CINXE.COM

Search results for: Fluid Structural Interaction

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Fluid Structural Interaction</title> <meta name="description" content="Search results for: Fluid Structural Interaction"> <meta name="keywords" content="Fluid Structural Interaction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Fluid Structural Interaction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Fluid Structural Interaction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2989</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Fluid Structural Interaction</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2989</span> Coupling Concept of two Parallel Research Codes for Two and Three Dimensional Fluid Structure Interaction Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Luciano%20Garelli">Luciano Garelli</a>, <a href="https://publications.waset.org/search?q=Marco%20Schauer"> Marco Schauer</a>, <a href="https://publications.waset.org/search?q=Jorge%20D%E2%80%99Elia"> Jorge D’Elia</a>, <a href="https://publications.waset.org/search?q=Mario%20A.%20Storti"> Mario A. Storti</a>, <a href="https://publications.waset.org/search?q=Sabine%20C.%20Langer"> Sabine C. Langer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper discuss a coupling strategy of two different software packages to provide fluid structure interaction (FSI) analysis. The basic idea is to combine the advantages of the two codes to create a powerful FSI solver for two and three dimensional analysis. The fluid part is computed by a program called PETSc-FEM a software developed at Centro de Investigaci&acute;on de M&acute;etodos Computacionales &ndash;CIMEC. The structural part of the coupled process is computed by the research code elementary Parallel Solver &ndash; (ELPASO) of the Technische Universit&uml;at Braunschweig, Institut f&uml;ur Konstruktionstechnik (IK).</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computational%20Fluid%20Dynamics%20%28CFD%29" title="Computational Fluid Dynamics (CFD)">Computational Fluid Dynamics (CFD)</a>, <a href="https://publications.waset.org/search?q=Fluid%20Structure%0D%0AInteraction%20%28FSI%29" title=" Fluid Structure Interaction (FSI)"> Fluid Structure Interaction (FSI)</a>, <a href="https://publications.waset.org/search?q=Finite%20Element%20Method%20%28FEM%29." title=" Finite Element Method (FEM)."> Finite Element Method (FEM).</a> </p> <a href="https://publications.waset.org/9998236/coupling-concept-of-two-parallel-research-codes-for-two-and-three-dimensional-fluid-structure-interaction-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998236/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998236/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998236/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998236/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998236/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998236/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998236/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998236/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998236/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998236/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1943</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2988</span> Numerical Simulation of Fluid Structure Interaction Using Two-Way Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Samira%20Laidaoui">Samira Laidaoui</a>, <a href="https://publications.waset.org/search?q=Mohammed%20Djermane"> Mohammed Djermane</a>, <a href="https://publications.waset.org/search?q=Nazihe%20Terfaya"> Nazihe Terfaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The fluid-structure coupling is a natural phenomenon which reflects the effects of two continuums: fluid and structure of different types in the reciprocal action on each other, involving knowledge of elasticity and fluid mechanics. The solution for such problems is based on the relations of continuum mechanics and is mostly solved with numerical methods. It is a computational challenge to solve such problems because of the complex geometries, intricate physics of fluids, and complicated fluid-structure interactions. The way in which the interaction between fluid and solid is described gives the largest opportunity for reducing the computational effort. In this paper, a problem of fluid structure interaction is investigated with two-way coupling method. The formulation Arbitrary Lagrangian-Eulerian (ALE) was used, by considering a dynamic grid, where the solid is described by a Lagrangian formulation and the fluid by a Eulerian formulation. The simulation was made on the ANSYS software.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ALE" title="ALE">ALE</a>, <a href="https://publications.waset.org/search?q=coupling" title=" coupling"> coupling</a>, <a href="https://publications.waset.org/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/search?q=one-way%20method" title=" one-way method"> one-way method</a>, <a href="https://publications.waset.org/search?q=two-way%20method." title=" two-way method."> two-way method.</a> </p> <a href="https://publications.waset.org/10003956/numerical-simulation-of-fluid-structure-interaction-using-two-way-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003956/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003956/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003956/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003956/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003956/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003956/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003956/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003956/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003956/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003956/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1512</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2987</span> Multi-fidelity Fluid-Structure Interaction Analysis of a Membrane Wing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Saeedi">M. Saeedi</a>, <a href="https://publications.waset.org/search?q=R.%20Wuchner"> R. Wuchner</a>, <a href="https://publications.waset.org/search?q=K.-U.%20Bletzinger"> K.-U. Bletzinger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In order to study the aerodynamic performance of a semi-flexible membrane wing, Fluid-Structure Interaction simulations have been performed. The fluid problem has been modeled using two different approaches which are the vortex panel method and the numerical solution of the Navier-Stokes equations. Nonlinear analysis of the structural problem is performed using the Finite Element Method. Comparison between the two fluid solvers has been made. Aerodynamic performance of the wing is discussed regarding its lift and drag coefficients and they are compared with those of the equivalent rigid wing.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/search?q=FSI" title=" FSI"> FSI</a>, <a href="https://publications.waset.org/search?q=Membrane%20wing" title=" Membrane wing"> Membrane wing</a>, <a href="https://publications.waset.org/search?q=Vortex%20panel%20method." title=" Vortex panel method."> Vortex panel method.</a> </p> <a href="https://publications.waset.org/10000682/multi-fidelity-fluid-structure-interaction-analysis-of-a-membrane-wing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000682/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000682/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000682/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000682/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000682/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000682/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000682/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000682/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000682/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000682/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2318</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2986</span> Study of the Effect of Rotation on the Deformation of a Flexible Blade Rotor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Aref%20Maalej">Aref Maalej</a>, <a href="https://publications.waset.org/search?q=Marwa%20Fakhfakh"> Marwa Fakhfakh</a>, <a href="https://publications.waset.org/search?q=Wael%20Ben%20Amira"> Wael Ben Amira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>We present in this work a numerical investigation of fluid-structure interaction to study the elastic behavior of flexible rotors. The principal aim is to provide the effect of the aero/hydrodynamic parameters on the bending deformation of flexible rotors. This study is accomplished using the strong two-way fluid-structure interaction (FSI) developed by the ANSYS Workbench software. This method is used for coupling the fluid solver to the transient structural solver to study the elastic behavior of flexible rotors in water. In this study, we use a moderately flexible rotor modeled by a single blade with simplified rectangular geometry. In this work, we focus on the effect of the rotational frequency on the flapwise bending deformation. It is demonstrated that the blade deforms in the downstream direction and the amplitude of these deformations increases with the rotational frequencies. Also, from a critical frequency, the blade begins to deform in the upstream direction.