CINXE.COM
Search results for: electric energy
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: electric energy</title> <meta name="description" content="Search results for: electric energy"> <meta name="keywords" content="electric energy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="electric energy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="electric energy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9211</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: electric energy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9211</span> Advanced Simulation of Power Consumption of Electric Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilya%20Kavalchuk">Ilya Kavalchuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayrettin%20Arisoy"> Hayrettin Arisoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Stojcevski"> Alex Stojcevski</a>, <a href="https://publications.waset.org/abstracts/search?q=Aman%20Maun%20Than%20Oo"> Aman Maun Than Oo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric vehicles are one of the most complicated electric devices to simulate due to the significant number of different processes involved in electrical structure of it. There are concurrent processes of energy consumption and generation with different onboard systems, which make simulation tasks more complicated to perform. More accurate simulation on energy consumption can provide a better understanding of all energy management for electric transport. As a result of all those processes, electric transport can allow for a more sustainable future and become more convenient in relation to the distance range and recharging time. This paper discusses the problems of energy consumption simulations for electric vehicles using different software packages to provide ideas on how to make this process more precise, which can help engineers create better energy management strategies for electric vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=EV" title=" EV"> EV</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20consumption" title=" power consumption"> power consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20management" title=" power management"> power management</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/17216/advanced-simulation-of-power-consumption-of-electric-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9210</span> Energy Consumption Models for Electric Vehicles: Survey and Proposal of a More Realistic Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Sagaama">I. Sagaama</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kechiche"> A. Kechiche</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Trojet"> W. Trojet</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Kamoun"> F. Kamoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Replacing combustion engine vehicles by electric vehicles (EVs) is a major step in recent years due to their potential benefits. Battery autonomy and charging processes are still a big issue for that kind of vehicles. Therefore, reducing the energy consumption of electric vehicles becomes a necessity. Many researches target introducing recent information and communication technologies in EVs in order to propose reducing energy consumption services. Evaluation of realistic scenarios is a big challenge nowadays. In this paper, we will elaborate a state of the art of different proposed energy consumption models in the literature, then we will present a comparative study of these models, finally, we will extend previous works in order to propose an accurate and realistic energy model for calculating instantaneous power consumption of electric vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular%20networks" title=" vehicular networks"> vehicular networks</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20models" title=" energy models"> energy models</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20simulation" title=" traffic simulation"> traffic simulation</a> </p> <a href="https://publications.waset.org/abstracts/69264/energy-consumption-models-for-electric-vehicles-survey-and-proposal-of-a-more-realistic-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9209</span> Electric Propulsion Systems in Aerospace Applications - Energy Balance Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Tulwin">T. Tulwin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G%C4%99ca"> M. Gęca</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sochaczewski"> R. Sochaczewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent improvements in electric propulsion systems and energy storage systems allow for the electrification of many sectors where it was previously not feasible. This analysis proves the feasibility of electric propulsion in aviation applications reviewing recent energy storage developments. It can be more quiet, energy efficient and more environmentally friendly. Numerical simulations were done to prove that energy efficiency can be improved for rotorcrafts especially in hover conditions. New types of aircraft configurations are reviewed and future trends are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion" title=" propulsion "> propulsion </a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/106678/electric-propulsion-systems-in-aerospace-applications-energy-balance-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9208</span> Solar Energy: The Alternative Electric Power Resource in Tropical Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okorowo%20Cyril%20Agochi">Okorowo Cyril Agochi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man has greatly influenced climate change over the years as a result of consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discuses solar energy the abundant renewable energy in the tropical Nigeria, processes of harvesting and recommends same as an alternative means of electric power generation in a time the demand for power supersedes supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric" title="electric">electric</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sun" title=" sun"> sun</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical" title=" tropical"> tropical</a> </p> <a href="https://publications.waset.org/abstracts/15793/solar-energy-the-alternative-electric-power-resource-in-tropical-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9207</span> Summary of Technical Approaches to Improve Energy Efficiency in Electric Motor Drive Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Valencia%20Alejaandro%20Paz">Manuel Valencia Alejaandro Paz</a>, <a href="https://publications.waset.org/abstracts/search?q=Luz%20Nidia%20Quintero%20Jairo%20Palacios"> Luz Nidia Quintero Jairo Palacios</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In