by picking three, four, five and six failure tresses at once at different combinations. Results indicate that the effective shear strength parameters estimated from the regression of different combinations of the failure stresses vary. Effective critical friction angle was found to be more consistent than effective peak friction angle with a smaller standard deviation. The reproducibility of the shear strength parameters for the cement-treated specimens was even lower than that of the untreated specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20strength%20parameters" title="shear strength parameters">shear strength parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20repeatability" title=" test repeatability"> test repeatability</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20reproducibility" title=" data reproducibility"> data reproducibility</a>, <a href="https://publications.waset.org/abstracts/search?q=triaxial%20soil%20testing" title=" triaxial soil testing"> triaxial soil testing</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20improvement%20of%20soils" title=" cement improvement of soils"> cement improvement of soils</a> </p> <a href="https://publications.waset.org/abstracts/191267/reproducibility-of-shear-strength-parameters-determined-from-cu-triaxial-tests-evaluation-of-results-from-regression-of-different-failure-stress-combinations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Transboundary Pollution after Natural Disasters: Scenario Analyses for Uranium at Kyrgyzstan-Uzbekistan Border</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fengqing%20Li">Fengqing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Petra%20Schneider"> Petra Schneider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Failure of tailings management facilities (TMF) of radioactive residues is an enormous challenge worldwide and can result in major catastrophes. Particularly in transboundary regions, such failure is most likely to lead to international conflict. This risk occurs in Kyrgyzstan and Uzbekistan, where the current major challenge is the quantification of impacts due to pollution from uranium legacy sites and especially the impact on river basins after natural hazards (i.e., landslides). By means of GoldSim, a probabilistic simulation model, the amount of tailing material that flows into the river networks of Mailuu Suu in Kyrgyzstan after pond failure was simulated for three scenarios, namely 10%, 20%, and 30% of material inputs. Based on Muskingum-Cunge flood routing procedure, the peak value of uranium flood wave along the river network was simulated. Among the 23 TMF, 19 ponds are close to the river networks. The spatiotemporal distributions of uranium along the river networks were then simulated for all the 19 ponds under three scenarios. Taking the TP7 which is 30 km far from the Kyrgyzstan-Uzbekistan border as one example, the uranium concentration decreased continuously along the longitudinal gradient of the river network, the concentration of uranium was observed at the border after 45 min of the pond failure and the highest value was detected after 69 min. The highest concentration of uranium at the border were 16.5, 33, and 47.5 mg/L under scenarios of 10%, 20%, and 30% of material inputs, respectively. In comparison to the guideline value of uranium in drinking water (i.e., 30 µg/L) provided by the World Health Organization, the observed concentrations of uranium at the border were 550‒1583 times higher. In order to mitigate the transboundary impact of a radioactive pollutant release, an integrated framework consisting of three major strategies were proposed. Among, the short-term strategy can be used in case of emergency event, the medium-term strategy allows both countries handling the TMF efficiently based on the benefit-sharing concept, and the long-term strategy intends to rehabilitate the site through the relocation of all TMF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Central%20Asia" title="Central Asia">Central Asia</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminant%20transport%20modelling" title=" contaminant transport modelling"> contaminant transport modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20residue" title=" radioactive residue"> radioactive residue</a>, <a href="https://publications.waset.org/abstracts/search?q=transboundary%20conflict" title=" transboundary conflict"> transboundary conflict</a> </p> <a href="https://publications.waset.org/abstracts/115318/transboundary-pollution-after-natural-disasters-scenario-analyses-for-uranium-at-kyrgyzstan-uzbekistan-border" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Monetary Evaluation of Dispatching Decisions in Consideration of Choice of Transport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcel%20Schneider">Marcel Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Nils%20Nie%C3%9Fen"> Nils Nießen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microscopic simulation programs enable the description of the two processes of railway operation and the previous timetabling. Occupation conflicts are often solved based on defined train priorities on both process levels. These conflict resolutions produce knock-on delays for the involved trains. The sum of knock-on delays is commonly used to evaluate the quality of railway operations. It is either compared to an acceptable level-of-service or the delays are evaluated economically by linearly monetary functions. It is impossible to properly evaluate dispatching decisions without a well-founded objective function. This paper presents a new approach for evaluation of dispatching decisions. It uses models of choice of transport and considers the behaviour of the end-costumers. These models evaluate the knock-on delays in more detail than linearly monetary functions and consider other competing modes of transport. The new approach pursues the coupling of a microscopic model of railway operation with the macroscopic model of choice of transport. First it will be implemented for the railway operations process, but it can also be used for timetabling. The evaluation considers the possibility to change over to other transport modes by the end-costumers. The new approach first looks at the rail-mounted and road transport, but it can also be extended to air transport. The split of the end-costumers is described by the modal-split. The reactions by the end-costumers have an effect on the revenues of the railway undertakings. Various travel purposes has different pavement reserves and tolerances towards delays. Longer journey times affect besides revenue changes also additional costs. The costs depend either on time or track and arise from circulation of workers and vehicles. Only the variable values are summarised in the contribution margin, which is the base for the monetary evaluation of the delays. The contribution margin is calculated for different resolution decisions of the same conflict. The conflict resolution is improved until the monetary loss becomes minimised. The iterative process therefore determines an optimum conflict resolution by observing the change of the contribution margin. Furthermore, a monetary value of each dispatching decision can also be determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=choice%20of%20transport" title="choice of transport">choice of transport</a>, <a href="https://publications.waset.org/abstracts/search?q=knock-on%20delays" title=" knock-on delays"> knock-on delays</a>, <a href="https://publications.waset.org/abstracts/search?q=monetary%20evaluation" title=" monetary evaluation"> monetary evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20operations" title=" railway operations"> railway operations</a> </p> <a href="https://publications.waset.org/abstracts/22453/monetary-evaluation-of-dispatching-decisions-in-consideration-of-choice-of-transport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=P.%20Schneider&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=P.%20Schneider&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>