CINXE.COM
Search results for: thrips
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thrips</title> <meta name="description" content="Search results for: thrips"> <meta name="keywords" content="thrips"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thrips" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thrips"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thrips</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Major Sucking Pests of Rose and Their Seasonal Abundance in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Ruhul%20Amin">Md Ruhul Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted in the experimental field of the Department of Entomology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh during November 2017 to May 2018 with a view to understanding the seasonal abundance of the major sucking pests namely thrips, aphid and red spider mite on rose. The findings showed that the thrips started to build up their population from the middle of January with abundance 1.0 leaf⁻¹, increased continuously, reached to the peak level (2.6 leaf⁻¹) in the middle of February and then declined. Aphid started to build up their population from the second week of November with abundance 6.0 leaf⁻¹, increased continuously, reached to the peak level (8.4 leaf⁻¹) in the last week of December and then declined. Mite started to build up their population from the first week of December with abundance 0.8 leaf⁻¹, increased continuously, reached to the peak level (8.2 leaf⁻¹) in the second week of March and then declined. Thrips and mite prevailed until the last week of April, and aphid showed their abundance till last week of May. The daily mean temperature, relative humidity, and rainfall had an insignificant negative correlation with thrips and significant negative correlation with aphid abundance. The daily mean temperature had significant positive, relative humidity had an insignificant positive, and rainfall had an insignificant negative correlation with mite abundance. The multiple linear regression analysis showed that the weather parameters together contributed 38.1, 41.0 and 8.9% abundance on thrips, aphid and mite on rose, respectively and the equations were insignificant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aphid" title="aphid">aphid</a>, <a href="https://publications.waset.org/abstracts/search?q=mite" title=" mite"> mite</a>, <a href="https://publications.waset.org/abstracts/search?q=thrips" title=" thrips"> thrips</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20factors" title=" weather factors"> weather factors</a> </p> <a href="https://publications.waset.org/abstracts/103991/major-sucking-pests-of-rose-and-their-seasonal-abundance-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> The First Complete Mitochondrial Genome of Melon Thrips, Thrips palmi (Thripinae: Thysanoptera): Vector for Tospoviruses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaomud%20Tyagi">Kaomud Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajasree%20Chakraborty"> Rajasree Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Shantanu%20Kundu"> Shantanu Kundu</a>, <a href="https://publications.waset.org/abstracts/search?q=Devkant%20Singha"> Devkant Singha</a>, <a href="https://publications.waset.org/abstracts/search?q=Kailash%20Chandra"> Kailash Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Kumar"> Vikas Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The melon thrips, Thrips palmi is a serious pest of a wide range of agriculture crops and also act as vectors for plant viruses (genus Tospovirus, family Bunyaviridae). More molecular data on this species is required to understand the cryptic speciation and evolutionary affiliations. Mitochondrial genomes have been widely used in phylogenetic and evolutionary studies in insect. So far, mitogenomes of five thrips species (Anaphothrips obscurus, Frankliniella intonsa, Frankliniella occidentalis, Scirtothrips dorsalis and Thrips imaginis) is available in the GenBank database. In this study, we sequenced the first complete mitogenome T. palmi and compared it with available thrips mitogenomes. We assembled the mitogenome from the whole genome sequencing data generated using Illumina Hiseq2500. Annotation was performed using MITOS web-server to estimate the location of protein coding genes (PCGs), transfer RNA (tRNAs), ribosomal RNAs (rRNAs) and their secondary structures. The boundaries of PCGs and rRNAs was confirmed manually in NCBI. Phylogenetic analyses were performed using the 13 PCGs data using maximum likelihood (ML) in PAUP, and Bayesian inference (BI) in MrBayes 3.2. The complete mitogenome of T. palmi was 15,333 base pairs (bp), which was greater than the genomes of A. obscurus (14,890bp), F. intonsa (15,215 bp), F. occidentalis (14,889 bp) and S. dorsalis South Asia strain (SA1) (14,283 bp), but smaller than the genomes of T. imaginis (15,407 bp) and S. dorsalis East Asia strain (EA1) (15,343bp). Like in other thrips species, the mitochondrial genome of T. palmi was represented by 37 genes, including 13 PCGs, large and small ribosomal RNA (rrnL and rrnS) genes, 22 transfer