CINXE.COM
Formule d'Euler-Maclaurin — Wikipédia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="fr" dir="ltr"> <head> <meta charset="UTF-8"> <title>Formule d'Euler-Maclaurin — Wikipédia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )frwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","janvier","février","mars","avril","mai","juin","juillet","août","septembre","octobre","novembre","décembre"],"wgRequestId":"08c376d3-9acf-470c-9674-323cba706f70","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Formule_d'Euler-Maclaurin","wgTitle":"Formule d'Euler-Maclaurin","wgCurRevisionId":214816103,"wgRevisionId":214816103,"wgArticleId":1195068,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Portail:Analyse/Articles liés","Portail:Mathématiques/Articles liés","Portail:Sciences/Articles liés","Analyse réelle","Théorème d'analyse","Leonhard Euler"],"wgPageViewLanguage":"fr","wgPageContentLanguage":"fr","wgPageContentModel":"wikitext","wgRelevantPageName":"Formule_d'Euler-Maclaurin","wgRelevantArticleId":1195068,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[], "wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"fr","pageLanguageDir":"ltr","pageVariantFallbacks":"fr"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q282023","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ArchiveLinks","ext.gadget.Wdsearch","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging", "ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=fr&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=fr&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=fr&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/c/c8/Colin_Maclaurin_color.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1474"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/c/c8/Colin_Maclaurin_color.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="983"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Colin_Maclaurin_color.jpg/640px-Colin_Maclaurin_color.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="786"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Formule d'Euler-Maclaurin — Wikipédia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//fr.m.wikipedia.org/wiki/Formule_d%27Euler-Maclaurin"> <link rel="alternate" type="application/x-wiki" title="Modifier" href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipédia (fr)"> <link rel="EditURI" type="application/rsd+xml" href="//fr.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://fr.wikipedia.org/wiki/Formule_d%27Euler-Maclaurin"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fr"> <link rel="alternate" type="application/atom+xml" title="Flux Atom de Wikipédia" href="/w/index.php?title=Sp%C3%A9cial:Modifications_r%C3%A9centes&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Formule_d_Euler-Maclaurin rootpage-Formule_d_Euler-Maclaurin skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Aller au contenu</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">masquer</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Accueil_principal" title="Accueil général [z]" accesskey="z"><span>Accueil</span></a></li><li id="n-thema" class="mw-list-item"><a href="/wiki/Portail:Accueil"><span>Portails thématiques</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Page_au_hasard" title="Affiche un article au hasard [x]" accesskey="x"><span>Article au hasard</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Contact"><span>Contact</span></a></li> </ul> </div> </div> <div id="p-Contribuer" class="vector-menu mw-portlet mw-portlet-Contribuer" > <div class="vector-menu-heading"> Contribuer </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-aboutwp" class="mw-list-item"><a href="/wiki/Aide:D%C3%A9buter"><span>Débuter sur Wikipédia</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aide:Accueil" title="Accès à l’aide"><span>Aide</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Accueil_de_la_communaut%C3%A9" title="À propos du projet, ce que vous pouvez faire, où trouver les informations"><span>Communauté</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Modifications_r%C3%A9centes" title="Liste des modifications récentes sur le wiki [r]" accesskey="r"><span>Modifications récentes</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikip%C3%A9dia:Accueil_principal" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipédia" src="/static/images/mobile/copyright/wikipedia-wordmark-fr.svg" style="width: 7.4375em; height: 1.125em;"> <img class="mw-logo-tagline" alt="l'encyclopédie libre" src="/static/images/mobile/copyright/wikipedia-tagline-fr.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Sp%C3%A9cial:Recherche" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Rechercher sur Wikipédia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Rechercher</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Rechercher sur Wikipédia" aria-label="Rechercher sur Wikipédia" autocapitalize="sentences" title="Rechercher sur Wikipédia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Spécial:Recherche"> </div> <button class="cdx-button cdx-search-input__end-button">Rechercher</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Outils personnels"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Apparence"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifier l'apparence de la taille, de la largeur et de la couleur de la police de la page" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Apparence" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Apparence</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_fr.wikipedia.org&uselang=fr" class=""><span>Faire un don</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Sp%C3%A9cial:Cr%C3%A9er_un_compte&returnto=Formule+d%27Euler-Maclaurin" title="Nous vous encourageons à créer un compte utilisateur et vous connecter ; ce n’est cependant pas obligatoire." class=""><span>Créer un compte</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Sp%C3%A9cial:Connexion&returnto=Formule+d%27Euler-Maclaurin" title="Nous vous encourageons à vous connecter ; ce n’est cependant pas obligatoire. [o]" accesskey="o" class=""><span>Se connecter</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Plus d’options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Outils personnels" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Outils personnels</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utilisateur" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_fr.wikipedia.org&uselang=fr"><span>Faire un don</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Cr%C3%A9er_un_compte&returnto=Formule+d%27Euler-Maclaurin" title="Nous vous encourageons à créer un compte utilisateur et vous connecter ; ce n’est cependant pas obligatoire."><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Créer un compte</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Connexion&returnto=Formule+d%27Euler-Maclaurin" title="Nous vous encourageons à vous connecter ; ce n’est cependant pas obligatoire. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Se connecter</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages pour les contributeurs déconnectés <a href="/wiki/Aide:Premiers_pas" aria-label="En savoir plus sur la contribution"><span>en savoir plus</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Mes_contributions" title="Une liste des modifications effectuées depuis cette adresse IP [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Mes_discussions" title="La page de discussion pour les contributions depuis cette adresse IP [n]" accesskey="n"><span>Discussion</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Sommaire" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Sommaire</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">masquer</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Début</div> </a> </li> <li id="toc-Introduction_:_comparaison_entre_série_et_intégrale" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Introduction_:_comparaison_entre_série_et_intégrale"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Introduction : comparaison entre série et intégrale</span> </div> </a> <ul id="toc-Introduction_:_comparaison_entre_série_et_intégrale-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Énoncé" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Énoncé"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Énoncé</span> </div> </a> <button aria-controls="toc-Énoncé-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Afficher / masquer la sous-section Énoncé</span> </button> <ul id="toc-Énoncé-sublist" class="vector-toc-list"> <li id="toc-Formule_d'Euler-Maclaurin" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Formule_d'Euler-Maclaurin"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Formule d'Euler-Maclaurin</span> </div> </a> <ul id="toc-Formule_d'Euler-Maclaurin-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formules_sommatoires_d'Euler-Maclaurin" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Formules_sommatoires_d'Euler-Maclaurin"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Formules sommatoires d'Euler-Maclaurin</span> </div> </a> <ul id="toc-Formules_sommatoires_d'Euler-Maclaurin-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Expressions_du_reste" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Expressions_du_reste"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Expressions du reste</span> </div> </a> <ul id="toc-Expressions_du_reste-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Majorations_du_reste" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Majorations_du_reste"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Majorations du reste</span> </div> </a> <ul id="toc-Majorations_du_reste-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Signe_du_reste" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Signe_du_reste"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Signe du reste</span> </div> </a> <ul id="toc-Signe_du_reste-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Démonstration" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Démonstration"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Démonstration</span> </div> </a> <ul id="toc-Démonstration-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Application_à_l'intégration_numérique" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Application_à_l'intégration_numérique"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Application à l'intégration numérique</span> </div> </a> <button aria-controls="toc-Application_à_l'intégration_numérique-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Afficher / masquer la sous-section Application à l'intégration numérique</span> </button> <ul id="toc-Application_à_l'intégration_numérique-sublist" class="vector-toc-list"> <li id="toc-Intégration_numérique" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Intégration_numérique"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Intégration numérique</span> </div> </a> <ul id="toc-Intégration_numérique-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formules_d'intégration_d'Euler-Maclaurin" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Formules_d'intégration_d'Euler-Maclaurin"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Formules d'intégration d'Euler-Maclaurin</span> </div> </a> <ul id="toc-Formules_d'intégration_d'Euler-Maclaurin-sublist" class="vector-toc-list"> <li id="toc-Intégration_entre_deux_entiers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Intégration_entre_deux_entiers"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2.1</span> <span>Intégration entre deux entiers</span> </div> </a> <ul id="toc-Intégration_entre_deux_entiers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Intégration_sur_un_intervalle_quelconque" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Intégration_sur_un_intervalle_quelconque"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2.2</span> <span>Intégration sur un intervalle quelconque</span> </div> </a> <ul id="toc-Intégration_sur_un_intervalle_quelconque-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Expressions_du_reste_pour_k_=_0_et_pour_k_=_1" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Expressions_du_reste_pour_k_=_0_et_pour_k_=_1"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Expressions du reste pour <i>k</i> = 0 et pour <i>k</i> = 1</span> </div> </a> <button aria-controls="toc-Expressions_du_reste_pour_k_=_0_et_pour_k_=_1-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Afficher / masquer la sous-section Expressions du reste pour <i>k</i> = 0 et pour <i>k</i> = 1</span> </button> <ul id="toc-Expressions_du_reste_pour_k_=_0_et_pour_k_=_1-sublist" class="vector-toc-list"> <li id="toc-Expressions_de_R0_et_erreur_de_la_méthode_des_trapèzes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Expressions_de_R0_et_erreur_de_la_méthode_des_trapèzes"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Expressions de <i>R</i><sub>0</sub> et erreur de la méthode des trapèzes</span> </div> </a> <ul id="toc-Expressions_de_R0_et_erreur_de_la_méthode_des_trapèzes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formule_de_quadrature_et_terme_d'erreur_pour_k_=_1" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Formule_de_quadrature_et_terme_d'erreur_pour_k_=_1"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Formule de quadrature et terme d'erreur pour <i>k</i> = 1</span> </div> </a> <ul id="toc-Formule_de_quadrature_et_terme_d'erreur_pour_k_=_1-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Autres_applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Autres_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Autres applications</span> </div> </a> <button aria-controls="toc-Autres_applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Afficher / masquer la sous-section Autres applications</span> </button> <ul id="toc-Autres_applications-sublist" class="vector-toc-list"> <li id="toc-Le_problème_de_Bâle" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Le_problème_de_Bâle"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Le problème de Bâle</span> </div> </a> <ul id="toc-Le_problème_de_Bâle-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sommes_polynomiales" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sommes_polynomiales"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Sommes polynomiales</span> </div> </a> <ul id="toc-Sommes_polynomiales-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Développements_asymptotiques_de_fonctions_définies_par_une_série" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Développements_asymptotiques_de_fonctions_définies_par_une_série"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Développements asymptotiques de fonctions définies par une série</span> </div> </a> <ul id="toc-Développements_asymptotiques_de_fonctions_définies_par_une_série-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voir_aussi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voir_aussi"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Voir aussi</span> </div> </a> <ul id="toc-Voir_aussi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Références" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Références"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Références</span> </div> </a> <ul id="toc-Références-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliographie" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliographie"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Bibliographie</span> </div> </a> <ul id="toc-Bibliographie-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Sommaire" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Basculer la table des matières" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Basculer la table des matières</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Formule d'Euler-Maclaurin</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Aller à un article dans une autre langue. Disponible en 22 langues." > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-22" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">22 langues</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B5%D9%8A%D8%BA%D8%A9_%D8%A3%D9%88%D9%8A%D9%84%D8%B1-%D9%85%D8%A7%D9%83%D9%84%D9%88%D8%B1%D9%8A%D9%86" title="صيغة أويلر-ماكلورين – arabe" lang="ar" hreflang="ar" data-title="صيغة أويلر-ماكلورين" data-language-autonym="العربية" data-language-local-name="arabe" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/F%C3%B3rmula_d%27Euler-Maclaurin" title="Fórmula d'Euler-Maclaurin – catalan" lang="ca" hreflang="ca" data-title="Fórmula d'Euler-Maclaurin" data-language-autonym="Català" data-language-local-name="catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Euler%C5%AFv%E2%80%93Maclaurin%C5%AFv_vzorec" title="Eulerův–Maclaurinův vzorec – tchèque" lang="cs" hreflang="cs" data-title="Eulerův–Maclaurinův vzorec" data-language-autonym="Čeština" data-language-local-name="tchèque" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Euler-Maclaurin-Formel" title="Euler-Maclaurin-Formel – allemand" lang="de" hreflang="de" data-title="Euler-Maclaurin-Formel" data-language-autonym="Deutsch" data-language-local-name="allemand" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula" title="Euler–Maclaurin formula – anglais" lang="en" hreflang="en" data-title="Euler–Maclaurin formula" data-language-autonym="English" data-language-local-name="anglais" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/F%C3%B3rmula_de_Euler-Maclaurin" title="Fórmula de Euler-Maclaurin – espagnol" lang="es" hreflang="es" data-title="Fórmula de Euler-Maclaurin" data-language-autonym="Español" data-language-local-name="espagnol" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A0%D7%95%D7%A1%D7%97%D7%AA_%D7%90%D7%95%D7%99%D7%9C%D7%A8-%D7%9E%D7%A7%D7%9C%D7%95%D7%A8%D7%9F" title="נוסחת אוילר-מקלורן – hébreu" lang="he" hreflang="he" data-title="נוסחת אוילר-מקלורן" data-language-autonym="עברית" data-language-local-name="hébreu" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Euler%E2%80%93Maclaurin-k%C3%A9plet" title="Euler–Maclaurin-képlet – hongrois" lang="hu" hreflang="hu" data-title="Euler–Maclaurin-képlet" data-language-autonym="Magyar" data-language-local-name="hongrois" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Formula_di_Eulero-Maclaurin" title="Formula di Eulero-Maclaurin – italien" lang="it" hreflang="it" data-title="Formula di Eulero-Maclaurin" data-language-autonym="Italiano" data-language-local-name="italien" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%AA%E3%82%A4%E3%83%A9%E3%83%BC%E3%81%AE%E5%92%8C%E5%85%AC%E5%BC%8F" title="オイラーの和公式 – japonais" lang="ja" hreflang="ja" data-title="オイラーの和公式" data-language-autonym="日本語" data-language-local-name="japonais" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%9A%E1%9E%BC%E1%9E%94%E1%9E%98%E1%9E%93%E1%9F%92%E1%9E%8F%E1%9E%A2%E1%9E%99%E1%9E%9B%E1%9F%90%E1%9E%9A-%E1%9E%98%E1%9F%89%E1%9E%B6%E1%9E%80%E1%9F%92%E1%9E%9B%E1%9E%BC%E1%9E%9A%E1%9E%B8%E1%9E%93" title="រូបមន្តអយល័រ-ម៉ាក្លូរីន – khmer" lang="km" hreflang="km" data-title="រូបមន្តអយល័រ-ម៉ាក្លូរីន" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%98%A4%EC%9D%BC%EB%9F%AC-%EB%A7%A4%ED%81%B4%EB%A1%9C%EB%A6%B0_%EA%B3%B5%EC%8B%9D" title="오일러-매클로린 공식 – coréen" lang="ko" hreflang="ko" data-title="오일러-매클로린 공식" data-language-autonym="한국어" data-language-local-name="coréen" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Formule_van_Euler-Maclaurin" title="Formule van Euler-Maclaurin – néerlandais" lang="nl" hreflang="nl" data-title="Formule van Euler-Maclaurin" data-language-autonym="Nederlands" data-language-local-name="néerlandais" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Wz%C3%B3r_Eulera-Maclaurina" title="Wzór Eulera-Maclaurina – polonais" lang="pl" hreflang="pl" data-title="Wzór Eulera-Maclaurina" data-language-autonym="Polski" data-language-local-name="polonais" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/F%C3%B3rmula_Euler%E2%80%93Maclaurin" title="Fórmula Euler–Maclaurin – portugais" lang="pt" hreflang="pt" data-title="Fórmula Euler–Maclaurin" data-language-autonym="Português" data-language-local-name="portugais" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0_%E2%80%94_%D0%9C%D0%B0%D0%BA%D0%BB%D0%BE%D1%80%D0%B5%D0%BD%D0%B0" title="Формула Эйлера — Маклорена – russe" lang="ru" hreflang="ru" data-title="Формула Эйлера — Маклорена" data-language-autonym="Русский" data-language-local-name="russe" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Euler-Maclaurinova_formula" title="Euler-Maclaurinova formula – slovène" lang="sl" hreflang="sl" data-title="Euler-Maclaurinova formula" data-language-autonym="Slovenščina" data-language-local-name="slovène" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Euler-Maclaurins_formel" title="Euler-Maclaurins formel – suédois" lang="sv" hreflang="sv" data-title="Euler-Maclaurins formel" data-language-autonym="Svenska" data-language-local-name="suédois" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%86%E0%AE%AF%E0%AF%8D%E0%AE%B2%E0%AE%B0%E0%AF%8D-%E0%AE%AE%E0%AF%86%E0%AE%95%E0%AF%8D%E0%AE%B2%E0%AE%BE%E0%AE%B0%E0%AE%BF%E0%AE%A9%E0%AF%8D_%E0%AE%B5%E0%AE%BE%E0%AE%AF%E0%AF%8D%E0%AE%AA%E0%AE%BE%E0%AE%9F%E0%AF%81" title="ஆய்லர்-மெக்லாரின் வாய்பாடு – tamoul" lang="ta" hreflang="ta" data-title="ஆய்லர்-மெக்லாரின் வாய்பாடு" data-language-autonym="தமிழ்" data-language-local-name="tamoul" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%95%D0%B9%D0%BB%D0%B5%D1%80%D0%B0_%E2%80%94_%D0%9C%D0%B0%D0%BA%D0%BB%D0%BE%D1%80%D0%B5%D0%BD%D0%B0" title="Формула Ейлера — Маклорена – ukrainien" lang="uk" hreflang="uk" data-title="Формула Ейлера — Маклорена" data-language-autonym="Українська" data-language-local-name="ukrainien" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/C%C3%B4ng_th%E1%BB%A9c_Euler%E2%80%93Maclaurin" title="Công thức Euler–Maclaurin – vietnamien" lang="vi" hreflang="vi" data-title="Công thức Euler–Maclaurin" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamien" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%AC%A7%E6%8B%89-%E9%BA%A6%E5%85%8B%E5%8A%B3%E6%9E%97%E6%B1%82%E5%92%8C%E5%85%AC%E5%BC%8F" title="欧拉-麦克劳林求和公式 – chinois" lang="zh" hreflang="zh" data-title="欧拉-麦克劳林求和公式" data-language-autonym="中文" data-language-local-name="chinois" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q282023#sitelinks-wikipedia" title="Modifier les liens interlangues" class="wbc-editpage">Modifier les liens</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espaces de noms"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Formule_d%27Euler-Maclaurin" title="Voir le contenu de la page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussion:Formule_d%27Euler-Maclaurin" rel="discussion" title="Discussion au sujet de cette page de contenu [t]" accesskey="t"><span>Discussion</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Modifier la variante de langue" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">français</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Affichages"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Formule_d%27Euler-Maclaurin"><span>Lire</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit" title="Modifier cette page [v]" accesskey="v"><span>Modifier</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit" title="Modifier le wikicode de cette page [e]" accesskey="e"><span>Modifier le code</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=history" title="Historique des versions de cette page [h]" accesskey="h"><span>Voir l’historique</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Outils de la page"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Outils" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Outils</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Outils</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">masquer</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Plus d’options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Formule_d%27Euler-Maclaurin"><span>Lire</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit" title="Modifier cette page [v]" accesskey="v"><span>Modifier</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit" title="Modifier le wikicode de cette page [e]" accesskey="e"><span>Modifier le code</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=history"><span>Voir l’historique</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Général </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Pages_li%C3%A9es/Formule_d%27Euler-Maclaurin" title="Liste des pages liées qui pointent sur celle-ci [j]" accesskey="j"><span>Pages liées</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Suivi_des_liens/Formule_d%27Euler-Maclaurin" rel="nofollow" title="Liste des modifications récentes des pages appelées par celle-ci [k]" accesskey="k"><span>Suivi des pages liées</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Aide:Importer_un_fichier" title="Téléverser des fichiers [u]" accesskey="u"><span>Téléverser un fichier</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Pages_sp%C3%A9ciales" title="Liste de toutes les pages spéciales [q]" accesskey="q"><span>Pages spéciales</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&oldid=214816103" title="Adresse permanente de cette version de cette page"><span>Lien permanent</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=info" title="Davantage d’informations sur cette page"><span>Informations sur la page</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Citer&page=Formule_d%27Euler-Maclaurin&id=214816103&wpFormIdentifier=titleform" title="Informations sur la manière de citer cette page"><span>Citer cette page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:UrlShortener&url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FFormule_d%2527Euler-Maclaurin"><span>Obtenir l'URL raccourcie</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:QrCode&url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FFormule_d%2527Euler-Maclaurin"><span>Télécharger le code QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimer / exporter </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Livre&bookcmd=book_creator&referer=Formule+d%27Euler-Maclaurin"><span>Créer un livre</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:DownloadAsPdf&page=Formule_d%27Euler-Maclaurin&action=show-download-screen"><span>Télécharger comme PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&printable=yes" title="Version imprimable de cette page [p]" accesskey="p"><span>Version imprimable</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Dans d’autres projets </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q282023" title="Lien vers l’élément dans le dépôt de données connecté [g]" accesskey="g"><span>Élément Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Outils de la page"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Apparence"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Apparence</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">masquer</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Un article de Wikipédia, l'encyclopédie libre.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="fr" dir="ltr"><div class="bandeau-container metadata homonymie hatnote"><div class="bandeau-cell bandeau-icone" style="display:table-cell;padding-right:0.5em"><span class="noviewer" typeof="mw:File"><a href="/wiki/Aide:Homonymie" title="Aide:Homonymie"><img alt="Page d’aide sur l’homonymie" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Logo_disambig.svg/20px-Logo_disambig.svg.png" decoding="async" width="20" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Logo_disambig.svg/30px-Logo_disambig.