CINXE.COM

Search results for: statistical modelling

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: statistical modelling</title> <meta name="description" content="Search results for: statistical modelling"> <meta name="keywords" content="statistical modelling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="statistical modelling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="statistical modelling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5674</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: statistical modelling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5674</span> On Mathematical Modelling and Optimization of Emerging Trends Processes in Advanced Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agarana%20Michael%20C.">Agarana Michael C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinlabi%20Esther%20T."> Akinlabi Esther T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pule%20Kholopane"> Pule Kholopane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Innovation in manufacturing process technologies and associated product design affects the prospects for manufacturing today and in near future. In this study some theoretical methods, useful as tools in advanced manufacturing, are considered. In particular, some basic Mathematical, Operational Research, Heuristic, and Statistical techniques are discussed. These techniques/methods are very handy in many areas of advanced manufacturing processes, including process planning optimization, modelling and analysis. Generally the production rate requires the application of Mathematical methods. The Emerging Trends Processes in Advanced Manufacturing can be enhanced by using Mathematical Modelling and Optimization techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title="mathematical modelling">mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20trends" title=" emerging trends"> emerging trends</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing" title=" advanced manufacturing"> advanced manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/158822/on-mathematical-modelling-and-optimization-of-emerging-trends-processes-in-advanced-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5673</span> Embedding the Dimensions of Sustainability into City Information Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Al-Shaery">Ali M. Al-Shaery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to address the functions of sustainability dimensions in city information modelling and to present the required sustainability criteria that support establishing a sustainable planning framework for enhancing existing cities and developing future smart cities. The paper is divided into two sections. The first section is based on the examination of a wide and extensive array of cross-disciplinary literature in the last decade and a half to conceptualize the terms ‘sustainable’ and ‘smart city,' and map their associated criteria to city information modelling. The second section is based on analyzing two approaches relating to city information modelling, namely statistical and dynamic approaches, and their suitability in the development of cities’ action plans. The paper argues that the use of statistical approaches to embedding sustainability dimensions in city information modelling have limited value. Despite the popularity of such approaches in addressing other dimensions like utility and service management in development and action plans of the world cities, these approaches are unable to address the dynamics across various city sectors with regards to economic, environmental and social criteria. The paper suggests an integrative dynamic and cross-disciplinary planning approach to embedding sustainability dimensions in city information modelling frameworks. Such an approach will pave the way towards optimal planning and implementation of priority actions of projects and investments. The approach can be used to achieve three main goals: (1) better development and action plans for world cities (2) serve the development of an integrative dynamic and cross-disciplinary framework that incorporates economic, environmental and social sustainability criteria and (3) address areas that require further attention in the development of future sustainable and smart cities. The paper presents an innovative approach for city information modelling and a well-argued, balanced hierarchy of sustainability criteria that can contribute to an area of research which is still in its infancy in terms of development and management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20modelling" title="information modelling">information modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title=" smart city"> smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20city" title=" sustainable city"> sustainable city</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20dimensions" title=" sustainability dimensions"> sustainability dimensions</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20criteria" title=" sustainability criteria"> sustainability criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=city%20development%20planning" title=" city development planning"> city development planning</a> </p> <a href="https://publications.waset.org/abstracts/69037/embedding-the-dimensions-of-sustainability-into-city-information-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5672</span> Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Hamidi%20Machekposhti">Karim Hamidi Machekposhti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Sedghi"> Hossein Sedghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolrasoul%20Telvari"> Abdolrasoul Telvari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Babazadeh"> Hossein Babazadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R<sup>2</sup>) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20series%20modelling" title="time series modelling">time series modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=ARIMA%20model" title=" ARIMA model"> ARIMA model</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20runoff" title=" river runoff"> river runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Karkheh%20River" title=" Karkheh River"> Karkheh River</a>, <a href="https://publications.waset.org/abstracts/search?q=CLS%20method" title=" CLS method"> CLS method</a> </p> <a href="https://publications.waset.org/abstracts/76659/time-series-modelling-and-prediction-of-river-runoff-case-study-of-karkheh-river-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5671</span> Lambda-Levelwise