CINXE.COM

Search results for: resin cements

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: resin cements</title> <meta name="description" content="Search results for: resin cements"> <meta name="keywords" content="resin cements"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="resin cements" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="resin cements"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 429</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: resin cements</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> Influence of Preheating Self-Adhesive Cements on the Degree of Conversion, Cell Migration and Cell Viability in NIH/3T3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Celso%20Afonso%20Klein%20Jr.">Celso Afonso Klein Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Henrique%20Cantarelli"> Henrique Cantarelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Portella"> Fernando Portella</a>, <a href="https://publications.waset.org/abstracts/search?q=Keiichi%20Hosaka"> Keiichi Hosaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Reston"> Eduardo Reston</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabricio%20Collares"> Fabricio Collares</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Zimmer"> Roberto Zimmer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TTo evaluate the influence of preheating self-adhesive cement at 39ºC on cell migration, cytotoxicity and degree of conversion. RelyX U200, Set PP and MaxCem Elite were subjected to a degree of conversion analysis (FTIR-ATR). For the cytotoxicity analysis, extracts (24 h and 7 days) were placed in contact with NIH/3T3 cells. For cell migration, images were captured of each sample until the possible closure of the cleft occurred. In the results of the degree of conversion, preheating did not improve the conversion of cement. For the MTT, preheating did not improve the results within 24 hours. However, it generated positive results within 7 days for the Set PP resin cement. For cell migration, high rates of cell death were found in all groups. It is concluded that preheating at 39ºC caused a positive effect only in increasing the cell viability of the Set PP resin cement and that both materials analyzed are highly cytotoxic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dental%20cements" title="dental cements">dental cements</a>, <a href="https://publications.waset.org/abstracts/search?q=resin%20cements" title=" resin cements"> resin cements</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20conversion" title=" degree of conversion"> degree of conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20migration%20assays" title=" cell migration assays"> cell migration assays</a> </p> <a href="https://publications.waset.org/abstracts/179105/influence-of-preheating-self-adhesive-cements-on-the-degree-of-conversion-cell-migration-and-cell-viability-in-nih3t3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> Compressive Strength and Microstructure of Hybrid Alkaline Cements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Abdollahnejad">Z. Abdollahnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Torgal"> P. Torgal</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Barroso%20Aguiar"> J. Barroso Aguiar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Publications on the field of alkali-activated binders, state that this new material is likely to have high potential to become an alternative to Portland cement. Classical alkali-activated cements could be made more eco-efficient if the use of sodium silicate is avoided. Besides, most alkali-activated cements suffer from severe efflorescence originated by the fact that alkaline and/or soluble silicates that are added during processing cannot be totally consumed. This paper presents experimental results on hybrid alkaline cements. Compressive strength results and efflorescence’s observations show that the new mixes already analyzed are promising. SEM results show that no traditional porous ITZ was detected in these binders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20alkaline%20cements" title="hybrid alkaline cements">hybrid alkaline cements</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=efflorescence" title=" efflorescence"> efflorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=ITZ" title=" ITZ"> ITZ</a> </p> <a href="https://publications.waset.org/abstracts/5468/compressive-strength-and-microstructure-of-hybrid-alkaline-cements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> Water Sorption of Self Cured Resin Acrylic Soaked in Clover Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hermanto%20J.%20M">Hermanto J. M</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani"> Mirna Febriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resin acrylic, which is widely used, has the physical properties that can absorb liquids. This can lead to a change in the dimensions of the acrylic resin material. If repeated immersions were done, its strength would be affected. Disinfectant solutions have been widely used to reduce microorganisms both inside and outside the patient's mouth. One of the disinfecting materials that can be used is a clover solution. The purpose of this research is to find the ratio of water absorption of the acrylic resin material of self-cured type, soaked in clover solution for 10 minutes. The results showed that the average value obtained before soaked in clover solution was 0.0692 mg/cm3 and after soaked, in clover solution, the value was 0.090 mg/cm3. The conclusion of this research shows that the values of water sorption of acrylic resin before and after soaked in clover solution is still in ISO standard 1567/2001. Differences in water sorption value of self-cured acrylic resin before and after the immersion are caused by the process of liquid diffusion into the acrylic resin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20of%20fluid" title="absorption of fluid">absorption of fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cured%20acrylic%20resin" title=" self-cured acrylic resin"> self-cured acrylic resin</a>, <a href="https://publications.waset.org/abstracts/search?q=soaked" title=" soaked"> soaked</a>, <a href="https://publications.waset.org/abstracts/search?q=clover%20solution" title=" clover solution"> clover solution</a> </p> <a href="https://publications.waset.org/abstracts/87144/water-sorption-of-self-cured-resin-acrylic-soaked-in-clover-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Areej%20Almalkawi">Areej Almalkawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameer%20Hamadna"> Sameer Hamadna</a>, <a href="https://publications.waset.org/abstracts/search?q=Parviz%20Soroushian"> Parviz Soroushian</a>, <a href="https://publications.waset.org/abstracts/search?q=Nalin%20Darsana"> Nalin Darsana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=one-part%20geopolymer%20cement" title="one-part geopolymer cement">one-part geopolymer cement</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminosilicate%20precursors" title=" aluminosilicate precursors"> aluminosilicate precursors</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20activation" title=" thermal activation"> thermal activation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanochemical" title=" mechanochemical"> mechanochemical</a> </p> <a href="https://publications.waset.org/abstracts/65941/potential-use-of-local-materials-as-synthesizing-one-part-geopolymer-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> Determination of the Optimal Content of Commercial Superplasticizer Additives in Cements with Calcined Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amanda%20R.%20Teixeira">Amanda R. Teixeira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20H.%20S.%20Rego"> João H. S. Rego</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20F.%20S.%20Brito"> Gabriel F. S. Brito</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabricio%20M.%20Silva"> Fabricio M. Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of superplasticizer additives has provided several advances for the civil construction industry, enabling gains in the rheological behavior and mechanical properties of cementitious matrices. These compounds act at the solid-liquid interface of colloidal suspensions of cement pastes, preventing agglomeration of the particles. Although the use in the concrete industry is wide, the mechanisms of dispersion of concrete admixtures composed of polycarboxylate in cement with supplementary cementitious materials have ample opportunity to be investigated, providing the attainment of increasingly compatible and efficient cement-addition-additive systems. The cements used in the research are Portland Cement CPV and two cements Portland Cement Composite (CPIV) with calcined clay contents of 20% and 28% and three commercial additives based on polycarboxylate. The performance of the additives and obtaining the optimal content was determined by the Marsh Cone test and spread by Mini-Slump. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcined%20clay" title="calcined clay">calcined clay</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20cements" title=" composite cements"> composite cements</a>, <a href="https://publications.waset.org/abstracts/search?q=superplasticizer%20additives" title=" superplasticizer additives"> superplasticizer additives</a>, <a href="https://publications.waset.org/abstracts/search?q=polycarboxylate" title=" polycarboxylate"> polycarboxylate</a> </p> <a href="https://publications.waset.org/abstracts/159324/determination-of-the-optimal-content-of-commercial-superplasticizer-additives-in-cements-with-calcined-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Cement Mortar Lining as a Potential Source of Water Contamination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Zielina">M. Zielina</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Dabrowski"> W. Dabrowski</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Radziszewska-Zielina"> E. Radziszewska-Zielina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several different cements have been tested to evaluate their potential to leach calcium, chromium and aluminum ions in soft water environment. The research allows comparing some different cements in order to the potential risk of water contamination. This can be done only in the same environment. To reach the results in reasonable short time intervals and to make heavy metals measurements with high accuracy, demineralized water was used. In this case the conditions of experiments are far away from the water supply practice, but short time experiments and measurably high concentrations of elements in the water solution are an important advantage. Moreover leaching mechanisms can be recognized, our experiments reported here refer to this kind of cements evaluation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20corrosion" title="concrete corrosion">concrete corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20sulfide" title=" hydrogen sulfide"> hydrogen sulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=odors" title=" odors"> odors</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20sewers" title=" reinforced concrete sewers"> reinforced concrete sewers</a>, <a href="https://publications.waset.org/abstracts/search?q=sewerage" title=" sewerage"> sewerage</a> </p> <a href="https://publications.waset.org/abstracts/17708/cement-mortar-lining-as-a-potential-source-of-water-contamination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> The Flexural Strength of Fiber-Reinforced Polymer Cement Mortars Using UM Resin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Ho%20Kwon">Min Ho Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo%20Young%20Jung"> Woo Young Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Su%20Seo"> Hyun Su Seo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Polymer Cement Mortar (PCM) has been widely used as the material of repair and restoration work for concrete structure; however a PCM usually induces an environmental pollutant. Therefore, there is a need to develop PCM which is less impact to environments. Usually, UM resin is known to be harmless to the environment. Accordingly, in this paper, the properties of the PCM using UM resin were studied. The general cement mortar and UM resin was mixed in the specified ratio. A certain percentage of PVA fibers, steel fibers and mixed fibers (PVA fiber and steel fiber) were added to enhance the flexural strength. The flexural tests were performed in order to investigate the flexural strength of each PCM. Experimental results showed that the strength of proposed PCM using UM resin is improved when they are compared with general cement mortar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20cement%20mortar" title="polymer cement mortar">polymer cement mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=UM%20resin" title=" UM resin"> UM resin</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA%20fiber" title=" PVA fiber"> PVA fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fiber" title=" steel fiber"> steel fiber</a> </p> <a href="https://publications.waset.org/abstracts/3903/the-flexural-strength-of-fiber-reinforced-polymer-cement-mortars-using-um-resin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> Synthesis of Epoxidized Castor Oil Using a Sulphonated Polystyrene Type Cation Exchange Resin and Its Blend Preparation with Epoxy Resin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Sudha">G. S. Sudha</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Mohanty"> Smita Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nayak"> S. K. Nayak </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epoxidized oils can replace petroleum derived materials in numerous industrial applications, because of their respectable oxirane oxygen content and high reactivity of oxirane ring. Epoxidized castor oil (ECO) has synthesized in the presence of a sulphonated polystyrene type cation exchange resin. The formation of the oxirane ring was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) analysis. The epoxidation reaction was evaluated by Nuclear Magnetic Resonance (NMR) studies. ECO is used as a toughening phase to increase the toughness of petroleum-based epoxy resin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title="epoxy resin">epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidized%20castor%20oil" title=" epoxidized castor oil"> epoxidized castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphonated%20polystyrene%20type%20cation%20exchange%20resin" title=" sulphonated polystyrene type cation exchange resin"> sulphonated polystyrene type cation exchange resin</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20derived%20materials" title=" petroleum derived materials"> petroleum derived materials</a> </p> <a href="https://publications.waset.org/abstracts/20933/synthesis-of-epoxidized-castor-oil-using-a-sulphonated-polystyrene-type-cation-exchange-resin-and-its-blend-preparation-with-epoxy-resin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> The Performance and the Induced Rebar Corrosion of Acrylic Resins for Injection Systems in Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Paglia">C. S. Paglia</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Pesenti"> E. Pesenti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Krattiger"> A. Krattiger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Commercially available methacrylate and acrylamide-based acrylic resins for injection in concrete systems have been tested with respect to the sealing performance and the rebar corrosion. Among the different resins, a methacrylate-based type of acrylic resin significantly inhibited the rebar corrosion. This was mainly caused by the relatively high pH of the resin and the resin aqueous solution. This resin also exhibited a relatively high sealing performance, in particular after exposing the resin to durability tests. The corrosion inhibition behaviour and the sealing properties after the exposition to durability tests were maintained up to one year. The other resins either promoted the corrosion of the rebar and/or exhibited relatively low sealing properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylic%20resin" title="acrylic resin">acrylic resin</a>, <a href="https://publications.waset.org/abstracts/search?q=sealing%20performance" title=" sealing performance"> sealing performance</a>, <a href="https://publications.waset.org/abstracts/search?q=rebar%20corrosion" title=" rebar corrosion"> rebar corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=materials" title=" materials"> materials</a> </p> <a href="https://publications.waset.org/abstracts/113691/the-performance-and-the-induced-rebar-corrosion-of-acrylic-resins-for-injection-systems-in-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> Effects of Particle Size Distribution of Binders on the Performance of Slag-Limestone Ternary Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuomin%20Zou">Zhuomin Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Thijs%20Van%20Landeghem"> Thijs Van Landeghem</a>, <a href="https://publications.waset.org/abstracts/search?q=Elke%20Gruyaert"> Elke Gruyaert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using supplementary cementitious materials, such as blast-furnace slag and limestone, to replace cement clinker is a promising method to reduce the carbon emissions from cement production. To