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Logo_disambig.svg/40px-Logo_disambig.svg.png 2x" data-file-width="512" data-file-height="375" /></a></span></div><div class="bandeau-cell" style="display:table-cell;padding-right:0.5em"> <p>Pour les articles homonymes, voir <a href="/wiki/Maclaurin" class="mw-disambig" title="Maclaurin">Maclaurin</a>. </p> </div></div> <div class="bandeau-container metadata homonymie hatnote"><div class="bandeau-cell bandeau-icone" style="display:table-cell;padding-right:0.5em"><span class="noviewer" typeof="mw:File"><a href="/wiki/Aide:Homonymie" title="Aide:Homonymie"><img alt="Page d’aide sur l’homonymie" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Confusion_colour.svg/20px-Confusion_colour.svg.png" decoding="async" width="20" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Confusion_colour.svg/30px-Confusion_colour.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Confusion_colour.svg/40px-Confusion_colour.svg.png 2x" data-file-width="260" data-file-height="200" /></a></span></div><div class="bandeau-cell" style="display:table-cell;padding-right:0.5em"> <p>Ne doit pas être confondue avec <a href="/wiki/Liste_de_sujets_nomm%C3%A9s_d%27apr%C3%A8s_Leonhard_Euler#Formules" class="mw-redirect" title="Liste de sujets nommés d'après Leonhard Euler">d'autres formules dues à Euler</a>, comme <a href="/wiki/Formule_d%27Euler" title="Formule d'Euler">celle définissant l'exponentielle complexe</a>. </p> </div></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Fichier:Colin_Maclaurin_color.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Colin_Maclaurin_color.jpg/220px-Colin_Maclaurin_color.jpg" decoding="async" width="220" height="270" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Colin_Maclaurin_color.jpg/330px-Colin_Maclaurin_color.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Colin_Maclaurin_color.jpg/440px-Colin_Maclaurin_color.jpg 2x" data-file-width="700" data-file-height="860" /></a><figcaption>Portrait de Colin Maclaurin</figcaption></figure> <p>En <a href="/wiki/Math%C3%A9matiques" title="Mathématiques">mathématiques</a>, la <b>formule d'Euler-Maclaurin</b> (appelée parfois <b>formule sommatoire d'Euler</b>) est une relation entre <a href="/wiki/Somme_(arithm%C3%A9tique)" title="Somme (arithmétique)">sommes discrètes</a> et <a href="/wiki/Int%C3%A9gration_(math%C3%A9matiques)" title="Intégration (mathématiques)">intégrales</a>. Elle fut découverte indépendamment, aux alentours de <a href="/wiki/1735" title="1735">1735</a>, par le <a href="/wiki/Math%C3%A9maticien" title="Mathématicien">mathématicien</a> <a href="/wiki/Suisse" title="Suisse">suisse</a> <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> (pour accélérer le calcul de limites de séries lentement convergentes) et par l'<a href="/wiki/%C3%89cosse" title="Écosse">Écossais</a> <a href="/wiki/Colin_Maclaurin" title="Colin Maclaurin">Colin Maclaurin</a> (pour calculer des valeurs approchées d'intégrales)<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite_crochet">[</span>1<span class="cite_crochet">]</span></a></sup>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Introduction_:_comparaison_entre_série_et_intégrale"><span id="Introduction_:_comparaison_entre_s.C3.A9rie_et_int.C3.A9grale"></span>Introduction : comparaison entre série et intégrale</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=1" title="Modifier la section : Introduction : comparaison entre série et intégrale" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=1" title="Modifier le code source de la section : Introduction : comparaison entre série et intégrale"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone-css loupe">Article détaillé : <a href="/wiki/Comparaison_s%C3%A9rie-int%C3%A9grale" title="Comparaison série-intégrale">Comparaison série-intégrale</a>.</div></div> <p>Soit <span class="texhtml mvar" style="font-style:italic;">f</span> une fonction infiniment dérivable sur <span class="texhtml">[1, +∞[</span> et <i>n</i> un <a href="/wiki/Entier_naturel" title="Entier naturel">entier naturel</a> non nul. </p><p>On veut obtenir un développement asymptotique de la somme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{n}f(i)=f(1)+f(2)+\cdots +f(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{n}f(i)=f(1)+f(2)+\cdots +f(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c24fde77edcfae2b865b18237f355e7724d3a17e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:34.959ex; height:6.843ex;" alt="{\displaystyle \sum _{i=1}^{n}f(i)=f(1)+f(2)+\cdots +f(n)}"></span> en la comparant à l'intégrale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{1}^{n}f(x)~{\rm {d}}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{1}^{n}f(x)~{\rm {d}}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8aeb62f7830b0968ac7059a4b79ddb57a0c0f9c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.69ex; height:5.843ex;" alt="{\displaystyle \int _{1}^{n}f(x)~{\rm {d}}x}"></span>. </p><p>La formule d'Euler-Maclaurin donne une expression de la différence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(1)+f(2)+\cdots +f(n)-\int _{1}^{n}f(x)~{\rm {d}}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(1)+f(2)+\cdots +f(n)-\int _{1}^{n}f(x)~{\rm {d}}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85b33e2f4bbf0c016ff2036116d214105682159a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.758ex; height:5.843ex;" alt="{\displaystyle f(1)+f(2)+\cdots +f(n)-\int _{1}^{n}f(x)~{\rm {d}}x}"></span> en fonction des valeurs de la fonction et de ses dérivées aux extrémités 1 et <i>n</i> et d'un reste : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{n}f(i)-\int _{1}^{n}f(x)~{\rm {d}}x={\frac {f(1)+f(n)}{2}}+{\frac {1}{6}}{\frac {f'(n)-f'(1)}{2!}}-{\frac {1}{30}}{\frac {f'''(n)-f'''(1)}{4!}}+\cdots +b_{2k}{\frac {f^{(2k-1)}(n)-f^{(2k-1)}(1)}{(2k)!}}+R_{k,n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>30</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>‴</mo> </msup> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mo>‴</mo> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>4</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{n}f(i)-\int _{1}^{n}f(x)~{\rm {d}}x={\frac {f(1)+f(n)}{2}}+{\frac {1}{6}}{\frac {f'(n)-f'(1)}{2!}}-{\frac {1}{30}}{\frac {f'''(n)-f'''(1)}{4!}}+\cdots +b_{2k}{\frac {f^{(2k-1)}(n)-f^{(2k-1)}(1)}{(2k)!}}+R_{k,n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bff1c6a51dfb098a094d99d9054820fb0558ee03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:120.217ex; height:7.176ex;" alt="{\displaystyle \sum _{i=1}^{n}f(i)-\int _{1}^{n}f(x)~{\rm {d}}x={\frac {f(1)+f(n)}{2}}+{\frac {1}{6}}{\frac {f'(n)-f'(1)}{2!}}-{\frac {1}{30}}{\frac {f'''(n)-f'''(1)}{4!}}+\cdots +b_{2k}{\frac {f^{(2k-1)}(n)-f^{(2k-1)}(1)}{(2k)!}}+R_{k,n}.}"></span></center> <p>Les nombres <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{2}={\frac {1}{6}},\quad b_{4}=-{\frac {1}{30}},\quad b_{6}={\frac {1}{42}},\quad b_{8}=-{\frac {1}{30}},\quad \ldots b_{2k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>30</mn> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>42</mn> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>30</mn> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <mo>…<!-- … --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{2}={\frac {1}{6}},\quad b_{4}=-{\frac {1}{30}},\quad b_{6}={\frac {1}{42}},\quad b_{8}=-{\frac {1}{30}},\quad \ldots b_{2k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b29a5601b20652a5a637d5967fdc87f92f292f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:55.144ex; height:5.176ex;" alt="{\displaystyle b_{2}={\frac {1}{6}},\quad b_{4}=-{\frac {1}{30}},\quad b_{6}={\frac {1}{42}},\quad b_{8}=-{\frac {1}{30}},\quad \ldots b_{2k}}"></span> qui apparaissent dans la formule sont les <a href="/wiki/Nombre_de_Bernoulli" title="Nombre de Bernoulli">nombres de Bernoulli</a>. </p><p>La série obtenue n'est en général pas convergente mais on connaît plusieurs expressions du reste <span class="texhtml"><i>R</i><sub><i>k</i>,<i>n</i></sub></span> de la formule qui permettent de majorer l'erreur ainsi faite. </p> <div class="mw-heading mw-heading2"><h2 id="Énoncé"><span id=".C3.89nonc.C3.A9"></span>Énoncé</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=2" title="Modifier la section : Énoncé" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=2" title="Modifier le code source de la section : Énoncé"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Formule_d'Euler-Maclaurin"><span id="Formule_d.27Euler-Maclaurin"></span>Formule d'Euler-Maclaurin</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=3" title="Modifier la section : Formule d'Euler-Maclaurin" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=3" title="Modifier le code source de la section : Formule d'Euler-Maclaurin"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Soient <i>p</i> et <i>q</i> deux <a href="/wiki/Entier_relatif" title="Entier relatif">entiers relatifs</a> (<i>p</i> < <i>q</i>), <span class="texhtml mvar" style="font-style:italic;">f</span> une <a href="/wiki/Continuit%C3%A9_(math%C3%A9matiques)" title="Continuité (mathématiques)">fonction continue</a> complexe définie sur [<i>p</i>, <i>q</i>]. L'énoncé qui suit exprime la somme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {f(p)}+f(p+1)+\cdots +{f(q)}=\sum _{i=p}^{q}f\left(i\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {f(p)}+f(p+1)+\cdots +{f(q)}=\sum _{i=p}^{q}f\left(i\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6325690dc9475e4f6f6781e1a020f8e7822caef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:39.037ex; height:7.343ex;" alt="{\displaystyle {f(p)}+f(p+1)+\cdots +{f(q)}=\sum _{i=p}^{q}f\left(i\right)}"></span> avec l'intégrale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{p}^{q}f(x)~{\rm {d}}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{p}^{q}f(x)~{\rm {d}}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6507bae106a5d9f333383f369a09ede12c3b3179" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:11.46ex; height:6.176ex;" alt="{\displaystyle \int _{p}^{q}f(x)~{\rm {d}}x}"></span>, les valeurs de <span class="texhtml mvar" style="font-style:italic;">f</span> (ainsi que de ses dérivées) aux extrémités <span class="texhtml"><i>f</i>(<i>p</i>)</span> et <span class="texhtml"><i>f</i>(<i>q</i>)</span> et d'un reste. </p><p>Si <span class="texhtml mvar" style="font-style:italic;">f</span> est une fonction complexe continûment dérivable une fois sur le segment [<i>p</i>, <i>q</i>], la formule d'Euler-Maclaurin s'énonce ainsi : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=p}^{q}f\left(i\right)={\frac {f(p)+f(q)}{2}}+\int _{p}^{q}f(x)~{\rm {d}}x+R_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=p}^{q}f\left(i\right)={\frac {f(p)+f(q)}{2}}+\int _{p}^{q}f(x)~{\rm {d}}x+R_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a54d4afe028f2e88e0d3b245fa93d70bc5a2281b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:43.168ex; height:7.343ex;" alt="{\displaystyle \sum _{i=p}^{q}f\left(i\right)={\frac {f(p)+f(q)}{2}}+\int _{p}^{q}f(x)~{\rm {d}}x+R_{0}}"></span> avec <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{0}=\int _{p}^{q}f'(x)\left(x-\lfloor x\rfloor -{\frac {1}{2}}\right)~{\rm {d}}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{0}=\int _{p}^{q}f'(x)\left(x-\lfloor x\rfloor -{\frac {1}{2}}\right)~{\rm {d}}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3d54dc69d0145e210fde0782eed2fe555d9cb6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:34.702ex; height:6.343ex;" alt="{\displaystyle R_{0}=\int _{p}^{q}f'(x)\left(x-\lfloor x\rfloor -{\frac {1}{2}}\right)~{\rm {d}}x}"></span></center> <p>où <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor x\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor x\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738c94c88678dd08a289f90a47a609ce44eedf14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.394ex; height:2.843ex;" alt="{\displaystyle \lfloor x\rfloor }"></span> est la <a href="/wiki/Partie_enti%C3%A8re_et_partie_fractionnaire" title="Partie entière et partie fractionnaire">partie entière</a> de <i>x</i>, notée aussi E(<i>x</i>), et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x-\lfloor x\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x-\lfloor x\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c7981b3e9853980abbae55827a6bbb8b02a4c7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.565ex; height:2.843ex;" alt="{\displaystyle x-\lfloor x\rfloor }"></span> est la partie fractionnaire de <i>x</i>. </p><p>Pour une fonction <span class="texhtml mvar" style="font-style:italic;">f</span> continûment dérivable 2<i>k</i> fois sur le segment [<i>p</i>, <i>q</i>] (avec <i>k </i>≥ 1), la formule d'Euler-Maclaurin s'énonce ainsi : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=p}^{q}f\left(i\right)={\frac {f\left(p\right)+f\left(q\right)}{2}}+\int _{p}^{q}f(x)~{\rm {d}}x+\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(q)-f^{(2j-1)}(p)\right)+R_{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=p}^{q}f\left(i\right)={\frac {f\left(p\right)+f\left(q\right)}{2}}+\int _{p}^{q}f(x)~{\rm {d}}x+\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(q)-f^{(2j-1)}(p)\right)+R_{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb666cb86ff9dbf2de4898494100b0493897cdf8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:81.344ex; height:7.676ex;" alt="{\displaystyle \sum _{i=p}^{q}f\left(i\right)={\frac {f\left(p\right)+f\left(q\right)}{2}}+\int _{p}^{q}f(x)~{\rm {d}}x+\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(q)-f^{(2j-1)}(p)\right)+R_{k}.