CINXE.COM
Search results for: traceability
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: traceability</title> <meta name="description" content="Search results for: traceability"> <meta name="keywords" content="traceability"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="traceability" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="traceability"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 87</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: traceability</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> The Roles of Health Consciousness, Health Motivation, and Trust in the Purchase Intention of Meat with Traceability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kawpong%20Polyorat">Kawpong Polyorat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathamon%20Buaprommee"> Nathamon Buaprommee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food safety crises including mad cow disease and bird flu have raised consumers’ concern in meat safety. In response, the meat industry has adopted traceability systems to standardize quality and safety of their meat production. Traceability, however, is still rarely positioned as a marketing tool to persuade consumers who are meat endusers. Therefore, the present study attempts to understand consumer behaviors in the context of meat with traceability system by conducting a study in Thailand where research in this area is scant. The study results, based on structural equation modeling with AMOS, reveal that, while health motivation has a significant, positive impact on traceability trust, health consciousness does not directly affect traceability. Health consciousness, nevertheless, have a positive influence on health motivation. Finally, traceability trust has a positive impact on purchase intention of meat with traceability. Research implications and future study directions conclude the study report. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumer%20behavior" title="consumer behavior">consumer behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20consciousness" title=" health consciousness"> health consciousness</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20motivation" title=" health motivation"> health motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a>, <a href="https://publications.waset.org/abstracts/search?q=trust" title=" trust"> trust</a> </p> <a href="https://publications.waset.org/abstracts/12676/the-roles-of-health-consciousness-health-motivation-and-trust-in-the-purchase-intention-of-meat-with-traceability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> The Influences of Marketplace Knowledge, General Product Class Knowledge, and Knowledge in Meat Product with Traceability on Trust in Meat Traceability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kawpong%20Polyorat">Kawpong Polyorat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the outbreak of mad cow disease and bird flu, consumers have become more concerned with meat quality and safety. As a result, meat traceability is adopted as one approach to handle consumers’ concern in this issue. Nevertheless, in Thailand, meat traceability is rarely used as a marketing tool to persuade consumers. As a consequence, the present study attempts to understand consumer trust in the meat traceability system by conducting a study in this country to examine the impact of three types of consumer knowledge on this trust. The study results reveal that out of three types of consumer knowledge, marketplace knowledge was the sole predictor of consumer trust in meat traceability and it has a positive influence. General product class knowledge and knowledge in meat products with traceability, however, did not significantly influence consumer trust. The research results provide several implications and directions for future study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumer%20knowledge" title="consumer knowledge">consumer knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=marketing" title=" marketing"> marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20knowledge" title=" product knowledge"> product knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a> </p> <a href="https://publications.waset.org/abstracts/55321/the-influences-of-marketplace-knowledge-general-product-class-knowledge-and-knowledge-in-meat-product-with-traceability-on-trust-in-meat-traceability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> The Design of Information Technology System for Traceability of Thailand’s Tubtimjun Roseapple</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pimploi%20Tirastittam">Pimploi Tirastittam</a>, <a href="https://publications.waset.org/abstracts/search?q=Phutthiwat%20Waiyawuththanapoom"> Phutthiwat Waiyawuththanapoom</a>, <a href="https://publications.waset.org/abstracts/search?q=Sawanath%20Treesathon"> Sawanath Treesathon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As there are several countries which import agriculture product from Thailand, those countries demand Thailand to establish the traceability system. The traceability system is the tool to reduce the risk in the supply chain in a very effective way as it will help the stakeholder in the supply chain to identify the defect point which will reduce the cost of operation in the supply chain. This research is aimed to design the traceability system for Tubtimjun roseapple for exporting to China, and it is the qualitative research. The data was collected from the expert in the tuntimjun roseapple and fruit exporting industry, and the data was used to design the traceability system. The design of the tubtimjun roseapple traceability system was followed the theory of supply chain which starts from the upstream of the supply chain to the downstream of the supply chain to support the process and condition of the exporting which included the database designing, system architecture, user interface design and information technology of the traceability system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20information" title="design information">design information</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20system" title=" technology system"> technology system</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a>, <a href="https://publications.waset.org/abstracts/search?q=tubtimjun%20roseapple" title=" tubtimjun roseapple"> tubtimjun roseapple</a> </p> <a href="https://publications.waset.org/abstracts/102426/the-design-of-information-technology-system-for-traceability-of-thailands-tubtimjun-roseapple" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Information Technology Pattern for Traceability to Increase the Exporting Efficiency of Thailand’s Orchid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pimploi%20Tirastittam">Pimploi Tirastittam</a>, <a href="https://publications.waset.org/abstracts/search?q=Phutthiwat%20Waiyawuththanapoom"> Phutthiwat Waiyawuththanapoom</a>, <a href="https://publications.waset.org/abstracts/search?q=Manop%20Tirastittam"> Manop Tirastittam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traceability system is one of the tools which can ensure the product’s confident of the consumer as it can trace the product back to its origin and can reduce the operation cost of recall. Nowadays, there are so many technologies which can be applied to the traceability system and also able to increase the efficiency of the system such as QR Code, barcode, GS1 and GTIN. As the result, this research is aimed to study and design the information technology pattern that suits for the traceability of Thailand’s orchid because Thailand’s orchid is the popular export product for Japan, USA, China, Netherlands and Italy. This study will enhance the value of Thailand’s orchid and able to prevent the unexpected event of the defects or damaged product. The traceability pattern was received IOC test from 12 experts from 4 fields of study which are traceability field, information technology field, information communication technology field and orchid export field. The result of the in-depth interview and questionnaire showed that the technology which most compatibility with the traceability system is the QR code. The mean of the score was 4.25 and the standard deviation was 0.5 as the QR code is the new technology and user-friendly. The traceability system should start from the farm to the consumer in the consuming country as the traceability system will enhance the quality level of the product and increase the value of its as well. The other outcome from this research is the supply chain model of Thailand’s Orchid along with the system architecture and working system diagram. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exporting" title="exporting">exporting</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20technology%20pattern" title=" information technology pattern"> information technology pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=orchid" title=" orchid"> orchid</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a> </p> <a href="https://publications.waset.org/abstracts/90144/information-technology-pattern-for-traceability-to-increase-the-exporting-efficiency-of-thailands-orchid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Analysis of Critical Success Factors for Implementing Industry 4.0 and Circular Economy to Enhance Food Traceability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Pishdar">Mahsa Pishdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food traceability through the supply chain is facing increased demand. IoT and blockchain are among the tools under consideration in the Industry 4.0 era that could be integrated to help implementation of the Circular Economy (CE) principles while enhancing food traceability solutions. However, such tools need intellectual system, and infrastructureto be settled as guidance through the way, helping overcoming obstacles. That is why the critical success factors for implementing Industry 4.0 and circular economy principles in food traceability concept are analyzed in this paper by combination of interval type 2 fuzzy Worst Best Method and Measurement Alternatives and Ranking according to Compromise Solution (Interval Type 2 fuzzy WBM-MARCOS). Results indicate that “Knowledge of Industry 4.0 obligations and CE principle” is the most important factor that is the basis of success following by “Management commitment and support”. This will assist decision makers to seize success in gaining a competitive advantage while reducing costs through the supply chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20traceability" title="food traceability">food traceability</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title=" internet of things"> internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20chain" title=" block chain"> block chain</a>, <a href="https://publications.waset.org/abstracts/search?q=best%20worst%20method" title=" best worst method"> best worst method</a>, <a href="https://publications.waset.org/abstracts/search?q=marcos" title=" marcos"> marcos</a> </p> <a href="https://publications.waset.org/abstracts/144851/analysis-of-critical-success-factors-for-implementing-industry-40-and-circular-economy-to-enhance-food-traceability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> A Simulated Scenario of WikiGIS to Support the Iteration and Traceability Management of the Geodesign Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wided%20Batita">Wided Batita</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Roche"> Stéphane Roche</a>, <a href="https://publications.waset.org/abstracts/search?q=Claude%20Caron"> Claude Caron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geodesign is an emergent term related to a new and complex process. Hence, it needs to rethink tools, technologies and platforms in order to efficiently achieve its goals. A few tools have emerged since 2010 such as CommunityViz, GeoPlanner, etc. In the era of Web 2.0 and collaboration, WikiGIS has been proposed as a new category of tools. In this paper, we present WikiGIS functionalities dealing mainly with the iteration and traceability management to support the collaboration of the Geodesign process. Actually, WikiGIS is built on GeoWeb 2.0 technologies —and primarily on wiki— and aims at managing the tracking of participants’ editing. This paper focuses on a simplified simulation to illustrate the strength of WikiGIS in the management of traceability and in the access to history in a Geodesign process. Indeed, a cartographic user interface has been implemented, and then a hypothetical use case has been imagined as proof of concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geodesign" title="geodesign">geodesign</a>, <a href="https://publications.waset.org/abstracts/search?q=history" title=" history"> history</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking%20of%20participants%E2%80%99%20editing" title=" tracking of participants’ editing"> tracking of participants’ editing</a>, <a href="https://publications.waset.org/abstracts/search?q=WikiGIS" title=" WikiGIS"> WikiGIS</a> </p> <a href="https://publications.waset.org/abstracts/54647/a-simulated-scenario-of-wikigis-to-support-the-iteration-and-traceability-management-of-the-geodesign-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Food Traceability for Small and Medium Enterprises Using Blockchain Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kohli">Amit Kohli</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Lekhi"> Pooja Lekhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gihan%20Adel%20Amin%20Hafez"> Gihan Adel Amin Hafez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blockchain is a distributor ledger technology trend that extended to different fields and proved a remarkable success. Blockchain technology is a vital proliferation technique that recuperates the food supply chain traceability process. While tracing is the core of the food supply chain; still, a complex system mitigates the exceptional risk of food contamination, foodborne, food waste, and food fraud. In addition, the upsurge of food supply chain data variance and variety in the traceability system requires complete transparency, a secure, steadfast, sustainable, and efficient approach to face the food supply chain challenges. On the other hand, blockchain technical aspects merged with a detailed implementation plan, the advantages and challenges in food traceability have not been much elucidated for small and medium enterprises (SMEs.) This paper demonstrated the advantages and challenges of applying blockchain in SMEs combined with the success stories of firms implementing blockchain to cover the gap. Moreover, blockchain architecture in SMEs and how technology, organization, and environment frameworks can guarantee the success of blockchain implementation have been revealed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain%20technology" title="blockchain technology">blockchain technology</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20and%20medium%20enterprises" title=" small and medium enterprises"> small and medium enterprises</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20traceability" title=" food traceability"> food traceability</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain%20architecture" title=" blockchain architecture"> blockchain architecture</a> </p> <a href="https://publications.waset.org/abstracts/155034/food-traceability-for-small-and-medium-enterprises-using-blockchain-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Food Traceability System: Current State and Future Needs of the Nigerian Poultry and Poultry Product Supply Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadiza%20Kabir%20Bako">Hadiza Kabir Bako</a>, <a href="https://publications.waset.org/abstracts/search?q=Munir%20Abba%20Dandago"> Munir Abba Dandago</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fright of food-borne diseases as a result of animal health across the globe is creating the need for origin confirmation, safety of food and method of identification of food produce within the supply chain. In this paper, we investigated two commercial and one backyard poultry farm; live poultry, poultry meat and egg. We propose various implementation options for the poultry traceability system with respect to trace and track, and food recall and withdrawal requirements. With the intention that farmers, Investors or Regulatory agencies would find it useful for the Nigerian poultry sector and we highlight the future needs and challenges that lie ahead in the two most significant system of poultry production in Nigeria: the commercial poultry and backyard breeding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=farm" title="farm">farm</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title=" food safety"> food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20traceability" title=" food traceability"> food traceability</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry" title=" poultry"> poultry</a> </p> <a href="https://publications.waset.org/abstracts/103666/food-traceability-system-current-state-and-future-needs-of-the-nigerian-poultry-and-poultry-product-supply-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> A Traceability Index for Food</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hari%20Pulapaka">Hari Pulapaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper defines and develops the notion of a traceability index for food and may be used by any consumer (restaurant, distributor, average consumer etc.). The concept is then extended to a region's food system as a way to measure how well a regional food system utilizes its own bounty or at least, is connected to its food sources. With increasing emphases on the sustainability of aspects of regional and ultimately, the global food system, it is reasonable to accept that if we know how close (in relative terms) an end-user of a set of ingredients (as they traverse through the maze of supply chains) is from the sources, we may be better equipped to evaluate the quality of the set as measured by any number of qualitative and quantitative criteria. We propose a mathematical model which may be adapted to a number of contexts and sizes. Two hypothetical cases of different scope are presented which highlight how the model works as an evaluator of steps between an end-user and the source(s) of the ingredients they consume. The variables in the model are flexible enough to be adapted to other applications beyond food systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food" title="food">food</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a> </p> <a href="https://publications.waset.org/abstracts/48567/a-traceability-index-for-food" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Stakeholder Mapping and Requirements Identification for Improving Traceability in the Halal Food Supply Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laila%20A.%20H.%20F.