RNA (tRNAs) genes (with one extra gene for trn-Serine) and two A+T-rich control regions (CR1 and CR2). Thirty one genes were observed on heavy (H) strand and six genes on the light (L) strand. The six tRNA genes (trnG,trnK, trnY, trnW, trnF, and trnH) were found to be conserved in all thrips species mitogenomes in their locations relative to a protein-coding or rRNA gene upstream or downstream. The gene arrangements of T. palmi is very close to T. imaginis except the rearrangements in tRNAs genes: trnR (arginine), and trnE (glutamic acid) were found to be located between cox3 and CR2 in T. imaginis which were translocated between atp6 and CR1 in T. palmi; trnL1 (Leucine) and trnS1(Serine) were located between atp6 and CR1 in T. imaginis which were translocated between cox3 and CR2 in T. palmi. The location of CR1 upstream of nad5 gene was suggested to be ancestral condition of the thrips species in subfamily Thripinae, was also observed in T. palmi. Both the Maximum likelihood (ML) and Bayesian Inference (BI) phylogenetic trees generated resulted in similar topologies. The T. palmi was clustered with T. imaginis. We concluded that more molecular data on the diverse thrips species from different hierarchical level is needed, to understand the phylogenetic and evolutionary relationships among them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thrips" title="thrips">thrips</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20mitogenomics" title=" comparative mitogenomics"> comparative mitogenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20rearrangements" title=" gene rearrangements"> gene rearrangements</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis" title=" phylogenetic analysis"> phylogenetic analysis</a> </p> <a href="https://publications.waset.org/abstracts/93146/the-first-complete-mitochondrial-genome-of-melon-thrips-thrips-palmi-thripinae-thysanoptera-vector-for-tospoviruses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Predatory Potential of Coccinella septempunctata Linnaeus and Coccinella undecimpunctata Linnaeus on Different Prey Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20A.%20E.%20Darwish">Adnan A. E. Darwish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The predatory potential and preference of both larvae and adult of seven-spot ladybird, Coccinella septempunctata Linnaeus and the eleven-spot ladybird, Coccinella undecimpunctata Linnaeus to the green peach aphid, Myzus persicae (Sulzer), the cotton aphid, Aphis gossypii Glover, the bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus) and onion thrips, Thrips tabaci Lindeman were investigated under laboratory conditions at varying prey densities at faculty of Agriculture, Damanhour university, Egypt. There were significant differences between the consumed numbers of the four different species by the two different lady beetle species. The most consumed prey by C. septempunctata was the A. gossypii followed by R. padi then M. persicae and finally T. tabaci and these results were repeated in case of C. undecimpunctata. As the grubs of C. septempunctata and C. undecimpunctata developed from 1st to 4th larval instars, the consumption rate from aphid species and thrips increased. The consumption rate of M. persicae, A. gossypii, R. padi and T. tabaci significantly increased with the advancement in the larval stage of the predator. The forth larval instar of C. septempunctata and C. undecimpunctata exhibited the highest predatory potential comparing to the first, second and third larval instars. The number of prey eaten by adult stage or different instars of larvae of the two predators increased significantly with prey density, reaching the maximum value when 150 preys were provided compared with 50 and 100 preys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=predatory%20potential" title="predatory potential">predatory potential</a>, <a href="https://publications.waset.org/abstracts/search?q=Coccinella%20septempunctata" title=" Coccinella septempunctata"> Coccinella septempunctata</a>, <a href="https://publications.waset.org/abstracts/search?q=Coccinella%20undecimpunctata" title=" Coccinella undecimpunctata"> Coccinella undecimpunctata</a>, <a href="https://publications.waset.org/abstracts/search?q=Thrips%20tabaci" title=" Thrips tabaci"> Thrips tabaci</a>, <a href="https://publications.waset.org/abstracts/search?q=Myzus%20persicae" title=" Myzus persicae"> Myzus persicae</a>, <a href="https://publications.waset.org/abstracts/search?q=Aphis%20gossypii" title=" Aphis gossypii"> Aphis gossypii</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhopalosiphum%20padi" title=" Rhopalosiphum padi"> Rhopalosiphum padi</a> </p> <a href="https://publications.waset.org/abstracts/90461/predatory-potential-of-coccinella-septempunctata-linnaeus-and-coccinella-undecimpunctata-linnaeus-on-different-prey-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Spinetoram10% WG+Sulfoxaflor 30% WG: A Promising Green Chemistry to Manage Pest Complex in Bt Cotton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddharudha%20B.%20Patil">Siddharudha B. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton is a premier commercial fibre crop of India subjected to ravages of insect pests. Sucking pests viz thrips, Thrips tabaci,(lind) leaf hopper Amrsca devastance,(dist) miridbug, Poppiocapsidea beseratense (Dist) and bollworms continue to inflict damage Bt Cotton right from seeding stage. Their infestation impact cotton yield to an extent of 30-40 percent. Chemical control is still adoptable as one of the techniques for combating these pests. Presently, growers have many challenges in selecting effective chemicals which fit in with an integrated pest management. Spinetoram has broad spectrum with excellent insecticidal activity against both sucking pests and bollworms. Hence, it is expected to make a great contribution to stable production and quality improvement of agricultural products. Spinetoram is a derivative of biologically active substances (Spinosyns) produced by soil actinomycetes, Saccharopolypara spinosa which is semi synthetic active ingredient representing Spinosyn chemical class of insecticide and has demonstrated higher level of efficacy with reduced risk on beneficial arthropods. The efforts were made in the present study to test the efficacy of Spinetoram against sucking pests and bollworms in comparison with other insecticides in Bt Cotton under field condition. Field experiment was laid out during 2013-14 and 2014-15 at Agricultural Research station Dharwad (Karnataka-India) in a randomized block design comprising eight treatments and three replications. Bt cotton genotype, Bunny BG-II was sown in a plot size of 5.4 m x5.4 m. Recommend agronomical practices were followed. The Spinetoram 12% SC alone and incombination with sulfaxaflore with varied dosages against pest complex was tested. Performance was compared with Spinosad 45% SC and thiamethoxam 25% WG. The results of consecutive seasons revealed that nonsignificant difference in thrips and leafhopper population and varied significantly after 3 days of imposition. Among the treatments, combiproduct, Spinetoram 10%WG + Sulfoxaflor 30% WG@ 140 gai/ha registered lowest population of thrips (3.91/3 leaves) and leaf hoppers (1.08/3 leaves) followed by its lower dosages viz 120 gai/ha (4.86/3 leaves and 1.14/3 leaves of thrips and leaf hoppers, respectively) and 100 gai/ha (6.02 and 1.23./3 leaves of thrips and leaf hoppers respectively) being at par, significantly superior to rest of the treatments. On the contrary, the population of thrips, leaf hopper and miridbugs in untreated control was on higher side. Similarly the higher dosage of Spinetoram 10% WG+ Sulfoxaflor 30% WG (140 gai/ha) proved its bioefficacy by registering lowest miridbug incidence of 1.70/25 squares, followed by its lower dosage (1.78 and 1.83/25 squares respectively) Further observation made on bollworms incidence revealed that the higher dosage of Spinetoram 10% WG+Sulfoxaflor 30% WG (140 gai/ha) registered lowest percentage of boll damage (7.22%), more number of good opened bolls (36.89/plant) and higher seed cotton yield (19.45q/ha) followed by rest of its lower dosages, Spinetoram 12% SC alone and Spinosad 45% SC being at par significantly superior to rest of the treatments. However, significantly higher boll damage (15.13%) and lower seed cotton yield (14.45 q/ha) was registered in untreated control. Thus Spinetoram10% WG+Sulfoxaflor 30% WG can be a promising option for pest management in Bt Cotton. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spinetoram10%25%20WG%2BSulfoxaflor%2030%25%20WG" title="Spinetoram10% WG+Sulfoxaflor 30% WG">Spinetoram10% WG+Sulfoxaflor 30% WG</a>, <a href="https://publications.waset.org/abstracts/search?q=sucking%20pests" title=" sucking pests"> sucking pests</a>, <a href="https://publications.waset.org/abstracts/search?q=bollworms" title=" bollworms"> bollworms</a>, <a href="https://publications.waset.org/abstracts/search?q=Bt%20cotton" title=" Bt cotton"> Bt cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a> </p> <a href="https://publications.waset.org/abstracts/80275/spinetoram10-wgsulfoxaflor-30-wg-a-promising-green-chemistry-to-manage-pest-complex-in-bt-cotton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Solomon 300 OD (Betacyfluthrin+Imidacloprid): A Combi-Product for the Management of Insect-Pests of Chilli (Capsicum annum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Giraddi">R. S. Giraddi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Thirupam%20Reddy"> B. Thirupam Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20N.