Statistical Convergence of a Sequence of Fuzzy Numbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Berna%20Benli">F. Berna Benli</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Keskin"> Özgür Keskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lately, many mathematicians have been studied the statistical convergence of a sequence of fuzzy numbers. We know that Lambda-statistically convergence is a kind of convergence between ordinary convergence and statistical convergence. In this paper, we will introduce the new kind of convergence such as λ-levelwise statistical convergence. Then, we will define the concept of the λ-levelwise statistical cluster and limit points of a sequence of fuzzy numbers. Also, we will discuss the relations between the sets of λ-levelwise statistical cluster points and λ-levelwise statistical limit points of sequences of fuzzy numbers. This work has been extended in this paper, where some relations have been considered such that when lambda-statistical limit inferior and lambda-statistical limit superior for lambda-statistically convergent sequences of fuzzy numbers are equal. Furthermore, lambda-statistical boundedness condition for different sequences of fuzzy numbers has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20number" title="fuzzy number">fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-levelwise%20statistical%20cluster%20points" title=" λ-levelwise statistical cluster points"> λ-levelwise statistical cluster points</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-levelwise%20statistical%20convergence" title=" λ-levelwise statistical convergence"> λ-levelwise statistical convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-levelwise%20statistical%20limit%20points" title=" λ-levelwise statistical limit points"> λ-levelwise statistical limit points</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-statistical%20cluster%20points" title=" λ-statistical cluster points"> λ-statistical cluster points</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-statistical%20convergence" title=" λ-statistical convergence"> λ-statistical convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-statistical%20limit%20%20points" title=" λ-statistical limit points"> λ-statistical limit points</a> </p> <a href="https://publications.waset.org/abstracts/20755/lambda-levelwise-statistical-convergence-of-a-sequence-of-fuzzy-numbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5670</span> Modelling Railway Noise Over Large Areas, Assisted by GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Conrad%20Weber">Conrad Weber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modelling of railway noise over large projects areas can be very time consuming in terms of preparing the noise models and calculation time. An open-source GIS program has been utilised to assist with the modelling of operational noise levels for 675km of railway corridor. A range of GIS algorithms were utilised to break up the noise model area into manageable calculation sizes. GIS was utilised to prepare and filter a range of noise modelling inputs, including building files, land uses and ground terrain. A spreadsheet was utilised to manage the accuracy of key input parameters, including train speeds, train types, curve corrections, bridge corrections and engine notch settings. GIS was utilised to present the final noise modelling results. This paper explains the noise modelling process and how the spreadsheet and GIS were utilised to accurately model this massive project efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise" title="noise">noise</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=rail" title=" rail"> rail</a> </p> <a href="https://publications.waset.org/abstracts/154298/modelling-railway-noise-over-large-areas-assisted-by-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5669</span> Simulation of Wind Generator with Fixed Wind Turbine under Matlab-Simulink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Motahari">Mahdi Motahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Farzaneh"> Mojtaba Farzaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Armin%20Parsian%20Nejad"> Armin Parsian Nejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapidly growing wind industry is highly expressing the need for education and training worldwide, particularly on the system level. Modelling and simulating wind generator system using Matlab-Simulink provides expert help in understanding wind systems engineering and system design. Working under Matlab-Simulink we present the integration of the developed WECS model with public electrical grid. A test of the calculated power and Cp related to the experimental equivalent data, using statistical analysis is performed. The statistical indicators of accuracy show better results of the presented method with RMSE: 21%, 22%, MBE : 0.77%, 0.12 % and MAE :3%, 4%.On the other hand we study its behavior when integrated in whole power system. Three level of wind speeds have been chosen: low with 5m/s as the mean value, medium with 8m/s as the mean value and high speed with 12m/s as the mean value. These allowed predicting and supervising the active power produced by the system, characterized respectively by the middle powers of -150 kW, -250kW and -480 kW which will be injected directly into the public electrical grid and the reactive power, characterized respectively by the middle powers of 60 kW, 180 kW and 320 kW and will be consumed by the wind generator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modelling" title="modelling">modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20generator" title=" wind generator"> wind generator</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20speed%20wind%20turbine" title=" fixed speed wind turbine"> fixed speed wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab-Simulink" title=" Matlab-Simulink"> Matlab-Simulink</a> </p> <a href="https://publications.waset.org/abstracts/15775/simulation-of-wind-generator-with-fixed-wind-turbine-under-matlab-simulink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">627</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5668</span> Local Spectrum Feature Extraction for Face Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Imran%20Ahmad">Muhammad Imran Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruzelita%20Ngadiran"> Ruzelita Ngadiran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Nazrin%20Md%20Isa"> Mohd Nazrin Md Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Ashidi%20Mat%20Isa"> Nor