%20Dashti">Laila A. H. F. Dashti</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%20Jackson"> Tom Jackson</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20West"> Andrew West</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Jackson"> Lisa Jackson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traceability systems are important in the agri-food and halal food sectors for monitoring ingredient movements, tracking sources, and ensuring food integrity. However, designing a traceability system for the halal food supply chain is challenging due to diverse stakeholder requirements and complex needs. Existing literature on stakeholder mapping and identifying requirements for halal food supply chains is limited. To address this gap, a pilot study was conducted to identify the objectives, requirements, and recommendations of stakeholders in the Kuwaiti halal food industry. The study collected data through semi-structured interviews with an international halal food manufacturer based in Kuwait. The aim was to gain a deep understanding of stakeholders' objectives, requirements, processes, and concerns related to the design of a traceability system in the country's halal food sector. Traceability systems are being developed and tested in the agri-food and halal food sectors due to their ability to monitor ingredient movements, track sources, and detect potential issues related to food integrity. Designing a traceability system for the halal food supply chain poses significant challenges due to diverse stakeholder requirements and the complexity of their needs (including varying food ingredients, different sources, destinations, supplier processes, certifications, etc.). Achieving a halal food traceability solution tailored to stakeholders' requirements within the supply chain necessitates prior knowledge of these needs. Although attempts have been made to address design-related issues in traceability systems, literature on stakeholder mapping and identification of requirements specific to halal food supply chains is scarce. Thus, this pilot study aims to identify the objectives, requirements, and recommendations of stakeholders in the halal food industry. The paper presents insights gained from the pilot study, which utilized semi-structured interviews to collect data from a Kuwait-based international halal food manufacturer. The objective was to gain an in-depth understanding of stakeholders' objectives, requirements, processes, and concerns pertaining to the design of a traceability system in Kuwait's halal food sector. The stakeholder mapping results revealed that government entities, food manufacturers, retailers, and suppliers are key stakeholders in Kuwait's halal food supply chain. Lessons learned from this pilot study regarding requirement capture for traceability systems include the need to streamline communication, focus on communication at each level of the supply chain, leverage innovative technologies to enhance process structuring and operations and reduce halal certification costs. The findings also emphasized the limitations of existing traceability solutions, such as limited cooperation and collaboration among stakeholders, high costs of implementing traceability systems without government support, lack of clarity regarding product routes, and disrupted communication channels between stakeholders. These findings contribute to a broader research program aimed at developing a stakeholder requirements framework that utilizes "business process modelling" to establish a unified model for traceable stakeholder requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title="supply chain">supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability%20system" title=" traceability system"> traceability system</a>, <a href="https://publications.waset.org/abstracts/search?q=halal%20food" title=" halal food"> halal food</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholders%E2%80%99%20requirements" title=" stakeholders’ requirements"> stakeholders’ requirements</a> </p> <a href="https://publications.waset.org/abstracts/164694/stakeholder-mapping-and-requirements-identification-for-improving-traceability-in-the-halal-food-supply-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> A Supply Chain Traceability Improvement Using RFID</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaser%20Miaji">Yaser Miaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sabbagh"> Mohammad Sabbagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radio Frequency Identification (RFID) is a technology which shares a similar concept with bar code. With RFID, the electromagnetic or electrostatic coupling in the RF portion of the electromagnetic spectrum is used to transmit signals. Supply chain management is aimed to keep going long-term performance of individual companies and the overall supply chain by maximizing customer satisfaction with minimum costs. One of the major issues in the supply chain management is product loss or shrinkage. In order to overcome this problem, this system which uses Radio Frequency Identification (RFID) technology will be able to RFID track and identify where losses are occurring and enable effective traceability. RFID brings a new dimension to supply chain management by providing a more efficient way of being able to identify and track items at the various stages throughout the supply chain. This system has been developed and tested to prove that RFID technology can be used to improve traceability in supply chain at low cost. Due to its simplicity in interface program and database management system using Visual Basic and MS Excel or MS Access the system can be more affordable and implemented even by small and medium scale industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title="supply chain">supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID" title=" RFID"> RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=tractability" title=" tractability"> tractability</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20identification" title=" radio frequency identification"> radio frequency identification</a> </p> <a href="https://publications.waset.org/abstracts/26843/a-supply-chain-traceability-improvement-using-rfid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angelo%20Corallo">Angelo Corallo</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Elena%20Latino"> Maria Elena Latino</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Menegoli"> Marta Menegoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agri-food value chain involves various stakeholders with different roles. All of them abide by national and international rules and leverage marketing strategies to advance their products. Food products and related processing phases carry with it a big mole of data that are often not used to inform final customer. Some data, if fittingly identified and used, can enhance the single company, and/or the all supply chain creates a math between marketing techniques and voluntary traceability strategies. Moreover, as of late, the world has seen buying-models’ modification: customer is careful on wellbeing and food quality. Food citizenship and food democracy was born, leveraging on transparency, sustainability and food information needs. Internet of Things (IoT) and Analytics, some of the innovative technologies of Industry 4.0, have a significant impact on market and will act as a main thrust towards a genuine ‘4.0 change’ for agriculture. But, realizing a traceability system is not simple because of the complexity of agri-food supply chain, a lot of actors involved, different business models, environmental variations impacting products and/or processes, and extraordinary climate changes. In order to give support to the company involved in a traceability path, starting from business model analysis and related business process a Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability was conceived. Studying each process task and leveraging on modeling techniques lead to individuate information held by different actors during agri-food supply chain. IoT technologies for data collection and Analytics techniques for data processing supply information useful to increase the efficiency intra-company and competitiveness in the market. The whole information recovered can be shown through IT solutions and mobile application to made accessible to the company, the entire supply chain and the consumer with the view to guaranteeing transparency and quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture%204.0" title="agriculture 4.0">agriculture 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=agri-food%20suppy%20chain" title=" agri-food suppy chain"> agri-food suppy chain</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=voluntary%20traceability" title=" voluntary traceability"> voluntary traceability</a> </p> <a href="https://publications.waset.org/abstracts/86954/from-industry-40-to-agriculture-40-a-framework-to-manage-product-data-in-agri-food-supply-chain-for-voluntary-traceability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Food Safety and Quality Assurance and Skills Development among Farmers in Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kakha%20Nadiardze">Kakha Nadiardze</a>, <a href="https://publications.waset.org/abstracts/search?q=Nana%20Phirosmanashvili"> Nana Phirosmanashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this paper is to present the problems of lack of information among farmers in food safety. Global food supply chains are becoming more and more diverse, making traceability systems much harder to implement across different food markets. In this abstract, we will present our work for analyzing the key developments in Georgian food market from regulatory controls to administrative procedures to traceability technologies. Food safety and quality assurance are most problematic issues in Georgia as food trade networks become more and more complex, food businesses are under more and more pressure to ensure that their products are safe and authentic. The theme follow-up principles from farm to table must be top-of-mind for all food manufacturers, farmers and retailers. Following the E. coli breakout last year, as well as more recent cases of food mislabeling, developments in food traceability systems is essential to food businesses if they are to present a