%20Kambrekar"> D. N. Kambrekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chilli (<em>Capsicum annum</em> L.) an important commercial vegetable crop is ravaged by a number of insect-pests during both vegetative and reproductive phase resulting into significant crop loss.Thrips, <em>Scirtothripsdorsalis</em>, mite, <em>Polyphagotarsonemuslatus</em> and whitefly, <em>Bemisiatabaci</em> are the key sap feeding insects, their infestation leads to leaf curl, stunted growth and yield loss.During flowering and fruit formation stage, gall midge fly, <em>Asphondyliacapparis</em> (Rubsaaman) infesting flower buds and young fruits and<em>Helicoverpaarmigera</em> (Hubner) feeding on matured green fruits are the important insect pests causing significant crop loss.The pest is known to infest both flower buds and young fruits resulting into malformation of flower buds and twisting of fruits.In order to manage these insect-pests a combi product consisting of imidacloprid and betacyfluthrin (Soloman 300 OD) was evaluated for its bio-efficacy, phytotoxicity and effect on predator activity.Imidacloprid, a systemic insecticide belonging to neo-nicotinoid group, is effective against insect pests such as aphids, whiteflies (sap feeders) and other insects<em>viz</em>., termites and soil insects.Beta-Cyfluthrin is an insecticide of synthetic pyrethroid group which acts by contact action and ingestion. It acts on the insects' nervous system as sodium channel blocker consequently a disorder of the nervous system occurs leading finally to the death. The field experiments were taken up during 2015 and 2016 at the Main Agricultural Research Station of University of Agricultural Sciences, Dharwad, Karnataka, India.The trials were laid out in a Randomized Block Design (RBD) with three replications using popular land race of Byadagi crop variety.Results indicated that the product at 21.6 + 50.4% gai/ha (240 ml/ha) and 27.9 + 65% gai/ha (310 ml/ha) was found quite effective in controlling thrips (0.00 to 0.66 thrips per six leaves) as against the standard check insecticide recommended for thrips by the University of Agricultural Sciences, Dharwad wherein the density of thrips recorded was significantly higher (1.00 to 2.00 Nos./6 leaves). Similarly, the test insecticide was quite effective against other target insects, whiteflies, fruit borer and gall midge fly as indicated by lower insect population observed in the treatments as compared to standard insecticidal control. The predatory beetle activity was found to be normal in all experimental plots. Highest green fruit yield of 5100-5500 kg/ha was recorded in Soloman 300 OD applied crop at 310 ml/ha rate as compared to 4750 to 5050 kg/ha recorded in check. At present 6-8 sprays of insecticides are recommended for management of these insect-pests on the crop. If combi-products are used in pest management programmes, it is possible to reduce insecticide usages in crop ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imidacloprid" title="Imidacloprid">Imidacloprid</a>, <a href="https://publications.waset.org/abstracts/search?q=Betacyfluthrin" title=" Betacyfluthrin"> Betacyfluthrin</a>, <a href="https://publications.waset.org/abstracts/search?q=gallmidge%20fly" title=" gallmidge fly"> gallmidge fly</a>, <a href="https://publications.waset.org/abstracts/search?q=thrips" title=" thrips"> thrips</a>, <a href="https://publications.waset.org/abstracts/search?q=chilli" title=" chilli"> chilli</a> </p> <a href="https://publications.waset.org/abstracts/79930/solomon-300-od-betacyfluthrinimidacloprid-a-combi-product-for-the-management-of-insect-pests-of-chilli-capsicum-annum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> One Species into Five: Nucleo-Mito Barcoding Reveals Cryptic Species in 'Frankliniella Schultzei Complex': Vector for Tospoviruses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Kumar">Vikas Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kailash%20Chandra"> Kailash Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaomud%20Tyagi"> Kaomud Tyagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The insect order Thysanoptera includes small insects commonly called thrips. As insect vectors, only thrips are capable of Tospoviruses transmission (genus Tospovirus, family Bunyaviridae) affecting various crops. Currently, fifteen species of subfamily Thripinae (Thripidae) have been reported as vectors for tospoviruses. Frankliniella schultzei, which is reported as act as a vector for at least five tospovirses, have been suspected to be a species complex with more than one species. It is one of the historical unresolved issues where, two species namely, F. schultzei Trybom and F. sulphurea Schmutz were erected from South Africa and Srilanaka respectively. These two species were considered to be valid until 1968 when sulphurea was treated as colour morph (pale form) and synonymised under schultzei (dark form) However, these two have been considered as valid species by some of the thrips workers. Parallel studies have indicated that brown form of schultzei is a vector for tospoviruses while yellow form is a non-vector. However, recent studies have shown that yellow populations have also been documented as vectors. In view of all these facts, it is highly important to have a clear understanding whether these colour forms represent true species or merely different populations with different vector carrying capacities and whether there is some hidden diversity in 'Frankliniella schultzei species complex'. In this study, we aim to study the 'Frankliniella schultzei species complex' with molecular spectacles with DNA data from India and Australia and Africa. A total of fifty-five specimens was collected from diverse locations in India and Australia. We