Ashidi Mat Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20ZaizuIlyas"> Mohd ZaizuIlyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Raja%20Abdullah%20Raja%20Ahmad"> Raja Abdullah Raja Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Amirul%20Anwar%20Ab%20Hamid"> Said Amirul Anwar Ab Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muzammil%20Jusoh"> Muzammil Jusoh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20features%20modelling" title="local features modelling">local features modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20recognition%20system" title=" face recognition system"> face recognition system</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20mixture%20models" title=" Gaussian mixture models"> Gaussian mixture models</a>, <a href="https://publications.waset.org/abstracts/search?q=Feret" title=" Feret"> Feret</a> </p> <a href="https://publications.waset.org/abstracts/17388/local-spectrum-feature-extraction-for-face-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">667</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5667</span> Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20S.%20Dambatta">Yusuf S. Dambatta</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20D.%20Sarhan"> Ahmed A. D. Sarhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title="surface roughness">surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modelling%20%28FDM%29" title=" fused deposition modelling (FDM)"> fused deposition modelling (FDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20neuro%20fuzzy%20inference%20system%20%28ANFIS%29" title=" adaptive neuro fuzzy inference system (ANFIS)"> adaptive neuro fuzzy inference system (ANFIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation" title=" orientation"> orientation</a> </p> <a href="https://publications.waset.org/abstracts/55529/surface-roughness-analysis-modelling-and-prediction-in-fused-deposition-modelling-additive-manufacturing-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5666</span> Building Information Modelling: A Review to Indian Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Agnivesh">P. Agnivesh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Ponambala%20Moorthi"> P. V. Ponambala Moorthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evolution of information modelling leads to the visualisation of well-organized built environment. Building Information Modelling (BIM) is considered as evolution in the off-site construction which essentially enhances and controls the present scenario of on-site construction paradigms. Promptness, sustainability and security are considered as the important characteristics of the building information modelling. Projects that uses BIM are tied firmly by technology but distributed organizationally. This allows different team members in the project to associate and integrate the works and work flows. This will in turn improve the efficiency of work breakdown structure. Internationally BIM had been accepted as modern computer aided way of information sharing by construction industry for efficient way of manipulation in order to avoid the on-site misperceptions. Even though, in developing countries like India BIM is in the phase of start and requires lot of mandates and policies to be brought about by the government for its widespread implementations. This paper reviews the current scenario of BIM worldwide and in India and suggests for the improved implementation of building modelling for Indian policy condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modelling" title="building information modelling">building information modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20polity" title=" Indian polity"> Indian polity</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20modelling" title=" information modelling"> information modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20sharing" title=" information sharing"> information sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=mandates%20and%20policies" title=" mandates and policies"> mandates and policies</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability." title=" sustainability."> sustainability.</a> </p> <a href="https://publications.waset.org/abstracts/43108/building-information-modelling-a-review-to-indian-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5665</span> Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwaseun%20K.%20Oyebode">Oluwaseun K. Oyebode</a>, <a href="https://publications.waset.org/abstracts/search?q=Josiah%20A.%20Adeyemo"> Josiah A. Adeyemo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20modelling" title="computational modelling">computational modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20algorithms" title=" evolutionary algorithms"> evolutionary algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20programming" title=" genetic programming"> genetic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20modelling" title=" hydrological modelling"> hydrological modelling</a> </p> <a href="https://publications.waset.org/abstracts/5684/genetic-programming-principles-applications-and-opportunities-for-hydrological-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5664</span> Heat Transfer and Diffusion Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Whalley">R. Whalley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat transfer modelling for a diffusion process will be considered. Difficulties in computing the time-distance dynamics of the representation will be addressed. Incomplete and irrational Laplace function will be identified as the computational issue. Alternative approaches to the response evaluation process will be provided. An illustration application problem will be presented. Graphical results confirming the theoretical procedures employed will be provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat" title="heat">heat</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer" title=" transfer"> transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=computation" title=" computation"> computation</a> </p> <a href="https://publications.waset.org/abstracts/22315/heat-transfer-and-diffusion-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5663</span> Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boudemagh%20Naime">Boudemagh Naime</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radat%20detection" title="radat detection">radat detection</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN-CMLD-CFAR" title=" ANN-CMLD-CFAR"> ANN-CMLD-CFAR</a>, <a