}"></span></center> <p>Les nombres <i>b</i><sub>2<i>j</i></sub> désignent les <a href="/wiki/Nombre_de_Bernoulli" title="Nombre de Bernoulli">nombres de Bernoulli</a> et le reste <i>R<sub>k</sub></i> s'exprime à l'aide du <a href="/wiki/Polyn%C3%B4me_de_Bernoulli" title="Polynôme de Bernoulli">polynôme de Bernoulli</a> <i>B</i><sub>2<i>k</i></sub> : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{k}=-{1 \over (2k)!}\int _{p}^{q}f^{(2k)}(x)B_{2k}(x-\lfloor x\rfloor )~{\rm {d}}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{k}=-{1 \over (2k)!}\int _{p}^{q}f^{(2k)}(x)B_{2k}(x-\lfloor x\rfloor )~{\rm {d}}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f64fcb3685aad34663e7127ceeff054777cdfa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:41.553ex; height:6.176ex;" alt="{\displaystyle R_{k}=-{1 \over (2k)!}\int _{p}^{q}f^{(2k)}(x)B_{2k}(x-\lfloor x\rfloor )~{\rm {d}}x}"></span>.</center> <p>La notation <i>B</i><sub>2<i>k</i></sub> désigne le 2<i>k</i>-ième <a href="/wiki/Polyn%C3%B4me_de_Bernoulli" title="Polynôme de Bernoulli">polynôme de Bernoulli</a> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{2k}(x-\lfloor x\rfloor )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{2k}(x-\lfloor x\rfloor )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef67471fbcfbe6d35de88b25df74546e703cf5a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.049ex; height:2.843ex;" alt="{\displaystyle B_{2k}(x-\lfloor x\rfloor )}"></span> en est une version <a href="/wiki/Fonction_p%C3%A9riodique" title="Fonction périodique">périodisée</a>, de période 1, égale à <i>B</i><sub>2<i>k</i></sub>(<i>x</i>) si 0 < <i>x</i> < 1. </p> <center> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{2}(x)=x^{2}-x+{\frac {1}{6}}\qquad B_{4}(x)=x^{4}-2x^{3}+x^{2}-{\frac {1}{30}}\qquad B_{6}(x)=x^{6}-3x^{5}+{\frac {5}{2}}x^{4}-{\frac {1}{2}}x^{2}+{\frac {1}{42}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mspace width="2em" /> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>30</mn> </mfrac> </mrow> <mspace width="2em" /> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>3</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>42</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{2}(x)=x^{2}-x+{\frac {1}{6}}\qquad B_{4}(x)=x^{4}-2x^{3}+x^{2}-{\frac {1}{30}}\qquad B_{6}(x)=x^{6}-3x^{5}+{\frac {5}{2}}x^{4}-{\frac {1}{2}}x^{2}+{\frac {1}{42}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db9737a7d89a01a3b1d1796da45edeee706a9ca0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:97.065ex; height:5.176ex;" alt="{\displaystyle B_{2}(x)=x^{2}-x+{\frac {1}{6}}\qquad B_{4}(x)=x^{4}-2x^{3}+x^{2}-{\frac {1}{30}}\qquad B_{6}(x)=x^{6}-3x^{5}+{\frac {5}{2}}x^{4}-{\frac {1}{2}}x^{2}+{\frac {1}{42}}}"></span>.</center> <p>Les nombres de Bernoulli vérifient les égalités <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{2k}=B_{2k}(0)=B_{2k}(1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{2k}=B_{2k}(0)=B_{2k}(1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30c3f04da4add0f3015ee2f8cf07302dd52408ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.398ex; height:2.843ex;" alt="{\displaystyle b_{2k}=B_{2k}(0)=B_{2k}(1)}"></span>. </p><p>D'autres expressions du reste sont données plus loin si la fonction <span class="texhtml mvar" style="font-style:italic;">f</span> est 2<i>k</i> + 1 fois dérivable ou 2<i>k</i> + 2 fois dérivable. </p> <div class="mw-heading mw-heading3"><h3 id="Formules_sommatoires_d'Euler-Maclaurin"><span id="Formules_sommatoires_d.27Euler-Maclaurin"></span>Formules sommatoires d'Euler-Maclaurin</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=4" title="Modifier la section : Formules sommatoires d'Euler-Maclaurin" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=4" title="Modifier le code source de la section : Formules sommatoires d'Euler-Maclaurin"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Si l'on somme de <i>p</i> à <i>q</i> − 1 les nombres <span class="texhtml"><i>f</i> (<i>i</i>)</span>, on a : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=p}^{q-1}f(i)=\int _{p}^{q}f(x)~{\rm {d}}x+{\frac {f(p)-f(q)}{2}}+\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(q)-f^{(2j-1)}(p)\right)+R_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=p}^{q-1}f(i)=\int _{p}^{q}f(x)~{\rm {d}}x+{\frac {f(p)-f(q)}{2}}+\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(q)-f^{(2j-1)}(p)\right)+R_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1eca2b73c4237d7b6daa6ac1d6146258f5b8375c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:79.536ex; height:7.676ex;" alt="{\displaystyle \sum _{i=p}^{q-1}f(i)=\int _{p}^{q}f(x)~{\rm {d}}x+{\frac {f(p)-f(q)}{2}}+\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(q)-f^{(2j-1)}(p)\right)+R_{k}}"></span>.</center> <p>Si l'on considère les nombres de Bernoulli d'indice impair : <span class="texhtml"><i>b</i><sub>1</sub> = –<span class="texhtml"><span style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="position:absolute;left:-10000px;top:auto;width:1px;height:1px;overflow:hidden">/</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">2</span></span></span></span> et <span class="texhtml"><i>b</i><sub>2<i>j</i> +1</sub> = 0</span> si <i>j</i> > 1, on peut énoncer la formule d'Euler-Maclaurin de la manière suivante<sup id="cite_ref-Cohen22_2-0" class="reference"><a href="#cite_note-Cohen22-2"><span class="cite_crochet">[</span>N 1<span class="cite_crochet">]</span></a></sup> : </p><p>pour une fonction complexe <span class="texhtml mvar" style="font-style:italic;">f</span> qui est <i>r</i> fois continûment dérivable (avec <i>r</i> > 0) : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=p}^{q-1}f\left(i\right)=\int _{p}^{q}f(x)~{\rm {d}}x+\sum _{j=1}^{r}{\frac {b_{j}}{j!}}\left(f^{(j-1)}(q)-f^{(j-1)}(p)\right)+R'_{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mrow> <mi>j</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mo>′</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=p}^{q-1}f\left(i\right)=\int _{p}^{q}f(x)~{\rm {d}}x+\sum _{j=1}^{r}{\frac {b_{j}}{j!}}\left(f^{(j-1)}(q)-f^{(j-1)}(p)\right)+R'_{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da549b2c94e0a661e05a4d3f4e9d60d00155a726" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:60.563ex; height:7.676ex;" alt="{\displaystyle \sum _{i=p}^{q-1}f\left(i\right)=\int _{p}^{q}f(x)~{\rm {d}}x+\sum _{j=1}^{r}{\frac {b_{j}}{j!}}\left(f^{(j-1)}(q)-f^{(j-1)}(p)\right)+R'_{r}}"></span></center> <p>On a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R'_{r}=R_{[{\frac {r}{2}}]},\qquad R_{0}=R'_{1}\qquad {\text{et}}\qquad R_{k}=R'_{2k}=R'_{2k+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>r</mi> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">]</mo> </mrow> </msub> <mo>,</mo> <mspace width="2em" /> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>et</mtext> </mrow> <mspace width="2em" /> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R'_{r}=R_{[{\frac {r}{2}}]},\qquad R_{0}=R'_{1}\qquad {\text{et}}\qquad R_{k}=R'_{2k}=R'_{2k+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0082adad1f9bce667e0c3d82b20c92fb8390ccf5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:54.392ex; height:3.676ex;" alt="{\displaystyle R'_{r}=R_{[{\frac {r}{2}}]},\qquad R_{0}=R'_{1}\qquad {\text{et}}\qquad R_{k}=R'_{2k}=R'_{2k+1}}"></span> si <i>k</i> > 0. </p><p> Avec les notations précédentes, l'expression du reste <span class="texhtml mvar" style="font-style:italic;">R'<sub>r</sub></span> pour une fonction complexe <i>r</i> fois continûment dérivable (avec <i>r</i> > 0) est la suivante<sup id="cite_ref-Cohen22_2-1" class="reference"><a href="#cite_note-Cohen22-2"><span class="cite_crochet">[</span>N 1<span class="cite_crochet">]</span></a></sup> : </p><center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R'_{r}={\frac {(-1)^{r-1}}{r!}}\int _{p}^{q}f^{(r)}(x)B_{r}(x-\lfloor x\rfloor )~{\rm {d}}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>r</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R'_{r}={\frac {(-1)^{r-1}}{r!}}\int _{p}^{q}f^{(r)}(x)B_{r}(x-\lfloor x\rfloor )~{\rm {d}}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ddbe167b1031c50432f3a5ebd9e5c9eaeda71de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:40.781ex; height:6.676ex;" alt="{\displaystyle R'_{r}={\frac {(-1)^{r-1}}{r!}}\int _{p}^{q}f^{(r)}(x)B_{r}(x-\lfloor x\rfloor )~{\rm {d}}x}"></span>.</center> <p>La notation <span class="texhtml mvar" style="font-style:italic;">B<sub>r</sub></span> désigne le <i>r</i>-ème <a href="/wiki/Polyn%C3%B4me_de_Bernoulli" title="Polynôme de Bernoulli">polynôme de Bernoulli</a>, et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{r}(x-\lfloor x\rfloor )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{r}(x-\lfloor x\rfloor )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a1ac5c885cf342b919dbc4ab8738d687f3a9529" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.112ex; height:2.843ex;" alt="{\displaystyle B_{r}(x-\lfloor x\rfloor )}"></span> en est une version <a href="/wiki/Fonction_p%C3%A9riodique" title="Fonction périodique">périodisée</a>, de période 1, égale à <span class="texhtml"><i>B<sub>r</sub></i>(<i>x</i>)</span> si 0 < <i>x</i> < 1. </p> <center> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{0}(x)=1\qquad B_{1}(x)=x-{\frac {1}{2}}\qquad B_{2}(x)=x^{2}-x+{\frac {1}{6}}\qquad B_{3}(x)=x^{3}-{\frac {3}{2}}x^{2}+{\frac {1}{2}}x\qquad B_{4}(x)=x^{4}-2x^{3}+x^{2}-{\frac {1}{30}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mspace width="2em" /> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mspace width="2em" /> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mspace width="2em" /> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>x</mi> <mspace width="2em" /> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>30</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{0}(x)=1\qquad B_{1}(x)=x-{\frac {1}{2}}\qquad B_{2}(x)=x^{2}-x+{\frac {1}{6}}\qquad B_{3}(x)=x^{3}-{\frac {3}{2}}x^{2}+{\frac {1}{2}}x\qquad B_{4}(x)=x^{4}-2x^{3}+x^{2}-{\frac {1}{30}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d4e3845d86dbc90164bf151cdc15d49c05c6023" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:118.355ex; height:5.176ex;" alt="{\displaystyle B_{0}(x)=1\qquad B_{1}(x)=x-{\frac {1}{2}}\qquad B_{2}(x)=x^{2}-x+{\frac {1}{6}}\qquad B_{3}(x)=x^{3}-{\frac {3}{2}}x^{2}+{\frac {1}{2}}x\qquad B_{4}(x)=x^{4}-2x^{3}+x^{2}-{\frac {1}{30}}}"></span>.</center> <p>(Les polynômes et les nombres de Bernoulli sont reliés par les égalités <span class="texhtml"><i>b<sub>r</sub></i> = <i>B<sub>r</sub></i>(0) = <i>B<sub>r</sub></i>(1)</span> si <i>r</i> > 1.). </p><p>Une autre formulation équivalente, où l'on somme de <i>p</i> + 1 à <i>q</i>, est donnée par Tenenbaum<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite_crochet">[</span>2<span class="cite_crochet">]</span></a></sup> : pour une fonction complexe <span class="texhtml mvar" style="font-style:italic;">f</span> qui est <i>r</i> + 1 fois continûment dérivable (avec <i>r</i> ≥ 0) : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{p<n\leqslant q}f\left(n\right)=\int _{p}^{q}f(x)~{\rm {d}}x+\sum _{j=0}^{r}{\frac {(-1)^{j+1}b_{j+1}}{(j+1)!}}\left(f^{(j)}(q)-f^{(j)}(p)\right)+R'_{r+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo><</mo> <mi>n</mi> <mo>⩽<!-- ⩽ --></mo> <mi>q</mi> </mrow> </munder> <mi>f</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{p<n\leqslant q}f\left(n\right)=\int _{p}^{q}f(x)~{\rm {d}}x+\sum _{j=0}^{r}{\frac {(-1)^{j+1}b_{j+1}}{(j+1)!}}\left(f^{(j)}(q)-f^{(j)}(p)\right)+R'_{r+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e3d203cc5918dbd8c49319fa3e1327318089e5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; margin-left: -0.063ex; width:70.78ex; height:7.343ex;" alt="{\displaystyle \sum _{p<n\leqslant q}f\left(n\right)=\int _{p}^{q}f(x)~{\rm {d}}x+\sum _{j=0}^{r}{\frac {(-1)^{j+1}b_{j+1}}{(j+1)!}}\left(f^{(j)}(q)-f^{(j)}(p)\right)+R'_{r+1}}"></span>.</center> <p>Le coefficient <span class="texhtml">(–1)<sup><i>j</i>+1</sup></span> n'intervient dans la formule que pour <i>j</i> = 0. Son rôle est de remplacer le nombre de Bernoulli d'indice 1, <span class="texhtml"><i>b</i><sub>1</sub> = –<span class="texhtml"><span style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="position:absolute;left:-10000px;top:auto;width:1px;height:1px;overflow:hidden">/</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">2</span></span></span></span>, par <span class="texhtml"><i>b'</i><sub>1</sub> = +<span class="texhtml"><span style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">1</span><span style="position:absolute;left:-10000px;top:auto;width:1px;height:1px;overflow:hidden">/</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">2</span></span></span></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Expressions_du_reste">Expressions du reste</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=5" title="Modifier la section : Expressions du reste" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=5" title="Modifier le code source de la section : Expressions du reste"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Si <span class="texhtml mvar" style="font-style:italic;">f</span> est 2<i>k</i> fois continûment dérivable sur le segment [<i>p</i>, <i>q</i>] (avec <i>k </i>≥ 1), le reste <span class="texhtml mvar" style="font-style:italic;">R<sub>k</sub></span> s'exprime de la manière suivante : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{k}=-{1 \over (2k)!}\int _{p}^{q}f^{(2k)}(x)B_{2k}(x-\lfloor x\rfloor )~{\rm {d}}x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{k}=-{1 \over (2k)!}\int _{p}^{q}f^{(2k)}(x)B_{2k}(x-\lfloor x\rfloor )~{\rm {d}}x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f66365341fa8171c5a2d0ab9aece667ae08bc6db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:42.2ex; height:6.176ex;" alt="{\displaystyle R_{k}=-{1 \over (2k)!