credible brand image. Alongside this are the ever-developing technologies in food traceability networks, technologies that manufacturers and retailers need to be aware of if they are to keep up with food safety regulations and avoid recall. How to examine best practice in food management is the main question in order to protect company brand through safe and authenticated food. We are working with our farmers to work with our food safety experts and technology developers throughout the food supply chain. We provide time by time food analyses on heavy metals, pesticide residues and different pollutants. We are disseminating information among farmers how the latest food safety regulations will impact the methods to use to identify risks within their products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title="food safety">food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=GMO" title=" GMO"> GMO</a>, <a href="https://publications.waset.org/abstracts/search?q=LMO" title=" LMO"> LMO</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/7270/food-safety-and-quality-assurance-and-skills-development-among-farmers-in-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Manufacturing and Calibration of Material Standards for Optical Microscopy in Industrial Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alberto%20M%C3%ADnguez-Mart%C3%ADnez">Alberto Mínguez-Martínez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jes%C3%BAs%20De%20Vicente%20Y%20Oliva"> Jesús De Vicente Y Oliva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It seems that we live in a world in which the trend in industrial environments is the miniaturization of systems and materials and the fabrication of parts at the micro-and nano-scale. The problem arises when manufacturers want to study the quality of their production. This characteristic is becoming crucial due to the evolution of the industry and the development of Industry 4.0. As Industry 4.0 is based on digital models of production and processes, having accurate measurements becomes capital. At this point, the metrology field plays an important role as it is a powerful tool to ensure more stable production to reduce scrap and the cost of non-conformities. The most extended measuring instruments that allow us to carry out accurate measurements at these scales are optical microscopes, whether they are traditional, confocal, focus variation microscopes, profile projectors, or any other similar measurement system. However, the accuracy of measurements is connected to the traceability of them to the SI unit of length (the meter). The fact of providing adequate traceability to 2D and 3D dimensional measurements at micro-and nano-scale in industrial environments is a problem that is being studied, and it does not have a unique answer. In addition, if commercial material standards for micro-and nano-scale are considered, we can find that there are two main problems. On the one hand, those material standards that could be considered complete and very interesting do not give traceability of dimensional measurements and, on the other hand, their calibration is very expensive. This situation implies that these kinds of standards will not succeed in industrial environments and, as a result, they will work in the absence of traceability. To solve this problem in industrial environments, it becomes necessary to have material standards that are easy to use, agile, adaptive to different forms, cheap to manufacture and, of course, traceable to the definition of meter with simple methods. By using these ‘customized standards’, it would be possible to adapt and design measuring procedures for each application and manufacturers will work with some traceability. It is important to note that, despite the fact that this traceability is clearly incomplete, this situation is preferable to working in the absence of it. Recently, it has been demonstrated the versatility and the utility of using laser technology and other AM technologies to manufacture customized material standards. In this paper, the authors propose to manufacture a customized material standard using an ultraviolet laser system and a method to calibrate it. To conclude, the results of the calibration carried out in an accredited dimensional metrology laboratory are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20environment" title="industrial environment">industrial environment</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20standards" title=" material standards"> material standards</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20measuring%20instrument" title=" optical measuring instrument"> optical measuring instrument</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a> </p> <a href="https://publications.waset.org/abstracts/145967/manufacturing-and-calibration-of-material-standards-for-optical-microscopy-in-industrial-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Impact Analysis Based on Change Requirement Traceability in Object Oriented Software Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Tumkur%20Dakshinamurthy">Sunil Tumkur Dakshinamurthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamootil%20Zachariah%20Kurian"> Mamootil Zachariah Kurian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Change requirement traceability in object oriented software systems is one of the challenging areas in research. We know that the traces between links of different artifacts are to be automated or semi-automated in the software development life cycle (SDLC). The aim of this paper is discussing and implementing aspects of dynamically linking the artifacts such as requirements, high level design, code and test cases through the Extensible Markup Language (XML) or by dynamically generating Object Oriented (OO) metrics. Also, non-functional requirements (NFR) aspects such as stability, completeness, clarity, validity, feasibility and precision are discussed. We discuss this as a Fifth Taxonomy, which is a system vulnerability concern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artifacts" title="artifacts">artifacts</a>, <a href="https://publications.waset.org/abstracts/search?q=NFRs" title=" NFRs"> NFRs</a>, <a href="https://publications.waset.org/abstracts/search?q=OO%20metrics" title=" OO metrics"> OO metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=SDLC" title=" SDLC"> SDLC</a>, <a href="https://publications.waset.org/abstracts/search?q=XML" title=" XML"> XML</a> </p> <a href="https://publications.waset.org/abstracts/58275/impact-analysis-based-on-change-requirement-traceability-in-object-oriented-software-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Money Laundering and Governance in Cryptocurrencies: The Double-Edged Sword of Blockchain Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiaqi%20Yan">Jiaqi Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yani%20Shi"> Yani Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the growing popularity of bitcoin transactions, criminals have exploited the bitcoin like cryptocurrencies, and cybercriminals such as money laundering have thrived. Unlike traditional currencies, the Internet-based virtual currencies can be used anonymously via the blockchain technology underpinning. In this paper, we analyze the double-edged sword features of blockchain technology in the context of money laundering. In particular, the traceability feature of blockchain-based system facilitates a level of governance, while the decentralization feature of blockchain-based system may bring governing difficulties. Based on the analysis, we propose guidelines for policy makers in governing blockchain-based cryptocurrency systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryptocurrency" title="cryptocurrency">cryptocurrency</a>, <a href="https://publications.waset.org/abstracts/search?q=money%20laundering" title=" money laundering"> money laundering</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralization" title=" decentralization"> decentralization</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a> </p> <a href="https://publications.waset.org/abstracts/88352/money-laundering-and-governance-in-cryptocurrencies-the-double-edged-sword-of-blockchain-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Consumer Utility Analysis of Halal Certification on Beef Using Discrete Choice Experiment: A Case Study in the Netherlands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosa%20Amalia%20Safitri">Rosa Amalia Safitri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ine%20van%20der%20Fels-Klerx"> Ine van der Fels-Klerx</a>, <a href="https://publications.waset.org/abstracts/search?q=Henk%20Hogeveen"> Henk Hogeveen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Halal is a dietary law observed by people following Islamic faith. It is considered as a type of credence food quality which cannot be easily assured by consumers even upon and after consumption. Therefore, Halal certification takes place as a practical tool for the consumers to make an informed choice particularly in a non-Muslim majority country, including the Netherlands. Discrete choice experiment (DCE) was employed in this study for its ability to assess the importance of attributes attached to Halal beef in the Dutch market and to investigate consumer utilities. Furthermore, willingness to pay (WTP) for the desired Halal certification was estimated. Four most relevant attributes were selected, i.e., the slaughter method, traceability information, place of purchase, and Halal certification. Price was incorporated as an attribute to allow estimation of willingness to pay for Halal certification. There were 242 Muslim respondents who regularly consumed Halal beef completed the survey, from Dutch (53%) and non-Dutch consumers living in the Netherlands (47%). The vast majority of the respondents (95%) were within the age of 18-45 years old, with the largest group being student (43%) followed by employee (30%) and housewife (12%). Majority of the respondents (76%) had disposable monthly income less than € 2,500, while the rest earned more than € 2,500. The respondents assessed themselves of having good knowledge of the studied attributes, except for traceability information with 62% of the respondents considered themselves not knowledgeable. The findings indicated that slaughter method was valued as the most important attribute, followed by Halal certificate, place of purchase, price, and traceability information. This order of importance varied across sociodemographic variables, except for the slaughter method. Both Dutch and non-Dutch subgroups valued Halal certification as the third most important attributes. However, non-Dutch respondents valued it with higher importance (0,20) than their Dutch counterparts (0,16). For non-Dutch, the price was more important than Halal certification. The ideal product preferred by the consumers indicated the product serving the highest utilities for consumers, and characterized by beef obtained without pre-slaughtering stunning, with traceability info, available at Halal store, certified by an official certifier, and sold at 2.75 € per 500 gr. In general, an official Halal certifier was mostly preferred. However, consumers were not willing to pay for premium for any type of Halal certifiers, indicated by negative WTP of -0.73 €, -0.93 €, and -1,03€ for small, official, and international certifiers, respectively. This finding indicated that consumers tend to lose their utility when confronted with price. WTP estimates differ across socio-demographic variables with male and non-Dutch respondents had the lowest WTP. The unfamiliarity to traceability information might cause respondents to perceive it as the least important attribute. In the context of Halal certified meat, adding traceability information into meat packaging can serve two functions, first consumers can justify for themselves whether the processes comply with Halal requirements, for example, the use of pre-slaughtering stunning, and secondly to assure its safety. Therefore, integrating traceability info into meat packaging can help to make informed decision for both Halal status and food safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumer%20utilities" title="consumer utilities">consumer utilities</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20choice%20experiments" title=" discrete choice experiments"> discrete choice experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=Halal%20certification" title=" Halal certification"> Halal certification</a>, <a href="https://publications.waset.org/abstracts/search?q=willingness%20to%20pay" title=" willingness to pay"> willingness to pay</a> </p> <a href="https://publications.waset.org/abstracts/99773/consumer-utility-analysis-of-halal-certification-on-beef-using-discrete-choice-experiment-a-case-study-in-the-netherlands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Development of the Integrated Quality Management System of Cooked Sausage Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liubov%20Lutsyshyn">Liubov Lutsyshyn</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaroslava%20Zhukova"> Yaroslava Zhukova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past twenty years, there has been a drastic change in the mode of nutrition in many countries which has been reflected in the development of new products, production techniques, and has also led to the expansion of sales markets for food products. Studies have shown that solution of the food safety problems is almost impossible without the active and systematic activity of organizations directly involved in the production, storage and sale of food products, as well as without management of end-to-end traceability and exchange of information. The aim of this research is development of the integrated system of the quality management and safety assurance based on the principles of HACCP, traceability and system approach with creation of an algorithm for the identification and monitoring of parameters of technological process of manufacture of cooked sausage products. Methodology of implementation of the integrated system based on the principles of HACCP, traceability and system approach during the manufacturing of cooked sausage products for effective provision for the defined properties of the finished product has been developed. As a result of the research evaluation technique and criteria of performance of the implementation and operation of the system of the quality management and safety assurance based on the principles of HACCP have been developed and substantiated. In the paper regularities of influence of the application of HACCP principles, traceability and system approach on parameters of quality and safety of the finished product have been revealed. In the study regularities in identification of critical control points have been determined. The algorithm of functioning of the integrated system of the quality management and safety assurance has also been described and key requirements for the development of software allowing the prediction of properties of finished product, as well as the timely correction of the technological process and traceability of manufacturing flows have been defined. Based on the obtained results typical scheme of the integrated system of the quality management and safety assurance based on HACCP principles with the elements of end-to-end traceability and system approach for manufacture of cooked sausage products has been developed. As a result of the studies quantitative criteria for evaluation of performance of the system of the quality management and safety assurance have been developed. A set of guidance documents for the implementation and evaluation of the integrated system based on the HACCP principles in meat processing plants have also been developed. On the basis of the research the effectiveness of application of continuous monitoring of the manufacturing process during the control on the identified critical control points have been revealed. The optimal number of critical control points in relation to the manufacture of cooked sausage products has been substantiated. The main results of the research have been appraised during 2013-2014 under the conditions of seven enterprises of the meat processing industry and have been implemented at JSC «Kyiv meat processing plant». <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooked%20sausage%20products" title="cooked sausage products">cooked sausage products</a>, <a href="https://publications.waset.org/abstracts/search?q=HACCP" title=" HACCP"> HACCP</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20management" title=" quality management"> quality management</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20assurance" title=" safety assurance"> safety assurance</a> </p> <a href="https://publications.waset.org/abstracts/54071/development-of-the-integrated-quality-management-system-of-cooked-sausage-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Governance Framework for an Emerging Trust Ecosystem with a Blockchain-Based Supply Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismael%20%C3%81vila">Ismael Ávila</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Reynaldo%20F.%20Filho"> José Reynaldo F. Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasco%20Varanda%20Picchi"> Vasco Varanda Picchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ever-growing consumer awareness of food provenance in Brazil is driving the creation of a trusted ecosystem around the animal protein supply chain. The traceability and accountability requirements of such an ecosystem demand a blockchain layer to strengthen the weak links in that chain. For that, direct involvement of the companies in the blockchain transactions, including as validator nodes of the network, implies formalizing a partnership with the consortium behind the ecosystem. Yet, their compliance standards usually require that a formal governance structure is in place before they agree with any membership terms. In light of such a strategic role of blockchain governance, the paper discusses a framework for tailoring a governance model for a blockchain-based solution aimed at the meat supply chain and evaluates principles and attributes in terms of their relevance to the development of a robust trust ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=governance" title=" governance"> governance</a>, <a href="https://publications.waset.org/abstracts/search?q=trust%20ecosystem" title=" trust ecosystem"> trust ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a> </p> <a href="https://publications.waset.org/abstracts/153296/governance-framework-for-an-emerging-trust-ecosystem-with-a-blockchain-based-supply-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Design of Wireless and Traceable Sensors for Internally Illuminated Photoreactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Sutor">Alexander Sutor</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Demetz"> David Demetz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present methods for developing wireless and traceable sensors for photobioreactors or photoreactors in general. The main focus of application are reactors which are wirelessly powered. Due to the promising properties of the propagation of magnetic fields under water we implemented an inductive link with an on/off switched hartley-oscillator as transmitter and an LC-tank as receiver. For this inductive link we used a carrier frequency of 298 kHz. With this system we performed measurements to demonstrate the independence of the