generated molecular data using partial fragments of mitochondrial cytochrome c oxidase I gene (mtCOI) and 28S rRNA gene. For COI dataset, there were seventy-four sequences, out of which data on fifty-five was generated in the current study and others were retrieved from NCBI. All the four different tree construction methods: neighbor-joining, maximum parsimony, maximum likelihood and Bayesian analysis, yielded the same tree topology and produced five cryptic species with high genetic divergence. For, rDNA, there were forty-five sequences, out of which data on thirty-nine was generated in the current study and others were retrieved from NCBI. The four tree building methods yielded four cryptic species with high bootstrap support value/posterior probability. Here we could not retrieve one cryptic species from South Africa as we could not generate data on rDNA from South Africa and sequence for rDNA from African region were not available in the database. The results of multiple species delimitation methods (barcode index numbers, automatic barcode gap discovery, general mixed Yule-coalescent, and Poisson-tree-processes) also supported the phylogenetic data and produced 5 and 4 Molecular Operational Taxonomic Units (MOTUs) for mtCOI and 28S dataset respectively. These results of our study indicate the likelihood that F. sulphurea may be a valid species, however, more morphological and molecular data is required on specimens from type localities of these two species and comparison with type specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20barcoding" title="DNA barcoding">DNA barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20complex" title=" species complex"> species complex</a>, <a href="https://publications.waset.org/abstracts/search?q=thrips" title=" thrips"> thrips</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20delimitation" title=" species delimitation"> species delimitation</a> </p> <a href="https://publications.waset.org/abstracts/92364/one-species-into-five-nucleo-mito-barcoding-reveals-cryptic-species-in-frankliniella-schultzei-complex-vector-for-tospoviruses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Effectiveness of Biopesticide against Insects Pest and Its Quality of Pomelo (Citrus maxima Merr.) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Pangnakorn">U. Pangnakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chuenchooklin"> S. Chuenchooklin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of biopesticide from wood vinegar and extracted substances from 3 medicinal plants such as: non taai yak (Stemona tuberosa Lour), boraphet (Tinospora crispa Mier) and derris (Derris elliptica Roxb) were tested on the age five years of pomelo. The selected pomelo was carried out for insects pest control and its quality. The experimental site was located at farmer’s orchard in Phichit Province, Thailand. This study was undertaken during the drought season (December to March). The extracted from plants and wood vinegar were evaluated in 6 treatments: 1) water as control; 2) wood vinegar; 3) S. tuberosa Lour; 4) T. crispa Mier; 5) D. elliptica Roxb; 6) mixed (wood vinegar + S. tuberosa Lour + T. crispa Mier + D. elliptica Roxb). The experiment was RCB with 6 treatments and 3 replications per treatment. The results showed that T. crispa Mier was the highest effectiveness for reduction population of thrips (Scirtothrips dorsalis Hood) and citrus leaf miner (Phyllocnistis citrella Stainton) at 14.10 and 15.37 respectively, followed by treatment of mixed, D. elliptica Roxb, S. tuberosa Lour and wood vinegar with significance different. Additionally, T. crispa Mier promoted the high quality of harvested pomelo in term of thickness of skin at 12.45 mm and S. tuberosa Lour gave the high quality of the pomelo in term of firmness (276.5 kg/cm2) and brix (11.0%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wood%20vinegar" title="wood vinegar">wood vinegar</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=Pomelo%20%28Citrus%20maxima%20Merr.%29" title=" Pomelo (Citrus maxima Merr.)"> Pomelo (Citrus maxima Merr.)</a>, <a href="https://publications.waset.org/abstracts/search?q=Thrips%20%28Scirtothrips%20dorsalis%20Hood%29" title=" Thrips (Scirtothrips dorsalis Hood)"> Thrips (Scirtothrips dorsalis Hood)</a>, <a href="https://publications.waset.org/abstracts/search?q=citrus%20leaf%20miner%20%28Phyllocnistis%20citrella%20Stainton%29" title=" citrus leaf miner (Phyllocnistis citrella Stainton) "> citrus leaf miner (Phyllocnistis citrella Stainton) </a> </p> <a href="https://publications.waset.org/abstracts/26281/effectiveness-of-biopesticide-against-insects-pest-and-its-quality-of-pomelo-citrus-maxima-merr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Evaluation of Neonicotinoids Against Sucking Insect Pests of Cotton in Laboratory and Field Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sufyan">Muhammad Sufyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20D.%20Gogi"> Muhammad D. Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad"> Muhammad Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nawaz"> Ahmad Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Usman"> Muhammad Usman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton (Gossypium hirsutum) universally known as silver fiber and is one of the most important cash crop of Pakistan. A wide array of pests constraints cotton production among which sucking insect pests cause serious losses. Mostly new chemistry insecticides used to control a wide variety of insect pests including sucking insect pests. In the present study efficacy of different neonicotinoids was evaluated against sucking insect pests of cotton in the field and in laboratory for red and dusky cotton bug. The experiment was conducted at Entomology Research Station, University of Agriculture Faisalabad, in a Randomized Complete Block Design (RCBD). Field trial was conducted to evaluate the efficacy of Confidence Ultra (Imidacloprid) 70% SL, Confidor (Imidacloprid) 20% SL, Kendo (Lambda cyhalothrin) 24.7 SC, Actara (Thiamethoxam) 25% WG, Forcast (Tebufenozide+ Emamectin benzoate) 8.8 EW and Timer (Emamectin benzoate) 1.9 EC at their recommended doses. The data was collected on per leaf basis of thrips, aphid, jassid and whitefly before 24 hours of spray. The post treatment data was recorded after 24, 48 and 72 hours. The fresh, non-infested and untreated cotton leaves was collected from the field and brought to the laboratory to assess the efficacy of neonicotinoids against red and dusky cotton bug. After data analysis all the insecticides were found effective against sucking pests. Confidence Ultra was highly effective against the aphid, jassid, and whitefly and gave maximum mortality, while showed non-significant results against thrips. In case of aphid plot which was treated with Kando 24.7 SC showed significant mortality after 72 hours of pesticide application. Similar trends were found in laboratory conditions with all these treatments by making different concentrations and had significant impact on dusky cotton bug and red cotton bug population after 24, 48 and 72 hours after application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton" title="cotton">cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20and%20field%20conditions" title=" laboratory and field conditions"> laboratory and field conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=neonicotinoids" title=" neonicotinoids"> neonicotinoids</a>, <a href="https://publications.waset.org/abstracts/search?q=sucking%20insect%20pests" title=" sucking insect pests"> sucking insect pests</a> </p> <a href="https://publications.waset.org/abstracts/79071/evaluation-of-neonicotinoids-against-sucking-insect-pests-of-cotton-in-laboratory-and-field-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Prey-Stage Preference, Functional Response, and Mutual Interference of Amblyseius swirskii Anthias-Henriot on Frankliniella occidentalis Priesner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marjan%20Heidarian%20Dehkordi">Marjan Heidarian Dehkordi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Allahyari"> Hossein Allahyari</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruce%20Parker"> Bruce Parker</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Talaee-Hassanlouei"> Reza Talaee-Hassanlouei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Western flower thrips, Frankliniella occidentalis Priesner (Thysanoptera: Thripidae), is a significant pest of many economically important crops. This study evaluated the functional responses, prey-stage preferences and mutual interference of Amblyseius swirskii Anthias-Henriot (Acari: Phytoseiidae) with F. occidentalis as the host under laboratory conditions. The predator species showed no prey stage preference for either prey 1st or 2nd instar. Logistic regression analysis suggested Type II (convex) functional response for the predator species. Consequently, the per capita searching efficiency decreased significantly from 1.2425 to -7.4987 as predator densities increased from 2 to 8. The findings from this study could help select better biological control agents for effective control of F. occidentalis and other pests in vegetable production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title="biological control">biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20responses" title=" functional responses"> functional responses</a>, <a href="https://publications.waset.org/abstracts/search?q=mutual%20interference" title=" mutual interference"> mutual interference</a>, <a href="https://publications.waset.org/abstracts/search?q=prey-stage%20preferences" title=" prey-stage preferences"> prey-stage preferences</a> </p> <a href="https://publications.waset.org/abstracts/69076/prey-stage-preference-functional-response-and-mutual-interference-of-amblyseius-swirskii-anthias-henriot-on-frankliniella-occidentalis-priesner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Control Effect of Flowering Chrysanthemum, the Trap Plant to the Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) in Greenhouse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=YongSeok%20Choi">YongSeok Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=HwaYoung%20Seo"> HwaYoung Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=InSu%20Whang"> InSu