present paper a set of technical approaches to improve the energy efficiency in processes controlled by electric motor drive systems EMDS are listed and analyzed. Energy saving becomes fundamental to improve the sustainability and competitiveness of organizations all around the world; increasing costs of electricity had impulse the use of different strategies to reduce the electric power condition. A summary of these techniques is presented and evaluated in the potential for energy saving policies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title="energy saving">energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=EMDS" title=" EMDS"> EMDS</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title=" induction motor"> induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/57397/summary-of-technical-approaches-to-improve-energy-efficiency-in-electric-motor-drive-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9206</span> Analysis of Energy Required for the Massive Incorporation of Electric Buses in the City of Ambato - Ecuador</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paola%20Quintana">Paola Quintana</a>, <a href="https://publications.waset.org/abstracts/search?q=Ang%C3%A9lica%20Vaca"> Angélica Vaca</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebasti%C3%A1n%20Villacres"> Sebastián Villacres</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Acurio"> Henry Acurio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ecuador through the Organic Law of Energy Efficiency establishes that "Starting in the year 2025, all vehicles that are incorporated into the urban and inter-parroquial public transport service must only be electric”, this marks a foundation for the introduction of electric mobility in the country. The present investigation is based on developing an analysis and projection of the Energy Required for the incorporation of electric buses for public passenger transport in the city of Ambato-Ecuador, taking into account the useful life of the vehicle fleet, number of existing vehicles and analysis of transport routes in the study city. The energy demand based on the vehicular dynamics is analyzed, determination of equations for the calculation of force in the wheel since it is considered a variable of slope due to the fact that this has a great incidence in the autonomy when speaking of electric mobility, later the energy analysis applied to public transport routes, finally a projection of the energy requirement is made based on the change of public transport units according to their useful life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=public%20transport" title="public transport">public transport</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20mobility" title=" electric mobility"> electric mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=ecuador" title=" ecuador"> ecuador</a> </p> <a href="https://publications.waset.org/abstracts/166169/analysis-of-energy-required-for-the-massive-incorporation-of-electric-buses-in-the-city-of-ambato-ecuador" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9205</span> Impact Analysis of Transportation Modal Shift on Regional Energy Consumption and Environmental Level: Focused on Electric Automobiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Bae%20Kim">Hong Bae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Ho%20Hur"> Chang Ho Hur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many governments have tried to reduce CO<sub>2</sub> emissions which are believed to be the main cause for global warming. The deployment of electric automobiles is regarded as an effective way to reduce CO<sub>2</sub> emissions. The Korean government has planned to deploy about 200,000 electric automobiles. The policy for the deployment of electric automobiles aims at not only decreasing gasoline consumption but also increasing electricity production. However, if an electricity consuming regions is not consistent with an electricity producing region, the policy generates environmental problems between regions. Hence, this paper has established the energy multi-region input-output model to specifically analyze the impacts of the deployment of electric automobiles on regional energy consumption and CO<sub>2</sub> emissions. Finally, the paper suggests policy directions regarding the deployment of electric automobiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20automobiles" title="electric automobiles">electric automobiles</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emissions" title=" CO2 emissions"> CO2 emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20imbalances%20in%20electricity%20production%20and%20consumption" title=" regional imbalances in electricity production and consumption"> regional imbalances in electricity production and consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20multi-region%20input-output%20model" title=" energy multi-region input-output model"> energy multi-region input-output model</a> </p> <a href="https://publications.waset.org/abstracts/53685/impact-analysis-of-transportation-modal-shift-on-regional-energy-consumption-and-environmental-level-focused-on-electric-automobiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9204</span> Design of Transformerless Electric Energy Router in Smart Home</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weidong%20Fu">Weidong Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingsong%20Wang"> Qingsong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Hua"> Wei Hua</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Cheng"> Ming Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Buja"> Giuseppe Buja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A single-phase transformerless electric energy router (TL-EER) is proposed for renewable energy management and power quality improvement in smart homes. The proposed TL-EER only contains four semiconductor switching devices, which reduces costs greatly compared to traditional electric energy routers. TL-EER functions as intelligent systems that optimize the flow and distribution of energy within a grid, enabling seamless interaction between generation, storage, and consumption. In addition, TL-EER operates in multiple modes and could be converted to diverse topologies by changing the states of relays. As for power quality, voltage and current compensating methods are adapted. Thus, high-quality electrical energy could be transferred to the load, and the grid-side power factor could be improved. Finally, laboratory prototypes are established to validate the effectiveness of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transformerless" title="transformerless">transformerless</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20energy%20router" title=" electric