}\int _{p}^{q}f^{(2k)}(x)B_{2k}(x-\lfloor x\rfloor )~{\rm {d}}x.}"></span></center> <p>Si <span class="texhtml mvar" style="font-style:italic;">f</span> est 2<i>k </i>+ 1 fois continûment dérivable sur le segment [<i>p</i>, <i>q</i>] (avec <i>k </i>≥ 0), le reste <span class="texhtml mvar" style="font-style:italic;">R<sub>k</sub></span> s'exprime comme suit<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite_crochet">[</span>N 2<span class="cite_crochet">]</span></a></sup> : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{k}={1 \over (2k+1)!}\int _{p}^{q}f^{(2k+1)}(x){B_{2k+1}(x-\lfloor x\rfloor )}~{\rm {d}}x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> <mo stretchy="false">)</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{k}={1 \over (2k+1)!}\int _{p}^{q}f^{(2k+1)}(x){B_{2k+1}(x-\lfloor x\rfloor )}~{\rm {d}}x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c60ef7b171c12beb87a94a7f78fceae4ace459d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:48.596ex; height:6.176ex;" alt="{\displaystyle R_{k}={1 \over (2k+1)!}\int _{p}^{q}f^{(2k+1)}(x){B_{2k+1}(x-\lfloor x\rfloor )}~{\rm {d}}x.}"></span></center> <p>Si <span class="texhtml mvar" style="font-style:italic;">f</span> est une fonction réelle 2<i>k </i>+ 2 fois continûment dérivable sur le segment [<i>p</i>, <i>q</i>] (avec <i>k </i>≥ 0), le reste peut s'écrire des manières suivantes<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite_crochet">[</span>3<span class="cite_crochet">]</span></a></sup> : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}R_{k}&=-{1 \over (2k+2)!}\int _{p}^{q}f^{(2k+2)}(x)(B_{2k+2}(x-\lfloor x\rfloor )-b_{2k+2})~{\rm {d}}x\\&={q-p \over (2k+2)!}b_{2k+2}f^{(2k+2)}(\xi ),\qquad {\text{ avec }}\quad \xi \in \left]p,q\right[.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>q</mi> <mo>−<!-- − --></mo> <mi>p</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext> avec </mtext> </mrow> <mspace width="1em" /> <mi>ξ<!-- ξ --></mi> <mo>∈<!-- ∈ --></mo> <mrow> <mo>]</mo> <mrow> <mi>p</mi> <mo>,</mo> <mi>q</mi> </mrow> <mo>[</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}R_{k}&=-{1 \over (2k+2)!}\int _{p}^{q}f^{(2k+2)}(x)(B_{2k+2}(x-\lfloor x\rfloor )-b_{2k+2})~{\rm {d}}x\\&={q-p \over (2k+2)!}b_{2k+2}f^{(2k+2)}(\xi ),\qquad {\text{ avec }}\quad \xi \in \left]p,q\right[.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba09f9dcefce5bf6f8ef930c42823eea914acb1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:60.167ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}R_{k}&=-{1 \over (2k+2)!}\int _{p}^{q}f^{(2k+2)}(x)(B_{2k+2}(x-\lfloor x\rfloor )-b_{2k+2})~{\rm {d}}x\\&={q-p \over (2k+2)!}b_{2k+2}f^{(2k+2)}(\xi ),\qquad {\text{ avec }}\quad \xi \in \left]p,q\right[.\end{aligned}}}"></span></center> <p>Si l'on considère les nombres de Bernoulli sans leur signe (on a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{2k}=(-1)^{k-1}|b_{2k}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{2k}=(-1)^{k-1}|b_{2k}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4076a30441a7fb1df708dd47c088468f2ce8698a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.178ex; height:3.176ex;" alt="{\displaystyle b_{2k}=(-1)^{k-1}|b_{2k}|}"></span>), la dernière formule s'écrit<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite_crochet">[</span>4<span class="cite_crochet">]</span></a></sup> : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{k}=(-1)^{k}{q-p \over (2k+2)!}|b_{2k+2}|f^{(2k+2)}(\xi ),\qquad {\text{ avec }}\quad \xi \in \left]p,q\right[.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>q</mi> <mo>−<!-- − --></mo> <mi>p</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext> avec </mtext> </mrow> <mspace width="1em" /> <mi>ξ<!-- ξ --></mi> <mo>∈<!-- ∈ --></mo> <mrow> <mo>]</mo> <mrow> <mi>p</mi> <mo>,</mo> <mi>q</mi> </mrow> <mo>[</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{k}=(-1)^{k}{q-p \over (2k+2)!}|b_{2k+2}|f^{(2k+2)}(\xi ),\qquad {\text{ avec }}\quad \xi \in \left]p,q\right[.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/540e911d61881b03195d883982eeb6ad1510afef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:60.331ex; height:6.009ex;" alt="{\displaystyle R_{k}=(-1)^{k}{q-p \over (2k+2)!}|b_{2k+2}|f^{(2k+2)}(\xi ),\qquad {\text{ avec }}\quad \xi \in \left]p,q\right[.}"></span></center> <p>Remarque : le reste <span class="texhtml mvar" style="font-style:italic;">R<sub>k</sub></span> est nul pour tout polynôme de degré au plus 2<i>k</i> + 1. </p> <div class="mw-heading mw-heading3"><h3 id="Majorations_du_reste">Majorations du reste</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=6" title="Modifier la section : Majorations du reste" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=6" title="Modifier le code source de la section : Majorations du reste"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Si <span class="texhtml mvar" style="font-style:italic;">f</span> est une fonction complexe 1 fois continûment dérivable sur le segment [<i>p</i>, <i>q</i>], le maximum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sup _{t\in [0\,;\,1]}|B_{1}(t)|={\frac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>;</mo> <mspace width="thinmathspace" /> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sup _{t\in [0\,;\,1]}|B_{1}(t)|={\frac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c78651ad526d01f8dbbc3150002a27dd96651e90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.725ex; height:6.343ex;" alt="{\displaystyle \sup _{t\in [0\,;\,1]}|B_{1}(t)|={\frac {1}{2}}}"></span> du polynôme de Bernoulli <span class="texhtml"><i>B</i><sub>1</sub>(<i>t</i>)</span> permet d'obtenir la majoration  : </p> <center> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |R_{0}|\leqslant {\frac {1}{2}}\int _{p}^{q}\left|f'(t)\right|\mathrm {d} t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>⩽<!-- ⩽ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>|</mo> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |R_{0}|\leqslant {\frac {1}{2}}\int _{p}^{q}\left|f'(t)\right|\mathrm {d} t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6d3025222c2266805fdd8c14c1c72310b384e24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.903ex; height:6.176ex;" alt="{\displaystyle |R_{0}|\leqslant {\frac {1}{2}}\int _{p}^{q}\left|f'(t)\right|\mathrm {d} t}"></span>.</center> <p>Si <span class="texhtml mvar" style="font-style:italic;">f</span> est une fonction complexe 2<i>k </i> fois continûment dérivable sur le segment [<i>p</i>, <i>q</i>] (avec <i>k </i>≥ 1), on peut majorer le reste (ou « terme d'erreur ») de la formule d'Euler-Maclaurin en utilisant la majoration des polynômes de Bernoulli d'indice pair<sup id="cite_ref-D301_7-0" class="reference"><a href="#cite_note-D301-7"><span class="cite_crochet">[</span>N 3<span class="cite_crochet">]</span></a></sup> : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sup _{t\in [0\,;\,1]}|B_{2k}(t)|=|b_{2k}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>;</mo> <mspace width="thinmathspace" /> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sup _{t\in [0\,;\,1]}|B_{2k}(t)|=|b_{2k}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d135b3b348884476494c910828c393798901b619" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.785ex; height:5.009ex;" alt="{\displaystyle \sup _{t\in [0\,;\,1]}|B_{2k}(t)|=|b_{2k}|}"></span> : </p> <center> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |R_{k}|\leqslant {\frac {|b_{2k}|}{(2k)!}}\int _{p}^{q}\left|f^{(2k)}(x)\right|\mathrm {d} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>⩽<!-- ⩽ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>|</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |R_{k}|\leqslant {\frac {|b_{2k}|}{(2k)!}}\int _{p}^{q}\left|f^{(2k)}(x)\right|\mathrm {d} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1756a24f87c6af18fb87365fe2228f5111937ff4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:29.09ex; height:6.509ex;" alt="{\displaystyle |R_{k}|\leqslant {\frac {|b_{2k}|}{(2k)!}}\int _{p}^{q}\left|f^{(2k)}(x)\right|\mathrm {d} x}"></span>.</center> <p>Par exemple, avec <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{2}={\frac {1}{6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{2}={\frac {1}{6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f4c6c070f9d1707a65ac8dee521339d8ed0059f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.149ex; height:5.176ex;" alt="{\displaystyle b_{2}={\frac {1}{6}}}"></span>, on a : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |R_{1}|\leqslant {\frac {1}{12}}\int _{p}^{q}\left|f''(x)\right|\mathrm {d} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>⩽<!-- ⩽ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>|</mo> <mrow> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |R_{1}|\leqslant {\frac {1}{12}}\int _{p}^{q}\left|f''(x)\right|\mathrm {d} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/135ed44f13b0d0cb336b48971034932ec3c0e01a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:24.498ex; height:6.176ex;" alt="{\displaystyle |R_{1}|\leqslant {\frac {1}{12}}\int _{p}^{q}\left|f''(x)\right|\mathrm {d} x}"></span>. </p><p>L'inégalité peut être réécrite en utilisant la formule due à Euler (pour <i>k </i>≥ 1) : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|b_{2k}|}{(2k)!}}={\frac {2}{(2\pi )^{2k}}}\sum _{i=1}^{\infty }{\frac {1}{i^{2k}}}={\frac {2}{(2\pi )^{2k}}}\zeta (2k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|b_{2k}|}{(2k)!}}={\frac {2}{(2\pi )^{2k}}}\sum _{i=1}^{\infty }{\frac {1}{i^{2k}}}={\frac {2}{(2\pi )^{2k}}}\zeta (2k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44cc9958880deb2e8f09273229553d4dd058ec05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.921ex; height:6.843ex;" alt="{\displaystyle {\frac {|b_{2k}|}{(2k)!}}={\frac {2}{(2\pi )^{2k}}}\sum _{i=1}^{\infty }{\frac {1}{i^{2k}}}={\frac {2}{(2\pi )^{2k}}}\zeta (2k)}"></span>. On déduit que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|b_{2k}|}{(2k)!}}\leqslant {\frac {2\zeta (2)}{(2\pi )^{2k}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>⩽<!-- ⩽ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|b_{2k}|}{(2k)!}}\leqslant {\frac {2\zeta (2)}{(2\pi )^{2k}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a79607ac834cd779bd816a34de69623b66f45bda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.815ex; height:6.509ex;" alt="{\displaystyle {\frac {|b_{2k}|}{(2k)!}}\leqslant {\frac {2\zeta (2)}{(2\pi )^{2k}}}}"></span> (on a l'équivalent : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|b_{2k}|}{(2k)!}}\sim {\frac {2}{(2\pi )^{2k}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|b_{2k}|}{(2k)!}}\sim {\frac {2}{(2\pi )^{2k}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3275930b59a3e7c0ccc98fc5444d42ba1efb9a44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.815ex; height:6.509ex;" alt="{\displaystyle {\frac {|b_{2k}|}{(2k)!}}\sim {\frac {2}{(2\pi )^{2k}}}}"></span>). </p> <center> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |R_{k}|\leqslant {\frac {2\zeta (2)}{(2\pi )^{2k}}}\int _{p}^{q}\left|f^{(2k)}(t)\right|\mathrm {d} t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>⩽<!-- ⩽ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>|</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |R_{k}|\leqslant {\frac {2\zeta (2)}{(2\pi )^{2k}}}\int _{p}^{q}\left|f^{(2k)}(t)\right|\mathrm {d} t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe1b2cf6f3722af5c67f1055b3bdaebbd12c8db2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:29.495ex; height:6.509ex;" alt="{\displaystyle |R_{k}|\leqslant {\frac {2\zeta (2)}{(2\pi )^{2k}}}\int _{p}^{q}\left|f^{(2k)}(t)\right|\mathrm {d} t}"></span>.</center><p> Si <span class="texhtml mvar" style="font-style:italic;">f</span> est une fonction complexe 2<i>k </i>+ 1 fois continûment dérivable sur le segment [<i>p</i>, <i>q</i>] (avec <i>k </i>≥ 1), en utilisant la majoration des polynômes de Bernoulli d'indice impair : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |B_{2k+1}(t)|\leqslant {\frac {2(2k+1)!}{(2\pi )^{2k+1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>⩽<!-- ⩽ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |B_{2k+1}(t)|\leqslant {\frac {2(2k+1)!}{(2\pi )^{2k+1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4be3a37518a946f60516597f4dbd9b73ced97fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:23.648ex; height:6.509ex;" alt="{\displaystyle |B_{2k+1}(t)|\leqslant {\frac {2(2k+1)!}{(2\pi )^{2k+1}}}}"></span> (si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in [0\,;\,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>;</mo> <mspace width="thinmathspace" /> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in [0\,;\,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27cd225ceaf6a3ac33211c5a73bf0affbd9cc36b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.107ex; height:2.843ex;" alt="{\displaystyle t\in [0\,;\,1]}"></span>) démontrée par <a href="/wiki/Derrick_Lehmer" title="Derrick Lehmer">Derrick Lehmer</a>, on obtient l'inégalité<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite_crochet">[</span>N 4<span class="cite_crochet">]</span></a></sup> : </p><center> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |R_{k}|\leqslant {\frac {2}{(2\pi )^{2k+1}}}\int _{p}^{q}\left|f^{(2k+1)}(x)\right|\mathrm {d} x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>⩽<!