href="https://publications.waset.org/abstracts/search?q=log-normal%20clutter" title=" log-normal clutter"> log-normal clutter</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20modelling" title=" statistical modelling "> statistical modelling </a> </p> <a href="https://publications.waset.org/abstracts/30070/radar-signal-detection-using-neural-networks-in-log-normal-clutter-for-multiple-targets-situations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5662</span> Mathematical Modelling of Ultrasound Pre-Treatment in Microwave Dried Strawberry (Fragaria L.) Slices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilal%20Uslu">Hilal Uslu</a>, <a href="https://publications.waset.org/abstracts/search?q=Salih%20Eroglu"> Salih Eroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Betul%20Ozkan"> Betul Ozkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozcan%20Bulantekin"> Ozcan Bulantekin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20Kuscu"> Alper Kuscu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the strawberry (Fragaria L.) fruits, which were pretreated with ultrasound (US), were worked on in the microwave by using 90W power. Then mathematical modelling was applied to dried fruits by using different experimental thin layer models. The sliced fruits were subjected to ultrasound treatment at a frequency of 40 kHz for 10, 20, and 30 minutes, in an ultrasonic water bath, with a ratio of 1:4 to fruit/water. They are then dried in the microwave (90W). The drying process continued until the product moisture was below 10%. By analyzing the moisture change of the products at a certain time, eight different thin-layer drying models, (Newton, page, modified page, Midilli, Henderson and Pabis, logarithmic, two-term, Wang and Singh) were tested for verification of experimental data. MATLAB R2015a statistical program was used for the modelling, and the best suitable model was determined with R²adj (coefficient of determination of compatibility), and root mean square error (RMSE) values. According to analysis, the drying model that best describes the drying behavior for both drying conditions was determined as the Midilli model by high R²adj and low RMSE values. Control, 10, 20, and 30 min US for groups R²adj and RMSE values was established as respectively; 0,9997- 0,005298; 0,9998- 0,004735; 0,9995- 0,007031; 0,9917-0,02773. In addition, effective diffusion coefficients were calculated for each group and were determined as 3,80x 10⁻⁸, 3,71 x 10⁻⁸, 3,26 x10⁻⁸ ve 3,5 x 10⁻⁸ m/s, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title="mathematical modelling">mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20drying" title=" microwave drying"> microwave drying</a>, <a href="https://publications.waset.org/abstracts/search?q=strawberry" title=" strawberry"> strawberry</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/122549/mathematical-modelling-of-ultrasound-pre-treatment-in-microwave-dried-strawberry-fragaria-l-slices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5661</span> Variable-Fidelity Surrogate Modelling with Kriging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selvakumar%20Ulaganathan">Selvakumar Ulaganathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivo%20Couckuyt"> Ivo Couckuyt</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Ferranti"> Francesco Ferranti</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%20Dhaene"> Tom Dhaene</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Laermans"> Eric Laermans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kriging" title="Kriging">Kriging</a>, <a href="https://publications.waset.org/abstracts/search?q=CoKriging" title=" CoKriging"> CoKriging</a>, <a href="https://publications.waset.org/abstracts/search?q=Surrogate%20modelling" title=" Surrogate modelling"> Surrogate modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Variable-%20fidelity%20modelling" title=" Variable- fidelity modelling"> Variable- fidelity modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Gradients" title=" Gradients"> Gradients</a> </p> <a href="https://publications.waset.org/abstracts/19031/variable-fidelity-surrogate-modelling-with-kriging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5660</span> Building Information Modelling in Eastern Province Municipality of KSA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Banan%20Aljumaiah">Banan Aljumaiah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the construction industry has leveraged the information revolution, which makes it possible to view the entire construction process of new buildings before they are built with the advent of Building Information Modelling (BIM). Although BIM is an integration of the building model with the data and documents about the building, however, its implementation is limited to individual buildings missing the large picture of the city infrastructure. This limitation of BIM led to the birth of City Information Modelling. Three years ago, Eastern Province Municipality (EPM) in Saudi Arabia mandated that all major projects be delivered with collaborative 3D BIM. After three years of implementation, EPM started to implement City Information Modelling (CIM) as a part of the Smart City Plan to link infrastructure and public services and modelling how people move around and interact with the city. This paper demonstrates a local case study of BIM implementation in EPM and its future as a part of project management automation; the paper also highlights the ambitious plan of EPM to transform CIM towards building smart cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BIM" title="BIM">BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=BIM%20to%20CIM" title=" BIM to CIM"> BIM to CIM</a> </p> <a href="https://publications.waset.org/abstracts/154926/building-information-modelling-in-eastern-province-municipality-of-ksa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5659</span> Drawing, Design and Building Information Modelling (BIM): Embedding Advanced Digital Tools in the Academy Programs for Building Engineers and Architects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vittorio%20Caffi">Vittorio Caffi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Pignataro"> Maria Pignataro</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Cosimo%20Devito"> Antonio Cosimo Devito</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Pesenti"> Marco Pesenti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the integration of advanced digital design and modelling tools and methodologies, known as Building Information Modelling, into the traditional