efficiently use slag and limestone, it is necessary to carefully select the particle size distribution (PSD) of the binders. This study investigated the effects of the PSD of binders on the performance of slag-limestone ternary cement. The Portland cement (PC) was prepared by grinding 95% clinker + 5% gypsum. Based on the PSD parameters of the binders, three types of ternary cements with a similar overall PSD were designed, i.e., NO.1 fine slag, medium PC, and coarse limestone; NO.2 fine limestone, medium PC, and coarse slag; NO.3. fine PC, medium slag, and coarse limestone. The binder contents in the ternary cements were (a) 50 % PC, 40 % slag, and 10 % limestone (called high cement group) or (b) 35 % PC, 55 % slag, and 10 % limestone (called low cement group). The pure PC and binary cement with 50% slag and 50% PC prepared with the same binders as the ternary cement were considered as reference cements. All these cements were used to investigate the mortar performance in terms of workability, strength at 2, 7, 28, and 90 days, carbonation resistance, and non-steady state chloride migration resistance at 28 and 56 days. Results show that blending medium PC with fine slag could exhibit comparable performance to blending fine PC with medium/coarse slag in binary cement. For the three ternary cements in the high cement group, ternary cement with fine limestone (NO.2) shows the lowest strength, carbonation, and chloride migration performance. Ternary cements with fine slag (NO.1) and with fine PC (NO.3) show the highest flexural strength at early and late ages, respectively. In addition, compared with ternary cement with fine PC (NO.3), ternary cement with fine slag (NO.1) has a similar carbonation resistance and a better chloride migration resistance. For the low cement group, three ternary cements have a similar flexural and compressive strength before 7 days. After 28 days, ternary cement with fine limestone (NO.2) shows the highest flexural strength while fine PC (NO.3) has the highest compressive strength. In addition, ternary cement with fine slag (NO.1) shows a better chloride migration resistance but a lower carbonation resistance compared with the other two ternary cements. Moreover, the durability performance of ternary cement with fine PC (NO.3) is better than that of fine limestone (NO.2). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=limestone" title="limestone">limestone</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20cement" title=" ternary cement"> ternary cement</a> </p> <a href="https://publications.waset.org/abstracts/152245/effects-of-particle-size-distribution-of-binders-on-the-performance-of-slag-limestone-ternary-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> Resin Finishing of Cotton: Teaching and Learning Materials </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Kan">C. W. Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cotton is the most commonly used material for apparel purpose because of its durability, good perspiration absorption characteristics, comfort during wear and dyeability. However, proneness to creasing and wrinkling give cotton garments a poor rating during actual wear. Resin finishing is a process to bring out crease or wrinkle free/resistant effect to cotton fabric. Thus, the aim of this study is to illustrate the proper application of resin finishing to cotton fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20materials" title="learning materials">learning materials</a>, <a href="https://publications.waset.org/abstracts/search?q=resin" title=" resin"> resin</a>, <a href="https://publications.waset.org/abstracts/search?q=textiles" title=" textiles"> textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkle" title=" wrinkle"> wrinkle</a> </p> <a href="https://publications.waset.org/abstracts/60219/resin-finishing-of-cotton-teaching-and-learning-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> Nano Composite of Clay and Modified Ketonic Resin as Fire Retardant Polyol for Polyurethane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20%C3%96nen">D. Önen</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K%C4%B1z%C4%B1lcan"> N. Kızılcan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Y%C4%B1ld%C4%B1z"> B. Yıldız</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Akar"> A. Akar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In situ modified cyclohexanone-formaldehyde resins were prepared by addition of alendronic acid during resin preparation. Clay nanocomposites in ketonic resins were achieved by adding clay into the flask at the beginning of the resin preparation. The prepared resins were used for the synthesis of fire resistant polyurethanes foam. Both phosphorous containing modifier compound alendronic acid and nanoclay increases fire resistance of the cyclohexanone-formaldehyde resin thus polyurethane produced from these resins. The effect of the concentrations of alendronic acid and clay on the fire resistance and physical properties of polyurethanes was studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alendronic%20acid" title="alendronic acid">alendronic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=ketonic%20resin" title=" ketonic resin"> ketonic resin</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a> </p> <a href="https://publications.waset.org/abstracts/23492/nano-composite-of-clay-and-modified-ketonic-resin-as-fire-retardant-polyol-for-polyurethane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> The Efficiency of the Resin for Steel Concrete Adhesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oualid%20Benyamina%20Douma">Oualid Benyamina Douma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Repair is always the result of the appearance of apparent disorder or aggravation of a mass. Which had hitherto been considered minor if not negligible: The work was not done according to plan. So; the examination of causes can lead to thinking about repair. While the application of the epoxy resin has become a hot topic. In this context, we conducted an experimental campaign (48 specimens are tested beakout) whose objective is based on three points: 1- Highlight the importance and influence of important parameters (compressive strength of concrete anchorage length and diameter of the steel bar) on routes (steel-concrete and steel–concrete epoxy resin) 2- Understanding the influence of the parameters mentioned above on the relationship that may exist between the peel strength and slippage. 3- Faces of cracks and failure modes. This study shows that passage of a compressive strength of 40 MPa to 62 MPa increases the adhesion between the steel bar and concrete and for specimens with or without epoxy resin. The loading force was increased form 40 to 81 kM kN, a rate if increase in loading over 100% In addition, for specimens with and without epoxy resin. increased breakout force through a specimen without a specimen with resin ranging from 20% to 32%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title="epoxy resin">epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=peel%20strength" title=" peel strength"> peel strength</a>, <a href="https://publications.waset.org/abstracts/search?q=anchors" title=" anchors"> anchors</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20diameter%20steel%20rod" title=" slip diameter steel rod"> slip diameter steel rod</a>, <a href="https://publications.waset.org/abstracts/search?q=anchor%20plain%20concrete%20and%20concrete%20with%20moderate%20resistance" title=" anchor plain concrete and concrete with moderate resistance"> anchor plain concrete and concrete with moderate resistance</a> </p> <a href="https://publications.waset.org/abstracts/30250/the-efficiency-of-the-resin-for-steel-concrete-adhesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> Preparation of Geopolymer Cements from Tunisian Illito-Kaolinitic Clay Mineral</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Hamdi">N. Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Srasra"> E. Srasra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work geopolymer cement are synthesized from Tunisian (illito-kaolinitic) clay. This product can be used as binding material in place of cement Portland. The clay fractions used were characterized with physico-chemical and thermal analyses. The clays materials react with alkaline solution (10, 14 and 18 mol(NaOH)/L) in order to produce geopolymer cements whose pastes were characterized by determining their water adsorption and compressive strength. The compressive strength of the hardened geopolymer cement paste samples aged 28 days attained its highest value (32.3MPa) around 950°C for NaOH concentration of 14M. The water adsorption value of the prepared samples decreased with increasing the calcination temperature of clay fractions. It can be concluded that the most suitable temperature for the calcination of illitio-kaolinitic clays in view of producing geopolymer cements is around 950°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer%20cement" title=" geopolymer cement"> geopolymer cement</a>, <a href="https://publications.waset.org/abstracts/search?q=illitio-kaolinitic%20clay" title=" illitio-kaolinitic clay"> illitio-kaolinitic clay</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral" title=" mineral"> mineral</a> </p> <a href="https://publications.waset.org/abstracts/17201/preparation-of-geopolymer-cements-from-tunisian-illito-kaolinitic-clay-mineral" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> Sol-Gel Derived Yttria-Stabilized Zirconia Nanoparticles for Dental Applications: Synthesis and Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20Beketova">Anastasia Beketova</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanouil-George%20C.%20Tzanakakis"> Emmanouil-George C. Tzanakakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20G.%20Tzoutzas"> Ioannis G. Tzoutzas</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleana%20Kontonasaki"> Eleana Kontonasaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In restorative dentistry, yttria-stabilized zirconia (YSZ) nanoparticles can be applied as fillers to improve the mechanical properties of various resin-based materials. Using sol-gel based synthesis as simple and cost-effective method, nano-sized YSZ particles with high purity can be produced. The aim of this study was to synthesize YSZ nanoparticles by the Pechini sol-gel method at different temperatures and to investigate their composition, structure, and morphology. YSZ nanopowders were synthesized by the sol-gel method using zirconium oxychloride octahydrate (ZrOCl₂.8H₂O) and yttrium nitrate hexahydrate (Y(NO₃)₃.6H₂O) as precursors with the addition of acid chelating agents to control hydrolysis and gelation reactions. The obtained powders underwent TG_DTA analysis and were sintered at three different temperatures: 800, 1000, and 1200°C for 2 hours. Their composition and morphology were investigated by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction Analysis (XRD), Scanning Electron Microscopy with associated with Energy Dispersive X-ray analyzer (SEM-EDX), Transmission Electron Microscopy (TEM) methods, and Dynamic Light Scattering (DLS). FTIR and XRD analysis showed the presence of pure tetragonal phase in the composition of nanopowders. By increasing the calcination temperature, the crystallinity of materials increased, reaching 47.2 nm for the YSZ1200 specimens. SEM analysis at high magnifications and DLS analysis showed submicron-sized particles with good dispersion and low agglomeration, which increased in size as the sintering temperature was elevated. From the TEM images of the YSZ1000 specimen, it can be seen that zirconia nanoparticles are uniform in size and shape and attain an average particle size of about 50 nm. The electron diffraction patterns clearly revealed ring patterns of polycrystalline tetragonal zirconia phase. Pure YSZ nanopowders have been successfully synthesized by the sol-gel method at different temperatures. Their size is small, and uniform, allowing their incorporation of dental luting resin cements to improve their mechanical properties and possibly enhance the bond strength of demanding dental ceramics such as zirconia to the tooth structure. This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme 'Human Resources Development, Education and Lifelong Learning 2014- 2020' in the context of the project 'Development of zirconia adhesion cements with stabilized zirconia nanoparticles: physicochemical properties and bond strength under aging conditions' (MIS 5047876). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dental%20cements" title="dental cements">dental cements</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=yttria-stabilized%20zirconia" title=" yttria-stabilized zirconia"> yttria-stabilized zirconia</a>, <a href="https://publications.waset.org/abstracts/search?q=YSZ" title=" YSZ"> YSZ</a> </p> <a href="https://publications.waset.org/abstracts/128609/sol-gel-derived-yttria-stabilized-zirconia-nanoparticles-for-dental-applications-synthesis-and-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">414</span> Extraction of Polystyrene from Styrofoam Waste: Synthesis of Novel Chelating Resin for the Enrichment and Speciation of Cr(III)/Cr(vi) Ions in Industrial Effluents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20N.%20Siyal">Ali N. Siyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Saima%20Q.%20Memon"> Saima Q. Memon</a>, <a href="https://publications.waset.org/abstracts/search?q=Latif%20El%C3%A7i"> Latif Elçi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aydan%20El%C3%A7i"> Aydan Elçi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polystyrene (PS) was extracted from Styrofoam (expanded polystyrene foam) waste, so called white pollutant. The PS was functionalized with N, N- Bis(2-aminobenzylidene)benzene-1,2-diamine (ABA) ligand through an azo spacer. The resin was characterized by FT-IR spectroscopy and elemental analysis. The PS-N=N-ABA resin was used for the enrichment and speciation of Cr(III)/Cr(VI) ions and total Cr determination in aqueous samples by Flame Atomic Absorption Spectrometry (FAAS). The separation of Cr(III)/Cr(VI) ions was achieved at pH 2. The recovery of Cr(VI) ions was achieved ≥ 95.0% at optimum parameters: pH 2; resin amount 300 mg; flow rates 2.0 mL min-1 of solution and 2.0 mL min-1 of eluent (2.0 mol L-1 HNO3). Total Cr was determined by oxidation of Cr(III) to Cr(VI) ions using H2O2. The limit of detection (LOD) and quantification (LOQ) of Cr(VI) were found to be 0.40 and 1.20 μg L-1, respectively with preconcentration factor of 250. Total saturation and breakthrough capacitates of the resin for Cr(IV) ions were found to be 0.181 and 0.531 mmol g-1, respectively. The proposed method was successfully applied for the preconcentration/speciation of Cr(III)/Cr(VI) ions and determination of total Cr in industrial effluents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=styrofoam%20waste" title="styrofoam waste">styrofoam waste</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20resin" title=" polymeric resin"> polymeric resin</a>, <a href="https://publications.waset.org/abstracts/search?q=preconcentration" title=" preconcentration"> preconcentration</a>, <a href="https://publications.waset.org/abstracts/search?q=speciation" title=" speciation"> speciation</a>, <a href="https://publications.waset.org/abstracts/search?q=Cr%28III%29%2FCr%28VI%29%20ions" title=" Cr(III)/Cr(VI) ions"> Cr(III)/Cr(VI) ions</a>, <a href="https://publications.waset.org/abstracts/search?q=FAAS" title=" FAAS"> FAAS</a> </p> <a href="https://publications.waset.org/abstracts/5148/extraction-of-polystyrene-from-styrofoam-waste-synthesis-of-novel-chelating-resin-for-the-enrichment-and-speciation-of-criiicrvi-ions-in-industrial-effluents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">413</span> Field Trial of Resin-Based Composite Materials for the Treatment of Surface Collapses Associated with Former Shallow Coal Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Philip%20T.%20Broughton">Philip T. Broughton</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20P.%20Bettney"> Mark P. Bettney</a>, <a href="https://publications.waset.org/abstracts/search?q=Isla%20L.