-- ⩽ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>|</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |R_{k}|\leqslant {\frac {2}{(2\pi )^{2k+1}}}\int _{p}^{q}\left|f^{(2k+1)}(x)\right|\mathrm {d} x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8c9c3bfdf4678b5aec953bcf93631760e007d74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:34.676ex; height:6.176ex;" alt="{\displaystyle |R_{k}|\leqslant {\frac {2}{(2\pi )^{2k+1}}}\int _{p}^{q}\left|f^{(2k+1)}(x)\right|\mathrm {d} x}"></span></center> <p>Pour le polynôme de Bernoulli <span class="texhtml"><i>B</i><sub>3</sub>(<i>t</i>)</span>, on a le maximum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sup _{t\in [0\,;\,1]}|B_{3}(t)|={\frac {\sqrt {3}}{36}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>;</mo> <mspace width="thinmathspace" /> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>36</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sup _{t\in [0\,;\,1]}|B_{3}(t)|={\frac {\sqrt {3}}{36}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebd2f2113dddd83ee9fafab30f6c91b6e97b98c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.661ex; height:7.009ex;" alt="{\displaystyle \sup _{t\in [0\,;\,1]}|B_{3}(t)|={\frac {\sqrt {3}}{36}}}"></span> qui permet d'obtenir la majoration : </p> <center> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |R_{1}|\leqslant {\frac {\sqrt {3}}{216}}\int _{p}^{q}\left|f^{(3)}(t)\right|\mathrm {d} t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>⩽<!-- ⩽ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>216</mn> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>|</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |R_{1}|\leqslant {\frac {\sqrt {3}}{216}}\int _{p}^{q}\left|f^{(3)}(t)\right|\mathrm {d} t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c90af7e558ca0aae9fb04f66728716f7fbd4820f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:25.877ex; height:6.676ex;" alt="{\displaystyle |R_{1}|\leqslant {\frac {\sqrt {3}}{216}}\int _{p}^{q}\left|f^{(3)}(t)\right|\mathrm {d} t}"></span>.</center> <div class="mw-heading mw-heading3"><h3 id="Signe_du_reste">Signe du reste</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=7" title="Modifier la section : Signe du reste" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=7" title="Modifier le code source de la section : Signe du reste"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div><p> Si <span class="texhtml mvar" style="font-style:italic;">f</span> est une fonction réelle 2<i>k </i>+ 2 fois continûment dérivable sur le segment [<i>p</i>, <i>q</i>] (avec <i>k </i>≥ 0), dont la dérivée d'ordre 2<i>k</i> + 2 est de signe constant<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite_crochet">[</span>N 5<span class="cite_crochet">]</span></a></sup>, le reste <span class="texhtml mvar" style="font-style:italic;">R<sub>k</sub></span> a le même signe que le « premier terme négligé<sup id="cite_ref-Cohen25_10-0" class="reference"><a href="#cite_note-Cohen25-10"><span class="cite_crochet">[</span>5<span class="cite_crochet">]</span></a></sup> » : </p><center> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{k}\approx {\frac {b_{2k+2}}{(2k+2)!}}\left(f^{(2k+1)}(q)-f^{(2k+1)}(p)\right)\approx (-1)^{k}\left(f^{(2k+1)}(q)-f^{(2k+1)}(p)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>≈<!-- ≈ --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{k}\approx {\frac {b_{2k+2}}{(2k+2)!}}\left(f^{(2k+1)}(q)-f^{(2k+1)}(p)\right)\approx (-1)^{k}\left(f^{(2k+1)}(q)-f^{(2k+1)}(p)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/277e1ae64f7be18d0e61e056239a922a4d933f3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:74.753ex; height:6.176ex;" alt="{\displaystyle R_{k}\approx {\frac {b_{2k+2}}{(2k+2)!}}\left(f^{(2k+1)}(q)-f^{(2k+1)}(p)\right)\approx (-1)^{k}\left(f^{(2k+1)}(q)-f^{(2k+1)}(p)\right)}"></span>.</center> <p>De plus on a les majorations suivantes<sup id="cite_ref-Cohen25_10-1" class="reference"><a href="#cite_note-Cohen25-10"><span class="cite_crochet">[</span>5<span class="cite_crochet">]</span></a></sup> : </p> <center> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |R_{k}|\leqslant 2\left(1-2^{-(2k+2)}\right){\frac {|b_{2k+2}|}{(2k+2)!}}\left|f^{(2k+1)}(q)-f^{(2k+1)}(p)\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>⩽<!-- ⩽ --></mo> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow> <mo>|</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |R_{k}|\leqslant 2\left(1-2^{-(2k+2)}\right){\frac {|b_{2k+2}|}{(2k+2)!}}\left|f^{(2k+1)}(q)-f^{(2k+1)}(p)\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9742ff73f536ff43f65f1d8474cd5abef56d8448" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:56.961ex; height:6.509ex;" alt="{\displaystyle |R_{k}|\leqslant 2\left(1-2^{-(2k+2)}\right){\frac {|b_{2k+2}|}{(2k+2)!}}\left|f^{(2k+1)}(q)-f^{(2k+1)}(p)\right|}"></span>.</center><p> et </p><center> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |R_{k+1}|\leqslant {\frac {|b_{2k+2}|}{(2k+2)!}}\left|f^{(2k+1)}(q)-f^{(2k+1)}(p)\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>⩽<!-- ⩽ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow> <mo>|</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |R_{k+1}|\leqslant {\frac {|b_{2k+2}|}{(2k+2)!}}\left|f^{(2k+1)}(q)-f^{(2k+1)}(p)\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f55b0a467aa835249848ae0ddc11313fb96626f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:42.615ex; height:6.509ex;" alt="{\displaystyle |R_{k+1}|\leqslant {\frac {|b_{2k+2}|}{(2k+2)!}}\left|f^{(2k+1)}(q)-f^{(2k+1)}(p)\right|}"></span>.</center><p> (le reste suivant <span class="texhtml"><i>R</i><sub><i>k</i> + 1</sub></span> n'excède pas (en valeur absolue) le « dernier terme retenu »<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite_crochet">[</span>6<span class="cite_crochet">]</span></a></sup>). </p><p>Si <span class="texhtml mvar" style="font-style:italic;">f</span> est une fonction réelle 2<i>k </i>+ 4 fois continûment dérivable sur le segment [<i>p</i>, <i>q</i>] (avec <i>k </i>≥ 0), dont les dérivées d'ordre 2<i>k</i> + 2 et 2<i>k</i> + 4 sont de signe constant et de même signe, alors les restes <span class="texhtml mvar" style="font-style:italic;">R<sub>k</sub></span> et <span class="texhtml"><i>R</i><sub><i>k</i> + 1</sub></span> sont de signes opposés et le reste <span class="texhtml mvar" style="font-style:italic;">R<sub>k</sub></span> est majoré (en valeur absolue) par le premier terme négligé<sup id="cite_ref-Cohen25_10-2" class="reference"><a href="#cite_note-Cohen25-10"><span class="cite_crochet">[</span>5<span class="cite_crochet">]</span></a></sup> : </p> <center> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |R_{k}|\leqslant {\frac {|b_{2k+2}|}{(2k+2)!}}\left|f^{(2k+1)}(q)-f^{(2k+1)}(p)\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>⩽<!-- ⩽ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow> <mo>|</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |R_{k}|\leqslant {\frac {|b_{2k+2}|}{(2k+2)!}}\left|f^{(2k+1)}(q)-f^{(2k+1)}(p)\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/150796c142fd12407f28e95e72b994cc1ce2219f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:40.515ex; height:6.509ex;" alt="{\displaystyle |R_{k}|\leqslant {\frac {|b_{2k+2}|}{(2k+2)!}}\left|f^{(2k+1)}(q)-f^{(2k+1)}(p)\right|}"></span>.</center> <div class="mw-heading mw-heading2"><h2 id="Démonstration"><span id="D.C3.A9monstration"></span>Démonstration</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=8" title="Modifier la section : Démonstration" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=8" title="Modifier le code source de la section : Démonstration"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>On démontre la formule </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{k}=-{1 \over (2k)!}\int _{p}^{q}f^{(2k)}(x)B_{2k}(x-\lfloor x\rfloor )~{\rm {d}}x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{k}=-{1 \over (2k)!}\int _{p}^{q}f^{(2k)}(x)B_{2k}(x-\lfloor x\rfloor )~{\rm {d}}x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f66365341fa8171c5a2d0ab9aece667ae08bc6db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:42.2ex; height:6.176ex;" alt="{\displaystyle R_{k}=-{1 \over (2k)!}\int _{p}^{q}f^{(2k)}(x)B_{2k}(x-\lfloor x\rfloor )~{\rm {d}}x.}"></span></center> <p>sur l'intervalle [<i>n</i>, <i>n </i>+ 1], avec <i>n </i>∈ ℤ, puis on déduit la formule précédente par sommation sur <i>n </i>∈ ℤ (<i>p </i>≤ <i>n </i>≤ <i>q </i>– 1). </p> <div class="NavFrame" style="border: thin solid #aaaaaa; margin:1em 2em; padding: 0 1em; font-size:100%; text-align:justify; overflow:hidden;"> <div class="NavHead" style="background-color:transparent; color:inherit; padding:0;">Démonstration</div><div class="NavContent" style="padding-bottom:0.4em"> <p>Soit <i>g</i> une fonction continûment dérivable sur [<i>n</i>, <i>n </i>+ 1]. En utilisant la propriété des polynômes de Bernoulli : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall m\in \mathbb {N} \quad B_{m+1}'=\left(m+1\right)B_{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>m</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mspace width="1em" /> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>′</mo> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall m\in \mathbb {N} \quad B_{m+1}'=\left(m+1\right)B_{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58f6b45537400c880996723fc15ad8ef6194c97c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:30.491ex; height:3.176ex;" alt="{\displaystyle \forall m\in \mathbb {N} \quad B_{m+1}'=\left(m+1\right)B_{m}}"></span>, on trouve en faisant une intégration par parties : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{n}^{n+1}g(t)B_{m}(t-n)~{\rm {d}}t=\left[g(t){\frac {B_{m+1}(t-n)}{m+1}}\right]_{n}^{n+1}-\int _{n}^{n+1}g'(t){\frac {B_{m+1}(t-n)}{m+1}}~{\rm {d}}t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> <mo>=</mo> <msubsup> <mrow> <mo>[</mo> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{n}^{n+1}g(t)B_{m}(t-n)~{\rm {d}}t=\left[g(t){\frac {B_{m+1}(t-n)}{m+1}}\right]_{n}^{n+1}-\int _{n}^{n+1}g'(t){\frac {B_{m+1}(t-n)}{m+1}}~{\rm {d}}t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7eb4bf8f4cf06aa4570648180ee92dd7a16d303" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:78.95ex; height:6.676ex;" alt="{\displaystyle \int _{n}^{n+1}g(t)B_{m}(t-n)~{\rm {d}}t=\left[g(t){\frac {B_{m+1}(t-n)}{m+1}}\right]_{n}^{n+1}-\int _{n}^{n+1}g'(t){\frac {B_{m+1}(t-n)}{m+1}}~{\rm {d}}t.}"></span></dd></dl> <p>Or, sachant que pour <i>m </i>≥ 1, on a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{m+1}(1)=B_{m+1}(0)=b_{m+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{m+1}(1)=B_{m+1}(0)=b_{m+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a695637f7450dc82d17c2d0750224c75cee397c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.993ex; height:2.843ex;" alt="{\displaystyle B_{m+1}(1)=B_{m+1}(0)=b_{m+1}}"></span>, on en déduit : </p> <dl><dd>pour <i>m </i>≥ 1 : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{n}^{n+1}g(t)B_{m}(t-n)~{\rm {d}}t={\frac {b_{m+1}}{m+1}}\left(g(n+1)-g(n)\right)-{\frac {1}{m+1}}\int _{n}^{n+1}g'(t)B_{m+1}(t-n)~{\rm {d}}t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{n}^{n+1}g(t)B_{m}(t-n)~{\rm {d}}t={\frac {b_{m+1}}{m+1}}\left(g(n+1)-g(n)\right)-{\frac {1}{m+1}}\int _{n}^{n+1}g'(t)B_{m+1}(t-n)~{\rm {d}}t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2915baab4fd7d27bc743e21e2dcd57950ebf97f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:87.141ex; height:6.176ex;" alt="{\displaystyle \int _{n}^{n+1}g(t)B_{m}(t-n)~{\rm {d}}t={\frac {b_{m+1}}{m+1}}\left(g(n+1)-g(n)\right)-{\frac {1}{m+1}}\int _{n}^{n+1}g'(t)B_{m+1}(t-n)~{\rm {d}}t.}"></span></dd></dl> Sachant que (pour <i>m</i> = 0) on a<center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{0}(t)=1{\text{ et }}B_{1}(1)={\frac {1}{2}}{\text{ et }}B_{1}(0)=-{\frac {1}{2}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> et </mtext> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> et </mtext> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{0}(t)=1{\text{ et }}B_{1}(1)={\frac {1}{2}}{\text{ et }}B_{1}(0)=-{\frac {1}{2}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/450a0d20b880d25b1c5c8341e85f90385300e231" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:40.154ex; height:5.176ex;" alt="{\displaystyle B_{0}(t)=1{\text{ et }}B_{1}(1)={\frac {1}{2}}{\text{ et }}B_{1}(0)=-{\frac {1}{2}},}"></span></center>on en déduit si <i>g</i> est dérivable continûment deux fois : <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\int _{n}^{n+1}g(t)~{\rm {d}}t&=\int _{n}^{n+1}g(t)B_{0}(t-n)~{\rm {d}}t\\&={\frac {1}{2}}\left(g(n+1)+g(n)\right)-\int _{n}^{n+1}g'(t)B_{1}(t-n)~{\rm {d}}t\\&={\frac {g(n+1)+g(n)}{2}}-{\frac {b_{2}}{2}}\left(g'(n+1)-g'(n)\right)+{\frac {1}{2}}\int _{n}^{n+1}g''(t){B_{2}(t-n)}~{\rm {d}}t.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <msup> <mi>g</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\int _{n}^{n+1}g(t)~{\rm {d}}t&=\int _{n}^{n+1}g(t)B_{0}(t-n)~{\rm {d}}t\\&={\frac {1}{2}}\left(g(n+1)+g(n)\right)-\int _{n}^{n+1}g'(t)B_{1}(t-n)~{\rm {d}}t\\&={\frac {g(n+1)+g(n)}{2}}-{\frac {b_{2}}{2}}\left(g'(n+1)-g'(n)\right)+{\frac {1}{2}}\int _{n}^{n+1}g''(t){B_{2}(t-n)}~{\rm {d}}t.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a442cee7253b292348c151cec2b83bc599973552" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.712ex; margin-bottom: -0.292ex; width:86.962ex; height:19.176ex;" alt="{\displaystyle {\begin{aligned}\int _{n}^{n+1}g(t)~{\rm {d}}t&=\int _{n}^{n+1}g(t)B_{0}(t-n)~{\rm {d}}t\\&={\frac {1}{2}}\left(g(n+1)+g(n)\right)-\int _{n}^{n+1}g'(t)B_{1}(t-n)~{\rm {d}}t\\&={\frac {g(n+1)+g(n)}{2}}-{\frac {b_{2}}{2}}\left(g'(n+1)-g'(n)\right)+{\frac {1}{2}}\int _{n}^{n+1}g''(t){B_{2}(t-n)}~{\rm {d}}t.\end{aligned}}}"></span> </p><p>Soit <span class="texhtml mvar" style="font-style:italic;">f</span> une fonction continûment dérivable 2<i>k</i> fois (<i>k</i> > 0). Par récurrence sur <i>k</i>, on montre : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{n}^{n+1}f(t)~{\rm {d}}t={\frac {f(n)+f(n+1)}{2}}+\sum _{i=2}^{2k}{\frac {\left(-1\right)^{i-1}b_{i}}{i!}}\left(f^{(i-1)}(n+1)-f^{(i-1)}(n)\right)+{\frac {1}{(2k)!