magnetic field from water or salty water. In contrast we showed the strongly reduced range of RF-transmitter-receiver systems at higher frequencies (433 MHz and 2.4 GHz) in water and in salty water. For implementing the traceability of the sensors, we performed measurements to show the well defined orientation of the magnetic field of a coil. This information will be used in future work for implementing an inductive link based traceability system for our sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensors" title="wireless sensors">wireless sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=photoreactor" title=" photoreactor"> photoreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20illumination" title=" internal illumination"> internal illumination</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20power" title=" wireless power"> wireless power</a> </p> <a href="https://publications.waset.org/abstracts/109796/design-of-wireless-and-traceable-sensors-for-internally-illuminated-photoreactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Blockchain Technology in Supply Chain Management: A Systematic Review And Meta-Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Yousuf%20Khan">Mohammad Yousuf Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavya%20Alankar"> Bhavya Alankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blockchain is a promising technology with its features such as immutability and decentralized database. It has applications in various fields such as pharmaceutical, finance, & the food industry. At the core of its heart lies its feature, traceability which is the most desired key in supply chains. However, supply chains have always been hit rock bottom by scandals and controversies. In this review paper, we have explored the advancement and research gaps of blockchain technology (BT) in supply chain management (SCM). We have used the Prisma framework for systematic literature review (SLR) and included a minuscule amount of grey literature to reduce publication bias. We found that supply chain traceability and transparency is the most researched objective in SCM. There was hardly any research in supply chain resilience. Further, we found that 40 % of the papers were application based. Most articles have focused on the advantages of BT, rather than analyzing it critically. This study will help identify gaps and suitable actions to be followed for an efficient implementation of BT in SCM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain%20technology" title="blockchain technology">blockchain technology</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20transparency" title=" supply chain transparency"> supply chain transparency</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20resilience" title=" supply chain resilience"> supply chain resilience</a> </p> <a href="https://publications.waset.org/abstracts/137397/blockchain-technology-in-supply-chain-management-a-systematic-review-and-meta-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Cloud Based Supply Chain Traceability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kedar%20J.%20Mahadeshwar">Kedar J. Mahadeshwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concept introduction: This paper talks about how an innovative cloud based analytics enabled solution that could address a major industry challenge that is approaching all of us globally faster than what one would think. The world of supply chain for drugs and devices is changing today at a rapid speed. In the US, the Drug Supply Chain Security Act (DSCSA) is a new law for Tracing, Verification and Serialization phasing in starting Jan 1, 2015 for manufacturers, repackagers, wholesalers and pharmacies / clinics. Similarly we are seeing pressures building up in Europe, China and many countries that would require an absolute traceability of every drug and device end to end. Companies (both manufacturers and distributors) can use this opportunity not only to be compliant but to differentiate themselves over competition. And moreover a country such as UAE can be the leader in coming up with a global solution that brings innovation in this industry. Problem definition and timing: The problem of counterfeit drug market, recognized by FDA, causes billions of dollars loss every year. Even in UAE, the concerns over prevalence of counterfeit drugs, which enter through ports such as Dubai remains a big concern, as per UAE pharma and healthcare report, Q1 2015. Distribution of drugs and devices involves multiple processes and systems that do not talk to each other. Consumer confidence is at risk due to this lack of traceability and any leading provider is at risk of losing its reputation. Globally there is an increasing pressure by government and regulatory bodies to trace serial numbers and lot numbers of every drug and medical devices throughout a supply chain. Though many of large corporations use some form of ERP (enterprise resource planning) software, it is far from having a capability to trace a lot and serial number beyond the enterprise and making this information easily available real time. Solution: The solution here talks about a service provider that allows all subscribers to take advantage of this service. The solution allows a service provider regardless of its physical location, to host this cloud based traceability and analytics solution of millions of distribution transactions that capture lots of each drug and device. The solution platform will capture a movement of every medical device and drug end to end from its manufacturer to a hospital or a doctor through a series of distributor or retail network. The platform also provides advanced analytics solution to do some intelligent reporting online. Why Dubai? Opportunity exists with huge investment done in Dubai healthcare city also with using technology and infrastructure to attract more FDI to provide such a service. UAE and countries similar will be facing this pressure from regulators globally in near future. But more interestingly, Dubai can attract such innovators/companies to run and host such a cloud based solution and become a hub of such traceability globally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud" title="cloud">cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical" title=" pharmaceutical"> pharmaceutical</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking" title=" tracking "> tracking </a> </p> <a href="https://publications.waset.org/abstracts/25408/cloud-based-supply-chain-traceability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Calibration of 2D and 3D Optical Measuring Instruments in Industrial Environments at Submillimeter Range</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alberto%20M%C3%ADnguez-Mart%C3%ADnez">Alberto Mínguez-Martínez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jes%C3%BAs%20de%20Vicente%20y%20Oliva"> Jesús de Vicente y Oliva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern manufacturing processes have led to the miniaturization of systems and, as a result, parts at the micro-and nanoscale are produced. This trend seems to become increasingly important in the near future. Besides, as a requirement of Industry 4.0, the digitalization of the models of production and processes makes it very important to ensure that the dimensions of newly manufactured parts meet the specifications of the models. Therefore, it is possible to reduce the scrap and the cost of non-conformities, ensuring the stability of the production at the same time. To ensure the quality of manufactured parts, it becomes necessary to carry out traceable measurements at scales lower than one millimeter. Providing adequate traceability to the SI unit of length (the meter) to 2D and 3D measurements at this scale is a problem that does not have a unique solution in industrial environments. Researchers in the field of dimensional metrology all around the world are working on this issue. A solution for industrial environments, even if it is not complete, will enable working with some traceability. At this point, we believe that the study of the surfaces could provide us with a first approximation to a solution. Among the different options proposed in the literature, the areal topography methods may be the most relevant because they could be compared to those measurements performed using Coordinate Measuring Machines (CMM’s). These measuring methods give (x, y, z) coordinates for each point, expressing it in two different ways, either expressing the z coordinate as a function of x, denoting it as z(x), for each Y-axis coordinate, or as a function of the x and y coordinates, denoting it as z (x, y). Between others, optical measuring instruments, mainly microscopes, are extensively used to carry out measurements at scales lower than one millimeter because it is a non-destructive measuring method. In this paper, the authors propose a calibration procedure for the scales of optical measuring instruments, particularizing for a confocal microscope, using material standards easy to find and calibrate in metrology and quality laboratories in industrial environments. Confocal microscopes are measuring instruments capable of filtering the out-of-focus reflected light so that when it reaches the detector, it is possible to take pictures of the part of the surface that is focused. Varying and taking pictures at different Z levels of the focus, a specialized software interpolates between the different planes, and it could reconstruct the surface geometry into a 3D model. As it is easy to deduce, it is necessary to give traceability to each axis. As a complementary result, the roughness Ra parameter will be traced to the reference. Although the solution is designed for a confocal microscope, it may be used for the calibration of other optical measuring instruments by applying minor changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20environment" title="industrial environment">industrial environment</a>, <a href="https://publications.waset.org/abstracts/search?q=confocal%20microscope" title=" confocal microscope"> confocal microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20measuring%20instrument" title=" optical measuring instrument"> optical measuring instrument</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a> </p> <a href="https://publications.waset.org/abstracts/146140/calibration-of-2d-and-3d-optical-measuring-instruments-in-industrial-environments-at-submillimeter-range" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Mapping Feature Models to Code Using a Reference Architecture: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karam%20Ignaim">Karam Ignaim</a>, <a href="https://publications.waset.org/abstracts/search?q=Joao%20M.