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Numerical%20simulation" title="Numerical simulation">Numerical simulation</a>, <a href="https://publications.waset.org/search?q=flexible%20blade" title=" flexible blade"> flexible blade</a>, <a href="https://publications.waset.org/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/search?q=ANSYS%20Workbench" title=" ANSYS Workbench"> ANSYS Workbench</a>, <a href="https://publications.waset.org/search?q=flapwise%20deformation." title=" flapwise deformation."> flapwise deformation.</a> </p> <a href="https://publications.waset.org/10013597/study-of-the-effect-of-rotation-on-the-deformation-of-a-flexible-blade-rotor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013597/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013597/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013597/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013597/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013597/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013597/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013597/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013597/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013597/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013597/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2985</span> Fluid Structure Interaction Induced by Liquid Slosh in Partly Filled Road Tankers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Guorong%20Yan">Guorong Yan</a>, <a href="https://publications.waset.org/search?q=Subhash%20Rakheja"> Subhash Rakheja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquid cargo contained in a partly-filled road tank vehicle is prone to dynamic slosh movement when subjected to external disturbances. The slosh behavior has been identified as a significant factor impairing the safety of liquid cargo transportation. The laboratory experiments have been conducted for analyzing fluid slosh in partly filled tanks. The experiment results measured under forced harmonic excitations reveal the three-dimensional nature of the fluid motion and coupling between the lateral and longitudinal fluid slosh at resonance. Several spectral components are observed for the transient slosh forces, which can be associated with the excitation, resonance, and beat frequencies. The peak slosh forces and moments in the vicinity of resonance are significantly larger than those of the equivalent rigid mass. Due to the nature of coupling between sloshing fluid and vehicle body, the issue of the dynamic fluid-structure interaction is essential in the analysis of tank-vehicle dynamics. A dynamic pitch plane model of a Tridem truck incorporated the fluid slosh dynamics is developed to analyze the fluid-vehicle interaction under the straight-line braking maneuvers. The results show that the vehicle responses are highly associated with the characteristics of fluid slosh force and moment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Braking%20performance" title="Braking performance">Braking performance</a>, <a href="https://publications.waset.org/search?q=fluid%20induced%20vibration" title=" fluid induced vibration"> fluid induced vibration</a>, <a href="https://publications.waset.org/search?q=fluidslosh" title=" fluidslosh"> fluidslosh</a>, <a href="https://publications.waset.org/search?q=fluid%20structure%20interaction" title=" fluid structure interaction"> fluid structure interaction</a>, <a href="https://publications.waset.org/search?q=tank%20trucks" title=" tank trucks"> tank trucks</a>, <a href="https://publications.waset.org/search?q=vehicle%20dynamics." title=" vehicle dynamics."> vehicle dynamics.</a> </p> <a href="https://publications.waset.org/5911/fluid-structure-interaction-induced-by-liquid-slosh-in-partly-filled-road-tankers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5911/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5911/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5911/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5911/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5911/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5911/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5911/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5911/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5911/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5911/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3027</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2984</span> Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Guru%20Prasath">N. Guru Prasath</a>, <a href="https://publications.waset.org/search?q=Sangjin%20Ma"> Sangjin Ma</a>, <a href="https://publications.waset.org/search?q=Chang-Wan%20Kim"> Chang-Wan Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software&rsquo;s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Butterfly%20valve" title="Butterfly valve">Butterfly valve</a>, <a href="https://publications.waset.org/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/search?q=automatic%20CFD%20analysis" title=" automatic CFD analysis"> automatic CFD analysis</a>, <a href="https://publications.waset.org/search?q=flow%20coefficient." title=" flow coefficient."> flow coefficient.</a> </p> <a href="https://publications.waset.org/10006373/automatic-fluid-structure-interaction-modeling-and-analysis-of-butterfly-valve-using-python-script" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006373/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006373/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006373/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006373/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006373/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006373/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006373/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006373/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006373/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006373/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1297</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2983</span> A Finite Volume Procedure on Unstructured Meshes for Fluid-Structure Interaction Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P%20I%20Jagad">P I Jagad</a>, <a href="https://publications.waset.org/search?q=B%20P%20Puranik"> B P Puranik</a>, <a href="https://publications.waset.org/search?q=A%20W%20Date"> A W Date</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow through micro and mini channels requires relatively high driving pressure due to the large fluid pressure drop through these channels. Consequently the forces acting on the walls of the channel due to the fluid pressure are also large. Due to these forces there are displacement fields set up in the solid substrate containing the channels. If the movement of the substrate is constrained at some points, then stress fields are established in the substrate. On the other hand, if the deformation of the channel shape is sufficiently large then its effect on the fluid flow is important to be calculated. Such coupled fluid-solid systems form a class of problems known as fluidstructure interactions. In the present work a co-located finite volume discretization procedure on unstructured meshes is described for solving fluid-structure interaction type of problems. A linear elastic solid is assumed for which the effect of the channel deformation on the flow is neglected. Thus the governing equations for the fluid and the solid are decoupled and are solved separately. The procedure is validated by solving two benchmark problems, one from fluid mechanics and another from solid mechanics. A fluid-structure interaction problem of flow through a U-shaped channel embedded in a plate is solved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Finite%20volume%20method" title="Finite volume method">Finite volume method</a>, <a href="https://publications.waset.org/search?q=flow%20induced%20stresses" title=" flow induced stresses"> flow induced stresses</a>, <a href="https://publications.waset.org/search?q=fluidstructureinteraction" title=" fluidstructureinteraction"> fluidstructureinteraction</a>, <a href="https://publications.waset.org/search?q=unstructured%20meshes." title=" unstructured meshes."> unstructured meshes.</a> </p> <a href="https://publications.waset.org/13397/a-finite-volume-procedure-on-unstructured-meshes-for-fluid-structure-interaction-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13397/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13397/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13397/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13397/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13397/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13397/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13397/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13397/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13397/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13397/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1890</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2982</span> Coupled Galerkin-DQ Approach for the Transient Analysis of Dam-Reservoir Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20A.%20Eftekhari">S. A. Eftekhari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, a numerical algorithm using a coupled Galerkin-Differential Quadrature (DQ) method is proposed for the solution of dam-reservoir interaction problem. The governing differential equation of motion of the dam structure is discretized by the Galerkin method and the DQM is used to discretize the fluid domain. The resulting systems of ordinary differential equations are then solved by the Newmark time integration scheme. The mixed scheme combines the simplicity of the Galerkin method and high accuracy and efficiency of the DQ method. Its accuracy and efficiency are demonstrated by comparing the calculated results with those of the existing literature. It is shown that highly accurate results can be obtained using a small number of Galerkin terms and DQM sampling points. The technique presented in this investigation is general and can be used to solve various fluid-structure interaction problems.