}}\int _{n}^{n+1}f^{(2k)}(t)B_{2k}(t-n)~{\rm {d}}t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi>i</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>i</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>i</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{n}^{n+1}f(t)~{\rm {d}}t={\frac {f(n)+f(n+1)}{2}}+\sum _{i=2}^{2k}{\frac {\left(-1\right)^{i-1}b_{i}}{i!}}\left(f^{(i-1)}(n+1)-f^{(i-1)}(n)\right)+{\frac {1}{(2k)!}}\int _{n}^{n+1}f^{(2k)}(t)B_{2k}(t-n)~{\rm {d}}t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4e994a5d2c79b18afb08731aa30eccd9e93a002" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:113.005ex; height:7.343ex;" alt="{\displaystyle \int _{n}^{n+1}f(t)~{\rm {d}}t={\frac {f(n)+f(n+1)}{2}}+\sum _{i=2}^{2k}{\frac {\left(-1\right)^{i-1}b_{i}}{i!}}\left(f^{(i-1)}(n+1)-f^{(i-1)}(n)\right)+{\frac {1}{(2k)!}}\int _{n}^{n+1}f^{(2k)}(t)B_{2k}(t-n)~{\rm {d}}t.}"></span></dd></dl> <p>Enfin, avec la propriété : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall j\geq 1,b_{2j+1}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>j</mi> <mo>≥<!-- ≥ --></mo> <mn>1</mn> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall j\geq 1,b_{2j+1}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a2fd29a79e627e16380874abca0e4a6e1855d0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.636ex; height:2.843ex;" alt="{\displaystyle \forall j\geq 1,b_{2j+1}=0}"></span>, on en déduit (avec <span class="texhtml"><i>i</i> = 2<i>j</i></span>) : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{n}^{n+1}f(t)~{\rm {d}}t={\frac {f(n)+f(n+1)}{2}}-\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(n+1)-f^{(2j-1)}(n)\right)+{\frac {1}{(2k)!}}\int _{n}^{n+1}f^{(2k)}(t)B_{2k}(t-n)~{\rm {d}}t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{n}^{n+1}f(t)~{\rm {d}}t={\frac {f(n)+f(n+1)}{2}}-\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(n+1)-f^{(2j-1)}(n)\right)+{\frac {1}{(2k)!}}\int _{n}^{n+1}f^{(2k)}(t)B_{2k}(t-n)~{\rm {d}}t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5c19ef487181aec0bfa09cb75ed9db55924775" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:109.322ex; height:7.676ex;" alt="{\displaystyle \int _{n}^{n+1}f(t)~{\rm {d}}t={\frac {f(n)+f(n+1)}{2}}-\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(n+1)-f^{(2j-1)}(n)\right)+{\frac {1}{(2k)!}}\int _{n}^{n+1}f^{(2k)}(t)B_{2k}(t-n)~{\rm {d}}t}"></span></dd></dl> <p>donc, avec <span class="texhtml"><i>n </i>= ⌊<i>t</i>⌋</span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {f(n)+f(n+1)}{2}}=\int _{n}^{n+1}f(t)~{\rm {d}}t+\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(n+1)-f^{(2j-1)}(n)\right)-{\frac {1}{(2k)!}}\int _{n}^{n+1}f^{(2k)}(t)B_{2k}\left(t-\lfloor t\rfloor \right)~{\rm {d}}t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>t</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {f(n)+f(n+1)}{2}}=\int _{n}^{n+1}f(t)~{\rm {d}}t+\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(n+1)-f^{(2j-1)}(n)\right)-{\frac {1}{(2k)!}}\int _{n}^{n+1}f^{(2k)}(t)B_{2k}\left(t-\lfloor t\rfloor \right)~{\rm {d}}t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2422948897e2cf92c9ac47d9c33fb016776ccb53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:112.252ex; height:7.676ex;" alt="{\displaystyle {\frac {f(n)+f(n+1)}{2}}=\int _{n}^{n+1}f(t)~{\rm {d}}t+\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(n+1)-f^{(2j-1)}(n)\right)-{\frac {1}{(2k)!}}\int _{n}^{n+1}f^{(2k)}(t)B_{2k}\left(t-\lfloor t\rfloor \right)~{\rm {d}}t.}"></span></dd></dl> <p>D'où par sommation sur sommation sur <i>n </i>∈ ℤ (<i>p </i>≤ <i>n </i>≤ <i>q </i>– 1) : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=p}^{q-1}{\frac {f(n)+f(n+1)}{2}}=\int _{p}^{q}f(t)~{\rm {d}}t+\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(q)-f^{(2j-1)}(p)\right)-{\frac {1}{(2k)!}}\int _{p}^{q}f^{(2k)}(t)B_{2k}\left(t-\lfloor t\rfloor \right)~{\rm {d}}t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>t</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=p}^{q-1}{\frac {f(n)+f(n+1)}{2}}=\int _{p}^{q}f(t)~{\rm {d}}t+\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(q)-f^{(2j-1)}(p)\right)-{\frac {1}{(2k)!}}\int _{p}^{q}f^{(2k)}(t)B_{2k}\left(t-\lfloor t\rfloor \right)~{\rm {d}}t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d473347db54231dba1a0efa55af16b8e7d005bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:106.78ex; height:7.676ex;" alt="{\displaystyle \sum _{n=p}^{q-1}{\frac {f(n)+f(n+1)}{2}}=\int _{p}^{q}f(t)~{\rm {d}}t+\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(q)-f^{(2j-1)}(p)\right)-{\frac {1}{(2k)!}}\int _{p}^{q}f^{(2k)}(t)B_{2k}\left(t-\lfloor t\rfloor \right)~{\rm {d}}t.}"></span></dd></dl> </div><div class="clear" style="clear:both;"></div> </div> <div class="mw-heading mw-heading2"><h2 id="Application_à_l'intégration_numérique"><span id="Application_.C3.A0_l.27int.C3.A9gration_num.C3.A9rique"></span>Application à l'intégration numérique</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=9" title="Modifier la section : Application à l'intégration numérique" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=9" title="Modifier le code source de la section : Application à l'intégration numérique"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Intégration_numérique"><span id="Int.C3.A9gration_num.C3.A9rique"></span>Intégration numérique</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=10" title="Modifier la section : Intégration numérique" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=10" title="Modifier le code source de la section : Intégration numérique"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone-css loupe">Article détaillé : <a href="/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale" title="Calcul numérique d'une intégrale">Calcul numérique d'une intégrale</a>.</div></div> <p>La formule sommatoire peut être utilisée pour approcher des intégrales par un procédé discret, par exemple dans la <a href="/wiki/M%C3%A9thode_des_trap%C3%A8zes" title="Méthode des trapèzes">méthode des trapèzes</a> ou celle de <a href="/wiki/M%C3%A9thode_de_Romberg" title="Méthode de Romberg">Romberg</a>, ou à l'inverse pour transformer une somme discrète (finie ou non) et lui appliquer les techniques du <a href="/wiki/Calcul_infinit%C3%A9simal" title="Calcul infinitésimal">calcul infinitésimal</a>. </p><p>La formule d'Euler-Maclaurin peut aussi être utilisée pour une estimation précise de l'erreur commise dans le <a href="/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale" title="Calcul numérique d'une intégrale">calcul numérique d'une intégrale</a> ; en particulier, c'est sur elle que reposent les méthodes d'extrapolation. La <a href="/wiki/M%C3%A9thode_de_quadrature_de_Clenshaw-Curtis" title="Méthode de quadrature de Clenshaw-Curtis">méthode de quadrature de Clenshaw-Curtis</a> est essentiellement un changement de variables ramenant une intégrale arbitraire à l'intégration de fonctions périodiques, pour lesquelles la formule sommatoire est très précise (dans ce cas, elle prend la forme d'une <a href="/wiki/Transform%C3%A9e_en_cosinus_discr%C3%A8te" title="Transformée en cosinus discrète">transformée en cosinus discrète</a>). </p> <div class="mw-heading mw-heading3"><h3 id="Formules_d'intégration_d'Euler-Maclaurin"><span id="Formules_d.27int.C3.A9gration_d.27Euler-Maclaurin"></span>Formules d'intégration d'Euler-Maclaurin</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=11" title="Modifier la section : Formules d'intégration d'Euler-Maclaurin" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=11" title="Modifier le code source de la section : Formules d'intégration d'Euler-Maclaurin"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Intégration_entre_deux_entiers"><span id="Int.C3.A9gration_entre_deux_entiers"></span>Intégration entre deux entiers</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=12" title="Modifier la section : Intégration entre deux entiers" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=12" title="Modifier le code source de la section : Intégration entre deux entiers"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Dans la <a href="/wiki/M%C3%A9thode_des_trap%C3%A8zes" title="Méthode des trapèzes">méthode des trapèzes</a>, on approxime l'intégrale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{n}^{n+1}f(x)~{\rm {d}}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{n}^{n+1}f(x)~{\rm {d}}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2ecf3abe7a1f0d75d9d3de402db042f2be14ebd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.791ex; height:6.176ex;" alt="{\displaystyle \int _{n}^{n+1}f(x)~{\rm {d}}x}"></span> par <a href="/wiki/Interpolation_lin%C3%A9aire" title="Interpolation linéaire">interpolation linéaire</a> sur chaque intervalle [<i>n</i>, <i>n</i> + 1] : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{n}^{n+1}f(x)~{\rm {d}}x\approx {\frac {f(n)+f(n+1)}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{n}^{n+1}f(x)~{\rm {d}}x\approx {\frac {f(n)+f(n+1)}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fefb82542aecbde557f025b0237aee0a91aaf7e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.534ex; height:6.176ex;" alt="{\displaystyle \int _{n}^{n+1}f(x)~{\rm {d}}x\approx {\frac {f(n)+f(n+1)}{2}}}"></span>. </p><p>En sommant sur tous les intervalles de longueur 1, on approxime l'intégrale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{p}^{q}f(x)~{\rm {d}}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{p}^{q}f(x)~{\rm {d}}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6507bae106a5d9f333383f369a09ede12c3b3179" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:11.46ex; height:6.176ex;" alt="{\displaystyle \int _{p}^{q}f(x)~{\rm {d}}x}"></span> par la somme </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {f(p)}{2}}+f(p+1)+f(p+2)+\ldots +f(q-1)+{\frac {f(q)}{2}}={\frac {f\left(p\right)+f\left(q\right)}{2}}+\sum _{i=p+1}^{q-1}f\left(i\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo>…<!-- … --></mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {f(p)}{2}}+f(p+1)+f(p+2)+\ldots +f(q-1)+{\frac {f(q)}{2}}={\frac {f\left(p\right)+f\left(q\right)}{2}}+\sum _{i=p+1}^{q-1}f\left(i\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/976c65328a576925ea2d1754467546540e532aea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:79.935ex; height:7.676ex;" alt="{\displaystyle {\frac {f(p)}{2}}+f(p+1)+f(p+2)+\ldots +f(q-1)+{\frac {f(q)}{2}}={\frac {f\left(p\right)+f\left(q\right)}{2}}+\sum _{i=p+1}^{q-1}f\left(i\right)}"></span></center> <p>La formule d'Euler-Maclaurin peut s'écrire : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{p}^{q}f(x)~{\rm {d}}x={\frac {f\left(p\right)+f\left(q\right)}{2}}+\sum _{i=p+1}^{q-1}f\left(i\right)-\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(q)-f^{(2j-1)}(p)\right)-R_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{p}^{q}f(x)~{\rm {d}}x={\frac {f\left(p\right)+f\left(q\right)}{2}}+\sum _{i=p+1}^{q-1}f\left(i\right)-\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(q)-f^{(2j-1)}(p)\right)-R_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/683f5254c7204fb02b031201be44ec318c229030" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:82.116ex; height:7.676ex;" alt="{\displaystyle \int _{p}^{q}f(x)~{\rm {d}}x={\frac {f\left(p\right)+f\left(q\right)}{2}}+\sum _{i=p+1}^{q-1}f\left(i\right)-\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}\left(f^{(2j-1)}(q)-f^{(2j-1)}(p)\right)-R_{k}}"></span></center> <div class="mw-heading mw-heading4"><h4 id="Intégration_sur_un_intervalle_quelconque"><span id="Int.C3.A9gration_sur_un_intervalle_quelconque"></span>Intégration sur un intervalle quelconque</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=13" title="Modifier la section : Intégration sur un intervalle quelconque" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=13" title="Modifier le code source de la section : Intégration sur un intervalle quelconque"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Un simple <a href="/wiki/Int%C3%A9gration_par_changement_de_variable" title="Intégration par changement de variable">changement de variable</a> permet d'obtenir une formule analogue pour une fonction définie sur un segment à bornes non entières. Les restes sont donnés avec le « point moyen » <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;\xi \in ~]a,b[}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mi>ξ<!-- ξ --></mi> <mo>∈<!-- ∈ --></mo> <mtext> </mtext> <mo stretchy="false">]</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">[</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;\xi \in ~]a,b[}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b33fc3848b6a8607c6399b31fefb7455dd1c56f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.652ex; height:2.843ex;" alt="{\displaystyle \;\xi \in ~]a,b[}"></span> pour une fonction dérivable <span class="texhtml">2<i>k</i> + 2</span> fois. </p><p>En posant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h={\frac {b-a}{N}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> <mi>N</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h={\frac {b-a}{N}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40884140b7e265bf43da90fef7dcf90a340b96eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.341ex; height:5.343ex;" alt="{\displaystyle h={\frac {b-a}{N}}}"></span>, on a<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite_crochet">[</span>7<span class="cite_crochet">]</span></a></sup> : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)~{\rm {d}}x=h{\frac {f\left(a\right)+f\left(b\right)}{2}}+h\sum _{m=1}^{N-1}f\left(a+mh\right)-\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}h^{2j}\left(f^{(2j-1)}(b)-f^{(2j-1)}(a)\right)-(b-a){\frac {b_{2k+2}}{(2k+2)!