energy router"> electric energy router</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20flow" title=" power flow"> power flow</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality"> power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20factor" title=" power factor"> power factor</a> </p> <a href="https://publications.waset.org/abstracts/193534/design-of-transformerless-electric-energy-router-in-smart-home" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9203</span> Design of an Energy Efficient Electric Auto Rickshaw</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Asghar">Muhammad Asghar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aamer%20Iqbal%20Bhatti"> Aamer Iqbal Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Qadeer%20Ahmed"> Qadeer Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Izhar"> Tahir Izhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three wheeler auto Rickshaw, often termed as ‘auto rickshaw’ is very common in Pakistan and is considered as the most affordable means of transportation to the local people. Problems caused by the gasoline engine on the environment and people, the researchers and the automotive industry have turned to the hybrid electric vehicles and electrical powered vehicle. The research in this paper explains the design of energy efficient Electric auto Rickshaw. An electric auto rickshaw is being developed at Center for Energy Research and Development, (Lahore), which is running on the roads of Lahore city. Energy storage capacity of batteries is at least 25 times heavier than fossil fuel and having volume 10 times in comparison to fuel, resulting an increase of the Rickshaw weight. A set of specifications is derived according to the mobility requirements of the electric auto rickshaw. The design choices considering the power-train and component selection are explained in detail. It was concluded that electric auto rickshaw has many advantages and benefits over the conventional auto rickshaw. It is cleaner and much more energy efficient but limited to the distance it can travel before recharging of battery. In addition, a brief future view of the battery technology is given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20auto%20rickshaw" title="conventional auto rickshaw">conventional auto rickshaw</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20auto%20rickshaw" title=" electric auto rickshaw"> electric auto rickshaw</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20combustion%20engine" title=" internal combustion engine"> internal combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/54016/design-of-an-energy-efficient-electric-auto-rickshaw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9202</span> Internet of Things-Based Electric Vehicle Charging Notification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagarjuna%20Pitty">Nagarjuna Pitty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is believed invention “Advanced Method and Process Quick Electric Vehicle Charging” is an Electric Vehicles (EVs) are quickly turning into the heralds of vehicle innovation. This study endeavors to address the inquiries of how module charging process correspondence has been performed between the EV and Electric Vehicle Supply Equipment (EVSE). The energy utilization of gas-powered motors is higher than that of electric engines. An invention is related to an Advanced Method and Process Quick Electric Vehicle Charging. In this research paper, readings on the electric vehicle charging approaches will be checked, and the module charging phases will be described comprehensively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric" title="electric">electric</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=charging" title=" charging"> charging</a>, <a href="https://publications.waset.org/abstracts/search?q=notification" title=" notification"> notification</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=supply" title=" supply"> supply</a>, <a href="https://publications.waset.org/abstracts/search?q=equipment" title=" equipment"> equipment</a> </p> <a href="https://publications.waset.org/abstracts/166037/internet-of-things-based-electric-vehicle-charging-notification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9201</span> Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Keskin%20Arabul">Fatma Keskin Arabul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Senol"> Ibrahim Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Yigit%20Arabul"> Ahmet Yigit Arabul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Rifat%20Boynuegri"> Ali Rifat Boynuegri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20braking" title=" regenerative braking"> regenerative braking</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title=" energy management"> energy management</a> </p> <a href="https://publications.waset.org/abstracts/29821/providing-energy-management-of-a-fuel-cell-battery-hybrid-electric-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">714</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9200</span> Comparison of Different Machine Learning Models for Time-Series Based Load Forecasting of Electric Vehicle Charging Stations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Joshi">H. J. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Satyajeet%20Patil"> Satyajeet Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Parth%20Dandavate"> Parth Dandavate</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihir%20Kulkarni"> Mihir Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Harshita%20Agrawal"> Harshita Agrawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the world looks towards a sustainable future, electric vehicles have become increasingly popular. Millions worldwide are looking to switch to Electric cars over the previously favored combustion engine-powered cars. This demand has seen an increase in Electric Vehicle Charging Stations. The big challenge is that the randomness of electrical energy makes it tough for these charging stations to provide an adequate amount of energy over a specific amount of time. Thus, it has become increasingly crucial to model these patterns and forecast the energy needs of power stations. This paper aims to analyze how different machine learning models perform on Electric Vehicle charging time-series data. The data set consists of authentic Electric Vehicle Data from the Netherlands. It has an overview of ten thousand transactions from public stations operated by EVnetNL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forecasting" title="forecasting">forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20load%20forecasting" title=" electric vehicle load forecasting"> electric