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dam-reservoir%20system" title="Dam-reservoir system">Dam-reservoir system</a>, <a href="https://publications.waset.org/search?q=Differential%20quadrature%20method" title=" Differential quadrature method"> Differential quadrature method</a>, <a href="https://publications.waset.org/search?q=Fluid-structure%20interaction" title=" Fluid-structure interaction"> Fluid-structure interaction</a>, <a href="https://publications.waset.org/search?q=Galerkin%20method" title=" Galerkin method"> Galerkin method</a>, <a href="https://publications.waset.org/search?q=Integral%20quadrature%20method." title=" Integral quadrature method."> Integral quadrature method.</a> </p> <a href="https://publications.waset.org/9997573/coupled-galerkin-dq-approach-for-the-transient-analysis-of-dam-reservoir-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997573/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997573/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997573/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997573/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997573/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997573/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997573/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997573/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997573/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997573/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1869</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2981</span> Numerical Simulation of Fluid-Structure Interaction on Wedge Slamming Impact Using Particle Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sung-Chul%20Hwang">Sung-Chul Hwang</a>, <a href="https://publications.waset.org/search?q=Di%20Ren"> Di Ren</a>, <a href="https://publications.waset.org/search?q=Sang-Moon%20Yoon"> Sang-Moon Yoon</a>, <a href="https://publications.waset.org/search?q=Jong-Chun%20Park"> Jong-Chun Park</a>, <a href="https://publications.waset.org/search?q=Abbas%20Khayyer"> Abbas Khayyer</a>, <a href="https://publications.waset.org/search?q=Hitoshi%20Gotoh"> Hitoshi Gotoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a fully Lagrangian coupled Fluid-Structure Interaction (FSI) solver for simulations of fluid-structure interactions, which is based on the Moving Particle Semi-implicit (MPS) method to solve the governing equations corresponding to incompressible flows as well as elastic structures. The developed solver is verified by reproducing the high velocity impact loads of deformable thin wedges with three different materials such as mild steel, aluminium and tin during water entry. The present simulation results for aluminium are compared with analytical solution derived from the hydrodynamic Wagner model and linear Wan’s theory. And also, the impact pressure and strain on the water entry wedge with three different materials, such as mild steel, aluminium and tin, are simulated and the effects of hydro-elasticity are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fluid-structure%20interaction%20%28FSI%29" title="Fluid-structure interaction (FSI)">Fluid-structure interaction (FSI)</a>, <a href="https://publications.waset.org/search?q=Moving%20Particle%0D%0ASemi-implicit%20%28MPS%29%20method" title=" Moving Particle Semi-implicit (MPS) method"> Moving Particle Semi-implicit (MPS) method</a>, <a href="https://publications.waset.org/search?q=Elastic%20structure" title=" Elastic structure"> Elastic structure</a>, <a href="https://publications.waset.org/search?q=Incompressible%20fluid%0D%0AWedge%20slamming%20impact." title=" Incompressible fluid Wedge slamming impact."> Incompressible fluid Wedge slamming impact.</a> </p> <a href="https://publications.waset.org/10002272/numerical-simulation-of-fluid-structure-interaction-on-wedge-slamming-impact-using-particle-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002272/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002272/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002272/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002272/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002272/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002272/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002272/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002272/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002272/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002272/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2100</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2980</span> Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Aymen%20Laadhari">Aymen Laadhari</a>, <a href="https://publications.waset.org/search?q=G%C3%A1bor%20Sz%C3%A9kely"> Gábor Székely</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fluid-membrane%20interaction" title="Fluid-membrane interaction">Fluid-membrane interaction</a>, <a href="https://publications.waset.org/search?q=stretching" title=" stretching"> stretching</a>, <a href="https://publications.waset.org/search?q=Eulerian" title=" Eulerian"> Eulerian</a>, <a href="https://publications.waset.org/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/search?q=Newton" title=" Newton"> Newton</a>, <a href="https://publications.waset.org/search?q=implicit." title=" implicit."> implicit.</a> </p> <a href="https://publications.waset.org/10006134/implicit-eulerian-fluid-structure-interaction-method-for-the-modeling-of-highly-deformable-elastic-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006134/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006134/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006134/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006134/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006134/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006134/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006134/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006134/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006134/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006134/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1287</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2979</span> Fuel Reserve Tanks Dynamic Analysis Due to Earthquake Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=F.Saadi">F.Saadi</a>, <a href="https://publications.waset.org/search?q=A.Aboudi%20Asl"> A.Aboudi Asl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the dynamic analysis of fuel storage tanks has been studied and some equations are presented for the created fluid waves due to storage tank motions. Also, the equations for finite elements of fluid and structure interactions, and boundary conditions dominant on structure and fluid, were researched. In this paper, a numerical simulation is performed for the dynamic analysis of a storage tank contained a fluid. This simulation has carried out by ANSYS software, using FSI solver (Fluid and Structure Interaction solver), and by considering the simulated fluid dynamic motions due to earthquake loading, based on velocities and movements of structure and fluid according to all boundary conditions dominant on structure and fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=fluid%20and%20structure%20interactions" title="fluid and structure interactions">fluid and structure interactions</a>, <a href="https://publications.waset.org/search?q=finite%20elementmethod" title=" finite elementmethod"> finite elementmethod</a>, <a href="https://publications.waset.org/search?q=ANSYS%20%E2%80%93%20FSI" title=" ANSYS – FSI"> ANSYS – FSI</a> </p> <a href="https://publications.waset.org/954/fuel-reserve-tanks-dynamic-analysis-due-to-earthquake-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/954/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/954/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/954/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/954/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/954/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/954/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/954/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/954/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/954/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/954/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2139</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2978</span> Validation of a Fluid-Structure Interaction Model of an Aortic Dissection versus a Bench Top Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Khanafer">K. Khanafer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The aim of this investigation was to validate the fluid-structure interaction (FSI) model of type B aortic dissection with our experimental results from a bench-top-model. Another objective was to study the relationship between the size of a septectomy that increases the outflow of the false lumen and its effect on the values of the differential of pressure between true lumen and false lumen. FSI analysis based on Galerkin&rsquo;s formulation was used in this investigation to study flow pattern and hemodynamics within a flexible type B aortic dissection model using boundary conditions from our experimental data. The numerical results of our model were verified against the experimental data for various tear size and location. Thus, CFD tools have a potential role in evaluating different scenarios and aortic dissection configurations.