%20Smail"> Isla L. Smail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effective treatment of ground instability is essential when managing the impacts associated with historic mining. A field trial was undertaken by the Coal Authority to investigate the geotechnical performance and potential use of composite materials comprising resin and fill or stone to safely treat surface collapses, such as crown-holes, associated with shallow mining. Test pits were loosely filled with various granular fill materials. The fill material was injected with commercially available silicate and polyurethane resin foam products. In situ and laboratory testing was undertaken to assess the geotechnical properties of the resultant composite materials. The test pits were subsequently excavated to assess resin permeation. Drilling and resin injection was easiest through clean limestone fill materials. Recycled building waste fill material proved difficult to inject with resin; this material is thus considered unsuitable for use in resin composites. Incomplete resin permeation in several of the test pits created irregular ‘blocks’ of composite. Injected resin foams significantly improve the stiffness and resistance (strength) of the un-compacted fill material. The stiffness of the treated fill material appears to be a function of the stone particle size, its associated compaction characteristics (under loose tipping) and the proportion of resin foam matrix. The type of fill material is more critical than the type of resin to the geotechnical properties of the composite materials. Resin composites can effectively support typical design imposed loads. Compared to other traditional treatment options, such as cement grouting, the use of resin composites is potentially less disruptive, particularly for sites with limited access, and thus likely to achieve significant reinstatement cost savings. The use of resin composites is considered a suitable option for the future treatment of shallow mining collapses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=mining%20legacy" title=" mining legacy"> mining legacy</a>, <a href="https://publications.waset.org/abstracts/search?q=resin" title=" resin"> resin</a> </p> <a href="https://publications.waset.org/abstracts/42787/field-trial-of-resin-based-composite-materials-for-the-treatment-of-surface-collapses-associated-with-former-shallow-coal-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">412</span> Synthesis and Application of Tamarind Hydroxypropane Sulphonic Acid Resin for Removal of Heavy Metal Ions from Industrial Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aresh%20Vikram%20Singh">Aresh Vikram Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarika%20Nagar"> Sarika Nagar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tamarind based resin containing hydroxypropane sulphonic acid groups has been synthesized and their adsorption behavior for heavy metal ions has been investigated using batch and column experiments. The hydroxypropane sulphonic acid group has been incorporated onto tamarind by a modified Porath&#39;s method of functionalisation of polysaccharides. The tamarind hydroxypropane sulphonic acid (THPSA) resin can selectively remove of heavy metal ions, which are contained in industrial wastewater. The THPSA resin was characterized by FTIR and thermogravimetric analysis. The effects of various adsorption conditions, such as pH, treatment time and adsorbent dose were also investigated. The optimum adsorption condition was found at pH 6, 120 minutes of equilibrium time and 0.1 gram of resin dose. The orders of distribution coefficient values were determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20coefficient" title="distribution coefficient">distribution coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title=" industrial wastewater"> industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=polysaccharides" title=" polysaccharides"> polysaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=tamarind%20hydroxypropane%20sulphonic%20acid%20resin" title=" tamarind hydroxypropane sulphonic acid resin"> tamarind hydroxypropane sulphonic acid resin</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetric%20analysis" title=" thermogravimetric analysis"> thermogravimetric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=THPSA" title=" THPSA"> THPSA</a> </p> <a href="https://publications.waset.org/abstracts/64604/synthesis-and-application-of-tamarind-hydroxypropane-sulphonic-acid-resin-for-removal-of-heavy-metal-ions-from-industrial-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">411</span> The Effect of Mixing and Degassing Conditions on the Properties of Epoxy/Anhydride Resin System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Latha%20Krishnan">Latha Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Cobley"> Andrew Cobley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epoxy resin is most widely used as matrices for composites of aerospace, automotive and electronic applications due to its outstanding mechanical properties. These properties are chiefly predetermined by the chemical structure of the prepolymer and type of hardener but can also be varied by the processing conditions such as prepolymer and hardener mixing, degassing and curing conditions. In this research, the effect of degassing on the curing behaviour and the void occurrence is experimentally evaluated for epoxy /anhydride resin system. The epoxy prepolymer was mixed with an anhydride hardener and accelerator in an appropriate quantity. In order to investigate the effect of degassing on the curing behaviour and void content of the resin, the uncured resin samples were prepared using three different methods: 1) no degassing 2) degassing on prepolymer and 3) degassing on mixed solution of prepolymer and hardener with an accelerator. The uncured resins were tested in differential scanning calorimeter (DSC) to observe the changes in curing behaviour of the above three resin samples by analysing factors such as gel temperature, peak cure temperature and heat of reaction/heat flow in curing. Additionally, the completely cured samples were tested in DSC to identify the changes in the glass transition temperature (Tg) between the three samples. In order to evaluate the effect of degassing on the void content and morphology changes in the cured epoxy resin, the fractured surfaces of cured epoxy resin were examined under the scanning electron microscope (SEM). Also, the changes in the mechanical properties of the cured resin were studied by three-point bending test. It was found that degassing at different stages of resin mixing had significant effects on properties such as glass transition temperature, the void content and void size of the epoxy/anhydride resin system. For example, degassing (vacuum applied on the mixed resin) has shown higher glass transition temperature (Tg) with lower void content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anhydride%20epoxy" title="anhydride epoxy">anhydride epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20behaviour" title=" curing behaviour"> curing behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=degassing" title=" degassing"> degassing</a>, <a href="https://publications.waset.org/abstracts/search?q=void%20occurrence" title=" void occurrence"> void occurrence</a> </p> <a href="https://publications.waset.org/abstracts/50452/the-effect-of-mixing-and-degassing-conditions-on-the-properties-of-epoxyanhydride-resin-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">410</span> Application of Digital Image Correlation Technique on Vacuum Assisted Resin Transfer Molding Process and Performance Evaluation of the Produced Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dingding%20Chen">Dingding Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuo%20Arakawa"> Kazuo Arakawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Masakazu%20Uchino"> Masakazu Uchino</a>, <a href="https://publications.waset.org/abstracts/search?q=Changheng%20Xu"> Changheng Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacuum assisted resin transfer moulding (VARTM) is a promising manufacture process for making large and complex fiber reinforced composite structures. However, the complexity of the flow of the resin in the infusion stage usually leads to nonuniform property distribution of the produced composite part. In order to control the flow of the resin, the situation of flow should be mastered. For the safety of the usage of the produced composite in practice, the understanding of the property distribution is essential. In this paper, we did some trials on monitoring the resin infusion stage and evaluation for the fiber volume fraction distribution of the VARTM produced composite using the digital image correlation methods. The results show that 3D-DIC is valid on monitoring the resin infusion stage and it is possible to use 2D-DIC to estimate the distribution of the fiber volume fraction on a FRP plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title="digital image correlation">digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=VARTM" title=" VARTM"> VARTM</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP" title=" FRP"> FRP</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20volume%20fraction" title=" fiber volume fraction"> fiber volume fraction</a> </p> <a href="https://publications.waset.org/abstracts/1886/application-of-digital-image-correlation-technique-on-vacuum-assisted-resin-transfer-molding-process-and-performance-evaluation-of-the-produced-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">409</span> Preparation and Characterization of Calcium Phosphate Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Thepsuwan">W. Thepsuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Monmaturapoj"> N. Monmaturapoj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium phosphate cements (CPCs) is one of the most attractive bioceramics due to its moldable and shape ability to fill complicated bony cavities or small