vehicle load forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20forecasting" title=" time series forecasting"> time series forecasting</a> </p> <a href="https://publications.waset.org/abstracts/150536/comparison-of-different-machine-learning-models-for-time-series-based-load-forecasting-of-electric-vehicle-charging-stations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9199</span> A Study on Changing of Energy-Saving Performance of GHP Air Conditioning System with Time-Series Variation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Xin">Ying Xin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeki%20Kametani"> Shigeki Kametani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals the energy saving performance of GHP (Gas engine heat pump) air conditioning system has improved with time-series variation. There are two types of air conditioning systems, VRF (Variable refrigerant flow) and central cooling and heating system. VRF is classified as EHP (Electric driven heat pump) and GHP. EHP drives the compressor with electric motor. GHP drives the compressor with the gas engine. The electric consumption of GHP is less than one tenth of EHP does. In this study, the energy consumption data of GHP installed the junior high schools was collected. An annual and monthly energy consumption per rated thermal output power of each apparatus was calculated, and then their energy efficiency was analyzed. From these data, we investigated improvement of the energy saving of the GHP air conditioning system by the change in the generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy-saving" title="energy-saving">energy-saving</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20refrigerant%20flow" title=" variable refrigerant flow"> variable refrigerant flow</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20engine%20heat%20pump" title=" gas engine heat pump"> gas engine heat pump</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20driven%20heat%20pump" title=" electric driven heat pump"> electric driven heat pump</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning%20system" title=" air conditioning system"> air conditioning system</a> </p> <a href="https://publications.waset.org/abstracts/2488/a-study-on-changing-of-energy-saving-performance-of-ghp-air-conditioning-system-with-time-series-variation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9198</span> Harnessing Earth's Electric Field and Transmission of Electricity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaishakh%20Medikeri">Vaishakh Medikeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy in this Universe is the most basic characteristic of every particle. Since the birth of life on this planet, there has been a quest undertaken by the living beings to analyze, understand and harness the precious natural facts of the nature. In this quest, one of the greatest undertaken is the process of harnessing the naturally available energy. Scientists around the globe have discovered many ways to harness the freely available energy. But even today we speak of “Power Crisis”. Nikola Tesla once said “Nature has stored up in this universe infinite energy”. Energy is everywhere around us in unlimited quantities; all of it waiting to be harnessed by us. Here in this paper a method has been proposed to harness earth's electric field and transmit the stored electric energy using strong magnetic fields and electric fields. In this paper a new technique has been proposed to harness earth's electric field which is everywhere around the world in infinite quantities. Near the surface of the earth there is an electric field of about 120V/m. This electric field is used to charge a capacitor with high capacitance. Later the energy stored is allowed to pass through a device which converts the DC stored into AC. The AC so produced is then passed through a step down transformer to magnify the incoming current. Later the current passes through the RLC circuit. Later the current can be transmitted wirelessly using the principle of resonant inductive coupling. The proposed apparatus can be placed in most of the required places and any circuit tuned to the frequency of the transmitted current can receive the energy. The new source of renewable energy is of great importance if implemented since the apparatus is not costly and can be situated in most of the required places. And also the receiver which receives the transmitted energy is just an RLC circuit tuned to the resonant frequency of the transmitted energy. By using the proposed apparatus the energy losses can be reduced to a very large extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitor" title="capacitor">capacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=inductive%20resonant%20coupling" title=" inductive resonant coupling"> inductive resonant coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=RLC%20circuit" title=" RLC circuit"> RLC circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20of%20electricity" title=" transmission of electricity"> transmission of electricity</a> </p> <a href="https://publications.waset.org/abstracts/25302/harnessing-earths-electric-field-and-transmission-of-electricity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9197</span> Hybrid System Configurations and Charging Strategies for Isolated Electric Tuk-Tuk Charging Station in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Bokopane">L. Bokopane</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kusakana"> K. Kusakana</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Vermaark"> H. J. Vermaark </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The success of renewable powered electric vehicle charging station in isolated areas depends highly on the availability and sustainability of renewable resources all year round at a selected location. The main focus of this paper is to discuss the possible charging strategies that could be implemented to find the best possible configuration of an electric Tuk-Tuk charging station at a given location within South Africa. The charging station is designed, modeled and simulated to evaluate its performances. The techno-economic analysis of different feasible supply configurations of the charging station using renewable energies is simulated using HOMER software and the results compared in order to select the best possible charging strategies in terms of cost of energy consumed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20tuk-tuk" title="electric tuk-tuk">electric tuk-tuk</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20Storage" title=" energy Storage"> energy Storage</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title=" hybrid systems"> hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMER" title=" HOMER"> HOMER</a> </p> <a