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aortic%20dissection" title="Aortic dissection">Aortic dissection</a>, <a href="https://publications.waset.org/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/search?q=in%20vitro%20model" title=" in vitro model"> in vitro model</a>, <a href="https://publications.waset.org/search?q=numerical." title=" numerical."> numerical.</a> </p> <a href="https://publications.waset.org/10007950/validation-of-a-fluid-structure-interaction-model-of-an-aortic-dissection-versus-a-bench-top-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007950/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007950/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007950/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007950/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007950/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007950/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007950/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007950/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007950/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007950/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">945</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2977</span> Hemodynamic Characteristics in the Human Carotid Artery Model Induced by Blood-Arterial Wall Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Taewon%20Seo">Taewon Seo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The characteristics of physiological blood flow in human carotid arterial bifurcation model have been numerically studied using a fully coupled fluid-structure interaction (FSI) analysis. This computational model with the fluid-structure interaction is constructed to investigate the flow characteristics and wall shear stress in the carotid artery. As the flow begins to decelerate after the peak flow, a large recirculation zone develops at the non-divider wall of both internal carotid artery (ICA) and external carotid artery (ECA) in FSI model due to the elastic energy stored in the expanding compliant wall. The calculated difference in wall shear stress (WSS) in both Non-FSI and FSI models is a range of between 5 and 11% at the mean WSS. The low WSS corresponds to regions of carotid artery that are more susceptible to atherosclerosis.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carotid%20artery" title="Carotid artery">Carotid artery</a>, <a href="https://publications.waset.org/search?q=Fluid-structure%20interaction" title=" Fluid-structure interaction"> Fluid-structure interaction</a>, <a href="https://publications.waset.org/search?q=Hemodynamics" title=" Hemodynamics"> Hemodynamics</a>, <a href="https://publications.waset.org/search?q=Wall%20shear%20stress." title=" Wall shear stress."> Wall shear stress.</a> </p> <a href="https://publications.waset.org/17132/hemodynamic-characteristics-in-the-human-carotid-artery-model-induced-by-blood-arterial-wall-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17132/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17132/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17132/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17132/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17132/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17132/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17132/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17132/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17132/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17132/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2867</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2976</span> Performance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dong-Hyun%20Kim">Dong-Hyun Kim</a>, <a href="https://publications.waset.org/search?q=Yoo-Han%20Kim"> Yoo-Han Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, aeroelastic response and performance analyses have been conducted for a 5MW-Class composite wind turbine blade model. Advanced coupled numerical method based on computational fluid dynamics (CFD) and computational flexible multi-body dynamics (CFMBD) has been developed in order to investigate aeroelastic responses and performance characteristics of the rotating composite blade. Reynolds-Averaged Navier-Stokes (RANS) equations with k-ω SST turbulence model were solved for unsteady flow problems on the rotating turbine blade model. Also, structural analyses considering rotating effect have been conducted using the general nonlinear finite element method. A fully implicit time marching scheme based on the Newmark direct integration method is applied to solve the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous velocity contour on the blade surfaces which considering flow-separation effects were presented to show the multi-physical phenomenon of the huge rotating wind- turbine blade model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computational%20Fluid%20Dynamics%20%28CFD%29" title="Computational Fluid Dynamics (CFD)">Computational Fluid Dynamics (CFD)</a>, <a href="https://publications.waset.org/search?q=Computational%20Multi-Body%20Dynamics%20%28CMBD%29" title="Computational Multi-Body Dynamics (CMBD)">Computational Multi-Body Dynamics (CMBD)</a>, <a href="https://publications.waset.org/search?q=Reynolds-averageNavier-Stokes%20%28RANS%29" title=" Reynolds-averageNavier-Stokes (RANS)"> Reynolds-averageNavier-Stokes (RANS)</a>, <a href="https://publications.waset.org/search?q=Fluid%20Structure%20Interaction%20%28FSI%29" title=" Fluid Structure Interaction (FSI)"> Fluid Structure Interaction (FSI)</a>, <a href="https://publications.waset.org/search?q=FiniteElement%20Method%20%28FEM%29" title=" FiniteElement Method (FEM)"> FiniteElement Method (FEM)</a> </p> <a href="https://publications.waset.org/7899/performance-prediction-of-a-5mw-wind-turbine-blade-considering-aeroelastic-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7899/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7899/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7899/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7899/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7899/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7899/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7899/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7899/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7899/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7899/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2920</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2975</span> Heat Transfer Analysis of Rectangular Channel Plate Heat Sink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zhang%20Lei">Zhang Lei</a>, <a href="https://publications.waset.org/search?q=Liu%20Min"> Liu Min</a>, <a href="https://publications.waset.org/search?q=Liu%20Botao"> Liu Botao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve the simulation effects of space cold black environment, this paper described a rectangular channel plate heat sink. By using fluid mechanics theory and finite element method, the internal fluid flow and heat transfer in heat sink was numerically simulated to analyze the impact of channel structural on fluid flow and heat transfer. The result showed that heat sink temperature uniformity is well, and the impact of channel structural on the heat sink temperature uniformity is not significant. The channel depth and spacing are important factors which affect the fluid flow and heat transfer in the heat sink. The two factors of heat transfer and resistance need to be considered comprehensively to determine the optimal flow structure parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/search?q=heat%20sink" title=" heat sink"> heat sink</a>, <a href="https://publications.waset.org/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/5516/heat-transfer-analysis-of-rectangular-channel-plate-heat-sink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5516/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5516/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5516/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5516/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5516/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5516/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5516/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5516/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5516/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5516/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1840</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2974</span> Conjugate Heat Transfer Analysis of a Combustion Chamber using ANSYS Computational Fluid Dynamics to Estimate the Thermocouple Positioning in a Chamber Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Muzna%20Tariq">Muzna Tariq</a>, <a href="https://publications.waset.org/search?q=Ihtzaz%20Qamar"> Ihtzaz Qamar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In most engineering cases, the working temperatures inside a combustion chamber are high enough that they lie beyond the operational range of thermocouples. Furthermore, design and manufacturing limitations restrict the use of internal thermocouples in many applications. Heat transfer inside a combustion chamber is caused due to interaction of the post-combustion hot fluid with the chamber wall. Heat transfer that involves an interaction between the fluid and solid is categorized as Conjugate Heat Transfer (CHT). Therefore, to satisfy the needs of CHT, CHT Analysis is performed by using ANSYS CFD tool to estimate theoretically precise thermocouple positions at the combustion chamber wall where excessive temperatures (beyond thermocouple range) can be avoided. In accordance with these Computational Fluid Dynamics (CFD) results, a combustion chamber is designed, and a prototype is manufactured with multiple thermocouple ports positioned at the specified distances so that the temperature of hot gases can be measured on the chamber wall where the temperatures do not exceed the thermocouple working range.