dental defect positions. In this study, CPCs were produced by using mixtures of tetracalcium phosphate (TTCP, Ca4O(PO4)2) and dicalcium phosphate anhydrous (DCPA, CaHPO4) in equimolar ratio (1/1) with aqueous solutions of acetic acid (C2H4O2) and disodium hydrogen phosphate dehydrate (Na2HPO4.2H2O) in combination with sodium alginate in order to improve theirs moldable characteristic. The concentrations of the aqueous solutions and sodium alginate were varied to investigate the effects of different aqueous solution and alginate on properties of the cements. The cement paste was prepared by mixing cement powder (P) with aqueous solution (L) in a P/L ratio of 1.0 g/ 0.35 ml. X-ray diffraction (XRD) was used to analyses phase formation of the cements. Setting times and compressive strength of the set CPCs were measured using the Gilmore apparatus and Universal testing machine, respectively. The results showed that CPCs could be produced by using both basic (Na2HPO4.2H2O) and acidic (C2H4O2) solutions. XRD results show the precipitation of hydroxyapatite in all cement samples. No change in phase formation among cements using difference concentrations of Na2HPO4.2H2O solutions. With increasing concentration of acidic solutions, samples obtained less hydroxyapatite with a high dicalcium phosphate dehydrate leaded to a shorter setting time. Samples with sodium alginate exhibited higher crystallization of hydroxyapatite than that of without alginate as a result of shorten setting time in basic solution but a longer setting time in acidic solution. The stronger cement was attained from samples using acidic solution with sodium alginate; however it was lower than using the basic solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20phosphate%20cements" title="calcium phosphate cements">calcium phosphate cements</a>, <a href="https://publications.waset.org/abstracts/search?q=TTCP" title=" TTCP"> TTCP</a>, <a href="https://publications.waset.org/abstracts/search?q=DCPA" title=" DCPA"> DCPA</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/17449/preparation-and-characterization-of-calcium-phosphate-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">408</span> The Damage and Durability of a Sport Synthetic Resin Floor: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Paglia">C. Paglia</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Mosca"> C. Mosca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic resin floorsare often used in sport infrastructure. These organic materials are often in contact with a bituminous substrate, which in turn is placed on the ground. In this work, the damage of a basket resin field surface was characterized by means of visual inspection, optical microscopy, resin thickness measurements, adhesion strength, water vapor transmission capacity, capillary water adsorption, granulometry of the bituminous conglomerate, the surface properties, and the water ground infiltration speed. The infiltration speed indicates water pemeability. This was due to its composition: clean sand mixed with gravel. Relatively good adhesion was present between the synthetic resin and the bituminous layer. The adhesion resistance of the bituminous layer was relatively low. According to the required bitumoniousasphalt-concrete mixes AC 11 S, the placed material was more porous. Insufficient constipation was present. The spaces values were above the standard limits, while the apparent densities were lower compared to the conventional AC 11 mixtures. The microstructure outlines the high permeability and porosity of the bituminous layer. The synthetic resin wasvapourproof and did not exhibit capillary adsorption. It exhibited a lower thickness as required, and no multiple placing steps were observed. Multiple cavities were detected along with the interface between the bituminous layer and the resin coating with no intermediate layers. The layer for the pore filling in the bituminous surface was not properly applied. The swelling bubbles on the synthetic pavement were caused by the humidity in the bituminous layer. Water or humidity were present prior to the application of the resin, and the effect was worsened by the upward movement of the water from the ground. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resin" title="resin">resin</a>, <a href="https://publications.waset.org/abstracts/search?q=floor" title=" floor"> floor</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/142209/the-damage-and-durability-of-a-sport-synthetic-resin-floor-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">407</span> Petrologic and Geochemical Characteristics of Marine Sand Strip in the Proterozoic Chuanlinggou Formation of the North China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yue%20Feng">Yue Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-jiang%20Wang"> Chun-jiang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi-long%20Huang"> Zhi-long Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the sedimentary environment of Mesoproterozoic marine deposits in North China has attracted special attention in recent years. It is not clear that the sedimentary environment and the cause of formation of the sandstone strip and its internal carbonate cements and pyrite in the Mesoproterozoic Chuanlinggou Formation in North China. In this study, drilling core samples in North China were identified by microscopy, and their petrological characteristics such as mineral composition and structure were identified. The geochemical data of carbon and oxygen isotopes, total organic carbon (TOC) contents and total sulfur (TS) contents were obtained by processing and analyzing the samples. The samples are mainly quartz particles with low compositional maturity, combined with low value of TOC, it shows that the sedimentary environment of the sandy clastic is a sandy littoral sedimentary environment with relative strong hydrodynamic force, and then the sandstone strip in black shale are formed by the deposition of gravity flow. Analysis of TS values reflect sandstone bands formed in hypoxic environments. The carbonate cements and the pyrite in the sandstone belt are authigenic. The carbon isotope values of authigenic carbonate cements are negatively biased in comparison with the carbonate isotope of carbonate rocks in the same period, but it is more biased than the carbon isotopic values of anaerobic oxidation of methane (AOM) genetic carbonate rocks. Authigenic pyrite may be mainly due to the formation of HS- by the action of bacterial sulfate reduction (BSR) and Fe²⁺, their causes are in contact. This indicates that authigenic carbonate cements are mainly carbonate precipitates formed but are significantly affected by the effects of AOM. Summary, the sedimentary environment of the sandstone zone in the Chuanlinggou Formation in the North China is a shallow sea facies with iron rich and anoxic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sandstone%20strip" title="sandstone strip">sandstone strip</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentary%20environment" title=" sedimentary environment"> sedimentary environment</a>, <a href="https://publications.waset.org/abstracts/search?q=authigenic%20carbonate%20cements" title=" authigenic carbonate cements"> authigenic carbonate cements</a>, <a href="https://publications.waset.org/abstracts/search?q=authigenic%20pyrite" title=" authigenic pyrite"> authigenic pyrite</a>, <a href="https://publications.waset.org/abstracts/search?q=The%20Chuanlinggou%20group" title=" The Chuanlinggou group"> The Chuanlinggou group</a>, <a href="https://publications.waset.org/abstracts/search?q=North%20China" title=" North China"> North China</a> </p> <a href="https://publications.waset.org/abstracts/95234/petrologic-and-geochemical-characteristics-of-marine-sand-strip-in-the-proterozoic-chuanlinggou-formation-of-the-north-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">406</span> Investigation of Water Absorption and Compressive Strength of Resin Coated Mortar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasir%20Ali">Yasir Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Zain%20Ul%20Abdin"> Zain Ul Abdin</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Wisal%20Khattak"> Muhammad Wisal Khattak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays various advanced techniques are used to enhance the performance of materials in the field of construction engineering. Structures exposed to an aggressive, humid and hostile environment are experiencing severe negative impacts which lead to premature failure. Polyester resin is one of the advanced material used for improving performance of structural materials especially for repair/ refurbish purpose of structures and protection from contaminated environmental effect/ hazards. This study investigated the aptness of the polyester resin as coating agent on the mortar and assessed its performance in an ambient environment of Pakistan. Cubical specimens of mortar were fabricated. These specimens were tested for water absorption and compressive strength after one day and sixty days. These tests were performed under different exposure conditions (ambient environment and submerged in water). The specimens were coated with one, two and three layers and results were compared to control (no/ zero resin layer) specimens. Test results indicated that there is a significant decrease in water absorption of mortar coated with resin when compared to controlled specimens. The compressive strength test results revealed that resin coated specimen had higher strength when compared to controlled specimens. The results suggested that resin is a promising material and can be used effectively in structures which are exposed to high temperatures. The study would be helpful in improving performance of the structural material in a hazardous environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20environment" title="ambient environment">ambient environment</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester%20resin" title=" polyester resin"> polyester resin</a> </p> <a href="https://publications.waset.org/abstracts/38313/investigation-of-water-absorption-and-compressive-strength-of-resin-coated-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">405</span> Quality Control of Distinct Cements by IR Spectroscopy: First, insights into Perspectives and Opportunities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Bader">Tobias Bader</a>, <a href="https://publications.waset.org/abstracts/search?q=Joerg%20Rickert"> Joerg Rickert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One key factor in achieving net zero emissions along the cement and concrete value chain in Europe by 2050 is the use of distinct constituents to produce improved and advanced cements. These cements will contain e.g. calcined clays, recycled concrete fines that are chemically similar as well as X-ray amorphous and therefore difficult to distinguish. This leads to enhanced requirements on the analytical methods for quality control regarding accuracy as well as reproducibility due to the more complex cement composition. With the methods currently provided for in the European standards, it will be a challenge to ensure reliable analyses of the composition of the cements. In an ongoing research project, infrared (IR) spectroscopy in combination with mathematical tools (chemometrics) is going to be evaluated as an additional analytical method with fast and low preparation effort for the characterization of silicate-based cement constituents. The resulting comprehensive database should facilitate determination of the composition of new cements. First results confirmed the applicability of near-infrared IR for the characterization of traditional silicate-based cement constituents (e.g. clinker, granulated blast furnace slag) and modern X-ray amorphous constituents (e.g. calcined clay, recycled concrete fines) as well as different sulfate species (e.g. gypsum, hemihydrate, anhydrite). A multivariant calibration model based on numerous calibration mixtures is in preparation. The final analytical concept to be developed will form the basis for establishing IR spectroscopy as a rapid analytical method for characterizing material flows of known and unknown inorganic substances according to their material properties online and offline. The underlying project was funded by the Federal Institute for Research on Building, Urban Affairs and Spatial Development on behalf of the Federal Ministry of Housing, Urban Development and Building with funds from the ‘Zukunft Bau’ research programme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement" title="cement">cement</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20spectroscopy" title=" infrared spectroscopy"> infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20amorphous" title=" X-ray amorphous"> X-ray amorphous</a> </p> <a href="https://publications.waset.org/abstracts/188878/quality-control-of-distinct-cements-by-ir-spectroscopy-first-insights-into-perspectives-and-opportunities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">39</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">404</span> A Study of Resin-Dye Fixation on Dyeing Properties of Cotton Fabrics Using Melamine Based Resins and a Reactive Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurudeen%20Ayeni">Nurudeen Ayeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasali%20Bello"> Kasali Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Ovi%20Abayeh"> Ovi Abayeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study of the effect of dye–resin complexation on the degree of dye absorption were carried out using Procion Blue MX-R to dye cotton fabric in the presence hexamethylol melamine (MR 6) and its phosphate derivative (MPR 4) for resination. The highest degree of dye exhaustion was obtained at 400 C for 1 hour with the resinated fabric showing more affinity for the dye than the ordinary fiber. Improved fastness properties was recorded which show a relatively higher stability of dye–resin–cellulose network formed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title="cotton fabric">cotton fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20dye" title=" reactive dye"> reactive dye</a>, <a href="https://publications.waset.org/abstracts/search?q=dyeing" title=" dyeing"> dyeing</a>, <a href="https://publications.waset.org/abstracts/search?q=resination" title=" resination"> resination</a> </p> <a href="https://publications.waset.org/abstracts/18209/a-study-of-resin-dye-fixation-on-dyeing-properties-of-cotton-fabrics-using-melamine-based-resins-and-a-reactive-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">403</span> Effect of Nanoparticle Addition in the Urea-Formaldehyde Resin on the Formaldehyde Emission from MDF</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sezen%20Gurdag">Sezen Gurdag</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Ebru%20Akin"> Ayse Ebru Akin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a growing concern all over the world on the health effect of the formaldehyde emission coming from the adhesive used in the MDF production. In this research, we investigated the effect of nanoparticle addition such as nanoclay and halloysite into urea-formadehyde resin on the total emitted formaldehyde from MDF plates produced using the resin modified as such. First, the curing behavior of the resin was studied by monitoring the pH, curing time, solid content, density and viscosity of the modified resin in comparison to the reference resin with no added nanoparticle. The dosing of the nanoparticle in the dry resin was kept at 1wt%, 3wt% or 5wt%. Consecutively, the resin was used in the production of 50X50 cm MDF samples using laboratory scale press line with full automation system. Modulus of elasticity, bending strength, internal bonding strength, water absorption were also measured in addition to the main interested parameter formaldehyde emission levels which is determined via spectrometric technique following an extraction procedure. Threshold values for nanoparticle dosing levels were determined to be 5wt% for both nanoparticles. However, the reinforcing behavior was observed to be occurring at different levels in comparison to the reference plates with each nanoparticle such that the level of reinforcement with nanoclay was shown to be more favorable than the addition of halloysite due to higher surface area available with the former. In relation, formaldehyde emission levels were observed to be following a similar trend where addition of 5wt% nanoclay into the urea-formaldehyde adhesive helped decrease the formaldehyde emission up to 40% whereas addition of halloysite at its threshold level demonstrated as the same level, i.e., 5wt%, produced an improvement of 18% only. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=halloysite" title="halloysite">halloysite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoclay" title=" nanoclay"> nanoclay</a>, <a href="https://publications.waset.org/abstracts/search?q=fiberboard" title=" fiberboard"> fiberboard</a>, <a href="https://publications.waset.org/abstracts/search?q=urea-formaldehyde%20adhesive" title=" urea-formaldehyde adhesive"> urea-formaldehyde adhesive</a> </p> <a href="https://publications.waset.org/abstracts/102152/effect-of-nanoparticle-addition-in-the-urea-formaldehyde-resin-on-the-formaldehyde-emission-from-mdf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">402</span> Influence of Degassing on the Curing Behaviour and Void Occurrence Properties of Epoxy / Anhydride Resin System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Latha%20Krishnan">Latha Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Cobley"> Andrew Cobley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epoxy resin is most widely used as matrices for composites of aerospace, automotive and electronic applications due to its outstanding mechanical properties. These properties are chiefly predetermined by the chemical structure of the prepolymer and type of hardener but can also be varied by the processing conditions such as prepolymer and hardener mixing, degassing and curing conditions. In this research, the effect of degassing on the curing behaviour and the void occurrence is experimentally evaluated for epoxy /anhydride resin system. The epoxy prepolymer was mixed with an anhydride hardener and accelerator in an appropriate quantity. In order to investigate the effect of degassing on the curing behaviour and void content of the resin, the uncured resin samples were prepared using three different methods: 1) no degassing 2) degassing on prepolymer and 3) degassing on mixed solution of prepolymer and hardener with an accelerator. The uncured resins were tested in differential scanning calorimeter (DSC) to observe the changes in curing behaviour of the above three resin samples by analysing factors such as gel temperature, peak cure temperature and heat of reaction/heat flow in curing. Additionally, the completely cured samples were tested in DSC to identify the changes in the glass transition temperature (Tg) between the three samples. In order to evaluate the effect of degassing on the void content and morphology changes in the cured epoxy resin, the fractured surfaces of cured epoxy resin were examined under the scanning electron microscope (SEM). In addition, the amount of void, void geometry and void fraction were also investigated using an optical microscope and image J software (image analysis software). It was found that degassing at different stages of resin mixing had significant effects on properties such as glass transition temperature, the void content and void size of the epoxy/anhydride resin system. For example, degassing (vacuum applied on the mixed resin) has shown higher glass transition temperature (Tg) with lower void content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anhydride%20epoxy" title="anhydride epoxy">anhydride epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20behaviour" title=" curing behaviour"> curing behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=degassing" title=" degassing"> degassing</a>, <a href="https://publications.waset.org/abstracts/search?q=void%20occurrence" title=" void occurrence"> void occurrence</a> </p> <a href="https://publications.waset.org/abstracts/40069/influence-of-degassing-on-the-curing-behaviour-and-void-occurrence-properties-of-epoxy-anhydride-resin-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">401</span> Effect of the Ratio, Weight, Treatment of Loofah Fiber on the Mechanical Properties of the Composite: Loofah Fiber Resin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Siahmed">F. Siahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Lounis"> A. Lounis</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Faghi"> L. Faghi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to study mechanical properties of composites based on fiber natural. This material has attracted attention of the scientific community for its mechanical properties, its moderate cost and its specification as regards the protection of environment. In this study the loofah part of the family of the natural fiber has been used for these significant mechanical properties. The fiber has porous structure, which facilitates the impregnation of the resin through these pores. The matrix used in this study is the type of unsaturated polyester. This resin was chosen for its resistance to long term.The work involves: -The chemical treatment of the fibers of loofah by NaOH solution (5%) -The realization of the composite resin / fiber loofah; The preparation of samples for testing -The tensile tests and bending -The observation of facies rupture by scanning electron microscopy The results obtained allow us to observe that the values of Young's modulus and tensile strength in tension is high and open up real prospects. The improvement in mechanical properties has been obtained for the two-layer composite fiber with 7.5% (by weight). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=loofah%20fiber" title="loofah fiber">loofah fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=loofah%20fiber%20resin" title=" loofah fiber resin "> loofah fiber resin </a> </p> <a href="https://publications.waset.org/abstracts/19900/effect-of-the-ratio-weight-treatment-of-loofah-fiber-on-the-mechanical-properties-of-the-composite-loofah-fiber-resin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">400</span> Effect of Iron Oxide Addition on the Solid-State Synthesis of Ye’Elimite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Abir">F. Z. Abir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mesnaoui"> M. Mesnaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Abouliatim"> Y. Abouliatim</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Nibou"> L. Nibou</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20El%20Hafiane"> Y. El Hafiane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Smith"> A. Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cement industry has been taking significant steps for years to reduce its carbon footprint by opting for an eco-friendly alternative such as Calcium Sulfoaluminate Cements (CSA). These binders, compared to Ordinary Portland Cements (OPC), have two advantages: reduction of the CO2 emissions and energy-saving because the sintering temperature of CSA cements is between 1250 and 1350 °C, which means 100 to 200 °C less than OPC. The aim of this work is to study the impurities effect, such as iron oxide, on the formation of the ye'elimite phase, which represents the main phase of Calcium Sulfoaluminate Cements and the consequence on its hydration. Several elaborations and characterization techniques were used to study the structure and microstructure of ye'elimite, such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), thermal analysis, specific surface area measurement, and electrical conductivity of diluted solutions. This study details the protocol for the solid-state synthesis of ye'elimite containing increasing amounts of iron (general formula: Ca4Al(6-2x)Fe2xSO16 with x = 0.00 to 1.13). Ye'elimite is formed by solid-state reactions between Al2O3, CaO and CaSO4 and the maximum ye'elimite content is reached at a sintering temperature of 1300 °C. The presence of iron promotes the formation of cubic ye'elimite at the expense of the orthorhombic phase. The total incorporation of iron in ye'elimite structure is possible when x < 0.12. Beyond this content, the ferritic phase (CaO)2(Al2O3,Fe2O3) appears as a minor phase and develops two different morphologies during cooling: dendritic crystals and melt morphology. The formation of the ferrous liquid phase affects the evolution of grain size of the ye’elimite and calcium aluminates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20sulfoaluminate%20cement" title="calcium sulfoaluminate cement">calcium sulfoaluminate cement</a>, <a href="https://publications.waset.org/abstracts/search?q=ferritic%20phase" title=" ferritic phase"> ferritic phase</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-state%20synthesis" title=" solid-state synthesis"> solid-state synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=ye%E2%80%99elimite" title=" ye’elimite"> ye’elimite</a> </p> <a href="https://publications.waset.org/abstracts/138546/effect-of-iron-oxide-addition-on-the-solid-state-synthesis-of-yeelimite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resin%20cements&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resin%20cements&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resin%20cements&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resin%20cements&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resin%20cements&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resin%20cements&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resin%20cements&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resin%20cements&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resin%20cements&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resin%20cements&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resin%20cements&amp;page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resin%20cements&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10