href="https://publications.waset.org/abstracts/13148/hybrid-system-configurations-and-charging-strategies-for-isolated-electric-tuk-tuk-charging-station-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9196</span> Optimal Energy Management System for Electrical Vehicles to Further Extend the Range</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Rouhi">M. R. Rouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shafiei"> S. Shafiei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Taghavipour"> A. Taghavipour</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Adibi-Asl"> H. Adibi-Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Doosthoseini"> A. Doosthoseini </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research targets at alleviating the problem of range anxiety associated with the battery electric vehicles (BEVs) by considering mechanical and control aspects of the powertrain. In this way, all the energy consuming components and their effect on reducing the range of the BEV and battery life index are identified. On the other hand, an appropriate control strategy is designed to guarantee the performance of the BEV and the extended electric range which is evaluated by an extensive simulation procedure and a real-world driving schedule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery" title="battery">battery</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title=" electric vehicles"> electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-capacitor" title=" ultra-capacitor"> ultra-capacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title=" model predictive control"> model predictive control</a> </p> <a href="https://publications.waset.org/abstracts/60518/optimal-energy-management-system-for-electrical-vehicles-to-further-extend-the-range" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9195</span> Investigation on Solar Thermoelectric Generator Using D-Mannitol/Multi-Walled Carbon Nanotubes Composite Phase Change Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zihua%20Wu">Zihua Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yueming%20He"> Yueming He</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoxiao%20Yu"> Xiaoxiao Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanyuan%20Wang"> Yuanyuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huaqing%20Xie"> Huaqing Xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The match of Solar thermoelectric generator (STEG) and phase change materials (PCM) can enhance the solar energy storage and reduce environmental impact from the day-and-night transformation and weather changes. This work utilizes D-mannitol (DM) matrix as the suitable PCM for coupling with thermoelectric generator to achieve the middle-temperature solar energy storage performance at 165℃-167℃. DM/MWCNT composite phase change materials prepared by ball milling not only can keep a high phase change enthalpy of DM material but also have great photo-thermal conversion efficiency of 82%. Based on the self-made storage device container, the effect of PCM thickness on the solar energy storage performance is further discussed and analyzed. The experimental results prove that PCM-STEG coupling system can output more electric energy than pure STEG system because PCM can decline the heat transfer and storage thermal energy to further generate the electric energy through thermal-to-electric conversion when the light is removed. The increase of PCM thickness can reduce the heat transfer and enhance thermal storage, and then the power generation performance of PCM-STEG coupling system can be improved. As the increase of light intensity, the output electric energy of the coupling system rises accordingly, and the maximum amount of electrical energy can reach by 113.85 J at 1.6 W/cm2. The study of the PCM-STEG coupling system has certain reference for the development of solar energy storage and application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20thermoelectric%20generator" title=" solar thermoelectric generator"> solar thermoelectric generator</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials" title=" phase change materials"> phase change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=solar-to-electric%20energy" title=" solar-to-electric energy"> solar-to-electric energy</a>, <a href="https://publications.waset.org/abstracts/search?q=DM%2FMWCNT" title=" DM/MWCNT"> DM/MWCNT</a> </p> <a href="https://publications.waset.org/abstracts/177662/investigation-on-solar-thermoelectric-generator-using-d-mannitolmulti-walled-carbon-nanotubes-composite-phase-change-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9194</span> Modelling and Technical Assessment of Multi-Motor for Electric Vehicle Drivetrains by Using Electric Differential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abdel-Monem">Mohamed Abdel-Monem</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamal%20Sowilam"> Gamal Sowilam</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Hegazy"> Omar Hegazy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a technical assessment of an electric vehicle with two independent rear-wheel motor and an improved traction control system. The electric differential and the control strategy have been implemented to assure that in a straight trajectory, the two rear-wheels run exactly at the same speed, considering the same/different road conditions under the left and right side of the wheels. In case of turning to right/left, the difference between the two rear-wheels speeds assures a vehicle trajectory without sliding, thanks to a harmony between the electric differential and the control strategy. The present article demonstrates a complete model and analysis of a traction control system, considering four different traction scenarios, for two independent rear-wheels motors for electric vehicles. Furthermore, the vehicle model, including wheel dynamics, load forces, electric differential, and control strategy, is designed and verified by using MATLAB/Simulink environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-motor" title=" multi-motor"> multi-motor</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20differential" title=" electric differential"> electric differential</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20and%20control" title=" simulation and control"> simulation and control</a> </p> <a href="https://publications.waset.org/abstracts/90576/modelling-and-technical-assessment-of-multi-motor-for-electric-vehicle-drivetrains-by-using-electric-differential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9193</span> Karachi Electric Power Technical and Financial Performance Evaluation after Privatization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fawad%20Azeem">Fawad Azeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the comparative analysis of Karachi Electric before and after privatization. Technical as well as financial analysis has been done based on the available KE’s stats for last decade. Karachi Electric has evolved as a better entity in terms of its financial and technical achievements. On the other hand, human resources have been seriously affected due to mass firing of employees from the organizations. Study and analysis show that transparent and unbiased privatization practices on institutions like KE that were in serious trouble can upsurge the standards of the institution. Further, for the betterment of the social circle privatization must not affect the employment opportunities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karachi%20Electric" title="Karachi Electric">Karachi Electric</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=privatization" title=" privatization"> privatization</a> </p> <a href="https://publications.waset.org/abstracts/63939/karachi-electric-power-technical-and-financial-performance-evaluation-after-privatization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9192</span> Revolutionizing Mobility: Decoding Electric Vehicles (EVs) and Hydrogen Fuel Cell Vehicles (HFCVs)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samarjeet%20Singh">Samarjeet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubhank%20Arya"> Shubhank Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Chauhan"> Shubham Chauhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the rise in carbon emissions and the widespread effects of global warming have brought new energy vehicles into the spotlight. Electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs), both producing zero tailpipe emissions, are seen as promising alternatives. This paper examines the working, structural characteristics, and safety designs of EVs and HFCVs, comparing their carbon emissions, charging infrastructure, energy efficiency, and safety features. The analysis reveals that both EVs and HFCVs significantly reduce carbon emissions and enhance safety compared to traditional vehicles, with EVs showing greater emission reductions. Moreover, EVs are advancing more rapidly in terms of charging infrastructure compared to hydrogen energy vehicles. However, HFCVs exhibit lower energy efficiency than EVs. In terms of safety, both types surpass conventional vehicles, though EVs are more prone to overheating and fire hazards due to battery design issues. Current research suggests that EV technology and its supporting infrastructure are more comprehensive, cost-effective, and efficient in reducing carbon emissions. With continued investment in the development of new energy vehicles and potential advancements in hydrogen energy production, the future for HFCVs appears promising. The paper also expresses optimism for innovative solutions that could accelerate the growth of hydrogen energy vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell%20electric%20vehicles" title=" fuel cell electric vehicles"> fuel cell electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20engineering" title=" automotive engineering"> automotive engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transition" title=" energy transition"> energy transition</a> </p> <a href="https://publications.waset.org/abstracts/186299/revolutionizing-mobility-decoding-electric-vehicles-evs-and-hydrogen-fuel-cell-vehicles-hfcvs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9191</span> A Novel Design Methodology for a 1.5 KW DC/DC Converter in EV and Hybrid EV Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhan%20Beg">Farhan Beg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method for the efficient implementation of a unidirectional or bidirectional DC/DC converter. The DC/DC converter is used essentially for energy exchange between the low voltage service battery and a high voltage battery commonly found in Electric Vehicle applications. In these applications, apart from cost, efficiency of design is an important characteristic. A useful way to reduce the size of electronic equipment in the electric vehicles is proposed in this paper. The technique simplifies the mechanical complexity and maximizes the energy usage using the latest converter control techniques. Moreover a bidirectional battery charger for hybrid electric vehicles is also implemented in this paper. Several simulations on the test system have been carried out in Matlab/Simulink environment. The results exemplify the robustness of the proposed design methodology in case of a 1.5 KW DC-DC converter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DC-DC%20converters" title="DC-DC converters">DC-DC converters</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title=" electric vehicles"> electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20electronics" title=" power electronics"> power electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20current%20control" title=" direct current control "> direct current control </a> </p> <a href="https://publications.waset.org/abstracts/15606/a-novel-design-methodology-for-a-15-kw-dcdc-converter-in-ev-and-hybrid-ev-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">727</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9190</span> Designing Ecologically and Economically Optimal Electric Vehicle Charging Stations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ghiassi-Farrokhfal">Y. Ghiassi-Farrokhfal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of electric vehicles (EVs) is increasing worldwide. Replacing gas fueled cars with EVs reduces carbon emission. However, the extensive energy consumption of EVs stresses the energy systems, requiring non-green sources of energy (such as gas turbines) to compensate for the new energy demand caused by EVs in the energy systems. To make EVs even a greener solution for the future energy systems, new EV charging stations are equipped with solar PV panels and batteries. This will help serve the energy demand of EVs through the green energy of solar panels. To ensure energy availability, solar panels are combined with batteries. The energy surplus at any point is stored in batteries and is used when there is not enough solar energy to serve the demand. While EV charging stations equipped with solar panels and batteries are green and ecologically optimal, they might not be financially viable solutions, due to battery prices. To make the system viable, we should size the battery economically and operate the system optimally. This is, in general, a challenging problem because of the stochastic nature of the EV arrivals at the charging station, the available solar energy, and the