Whang</a>, <a href="https://publications.waset.org/abstracts/search?q=GeogKee%20Park"> GeogKee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frankliniella. occidentalis is major pest in chrysanthemum in worldwide. The density of F. occidentalis increased continuously in spite of the periodical chemical control after planting in this study. F. occidentalis began to increase mid-May. The numbers of F. occidentalis collected on a tray with wet paper by heating the flowers of pink, white, and yellow Chrysanthemum standard mums were 18.4, 56.6, and 52.6 in the flowering season. Also, the numbers were 15.2, 45.8, and 41.6 in bud season, but in the case of the leaves, the numbers were 2, 8.8 and 3.4. In the Y-tube olfactometer test, the frequency of F. occidentalis’ visits to one side arm of the Y-tube olfactometer was higher in the odor cue of the white flower than of the yellow, red, and violet flowers, but the frequency was higher in the odor cue of the violet and red flowers than of the yellow without white. In the case of the four-choice olfactometer test, in the same visual cues as the odor cues of the pot mum flowers, the frequency of F. occidentalis was higher in the yellow flower than in the other flowers (white, red, and violet) in all the observation times (10, 15, and 20 minutes). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frankliniella%20occidentalis" title="Frankliniella occidentalis">Frankliniella occidentalis</a>, <a href="https://publications.waset.org/abstracts/search?q=Chrysanthemum" title=" Chrysanthemum"> Chrysanthemum</a>, <a href="https://publications.waset.org/abstracts/search?q=trap%20plant" title=" trap plant"> trap plant</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20effect" title=" control effect"> control effect</a> </p> <a href="https://publications.waset.org/abstracts/85755/control-effect-of-flowering-chrysanthemum-the-trap-plant-to-the-western-flower-thrips-frankliniella-occidentalis-thysanoptera-thripidae-in-greenhouse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Prevelance of Green Peach Aphid (Myzus persicae) in District Jacobabad, Sindh, Pakistran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Khan%20Abro">Kamal Khan Abro</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasreen%20Memon"> Nasreen Memon</a>, <a href="https://publications.waset.org/abstracts/search?q=Attaullah%20Ansari"> Attaullah Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahpara%20Pirzada"> Mahpara Pirzada</a>, <a href="https://publications.waset.org/abstracts/search?q=Saima%20Pathan"> Saima Pathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jacobabad district has a hot desert climate with very hot summers and insignificant winters. The highest recorded temperature is 53.8 °C (127.0 °F), and the lowest recorded temperature is −4.9 °C (25.0 °F). Rainfall is short and mostly occurs in the monsoon season (July–September). Agriculture point of view Jacobabad district is very important district of Sindh Pakistan in which many types of crop and vegetables are cultivated annually such as Wheat, Rice, and Brassica, Cabbage, Spinach, Chili etc. which are badly attacked by many crops pest. Insects are very tiny, sensitive and most attractive mortal and most important collection of animal wildlife they play important role in biological control agent, biodiversity & agroecosystem. The brassica crop extremely infested by many different types of pest such as Aphids, Whitefly, Jassids, Thrips, Mealybug, scale insect pink worm, bollworm and borers Mealy bug, scale insect etc. These pests destroy many crops. The present study was carried out from Jacobabad district from January 2017 to April 2017. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prevelance" title="prevelance">prevelance</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20peach%20aphid" title=" green peach aphid"> green peach aphid</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacobabad" title=" Jacobabad"> Jacobabad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sindh%20Pakistan" title=" Sindh Pakistan"> Sindh Pakistan</a> </p> <a href="https://publications.waset.org/abstracts/82022/prevelance-of-green-peach-aphid-myzus-persicae-in-district-jacobabad-sindh-pakistran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Life Table and Functional Response of Scolothrips takahashii (Thysanoptera: Thripidae) on Tetranychus urticae (Acari:Tetranychidae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuang-Chi%20Pan">Kuang-Chi Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Jen%20Tuan"> Shu-Jen Tuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scolothrips takahashii Priesner (Thysanoptera: Thripidae) is a common predatory thrips which feeds on spider mites; it is considered an important natural enemy and a potential biological control agent against spider mites. In order to evaluate the efficacy of S. takahashii against tetranychid mites, life table and functional response study were conducted at 25±1°C, with Tetranychus urticae Priesner as prey. The intrinsic rate of increase (r), finite rate of increase (λ), net reproduction rate (R₀), mean generation time (T) were 0.1674 d⁻¹, 1.1822d⁻¹, 62.26 offspring/individual, and 24.68d. The net consumption rate (C₀) was 846.15, mean daily consumption rate was 51.92 eggs for females and 19.28 eggs for males. S. takahashii exhibited type III functional response when offered T. urticae deutonymphs. Based on the random predator equation, the estimated maximum attack rate (a) and handling time (Th) were 0.1376h⁻¹ and 0.7883h. In addition, a life table experiment was conducted to evaluate the offspring sex allocation and population dynamic of Tetranychus ludeni Zacher under group-rearing conditions with different sex ratios. All bisexual groups produced offspring with similar sex allocation patterns, which started with the majority of females, then transited during the middle of the oviposition period and turned male-biased at the end of the oviposition period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Scolothrips%20takahashii" title="Scolothrips takahashii">Scolothrips takahashii</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetranychus%20urticae" title=" Tetranychus urticae"> Tetranychus urticae</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetranychus%20ludeni" title=" Tetranychus ludeni"> Tetranychus ludeni</a>, <a href="https://publications.waset.org/abstracts/search?q=two-sex%20life%20table" title=" two-sex life table"> two-sex life table</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20response" title=" functional response"> functional response</a>, <a href="https://publications.waset.org/abstracts/search?q=sex%20allocation" title=" sex allocation"> sex allocation</a> </p> <a href="https://publications.waset.org/abstracts/171606/life-table-and-functional-response-of-scolothrips-takahashii-thysanoptera-thripidae-on-tetranychus-urticae-acaritetranychidae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Biomass Production Improvement of Beauveria bassiana at Laboratory Scale for a Biopesticide Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Quiroga-Cubides">G. Quiroga-Cubides</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Cruz"> M. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Grijalba"> E. Grijalba</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sanabria"> J. Sanabria</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ceballos"> A. Ceballos</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Garc%C3%ADa"> L. García</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G%C3%B3mez"> M. Gómez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beauveria sp. has been used as an entomopathogenic microorganism for biological control of various plant pests such as whitefly, thrips, aphids and chrysomelidaes (including Cerotoma tingomariana species), which affect soybean crops in Colombia´s Altillanura region. Therefore, a biopesticide prototype based on B. bassiana strain Bv060 was developed at Corpoica laboratories. For the production of B. bassiana conidia, a baseline fermentation was performed at laboratory in a solid medium using broken rice as a substrate, a temperature of 25±2 °C and a relative humidity of 60±10%. The experimental design was completely randomized, with a three-time repetition. These culture conditions resulted in an average conidial concentration of 1.48x10^10 conidia/g, a yield of 13.07 g/kg dry substrate and a productivity of 8.83x10^7 conidia/g*h were achieved. Consequently, the objective of this study was to evaluate the influence of the particle size reduction of rice (<1 mm) and the addition of a complex nitrogen source over conidia production and efficiency parameters in a solid-state fermentation, in a completely randomized experiment with a three-time repetition. For this aim, baseline fermentation conditions of temperature and humidity were employed in a semisolid culture medium with powdered rice (10%) and a complex nitrogen source (8%). As a result, it was possible to increase conidial concentration until 9.87x10^10 conidia/g, yield to 87.07 g/g dry substrate and productivity to 3.43x10^8 conidia/g*h. This suggested that conidial concentration and yield in semisolid fermentation increased almost 7 times compared with baseline while the productivity increased 4 times. Finally, the designed system for semisolid-state fermentation allowed to achieve an easy conidia recovery, which means reduction in time and costs of the production process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beauveria%20bassiana" title="Beauveria bassiana">Beauveria bassiana</a>, <a href="https://publications.waset.org/abstracts/search?q=biopesticide" title=" biopesticide"> biopesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20fermentation" title=" solid state fermentation"> solid state fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=semisolid%20medium%20culture" title=" semisolid medium culture"> semisolid medium culture</a> </p> <a href="https://publications.waset.org/abstracts/57293/biomass-production-improvement-of-beauveria-bassiana-at-laboratory-scale-for-a-biopesticide-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>