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computational%20Fluid%20Dynamics" title="Computational Fluid Dynamics">Computational Fluid Dynamics</a>, <a href="https://publications.waset.org/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/search?q=conduction" title=" conduction"> conduction</a>, <a href="https://publications.waset.org/search?q=conjugate%20heat%20transfer" title=" conjugate heat transfer"> conjugate heat transfer</a>, <a href="https://publications.waset.org/search?q=CHT" title=" CHT"> CHT</a>, <a href="https://publications.waset.org/search?q=convection" title=" convection"> convection</a>, <a href="https://publications.waset.org/search?q=fluid%20flow" title=" fluid flow"> fluid flow</a>, <a href="https://publications.waset.org/search?q=thermocouples." title=" thermocouples. "> thermocouples. </a> </p> <a href="https://publications.waset.org/10011704/conjugate-heat-transfer-analysis-of-a-combustion-chamber-using-ansys-computational-fluid-dynamics-to-estimate-the-thermocouple-positioning-in-a-chamber-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011704/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011704/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011704/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011704/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011704/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011704/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011704/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011704/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011704/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011704/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">691</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2973</span> Lagrangian Flow Skeletons Captured in the Wake of a Swimming Nematode C. elegans Using an Immersed Boundary Fluid-Structure Interaction Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Arash%20Taheri">Arash Taheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, Lagrangian coherent structure (LCS) concept is applied to wake flows generated in the up/down-stream of a swimming nematode C. elegans in an intermediate Re number range, i.e., 250-1200. It materializes Lagrangian hidden structures depicting flow transport barriers. To pursue the goals, nematode swimming in a quiescent fluid flow environment is numerically simulated by a two-way fluid-structure interaction (FSI) approach with the aid of immersed boundary method (IBM). In this regard, incompressible Navier-Stokes equations, fully-coupled with Lagrangian deformation equations for the immersed body, are solved using IB2d code. For all simulations, nematode’s body is modeled with a parametrized spring-fiber built-in case available in the computational code. Reverse von-Kármán vortex street formation and vortex shedding characteristics are studied and discussed in details via LCS approach, including grid resolution, integration time and Reynolds number effects. Results unveil presence of different flow regions with distinct fluid particle fates in the swimming animal’s wake and formation of so-called ‘mushroom-shaped’ structures in attracting LCS identities. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Lagrangian%20coherent%20structure" title="Lagrangian coherent structure">Lagrangian coherent structure</a>, <a href="https://publications.waset.org/search?q=nematode%20swimming" title=" nematode swimming"> nematode swimming</a>, <a href="https://publications.waset.org/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/search?q=immersed%20boundary%20method" title=" immersed boundary method"> immersed boundary method</a>, <a href="https://publications.waset.org/search?q=bionics." title=" bionics."> bionics.</a> </p> <a href="https://publications.waset.org/10012122/lagrangian-flow-skeletons-captured-in-the-wake-of-a-swimming-nematode-c-elegans-using-an-immersed-boundary-fluid-structure-interaction-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012122/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012122/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012122/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012122/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012122/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012122/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012122/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012122/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012122/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012122/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">995</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2972</span> Sloshing-Induced Overflow Assessment of the Seismically-Isolated Nuclear Tanks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kihyon%20Kwon">Kihyon Kwon</a>, <a href="https://publications.waset.org/search?q=Hyun%20T.%20Park"> Hyun T. Park</a>, <a href="https://publications.waset.org/search?q=Gil%20Y.%20Chung"> Gil Y. Chung</a>, <a href="https://publications.waset.org/search?q=Sang-Hoon%20Lee"> Sang-Hoon Lee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract" style="text-indent:10.2pt">This paper focuses on assessing sloshing-induced overflow of the seismically-isolated nuclear tanks based on Fluid-Structure Interaction (FSI) analysis. Typically, fluid motion in the seismically-isolated nuclear tank systems may be rather amplified and even overflowed under earthquake. Sloshing-induced overflow in those structures has to be reliably assessed and predicted since it can often cause critical damages to humans and environments. FSI analysis is herein performed to compute the total cumulative overflowed water volume more accurately, by coupling ANSYS with CFX for structural and fluid analyses, respectively. The approach is illustrated on a nuclear liquid storage tank, Spent Fuel Pool (SFP), forgiven conditions under consideration: different liquid levels, Peak Ground Accelerations (PGAs), and post earthquakes.&nbsp;<o:p></o:p></p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=FSI%20analysis" title="FSI analysis">FSI analysis</a>, <a href="https://publications.waset.org/search?q=seismically-isolated%20nuclear%20tank%20system" title=" seismically-isolated nuclear tank system"> seismically-isolated nuclear tank system</a>, <a href="https://publications.waset.org/search?q=sloshing-induced%20overflow." title=" sloshing-induced overflow."> sloshing-induced overflow.</a> </p> <a href="https://publications.waset.org/9998041/sloshing-induced-overflow-assessment-of-the-seismically-isolated-nuclear-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998041/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998041/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998041/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998041/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998041/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998041/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998041/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998041/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998041/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998041/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2878</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2971</span> Blood Cell Dynamics in a Simple Shear Flow using an Implicit Fluid-Structure Interaction Method Based on the ALE Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Choeng-Ryul%20Choi">Choeng-Ryul Choi</a>, <a href="https://publications.waset.org/search?q=Chang-Nyung%20Kim"> Chang-Nyung Kim</a>, <a href="https://publications.waset.org/search?q=Tae-Hyub%20Hong"> Tae-Hyub Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical method is developed for simulating the motion of particles with arbitrary shapes in an effectively infinite or bounded viscous flow. The particle translational and angular motions are numerically investigated using a fluid-structure interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (smoothing and remeshing) in FLUENT ( ANSYS Inc., USA). Also, the effects of arbitrary shapes on the dynamics are studied using the FSI method which could be applied to the motions and deformations of a single blood cell and multiple blood cells, and the primary thrombogenesis caused by platelet aggregation. It is expected that, combined with a sophisticated large-scale computational technique, the simulation method will be useful for understanding the overall properties of blood flow from blood cellular level (microscopic) to the resulting rheological properties of blood as a mass (macroscopic). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Blood%20Flow" title="Blood Flow">Blood Flow</a>, <a href="https://publications.waset.org/search?q=Fluid-Structure%20Interaction%20%28FSI%29" title=" Fluid-Structure Interaction (FSI)"> Fluid-Structure Interaction (FSI)</a>, <a href="https://publications.waset.org/search?q=Micro-Channels" title=" Micro-Channels"> Micro-Channels</a>, <a href="https://publications.waset.org/search?q=Arbitrary%20Shapes" title=" Arbitrary Shapes"> Arbitrary Shapes</a>, <a href="https://publications.waset.org/search?q=Red%20Blood%20Cells%20%28RBCs%29" title=" Red Blood Cells (RBCs)"> Red Blood Cells (RBCs)</a> </p> <a href="https://publications.waset.org/7248/blood-cell-dynamics-in-a-simple-shear-flow-using-an-implicit-fluid-structure-interaction-method-based-on-the-ale-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7248/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7248/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7248/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7248/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7248/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7248/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7248/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7248/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7248/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7248/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2311</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2970</span> Nonlinear Mathematical Model of the Rotor Motion in a Thin Hydrodynamic Gap</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jaroslav%20Krutil">Jaroslav Krutil</a>, <a href="https://publications.waset.org/search?q=Franti%C5%A1ek%20Pochyl%C3%BD"> František Pochylý</a>, <a href="https://publications.waset.org/search?q=Simona%20Fialov%C3%A1"> Simona Fialová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents two mathematical models of the interaction between a rotating shaft and an incompressible fluid. The mathematical model includes both the journal bearings and the axially traversed hydrodynamic sealing gaps of hydraulic machines. A method is shown for the identification of additional effects of the fluid acting on the rotor of the machine, both for a linear and a nonlinear model. The interaction is expressed by matrices of mass, stiffness and damping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD%20modeling" title="CFD modeling">CFD modeling</a>, <a href="https://publications.waset.org/search?q=hydrodynamic%20gap" title=" hydrodynamic gap"> hydrodynamic gap</a>, <a href="https://publications.waset.org/search?q=matrices%20of%0D%0Amass" title=" matrices of mass"> matrices of mass</a>, <a href="https://publications.waset.org/search?q=stiffness%20and%20damping" title=" stiffness and damping"> stiffness and damping</a>, <a href="https://publications.waset.org/search?q=nonlinear%20mathematical%20model." title=" nonlinear mathematical model."> nonlinear mathematical model.</a> </p> <a href="https://publications.waset.org/10001413/nonlinear-mathematical-model-of-the-rotor-motion-in-a-thin-hydrodynamic-gap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001413/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001413/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001413/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001413/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001413/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001413/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001413/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001413/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001413/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001413/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1841</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2969</span> Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Mahdi%20S.%20Kolbadi">S. Mahdi S. Kolbadi</a>, <a href="https://publications.waset.org/search?q=Ramezan%20Ali%20Alvand"> Ramezan Ali Alvand</a>, <a href="https://publications.waset.org/search?q=Afrasiab%20Mirzaei"> Afrasiab Mirzaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dynamic%20behavior" title="Dynamic behavior">Dynamic behavior</a>, <a href="https://publications.waset.org/search?q=water%20storage%20tank" title=" water storage tank"> water storage tank</a>, <a href="https://publications.waset.org/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/search?q=flexible%20wall." title=" flexible wall. "> flexible wall. </a> </p> <a href="https://publications.waset.org/10009126/three-dimensional-dynamic-analysis-of-water-storage-tanks-considering-fsi-using-fem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009126/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009126/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009126/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009126/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009126/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009126/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009126/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009126/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009126/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009126/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">982</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2968</span> A Constitutive Model of Ligaments and Tendons Accounting for Fiber-Matrix Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ratchada%20Sopakayang">Ratchada Sopakayang</a>, <a href="https://publications.waset.org/search?q=Gerhard%20A.%20Holzapfel"> Gerhard A. Holzapfel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a new constitutive model is developed to describe the hyperelastic behavior of collagenous tissues with a parallel arrangement of collagen fibers such as ligaments and tendons. The model is formulated using a continuum approach incorporating the structural changes of the main tissue components: collagen fibers, proteoglycan-rich matrix and fiber-matrix interaction. The mechanical contribution of the interaction between the fibers and the matrix is simply expressed by a coupling term. The structural change of the collagen fibers is incorporated in the constitutive model to describe the activation of the fibers under tissue straining. Finally, the constitutive model can easily describe the stress-stretch nonlinearity which occurs when a ligament/tendon is axially stretched. This study shows that the interaction between the fibers and the matrix contributes to the mechanical tissue response. Therefore, the model may lead to a better understanding of the physiological mechanisms of ligaments and tendons under axial loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hyperelasticity" title="Hyperelasticity">Hyperelasticity</a>, <a href="https://publications.waset.org/search?q=constitutive%20model" title=" constitutive model"> constitutive model</a>, <a href="https://publications.waset.org/search?q=fiber-matrix%0D%0Ainteraction" title=" fiber-matrix interaction"> fiber-matrix interaction</a>, <a href="https://publications.waset.org/search?q=ligament" title=" ligament"> ligament</a>, <a href="https://publications.waset.org/search?q=tendon." title=" tendon."> tendon.</a> </p> <a href="https://publications.waset.org/10007100/a-constitutive-model-of-ligaments-and-tendons-accounting-for-fiber-matrix-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007100/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007100/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007100/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007100/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007100/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007100/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007100/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007100/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007100/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007100/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">881</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2967</span> Fast Calculation for Particle Interactions in SPH Simulations: Outlined Sub-domain Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Buntara%20Sthenly%20Gan">Buntara Sthenly Gan</a>, <a href="https://publications.waset.org/search?q=Naohiro%20Kawada"> Naohiro Kawada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A simple and easy algorithm is presented for a fast calculation of kernel functions which required in fluid simulations using the Smoothed Particle Hydrodynamic (SPH) method. Present proposed algorithm improves the Linked-list algorithm and adopts the Pair-Wise Interaction technique, which are widely used for evaluating kernel functions in fluid simulations using the SPH method. The algorithm is easy to be implemented without any complexities in programming. Some benchmark examples are used to show the simulation time saved by using the proposed algorithm. Parametric studies on the number of divisions for sub-domains, smoothing length and total amount of particles are conducted to show the effectiveness of the present technique. A compact formulation is proposed for practical usage.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Technique" title="Technique">Technique</a>, <a href="https://publications.waset.org/search?q=fluid%20simulation" title=" fluid simulation"> fluid simulation</a>, <a href="https://publications.waset.org/search?q=smoothing%20particle%20hydrodynamic%20%28SPH%29" title=" smoothing particle hydrodynamic (SPH)"> smoothing particle hydrodynamic (SPH)</a>, <a href="https://publications.waset.org/search?q=particle%20interaction." title=" particle interaction."> particle interaction.