battery operating system. In this work, we provide a mathematical model for this problem and we compute the return on investment (ROI) of such a system, which is designed to be ecologically and financially optimal. We also quantify the minimum required investment in terms of battery and solar panels along with the operating strategy to ensure that a charging station has enough energy to serve its EV demand at any time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20storage" title=" battery storage"> battery storage</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20stations" title=" charging stations"> charging stations</a> </p> <a href="https://publications.waset.org/abstracts/70149/designing-ecologically-and-economically-optimal-electric-vehicle-charging-stations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9189</span> Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Furkan%20Ozkan">Furkan Ozkan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Selcuk%20Arslan"> M. Selcuk Arslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Mercan"> Hatice Mercan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20wave%20control" title=" green wave control"> green wave control</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title=" model predictive control"> model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/185303/green-wave-control-strategy-for-optimal-energy-consumption-by-model-predictive-control-in-electric-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9188</span> Practical Model of Regenerative Braking Using DC Machine and Boost Converter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shah%20Krupa%20Rajendra">Shah Krupa Rajendra</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar"> Amit Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing use of traditional vehicles driven by internal combustion engine is responsible for the environmental pollution. Further, it leads to depletion of limited energy resources. Therefore, it is required to explore alternative energy sources for the transportation. The promising solution is to use electric vehicle. However, it suffers from limited driving range. Regenerative braking increases the range of the electric vehicle to a certain extent. In this paper, a novel methodology utilizing regenerative braking is described. The model comprising of DC machine, feedback based boost converter and micro-controller is proposed. The suggested method is very simple and reliable. The proposed model successfully shows the energy being saved into during regenerative braking process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boost%20converter" title="boost converter">boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20machine" title=" DC machine"> DC machine</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-controller" title=" micro-controller"> micro-controller</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20braking" title=" regenerative braking "> regenerative braking </a> </p> <a href="https://publications.waset.org/abstracts/81592/practical-model-of-regenerative-braking-using-dc-machine-and-boost-converter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9187</span> Volume Density of Power of Multivector Electric Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aldan%20A.%20Sapargaliyev">Aldan A. Sapargaliyev</a>, <a href="https://publications.waset.org/abstracts/search?q=Yerbol%20A.%20Sapargaliyev"> Yerbol A. Sapargaliyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the invention, the electric machine (EM) can be defined as oEM – one-vector electric machine, as it works due to one-vector inductive coupling with use of one-vector electromagnet. The disadvantages of oEM are large size and limited efficiency at low and medium power applications. This paper describes multi-vector electric machine (mEM) based on multi-vector inductive coupling, which is characterized by the increased surface area of the inductive coupling per EM volume, with a reduced share of inefficient and energy-consuming part of the winding, in comparison with oEM’s. Particularly, it is considered, calculated and compared the performance of three different electrical motors and their power at the same volumes and rotor frequencies. It is also presented the result of calculation of correlation between power density and volume for oEM and mEM. The method of multi-vector inductive coupling enables mEM to possess 1.5-4.0 greater density of power per volume and significantly higher efficiency, in comparison with today’s oEM, especially in low and medium power applications. mEM has distinct advantages, when used in transport vehicles such as electric cars and aircrafts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20machine" title="electric machine">electric machine</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20motor" title=" electric motor"> electric motor</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnet" title=" electromagnet"> electromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20of%20electric%20motor" title=" efficiency of electric motor"> efficiency of electric motor</a> </p> <a href="https://publications.waset.org/abstracts/67282/volume-density-of-power-of-multivector-electric-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9186</span> Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridoy%20Das">Ridoy Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Myriam%20Neaimeh"> Myriam Neaimeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue%20Wang"> Yue Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghanim%20Putrus"> Ghanim Putrus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20linear%20programming" title=" mixed integer linear programming"> mixed integer linear programming</a> </p> <a href="https://publications.waset.org/abstracts/129629/multi-objective-electric-vehicle-charge-coordination-for-economic-network-management-under-uncertainty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9185</span> Electric Power Generation by Thermoelectric Cells and Parabolic Solar Concentrators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kianifar">A. Kianifar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Afzali"> M. Afzali</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Pishbin"> I. Pishbin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, design details, theoretical analysis and thermal performance analysis of a solar energy concentrator suited to combined heat and thermoelectric power generation are presented. The thermoelectric device is attached to the absorber plate to convert concentrated solar energy directly into electric energy at the focus of the concentrator. A cooling channel (water cooled heat sink) is fitted to the cold side of the thermoelectric