%20Fernandes"> Joao M. Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20L.%20Ferreira"> Andre L. Ferreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mapping the artifacts coming from a set of similar products family developed in an ad-hoc manner to make up the resulting software product line (SPL) plays a key role to maintain the consistency between requirements and code. This paper presents a feature mapping approach that focuses on tracing the artifact coming from the migration process, the current feature model (FM), to the other artifacts of the resulting SPL, the reference architecture, and code. Thus, our approach relates each feature of the current FM to its locations in the implementation code, using the reference architecture as an intermediate artifact (as a centric point) to preserve consistency among them during an SPL evolution. The approach uses a particular artifact (i.e., traceability tree) as a solution for managing the mapping process. Tool support is provided using friendlyMapper. We have evaluated the feature mapping approach and tool support by putting the approach into practice (i.e., conducting a case study) of the automotive domain for Classical Sensor Variants Family at Bosch Car Multimedia S.A. The evaluation reveals that the mapping approach presented by this paper fits the automotive domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20location" title="feature location">feature location</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20models" title=" feature models"> feature models</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20product%20lines" title=" software product lines"> software product lines</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a> </p> <a href="https://publications.waset.org/abstracts/133113/mapping-feature-models-to-code-using-a-reference-architecture-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Agri-Food Transparency and Traceability: A Marketing Tool to Satisfy Consumer Awareness Needs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angelo%20%20Corallo">Angelo Corallo</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Elena%20Latino"> Maria Elena Latino</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Menegoli"> Marta Menegoli </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The link between man and food plays, in the social and economic system, a central role where cultural and multidisciplinary aspects intertwine: food is not only nutrition, but also communication, culture, politics, environment, science, ethics, fashion. This multi-dimensionality has many implications in the food economy. In recent years, the consumer became more conscious about his food choices, involving a consistent change in consumption models. This change concerns several aspects: awareness of food system issues, employment of socially and environmentally conscious decision-making, food choices based on different characteristics than nutritional ones i.e. origin of food, how it’s produced, and who’s producing it. In this frame the ‘consumption choices’ and the ‘interests of the citizen’ become one part of the others. The figure of the ‘Citizen Consumer’ is born, a responsible and ethically motivated individual to change his lifestyle, achieving the goal of sustainable consumption. Simultaneously the branding, that before was guarantee of the product quality, today is questioned. In order to meet these needs, Agri-Food companies are developing specific product lines that follow two main philosophies: ‘Back to basics’ and ‘Less is more’. However, the issue of ethical behavior does not seem to find an adequate on market offer. Most likely due to a lack of attention on the communication strategy used, very often based on market logic and rarely on ethical one. The label in its classic concept of ‘clean labeling’ can no longer be the only instrument through which to convey product information and its evolution towards a concept of ‘clear label’ is necessary to embrace ethical and transparent concepts in progress the process of democratization of the Food System. The implementation of a voluntary traceability path, relying on the technological models of the Internet of Things or Industry 4.0, would enable the Agri-Food Supply Chain to collect data that, if properly treated, could satisfy the information need of consumers. A change of approach is therefore proposed towards Agri-Food traceability that is no longer intended as a tool to be used to respond to the legislator, but rather as a promotional tool useful to tell the company in a transparent manner and then reach the slice of the market of food citizens. The use of mobile technology can also facilitate this information transfer. However, in order to guarantee maximum efficiency, an appropriate communication model based on the ethical communication principles should be used, which aims to overcome the pipeline communication model, to offer the listener a new way of telling the food product, based on real data collected through processes traceability. The Citizen Consumer is therefore placed at the center of the new model of communication in which he has the opportunity to choose what to know and how. The new label creates a virtual access point capable of telling the product according to different point of views, following the personal interests and offering the possibility to give several content modalities to support different situations and usability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agri%20food%20traceability" title="agri food traceability">agri food traceability</a>, <a href="https://publications.waset.org/abstracts/search?q=agri-food%20transparency" title=" agri-food transparency"> agri-food transparency</a>, <a href="https://publications.waset.org/abstracts/search?q=clear%20label" title=" clear label"> clear label</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20system" title=" food system"> food system</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title=" internet of things"> internet of things</a> </p> <a href="https://publications.waset.org/abstracts/86955/agri-food-transparency-and-traceability-a-marketing-tool-to-satisfy-consumer-awareness-needs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> European Drug Serialization: Securing the Pharmaceutical Drug Supply Chain from Counterfeiters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikram%20Chowdhary">Vikram Chowdhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Vins"> Marek Vins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The profitability of the pharmaceutical drug business has attracted considerable interest, but it also faces significant challenges. Counterfeiters take advantage of the industry's vulnerabilities, which are further exacerbated by the globalization of the market, online trading, and complex supply chains. Governments and organizations worldwide are dedicated to creating a secure environment that ensures a consistent and genuine supply of pharmaceutical products. In 2019, the European authorities implemented regulation EU 2016/161 to strengthen traceability and transparency throughout the entire drug supply chain. This regulation requires the addition of enhanced security features, such as serializing items to the saleable unit level or individual packs. Despite these efforts, the incidents of pharmaceutical counterfeiting continue to rise globally, with regulated territories being particularly affected. This paper examines the effectiveness of the drug serialization system implemented by European authorities. By conducting a systematic literature review, we assess the implementation of drug serialization and explore the potential benefits of integrating emerging digital technologies, such as RFID and Blockchain, to improve traceability and management. The objective is to fortify pharmaceutical supply chains against counterfeiters and manipulators and ensure their security. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=counterfeit%20drugs" title=" counterfeit drugs"> counterfeit drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=EU%20drug%20serialization" title=" EU drug serialization"> EU drug serialization</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20industry" title=" pharmaceutical industry"> pharmaceutical industry</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID" title=" RFID"> RFID</a> </p> <a href="https://publications.waset.org/abstracts/167784/european-drug-serialization-securing-the-pharmaceutical-drug-supply-chain-from-counterfeiters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Deployment of a Product Lifecyle Management (PLM) Solution Towards Digital Transformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmae%20Chraibi">Asmae Chraibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Lghoul"> Rachid Lghoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Rhiati"> Nabil Rhiati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the era of Industry 4.0, enterprises are increasingly employing digital technologies in order to improve their product development processes. This research focuses on the strategic deployment of Product Lifecycle Management (PLM) solutions during production as a key tracker of traceability and digital transformation activities. The study explores the integration of PLM within a larger organizational framework, examining its impact on product lifecycle efficiency, corporation, and innovation. Through a comprehensive analysis of a real case study from the automotive industry, this project evaluates the critical success factors and challenges associated with implementing PLM solutions for digital transformation. Moreover, it explores the synergic relationship between PLM and emerging technologies such as 3D experience and SOLIDWORKS, elucidating their combined potential in optimizing production workflows and enabling data-driven decision-making. The study's findings provide global approaches for firms looking to embark on a digital transformation journey by implementing PLM technologies. This research contributes to a better understanding of how PLM can be effectively used to foster innovation and competitiveness in the changing landscape of modern industry by shining light on best practices, critical considerations, and potential obstacles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=product%20lifecyle%20management%20%28PLM%29" title="product lifecyle management (PLM)">product lifecyle management (PLM)</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=traceability" title=" traceability"> traceability</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20transformation" title=" digital transformation"> digital transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=solution" title=" solution"> solution</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20experience" title=" 3D experience"> 3D experience</a>, <a href="https://publications.waset.org/abstracts/search?q=SOLIDWORKS" title=" SOLIDWORKS"> SOLIDWORKS</a> </p> <a href="https://publications.waset.org/abstracts/175557/deployment-of-a-product-lifecyle-management-plm-solution-towards-digital-transformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Development of an Intelligent Decision Support System for Smart Viticulture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Balaceanu">C. M. Balaceanu</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Suciu"> G. Suciu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Bosoc"> C. S. Bosoc</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Orza"> O. Orza</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Fernandez"> C. Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Viniczay"> Z. Viniczay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Internet of Things (IoT) represents the best option for smart vineyard applications, even if it is necessary to integrate the technologies required for the development. This article is based on the research and the results obtained in the DISAVIT project. For Smart Agriculture, the project aims to provide a trustworthy, intelligent, integrated vineyard management solution that is based on the IoT. To have interoperability through the use of a multiprotocol technology (being the future connected wireless IoT) it is necessary to adopt an agnostic approach, providing a reliable environment to address cyber security, IoT-based threats and traceability through blockchain-based design, but also creating a concept for long-term implementations (modular, scalable). The ones described above represent the main innovative technical aspects of this project. The DISAVIT project studies and promotes the incorporation of better management tools based on objective data-based decisions, which are necessary for agriculture adapted and more resistant to climate change. It also exploits the opportunities generated by the digital services market for smart agriculture management stakeholders. The project's final result aims to improve decision-making, performance, and viticulturally infrastructure and increase real-time data accuracy and interoperability. Innovative aspects such as end-to-end solutions, adaptability, scalability, security and traceability, place our product in a favorable situation over competitors. None of the solutions in the market meet every one of these requirements by a unique product being innovative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20agriculture" title=" smart agriculture"> smart agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=vineyard" title=" vineyard"> vineyard</a> </p> <a href="https://publications.waset.org/abstracts/127594/development-of-an-intelligent-decision-support-system-for-smart-viticulture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Challenges and Recommendations for Medical Device Tracking and Traceability in Singapore: A Focus on Nursing Practices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuang%20Yiwen">Zhuang Yiwen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper examines the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. One of the major challenges identified is the lack of a standard coding system for medical devices, which makes it difficult to track them effectively. The paper suggests the use of the Unique Device Identifier (UDI) as a single standard for medical devices to improve tracking and reduce errors. The paper also explores the use of barcoding and image recognition to identify and document medical devices in nursing practices. In nursing practices, the use of barcodes for identifying medical devices is common. However, the information contained in these barcodes is often inconsistent, making it challenging to identify which segment contains the model identifier. Moreover, the use of barcodes may be improved with the use of UDI, but many subsidized accessories may still lack barcodes. The paper suggests that the readiness for UDI and barcode standardization requires standardized information, fields, and logic in electronic medical record (EMR), operating theatre (OT), and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. Nursing workflow and data flow also need to be taken into account. The paper also explores the use of image recognition, specifically the Tesseract OCR engine, to identify and document implants in public hospitals due to limitations in barcode scanning. The study found that the solution requires an implant information database and checking output against the database. The solution also requires customization of the algorithm, cropping out objects affecting text recognition, and applying adjustments. The solution requires additional resources and costs for a mobile/hardware device, which may pose space constraints and require maintenance of sterile criteria. The integration with EMR is also necessary, and the solution require changes in the user's workflow. The paper suggests that the long-term use of Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) as a supporting terminology to improve clinical documentation and data exchange in healthcare. SNOMED CT provides a standardized way of documenting and sharing clinical information with respect to procedure, patient and device documentation, which can facilitate interoperability and data exchange. In conclusion, the paper highlights the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. The paper suggests the use of UDI and barcode standardization to improve tracking and reduce errors. It also explores the use of image recognition to identify and document medical devices in nursing practices. The paper emphasizes the importance of standardized information, fields, and logic in EMR, OT, and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. These recommendations could help the Singapore healthcare system to improve tracking and traceability of medical devices and ultimately enhance patient safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20device%20tracking" title="medical device tracking">medical device tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=unique%20device%20identifier" title=" unique device identifier"> unique device identifier</a>, <a href="https://publications.waset.org/abstracts/search?q=barcoding%20and%20image%20recognition" title=" barcoding and image recognition"> barcoding and image recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=systematized%20nomenclature%20of%20medicine%20clinical%20terms" title=" systematized nomenclature of medicine clinical terms"> systematized nomenclature of medicine clinical terms</a> </p> <a href="https://publications.waset.org/abstracts/168251/challenges-and-recommendations-for-medical-device-tracking-and-traceability-in-singapore-a-focus-on-nursing-practices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harris%20Niavis">Harris Niavis</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitra%20Politaki"> Dimitra Politaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain" title="blockchain">blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20quality" title=" data quality"> data quality</a>, <a href="https://publications.waset.org/abstracts/search?q=industry4.0" title=" industry4.0"> industry4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20quality" title=" product quality"> product quality</a> </p> <a href="https://publications.waset.org/abstracts/141980/ai-enabled-smart-contracts-for-reliable-traceability-in-the-industry-40" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traceability&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traceability&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=traceability&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>