</a> </p> <a href="https://publications.waset.org/14249/fast-calculation-for-particle-interactions-in-sph-simulations-outlined-sub-domain-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14249/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14249/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14249/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14249/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14249/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14249/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14249/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14249/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14249/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14249/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1630</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2966</span> Stability Optimization of Functionally Graded Pipes Conveying Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Karam%20Y.%20Maalawi">Karam Y. Maalawi</a>, <a href="https://publications.waset.org/search?q=Hanan%20E.M%20EL-Sayed"> Hanan E.M EL-Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an exact analytical model for optimizing stability of thin-walled, composite, functionally graded pipes conveying fluid. The critical flow velocity at which divergence occurs is maximized for a specified total structural mass in order to ensure the economic feasibility of the attained optimum designs. The composition of the material of construction is optimized by defining the spatial distribution of volume fractions of the material constituents using piecewise variations along the pipe length. The major aim is to tailor the material distribution in the axial direction so as to avoid the occurrence of divergence instability without the penalty of increasing structural mass. Three types of boundary conditions have been examined; namely, Hinged-Hinged, Clamped- Hinged and Clamped-Clamped pipelines. The resulting optimization problem has been formulated as a nonlinear mathematical programming problem solved by invoking the MatLab optimization toolbox routines, which implement constrained function minimization routine named “fmincon" interacting with the associated eigenvalue problem routines. In fact, the proposed mathematical models have succeeded in maximizing the critical flow velocity without mass penalty and producing efficient and economic designs having enhanced stability characteristics as compared with the baseline designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Functionally%20graded%20materials" title="Functionally graded materials">Functionally graded materials</a>, <a href="https://publications.waset.org/search?q=pipe%20flow" title=" pipe flow"> pipe flow</a>, <a href="https://publications.waset.org/search?q=optimumdesign" title=" optimumdesign"> optimumdesign</a>, <a href="https://publications.waset.org/search?q=fluid-%20structure%20interaction" title=" fluid- structure interaction"> fluid- structure interaction</a> </p> <a href="https://publications.waset.org/2646/stability-optimization-of-functionally-graded-pipes-conveying-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2646/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2646/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2646/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2646/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2646/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2646/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2646/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2646/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2646/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2646/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2208</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2965</span> A Numerical Study of Force-Based Boundary Conditions in Multiparticle Collision Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Arturo%20Ayala-Hernandez">Arturo Ayala-Hernandez</a>, <a href="https://publications.waset.org/search?q=Humberto%20H%C2%B4%C4%B1jar"> Humberto H´ıjar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>We propose a new alternative method for imposing fluid-solid boundary conditions in simulations of Multiparticle Collision Dynamics. Our method is based on the introduction of an explicit potential force acting between the fluid particles and a surface representing a solid boundary. We show that our method can be used in simulations of plane Poiseuille flows. Important quantities characterizing the flow and the fluid-solid interaction like the slip coefficient at the solid boundary and the effective viscosity of the fluid, are measured in terms of the set of independent parameters defining the numerical implementation. We find that our method can be used to simulate the correct hydrodynamic flow within a wide range of values of these parameters.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multiparticle%20Collision%20Dynamics" title="Multiparticle Collision Dynamics">Multiparticle Collision Dynamics</a>, <a href="https://publications.waset.org/search?q=Fluid-Solid%20Boundary%20Conditions" title=" Fluid-Solid Boundary Conditions"> Fluid-Solid Boundary Conditions</a>, <a href="https://publications.waset.org/search?q=Molecular%20Dynamics." title=" Molecular Dynamics."> Molecular Dynamics.</a> </p> <a href="https://publications.waset.org/10000011/a-numerical-study-of-force-based-boundary-conditions-in-multiparticle-collision-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000011/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000011/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000011/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000011/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000011/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000011/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000011/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000011/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000011/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000011/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2227</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2964</span> Detecting Community Structure in Amino Acid Interaction Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Omar%20GACI">Omar GACI</a>, <a href="https://publications.waset.org/search?q=Stefan%20BALEV"> Stefan BALEV</a>, <a href="https://publications.waset.org/search?q=Antoine%20DUTOT"> Antoine DUTOT</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper we introduce the notion of protein interaction network. This is a graph whose vertices are the protein-s amino acids and whose edges are the interactions between them. Using a graph theory approach, we observe that according to their structural roles, the nodes interact differently. By leading a community structure detection, we confirm this specific behavior and describe thecommunities composition to finally propose a new approach to fold a protein interaction network.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=interaction%20network" title="interaction network">interaction network</a>, <a href="https://publications.waset.org/search?q=protein%20structure" title=" protein structure"> protein structure</a>, <a href="https://publications.waset.org/search?q=community%20structure%20detection." title=" community structure detection."> community structure detection.</a> </p> <a href="https://publications.waset.org/2391/detecting-community-structure-in-amino-acid-interaction-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2391/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2391/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2391/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2391/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2391/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2391/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2391/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2391/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2391/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2391/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1519</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2963</span> Three Dimensional Large Eddy Simulation of Blood Flow and Deformation in an Elastic Constricted Artery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Xi%20Gu">Xi Gu</a>, <a href="https://publications.waset.org/search?q=Guan%20Heng%20Yeoh"> Guan Heng Yeoh</a>, <a href="https://publications.waset.org/search?q=Victoria%20Timchenko"> Victoria Timchenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In the current work, a three-dimensional geometry of a 75% stenosed blood vessel is analyzed. Large eddy simulation (LES) with the help of a dynamic subgrid scale Smagorinsky model is applied to model the turbulent pulsatile flow. The geometry, the transmural pressure and the properties of the blood and the elastic boundary were based on clinical measurement data. For the flexible wall model, a thin solid region is constructed around the 75% stenosed blood vessel. The deformation of this solid region was modelled as a deforming boundary to reduce the computational cost of the solid model. Fluid-structure interaction is realized via a twoway coupling between the blood flow modelled via LES and the deforming vessel. The information of the flow pressure and the wall motion was exchanged continually during the cycle by an arbitrary Lagrangian-Eulerian method. The boundary condition of current time step depended on previous solutions. The fluctuation of the velocity in the post-stenotic region was analyzed in the study. The axial velocity at normalized position Z=0.5 shows a negative value near the vessel wall. The displacement of the elastic boundary was concerned in this study. In particular, the wall displacement at the systole and the diastole were compared. The negative displacement at the stenosis indicates a collapse at the maximum velocity and the deceleration phase.