device to remove the waste heat and maintain a high temperature gradient across the device to improve conversion efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrator%20thermoelectric%20generator" title="concentrator thermoelectric generator">concentrator thermoelectric generator</a>, <a href="https://publications.waset.org/abstracts/search?q=CTEG" title=" CTEG"> CTEG</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20cells" title=" thermoelectric cells"> thermoelectric cells</a> </p> <a href="https://publications.waset.org/abstracts/5606/electric-power-generation-by-thermoelectric-cells-and-parabolic-solar-concentrators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9184</span> A Flexible Real-Time Eco-Drive Strategy for Electric Minibus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felice%20De%20Luca">Felice De Luca</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincenzo%20Galdi"> Vincenzo Galdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Piera%20Stella"> Piera Stella</a>, <a href="https://publications.waset.org/abstracts/search?q=Vito%20Calderaro"> Vito Calderaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriano%20Campagna"> Adriano Campagna</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Piccolo"> Antonio Piccolo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable mobility has become one of the major issues of recent years. The challenge in reducing polluting emissions as much as possible has led to the production and diffusion of vehicles with internal combustion engines that are less polluting and to the adoption of green energy vectors, such as vehicles powered by natural gas or LPG and, more recently, with hybrid and electric ones. While on the one hand, the spread of electric vehicles for private use is becoming a reality, albeit rather slowly, not the same is happening for vehicles used for public transport, especially those that operate in the congested areas of the cities. Even if the first electric buses are increasingly being offered on the market, it remains central to the problem of autonomy for battery fed vehicles with high daily routes and little time available for recharging. In fact, at present, solid-state batteries are still too large in size, heavy, and unable to guarantee the required autonomy. Therefore, in order to maximize the energy management on the vehicle, the optimization of driving profiles offer a faster and cheaper contribution to improve vehicle autonomy. In this paper, following the authors’ precedent works on electric vehicles in public transport and energy management strategies in the electric mobility area, an eco-driving strategy for electric bus is presented and validated. Particularly, the characteristics of the prototype bus are described, and a general-purpose eco-drive methodology is briefly presented. The model is firstly simulated in MATLAB™ and then implemented on a mobile device installed on-board of a prototype bus developed by the authors in a previous research project. The solution implemented furnishes the bus-driver suggestions on the guide style to adopt. The result of the test in a real case will be shown to highlight the effectiveness of the solution proposed in terms of energy saving. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-drive" title="eco-drive">eco-drive</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20bus" title=" electric bus"> electric bus</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title=" energy management"> energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=prototype" title=" prototype"> prototype</a> </p> <a href="https://publications.waset.org/abstracts/129193/a-flexible-real-time-eco-drive-strategy-for-electric-minibus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9183</span> An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20F.%20Kumru">C. F. Kumru</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Kocatepe"> C. Kocatepe</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Arikan"> O. Arikan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title="electric field">electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transmission%20line" title=" energy transmission line"> energy transmission line</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=pylon" title=" pylon"> pylon</a> </p> <a href="https://publications.waset.org/abstracts/29819/an-investigation-on-electric-field-distribution-around-380-kv-transmission-line-for-various-pylon-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">728</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9182</span> A Comparison Between the Internal Combustion Engine and Electric Motor in the Automobile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jack%20Mason">Jack Mason</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Pourmovhed"> Ahmad Pourmovhed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper will discuss the advantages and disadvantages of the internal combustion engine when compared to different types of electric vehicles. The Internal Combustion Engine (ICE)'s overall cost, environmental impact, and usability will all be compared to different types of Electric Vehicles (EVs) including Battery Electric Vehicles (BEVs) and Hydrogen Fuel Cell Electric Vehicles (FCEVs). Also, the ways to solve the issues of the problems each vehicle presents will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interal%20combustion%20engine" title="interal combustion engine">interal combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20electric%20vehicle" title=" battery electric vehicle"> battery electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell%20electric%20vehicle" title=" fuel cell electric vehicle"> fuel cell electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a> </p> <a href="https://publications.waset.org/abstracts/143248/a-comparison-between-the-internal-combustion-engine-and-electric-motor-in-the-automobile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20energy&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20energy&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20energy&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20energy&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20energy&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20energy&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20energy&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20energy&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20energy&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20energy&page=307">307</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20energy&page=308">308</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electric%20energy&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>