Academy educational programs for building engineers and architects. Nowadays, the challenge the Academy has to face is to present the new tools and their features to the pupils, making sure they acquire the proper skills in order to leverage the potential they offer also for the other courses embedded in the educational curriculum. The syllabus here presented refers to the “Drawing for building engineering”, “2D and 3D laboratory” and “3D modelling” curricula of the MSc in Building Engineering of the Politecnico di Milano. Such topics, included since the first year in the MSc program, are fundamental to give the students the instruments to master the complexity of an architectural or building engineering project with digital tools, so as to represent it in its various forms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BIM" title="BIM">BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=BIM%20curricula" title=" BIM curricula"> BIM curricula</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20design" title=" computational design"> computational design</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20modelling" title=" digital modelling"> digital modelling</a> </p> <a href="https://publications.waset.org/abstracts/61335/drawing-design-and-building-information-modelling-bim-embedding-advanced-digital-tools-in-the-academy-programs-for-building-engineers-and-architects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">669</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5658</span> Microkinetic Modelling of NO Reduction on Pt Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20S.%20Prasad">Vishnu S. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Aghalayam"> Preeti Aghalayam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major harmful automobile exhausts are nitric oxide (NO) and unburned hydrocarbon (HC). Reduction of NO using unburned fuel HC as a reductant is the technique used in hydrocarbon-selective catalytic reduction (HC-SCR). In this work, we study the microkinetic modelling of NO reduction using propene as a reductant on Pt catalysts. The selectivity of NO reduction to N<sub>2</sub>O is detected in some ranges of operating conditions, whereas the effect of inlet O<sub>2</sub>% causes a number of changes in the feasible regimes of operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microkinetic%20modelling" title="microkinetic modelling">microkinetic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx" title=" NOx"> NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum%20on%20alumina%20catalysts" title=" platinum on alumina catalysts"> platinum on alumina catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20catalytic%20reduction" title=" selective catalytic reduction"> selective catalytic reduction</a> </p> <a href="https://publications.waset.org/abstracts/53965/microkinetic-modelling-of-no-reduction-on-pt-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5657</span> Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20V.%20Pinto">I. V. Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Sooriyarachchi"> M. R. Sooriyarachchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 &amp; order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 &amp; order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=goodness-of-fit%20test" title="goodness-of-fit test">goodness-of-fit test</a>, <a href="https://publications.waset.org/abstracts/search?q=marginal%20quasi-likelihood" title=" marginal quasi-likelihood"> marginal quasi-likelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=multilevel%20modelling" title=" multilevel modelling"> multilevel modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=penalized%20quasi-likelihood" title=" penalized quasi-likelihood"> penalized quasi-likelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-likelihood" title=" quasi-likelihood"> quasi-likelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=type-I%20error" title=" type-I error"> type-I error</a> </p> <a href="https://publications.waset.org/abstracts/105519/comparison-of-methods-of-estimation-for-use-in-goodness-of-fit-tests-for-binary-multilevel-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5656</span> Modelling the Effects of External Factors Affecting Concrete Carbonation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Mangal">Abhishek Mangal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunal%20Tongaria"> Kunal Tongaria</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mandal"> S. Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Devendra%20Mohan"> Devendra Mohan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbonation of reinforced concrete structures has emerged as one of the major challenges for Civil engineers across the world. With increasing emissions from various activities, carbon dioxide concentration in the atmosphere has been eve rising, enhancing its penetration in porous concrete, reaching steel bars and ultimately leading to premature failure. Several literatures have been published dealing with the various interdependent variables related to carbonation. However, with innumerable variability a generalization of these data proves to be a troublesome task. This paper looks into this carbonation anomaly in concrete structures caused by various external variables such as relative humidity, concentration of CO2, curing period and ambient temperature. Significant discussions and comparisons have been presented on the basis of various studies conducted with an aim to predict the depth of carbonation as a function of these multidimensional parameters using various numerical and statistical modelling techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbonation" title="carbonation">carbonation</a>, <a href="https://publications.waset.org/abstracts/search?q=curing" title=" curing"> curing</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure%20conditions" title=" exposure conditions"> exposure conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a> </p> <a href="https://publications.waset.org/abstracts/57691/modelling-the-effects-of-external-factors-affecting-concrete-carbonation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5655</span> Students&#039; Statistical Reasoning and Attitudes towards Statistics in Blended Learning, E-Learning and On-Campus Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petros%20Roussos">Petros Roussos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study focused on students' statistical reasoning related to Null Hypothesis Statistical Testing and p-values. Its objective was