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Large%20Eddy%20Simulation" title="Large Eddy Simulation">Large Eddy Simulation</a>, <a href="https://publications.waset.org/search?q=Fluid%20Structural%20Interaction" title=" Fluid Structural Interaction"> Fluid Structural Interaction</a>, <a href="https://publications.waset.org/search?q=Constricted%20Artery" title=" Constricted Artery"> Constricted Artery</a>, <a href="https://publications.waset.org/search?q=Computational%20Fluid%20Dynamics." title=" Computational Fluid Dynamics."> Computational Fluid Dynamics.</a> </p> <a href="https://publications.waset.org/10001189/three-dimensional-large-eddy-simulation-of-blood-flow-and-deformation-in-an-elastic-constricted-artery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001189/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001189/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001189/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001189/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001189/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001189/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001189/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001189/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001189/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001189/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2344</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2962</span> Acoustic Study on the Interactions of Coconut Oil Based Copper Oxide Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Nabeel%20Rashin">M. Nabeel Rashin</a>, <a href="https://publications.waset.org/search?q=J.%20Hemalatha"> J. Hemalatha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Novel Coconut oil nanofluids of various concentrations have been prepared through ultrasonically assisted sol-gel method. The structural and morphological properties of the copper oxide nanoparticle have been analyzed with respectively and it revealed the monoclinic end-centered structure of crystallite and shuttle like flake morphology of agglomerates. Ultrasonic studies have been made for the nanofluids at different temperatures. The molecular interactions responsible for the changes in acoustical parameter with respect to concentration and temperature are discussed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cutting%20Fluid" title="Cutting Fluid">Cutting Fluid</a>, <a href="https://publications.waset.org/search?q=Molecular%20Interaction" title=" Molecular Interaction"> Molecular Interaction</a>, <a href="https://publications.waset.org/search?q=Nanofluids" title=" Nanofluids"> Nanofluids</a>, <a href="https://publications.waset.org/search?q=Ultrasonic" title=" Ultrasonic"> Ultrasonic</a> </p> <a href="https://publications.waset.org/5859/acoustic-study-on-the-interactions-of-coconut-oil-based-copper-oxide-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5859/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5859/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5859/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5859/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5859/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5859/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5859/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5859/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5859/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5859/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3096</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2961</span> Tuned Mass Damper Effects of Stationary People on Structural Damping of Footbridge Due to Dynamic Interaction in Vertical Motion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Yoneda">M. Yoneda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that stationary human occupants act as dynamic mass-spring-damper systems and can change the modal properties of civil engineering structures. This paper describes the full scale measurement to explain the tuned mass damper effects of stationary people on structural damping of footbridge with center span length of 33 m. A human body can be represented by a lumped system consisting of masses, springs, and dashpots. Complex eigenvalue calculation is also conducted by using ISO5982:1981 human model (two degree of freedom system). Based on experimental and analytical results for the footbridge with the stationary people in the standing position, it is demonstrated that stationary people behave as a tuned mass damper and that ISO5982:1981 human model can explain the structural damping characteristics measured in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dynamic%20interaction" title="Dynamic interaction">Dynamic interaction</a>, <a href="https://publications.waset.org/search?q=footbridge" title=" footbridge"> footbridge</a>, <a href="https://publications.waset.org/search?q=stationary%20people" title=" stationary people"> stationary people</a>, <a href="https://publications.waset.org/search?q=structural%20damping." title=" structural damping."> structural damping.</a> </p> <a href="https://publications.waset.org/10005183/tuned-mass-damper-effects-of-stationary-people-on-structural-damping-of-footbridge-due-to-dynamic-interaction-in-vertical-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005183/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005183/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005183/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005183/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005183/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005183/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005183/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005183/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005183/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005183/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1117</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2960</span> PIV Investigation into the Evolution of Vortical Structures in the Zero Pressure Gradient Boundary Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ishtiaq%20A.%20Chaudhry">Ishtiaq A. Chaudhry</a>, <a href="https://publications.waset.org/search?q=Zia%20R.%20Tahir"> Zia R. Tahir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental investigation has been carried out towards understanding the complex fluid dynamics involved in the interaction of vortical structures with zero pressure gradient boundary layer. A laminar boundary layer is produced on the flat plate placed in the water flume and the synthetic jet actuator is deployed on top of the plate at a definite distance from the leading edge. The synthetic jet actuator has been designed in such a way that the to and fro motion of the diaphragm is maneuvered at will by varying the operating parameters to produce the typical streamwise vortical structures namely hairpin and tilted vortices. PIV measurements are made on the streamwise plane normal to the plate to evaluate their interaction with the near wall fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Boundary%20layer" title="Boundary layer">Boundary layer</a>, <a href="https://publications.waset.org/search?q=synthetic%20jet%20actuator" title=" synthetic jet actuator"> synthetic jet actuator</a>, <a href="https://publications.waset.org/search?q=flow%0Aseparation%20control" title=" flow separation control"> flow separation control</a>, <a href="https://publications.waset.org/search?q=vortical%20structures." title=" vortical structures."> vortical structures.</a> </p> <a href="https://publications.waset.org/5520/piv-investigation-into-the-evolution-of-vortical-structures-in-the-zero-pressure-gradient-boundary-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5520/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5520/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5520/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5520/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5520/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5520/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5520/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5520/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5520/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5520/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1624</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fluid%20Structural%20Interaction&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fluid%20Structural%20Interaction&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fluid%20Structural%20Interaction&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fluid%20Structural%20Interaction&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fluid%20Structural%20Interaction&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fluid%20Structural%20Interaction&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fluid%20Structural%20Interaction&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fluid%20Structural%20Interaction&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fluid%20Structural%20Interaction&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fluid%20Structural%20Interaction&amp;page=99">99</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fluid%20Structural%20Interaction&amp;page=100">100</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Fluid%20Structural%20Interaction&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10