to test the hypothesis that neither the place (classroom, at a distance, online) nor the medium that actually supports the learning (ICT, internet, books) has an effect on understanding of statistical concepts. In addition, it was expected that students' attitudes towards statistics would not predict understanding of statistical concepts. The sample consisted of 385 undergraduate and postgraduate students from six state and private universities (five in Greece and one in Cyprus). Students were administered two questionnaires: a) the Greek version of the Survey of Attitudes Toward Statistics, and b) a short instrument which measures students' understanding of statistical significance and p-values. Results suggest that attitudes towards statistics do not predict students' understanding of statistical concepts, whereas the medium did not have an effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attitudes%20towards%20statistics" title="attitudes towards statistics">attitudes towards statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=blended%20learning" title=" blended learning"> blended learning</a>, <a href="https://publications.waset.org/abstracts/search?q=e-learning" title=" e-learning"> e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20reasoning" title=" statistical reasoning"> statistical reasoning</a> </p> <a href="https://publications.waset.org/abstracts/46506/students-statistical-reasoning-and-attitudes-towards-statistics-in-blended-learning-e-learning-and-on-campus-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5654</span> Mixtures of Length-Biased Weibull Distributions for Loss Severity Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taehan%20Bae">Taehan Bae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a class of length-biased Weibull mixtures is presented to model loss severity data. The proposed model generalizes the Erlang mixtures with the common scale parameter, and it shares many important modelling features, such as flexibility to fit various data distribution shapes and weak-denseness in the class of positive continuous distributions, with the Erlang mixtures. We show that the asymptotic tail estimate of the length-biased Weibull mixture is Weibull-type, which makes the model effective to fit loss severity data with heavy-tailed observations. A method of statistical estimation is discussed with applications on real catastrophic loss data sets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erlang%20mixture" title="Erlang mixture">Erlang mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=length-biased%20distribution" title=" length-biased distribution"> length-biased distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=transformed%20gamma%20distribution" title=" transformed gamma distribution"> transformed gamma distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20tail%20estimate" title=" asymptotic tail estimate"> asymptotic tail estimate</a>, <a href="https://publications.waset.org/abstracts/search?q=EM%20algorithm" title=" EM algorithm"> EM algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=expectation-maximization%20algorithm" title=" expectation-maximization algorithm"> expectation-maximization algorithm</a> </p> <a href="https://publications.waset.org/abstracts/90393/mixtures-of-length-biased-weibull-distributions-for-loss-severity-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5653</span> Early Requirement Engineering for Design of Learner Centric Dynamic LMS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kausik%20Halder">Kausik Halder</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabendu%20Chaki"> Nabendu Chaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Dasgupta"> Ranjan Dasgupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a modelling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modelling tool and Means End Analysis, that adopts primitive concepts for modelling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20courseware" title="adaptive courseware">adaptive courseware</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20requirement%20engineering" title=" early requirement engineering"> early requirement engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=means%20end%20analysis" title=" means end analysis"> means end analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20modelling" title=" organizational modelling"> organizational modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=requirement%20modelling" title=" requirement modelling"> requirement modelling</a> </p> <a href="https://publications.waset.org/abstracts/8626/early-requirement-engineering-for-design-of-learner-centric-dynamic-lms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5652</span> Statistical Analysis of Surface Roughness and Tool Life Using (RSM) in Face Milling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohieddine%20Benghersallah">Mohieddine Benghersallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhdar%20Boulanouar"> Lakhdar Boulanouar</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20Belhadi"> Salim Belhadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, higher production rate with required quality and low cost is the basic principle in the competitive manufacturing industry. This is mainly achieved by using high cutting speed and feed rates. Elevated temperatures in the cutting zone under these conditions shorten tool life and adversely affect the dimensional accuracy and surface integrity of component. Thus it is necessary to find optimum cutting conditions (cutting speed, feed rate, machining environment, tool material and geometry) that can produce components in accordance with the project and having a relatively high production rate. Response surface methodology is a collection of mathematical and statistical techniques that are useful for modelling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. The work presented in this paper examines the effects of cutting parameters (cutting speed, feed rate and depth of cut) on to the surface roughness through the mathematical model developed by using the data gathered from a series of milling experiments performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Statistical%20analysis%20%28RSM%29" title="Statistical analysis (RSM)">Statistical analysis (RSM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Bearing%20steel" title=" Bearing steel"> Bearing steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Coating%20inserts" title=" Coating inserts"> Coating inserts</a>, <a href="https://publications.waset.org/abstracts/search?q=Tool%20life" title=" Tool life"> Tool life</a>, <a href="https://publications.waset.org/abstracts/search?q=Surface%20Roughness" title=" Surface Roughness"> Surface Roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=End%20milling." title=" End milling."> End milling.</a> </p> <a href="https://publications.waset.org/abstracts/21079/statistical-analysis-of-surface-roughness-and-tool-life-using-rsm-in-face-milling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5651</span> An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20C.%20S.%20Sampath%20Fernando">M. A. C. S. Sampath Fernando</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20M.%20Curran"> James M. Curran</a>, <a href="https://publications.waset.org/abstracts/search?q=Renate%20Meyer"> Renate Meyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinese%20restaurant%20process" title="Chinese restaurant process">Chinese restaurant process</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirichlet%20prior" title=" Dirichlet prior"> Dirichlet prior</a>, <a href="https://publications.waset.org/abstracts/search?q=infinite%20mixture%20model" title=" infinite mixture model"> infinite mixture model</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR%20stutter" title=" PCR stutter"> PCR stutter</a> </p> <a href="https://publications.waset.org/abstracts/57612/an-infinite-mixture-model-for-modelling-stutter-ratio-in-forensic-data-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5650</span> Statistical Convergence for the Approximation of Linear Positive Operators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Bhardwaj">Neha Bhardwaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider positive linear operators and study the Voronovskaya type result of the operator then obtain an error estimate in terms of the higher order modulus of continuity of the function being approximated and its A-statistical convergence. Also, we compute the corresponding rate of A-statistical convergence for the linear positive operators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Poisson%20distribution" title="Poisson distribution">Poisson distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Voronovskaya" title=" Voronovskaya"> Voronovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20continuity" title=" modulus of continuity"> modulus of continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=a-statistical%20convergence" title=" a-statistical convergence"> a-statistical convergence</a> </p> <a href="https://publications.waset.org/abstracts/70017/statistical-convergence-for-the-approximation-of-linear-positive-operators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5649</span> Statistical Shape Analysis of the Human Upper Airway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramkumar%20Gunasekaran">Ramkumar Gunasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Cater"> John Cater</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Suresh"> Vinod Suresh</a>, <a href="https://publications.waset.org/abstracts/search?q=Haribalan%20Kumar"> Haribalan Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this project is to develop a statistical shape model using principal component analysis that could be used for analyzing the shape of the human airway. The ultimate goal of this project is to identify geometric risk factors for diagnosis and management of Obstructive Sleep Apnoea (OSA). Anonymous CBCT scans of 25 individuals were obtained from the Otago Radiology Group. The airways were segmented between the hard-palate and the aryepiglottic fold using snake active contour segmentation. The point data cloud of the segmented images was then fitted with a bi-cubic mesh, and pseudo landmarks were placed to perform PCA on the segmented airway to analyze the shape of the airway and to find the relationship between the shape and OSA risk factors. From the PCA results, the first four modes of variation were found to be significant. Mode 1 was interpreted to be the overall length of the airway, Mode 2 was related to the anterior-posterior width of the retroglossal region, Mode 3 was related to the lateral dimension of the oropharyngeal region and Mode 4 was related to the anterior-posterior width of the oropharyngeal region. All these regions are subjected to the risk factors of OSA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20imaging" title="medical imaging">medical imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%2FBEM" title=" FEM/BEM"> FEM/BEM</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20modelling" title=" statistical modelling"> statistical modelling</a> </p> <a href="https://publications.waset.org/abstracts/83934/statistical-shape-analysis-of-the-human-upper-airway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5648</span> Prediction of Energy Storage Areas for Static Photovoltaic System Using Irradiation and Regression Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kisan%20Sarda">Kisan Sarda</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavika%20Shingote"> Bhavika Shingote</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to evaluate regression modelling for prediction of Energy storage of solar photovoltaic (PV) system using Semi parametric regression techniques because there are some parameters which are known while there are some unknown parameters like humidity, dust etc. Here irradiation of solar energy is different for different places on the basis of Latitudes, so by finding out areas which give more storage we can implement PV systems at those places and our need of energy will be fulfilled. This regression modelling is done for daily, monthly and seasonal prediction of solar energy storage. In this, we have used R modules for designing the algorithm. This algorithm will give the best comparative results than other regression models for the solar PV cell energy storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semi%20parametric%20regression" title="semi parametric regression">semi parametric regression</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20%28PV%29%20system" title=" photovoltaic (PV) system"> photovoltaic (PV) system</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20modelling" title=" regression modelling"> regression modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiation" title=" irradiation"> irradiation</a> </p> <a href="https://publications.waset.org/abstracts/65373/prediction-of-energy-storage-areas-for-static-photovoltaic-system-using-irradiation-and-regression-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5647</span> Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Datta">U. Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-registration" title="co-registration">co-registration</a>, <a href="https://publications.waset.org/abstracts/search?q=GLRT" title=" GLRT"> GLRT</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure%20growth" title=" infrastructure growth"> infrastructure growth</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral" title=" multispectral"> multispectral</a>, <a href="https://publications.waset.org/abstracts/search?q=multitemporal" title=" multitemporal"> multitemporal</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel-based%20change%20detection" title=" pixel-based change detection"> pixel-based change detection</a> </p> <a href="https://publications.waset.org/abstracts/117430/infrastructure-change-monitoring-using-multitemporal-multispectral-satellite-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5646</span> South African Students&#039; Statistical Literacy in the Conceptual Understanding about Measures of Central Tendency after Completing Their High School Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukanda%20Kalobo">Lukanda Kalobo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In South Africa, the High School Mathematics Curriculum provides teachers with specific aims and skills to be developed which involves the understanding about the measures of central tendency. The exploration begins with the definitions of statistical literacy, measurement of central tendency and a discussion on why statistical literacy is essential today. It furthermore discusses the statistical literacy basics involved in understanding the concepts of measures of central tendency. The statistical literacy test on the measures of central tendency, was used to collect data which was administered to 78 first year students direct from high schools. The results indicated that students seemed to have forgotten about the statistical literacy in understanding the concepts of measure of central tendency after completing their high school study. The authors present inferences regarding the alignment between statistical literacy and the understanding of the concepts about the measures of central tendency, leading to the conclusion that there is a need to provide in-service and pre-service training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conceptual%20understanding" title="conceptual understanding">conceptual understanding</a>, <a href="https://publications.waset.org/abstracts/search?q=mean" title=" mean"> mean</a>, <a href="https://publications.waset.org/abstracts/search?q=median" title=" median"> median</a>, <a href="https://publications.waset.org/abstracts/search?q=mode" title=" mode"> mode</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20literacy" title=" statistical literacy"> statistical literacy</a> </p> <a href="https://publications.waset.org/abstracts/86327/south-african-students-statistical-literacy-in-the-conceptual-understanding-about-measures-of-central-tendency-after-completing-their-high-school-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5645</span> Modelling Hydrological Time Series Using Wakeby Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilaria%20Lucrezia%20Amerise">Ilaria Lucrezia Amerise</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The statistical modelling of precipitation data for a given portion of territory is fundamental for the monitoring of climatic conditions and for Hydrogeological Management Plans (HMP). This modelling is rendered particularly complex by the changes taking place in the frequency and intensity of precipitation, presumably to be attributed to the global climate change. This paper applies the Wakeby distribution (with 5 parameters) as a theoretical reference model. The number and the quality of the parameters indicate that this distribution may be the appropriate choice for the interpolations of the hydrological variables and, moreover, the Wakeby is particularly suitable for describing phenomena producing heavy tails. The proposed estimation methods for determining the value of the Wakeby parameters are the same as those used for density functions with heavy tails. The commonly used procedure is the classic method of moments weighed with probabilities (probability weighted moments, PWM) although this has often shown difficulty of convergence, or rather, convergence to a configuration of inappropriate parameters. In this paper, we analyze the problem of the likelihood estimation of a random variable expressed through its quantile function. The method of maximum likelihood, in this case, is more demanding than in the situations of more usual estimation. The reasons for this lie, in the sampling and asymptotic properties of the estimators of maximum likelihood which improve the estimates obtained with indications of their variability and, therefore, their accuracy and reliability. These features are highly appreciated in contexts where poor decisions, attributable to an inefficient or incomplete information base, can cause serious damages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20extreme%20values" title="generalized extreme values">generalized extreme values</a>, <a href="https://publications.waset.org/abstracts/search?q=likelihood%20estimation" title=" likelihood estimation"> likelihood estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation%20data" title=" precipitation data"> precipitation data</a>, <a href="https://publications.waset.org/abstracts/search?q=Wakeby%20distribution" title=" Wakeby distribution"> Wakeby distribution</a> </p> <a href="https://publications.waset.org/abstracts/105205/modelling-hydrological-time-series-using-wakeby-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20modelling&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20modelling&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20modelling&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20modelling&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20modelling&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20modelling&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20modelling&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20modelling&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20modelling&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20modelling&amp;page=189">189</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20modelling&amp;page=190">190</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20modelling&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10