}}f^{(2k+2)}(\xi )h^{2k+2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>=</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>b</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>h</mi> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <mi>m</mi> <mi>h</mi> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)~{\rm {d}}x=h{\frac {f\left(a\right)+f\left(b\right)}{2}}+h\sum _{m=1}^{N-1}f\left(a+mh\right)-\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}h^{2j}\left(f^{(2j-1)}(b)-f^{(2j-1)}(a)\right)-(b-a){\frac {b_{2k+2}}{(2k+2)!}}f^{(2k+2)}(\xi )h^{2k+2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/842c8f361d7ce86fa702c2f3678d8ccfe2226882" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:122.104ex; height:7.676ex;" alt="{\displaystyle \int _{a}^{b}f(x)~{\rm {d}}x=h{\frac {f\left(a\right)+f\left(b\right)}{2}}+h\sum _{m=1}^{N-1}f\left(a+mh\right)-\sum _{j=1}^{k}{\frac {b_{2j}}{(2j)!}}h^{2j}\left(f^{(2j-1)}(b)-f^{(2j-1)}(a)\right)-(b-a){\frac {b_{2k+2}}{(2k+2)!}}f^{(2k+2)}(\xi )h^{2k+2}}"></span>.</center> <p>Le « terme d'erreur » peut également s'écrire : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -R_{k}=-(b-a){\frac {b_{2k+2}}{(2k+2)!}}f^{(2k+2)}(\xi )h^{2k+2}=-{\frac {b_{2k+2}(b-a)^{2k+3}}{(2k+2)!N^{2k+2}}}f^{(2k+2)}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>3</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>!</mo> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -R_{k}=-(b-a){\frac {b_{2k+2}}{(2k+2)!}}f^{(2k+2)}(\xi )h^{2k+2}=-{\frac {b_{2k+2}(b-a)^{2k+3}}{(2k+2)!N^{2k+2}}}f^{(2k+2)}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/158eae3c504b601bc3c3516a3800369abfed9826" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:72.004ex; height:6.676ex;" alt="{\displaystyle -R_{k}=-(b-a){\frac {b_{2k+2}}{(2k+2)!}}f^{(2k+2)}(\xi )h^{2k+2}=-{\frac {b_{2k+2}(b-a)^{2k+3}}{(2k+2)!N^{2k+2}}}f^{(2k+2)}(\xi )}"></span>. </p><p>Si <span class="texhtml"><i>N</i> = 1</span>, on a une formule où n'interviennent que les extrémités <i>a</i> et <i>b</i><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite_crochet">[</span>8<span class="cite_crochet">]</span></a></sup> : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)~{\rm {d}}x=(b-a){\frac {f(a)+f(b)}{2}}-\sum _{j=1}^{k}{\frac {(b-a)^{2j}}{(2j)!}}b_{2j}\left(f^{(2j-1)}(b)-f^{(2j-1)}(a)\right)-(b-a)^{2k+3}{\frac {b_{2k+2}}{(2k+2)!}}f^{(2k+2)}(\xi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)~{\rm {d}}x=(b-a){\frac {f(a)+f(b)}{2}}-\sum _{j=1}^{k}{\frac {(b-a)^{2j}}{(2j)!}}b_{2j}\left(f^{(2j-1)}(b)-f^{(2j-1)}(a)\right)-(b-a)^{2k+3}{\frac {b_{2k+2}}{(2k+2)!}}f^{(2k+2)}(\xi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f79ffc18e58ade5c771925e227f929f52385201" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:109.782ex; height:7.676ex;" alt="{\displaystyle \int _{a}^{b}f(x)~{\rm {d}}x=(b-a){\frac {f(a)+f(b)}{2}}-\sum _{j=1}^{k}{\frac {(b-a)^{2j}}{(2j)!}}b_{2j}\left(f^{(2j-1)}(b)-f^{(2j-1)}(a)\right)-(b-a)^{2k+3}{\frac {b_{2k+2}}{(2k+2)!}}f^{(2k+2)}(\xi )}"></span></center> <div class="mw-heading mw-heading2"><h2 id="Expressions_du_reste_pour_k_=_0_et_pour_k_=_1"><span id="Expressions_du_reste_pour_k_.3D_0_et_pour_k_.3D_1"></span>Expressions du reste pour <i>k</i> = 0 et pour <i>k</i> = 1</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=14" title="Modifier la section : Expressions du reste pour k = 0 et pour k = 1" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=14" title="Modifier le code source de la section : Expressions du reste pour k = 0 et pour k = 1"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Expressions_de_R0_et_erreur_de_la_méthode_des_trapèzes"><span id="Expressions_de_R0_et_erreur_de_la_m.C3.A9thode_des_trap.C3.A8zes"></span>Expressions de <i>R</i><sub>0</sub> et erreur de la méthode des trapèzes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=15" title="Modifier la section : Expressions de R0 et erreur de la méthode des trapèzes" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=15" title="Modifier le code source de la section : Expressions de R0 et erreur de la méthode des trapèzes"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Les premiers polynômes de Bernoulli sont : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{0}(y)=1,\quad B_{1}(y)=y-{\frac {1}{2}},\quad B_{2}(y)=y^{2}-y+{\frac {1}{6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="1em" /> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>y</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{0}(y)=1,\quad B_{1}(y)=y-{\frac {1}{2}},\quad B_{2}(y)=y^{2}-y+{\frac {1}{6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0117d4b1f5d1e65a2a58c1f705b4522c695d0a41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:51.564ex; height:5.176ex;" alt="{\displaystyle B_{0}(y)=1,\quad B_{1}(y)=y-{\frac {1}{2}},\quad B_{2}(y)=y^{2}-y+{\frac {1}{6}}}"></span>.</dd></dl> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{0}={\frac {f\left(p\right)+f\left(q\right)}{2}}+\sum _{n=p+1}^{q-1}f\left(n\right)-\int _{p}^{q}f(x)~{\rm {d}}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{0}={\frac {f\left(p\right)+f\left(q\right)}{2}}+\sum _{n=p+1}^{q-1}f\left(n\right)-\int _{p}^{q}f(x)~{\rm {d}}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85e753ba6ac4e18bf82de390fc64db0a6f6e27c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:46.372ex; height:7.676ex;" alt="{\displaystyle R_{0}={\frac {f\left(p\right)+f\left(q\right)}{2}}+\sum _{n=p+1}^{q-1}f\left(n\right)-\int _{p}^{q}f(x)~{\rm {d}}x}"></span>.</center> <p><span class="texhtml">(-<i>R</i><sub>0</sub>)</span> est l'erreur faite en approximant l'intégrale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{n}^{n+1}f(x)~{\rm {d}}x\approx {\frac {f(n)+f(n+1)}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{n}^{n+1}f(x)~{\rm {d}}x\approx {\frac {f(n)+f(n+1)}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fefb82542aecbde557f025b0237aee0a91aaf7e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.534ex; height:6.176ex;" alt="{\displaystyle \int _{n}^{n+1}f(x)~{\rm {d}}x\approx {\frac {f(n)+f(n+1)}{2}}}"></span> par la méthode des trapèzes sur chaque intervalle [<i>n</i>, <i>n</i> + 1]. </p><p>Si <span class="texhtml mvar" style="font-style:italic;">f</span> est continûment dérivable une fois (on pose <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=x-\lfloor x\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=x-\lfloor x\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66610226f6e9c7e9c0ab8a8debe3cd38e941c02d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.818ex; height:2.843ex;" alt="{\displaystyle y=x-\lfloor x\rfloor }"></span><sup id="cite_ref-Hardy_14-0" class="reference"><a href="#cite_note-Hardy-14"><span class="cite_crochet">[</span>9<span class="cite_crochet">]</span></a></sup>) : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{0}=\int _{p}^{q}f'(x){B_{1}(y)}~{\rm {d}}x=\int _{p}^{q}f'(x)\left(y-{\tfrac {1}{2}}\right)~{\rm {d}}x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <mi>y</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{0}=\int _{p}^{q}f'(x){B_{1}(y)}~{\rm {d}}x=\int _{p}^{q}f'(x)\left(y-{\tfrac {1}{2}}\right)~{\rm {d}}x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7b92cf59edaa52e6a86173ed14731122ca9294f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:47.73ex; height:6.176ex;" alt="{\displaystyle R_{0}=\int _{p}^{q}f'(x){B_{1}(y)}~{\rm {d}}x=\int _{p}^{q}f'(x)\left(y-{\tfrac {1}{2}}\right)~{\rm {d}}x}"></span></dd></dl> <p>Si <span class="texhtml mvar" style="font-style:italic;">f</span> est une fonction réelle continûment dérivable deux fois<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite_crochet">[</span>10<span class="cite_crochet">]</span></a></sup> : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}R_{0}=-{\frac {1}{2!}}\int _{p}^{q}f''(x)\left(B_{2}(y)-{\tfrac {1}{6}}\right)~{\rm {d}}x&=-{\frac {1}{2}}\int _{p}^{q}f''(x)(y^{2}-y)~{\rm {d}}x\\&={\frac {q-p}{12}}f''(\xi )\qquad ({\text{avec }}\;\xi \in \left]p,q\right[).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>q</mi> <mo>−<!-- − --></mo> <mi>p</mi> </mrow> <mn>12</mn> </mfrac> </mrow> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="2em" /> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>avec </mtext> </mrow> <mspace width="thickmathspace" /> <mi>ξ<!-- ξ --></mi> <mo>∈<!-- ∈ --></mo> <mrow> <mo>]</mo> <mrow> <mi>p</mi> <mo>,</mo> <mi>q</mi> </mrow> <mo>[</mo> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}R_{0}=-{\frac {1}{2!}}\int _{p}^{q}f''(x)\left(B_{2}(y)-{\tfrac {1}{6}}\right)~{\rm {d}}x&=-{\frac {1}{2}}\int _{p}^{q}f''(x)(y^{2}-y)~{\rm {d}}x\\&={\frac {q-p}{12}}f''(\xi )\qquad ({\text{avec }}\;\xi \in \left]p,q\right[).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1d303826dfbdf125419bf36a4f182ea59e14c6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:73.51ex; height:11.509ex;" alt="{\displaystyle {\begin{aligned}R_{0}=-{\frac {1}{2!}}\int _{p}^{q}f''(x)\left(B_{2}(y)-{\tfrac {1}{6}}\right)~{\rm {d}}x&=-{\frac {1}{2}}\int _{p}^{q}f''(x)(y^{2}-y)~{\rm {d}}x\\&={\frac {q-p}{12}}f''(\xi )\qquad ({\text{avec }}\;\xi \in \left]p,q\right[).\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Formule_de_quadrature_et_terme_d'erreur_pour_k_=_1"><span id="Formule_de_quadrature_et_terme_d.27erreur_pour_k_.3D_1"></span>Formule de quadrature et terme d'erreur pour <i>k</i> = 1</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=16" title="Modifier la section : Formule de quadrature et terme d'erreur pour k = 1" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=16" title="Modifier le code source de la section : Formule de quadrature et terme d'erreur pour k = 1"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Les polynômes de Bernoulli qui interviennent sont<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite_crochet">[</span>N 6<span class="cite_crochet">]</span></a></sup> : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{2}(y)=y^{2}-y+{\frac {1}{6}},\quad B_{3}(y)=y^{3}-{\frac {3}{2}}y^{2}+{\frac {1}{2}}y=y(y-1)\left(y-{\tfrac {1}{2}}\right),\quad B_{4}(y)=y^{4}-2y^{3}+y^{2}-{\frac {1}{30}}=(y^{2}-y)^{2}-{\frac {1}{30}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>y</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>y</mi> <mo>=</mo> <mi>y</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <mi>y</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>30</mn> </mfrac> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>y</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>30</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{2}(y)=y^{2}-y+{\frac {1}{6}},\quad B_{3}(y)=y^{3}-{\frac {3}{2}}y^{2}+{\frac {1}{2}}y=y(y-1)\left(y-{\tfrac {1}{2}}\right),\quad B_{4}(y)=y^{4}-2y^{3}+y^{2}-{\frac {1}{30}}=(y^{2}-y)^{2}-{\frac {1}{30}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13328f060f18f22bfd0a9c945b1fca0839df974a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:117.113ex; height:5.176ex;" alt="{\displaystyle B_{2}(y)=y^{2}-y+{\frac {1}{6}},\quad B_{3}(y)=y^{3}-{\frac {3}{2}}y^{2}+{\frac {1}{2}}y=y(y-1)\left(y-{\tfrac {1}{2}}\right),\quad B_{4}(y)=y^{4}-2y^{3}+y^{2}-{\frac {1}{30}}=(y^{2}-y)^{2}-{\frac {1}{30}}}"></span>.</dd></dl> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{1}={\frac {f\left(p\right)+f\left(q\right)}{2}}+\sum _{n=p+1}^{q-1}f\left(n\right)-\int _{p}^{q}f(x)~{\rm {d}}x-{\frac {1}{12}}(f'(q)-f'(p))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{1}={\frac {f\left(p\right)+f\left(q\right)}{2}}+\sum _{n=p+1}^{q-1}f\left(n\right)-\int _{p}^{q}f(x)~{\rm {d}}x-{\frac {1}{12}}(f'(q)-f'(p))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7f34a9e877ce1349a01a97207f5fa967511050d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:66.891ex; height:7.676ex;" alt="{\displaystyle R_{1}={\frac {f\left(p\right)+f\left(q\right)}{2}}+\sum _{n=p+1}^{q-1}f\left(n\right)-\int _{p}^{q}f(x)~{\rm {d}}x-{\frac {1}{12}}(f'(q)-f'(p))}"></span>.</center> <p><span class="texhtml">(–<i>R</i><sub>1</sub>)</span> est le terme d'erreur correspondant à la formule de quadrature<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite_crochet">[</span>11<span class="cite_crochet">]</span></a></sup>, exacte pour les polynômes de degré inférieur ou égal à trois : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{p}^{q}f(x)~{\rm {d}}x\approx {\frac {f\left(p\right)+f\left(q\right)}{2}}+\sum _{n=p+1}^{q-1}f\left(n\right)+{\frac {f'(p)-f'(q)}{12}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> <mn>12</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{p}^{q}f(x)~{\rm {d}}x\approx {\frac {f\left(p\right)+f\left(q\right)}{2}}+\sum _{n=p+1}^{q-1}f\left(n\right)+{\frac {f'(p)-f'(q)}{12}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c9b2cac77465b58c365faf92f9dc50b489e615d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:57.098ex; height:7.676ex;" alt="{\displaystyle \int _{p}^{q}f(x)~{\rm {d}}x\approx {\frac {f\left(p\right)+f\left(q\right)}{2}}+\sum _{n=p+1}^{q-1}f\left(n\right)+{\frac {f'(p)-f'(q)}{12}}}"></span></center> <p>(dans l'article <a href="/wiki/Calcul_num%C3%A9rique_d%27une_int%C3%A9grale" title="Calcul numérique d'une intégrale">Calcul numérique d'une intégrale</a>, il s'agit de la formule de Newton-Coates généralisée NC-2-2). </p><p>Si <span class="texhtml mvar" style="font-style:italic;">f</span> est continûment dérivable deux fois (en posant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=x-\lfloor x\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=x-\lfloor x\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66610226f6e9c7e9c0ab8a8debe3cd38e941c02d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.818ex; height:2.843ex;" alt="{\displaystyle y=x-\lfloor x\rfloor }"></span><sup id="cite_ref-Hardy_14-1" class="reference"><a href="#cite_note-Hardy-14"><span class="cite_crochet">[</span>9<span class="cite_crochet">]</span></a></sup>) : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{1}=-{\frac {1}{2!}}\int _{p}^{q}f''(x){B_{2}(y)}~{\rm {d}}x=-{\frac {1}{2}}\int _{p}^{q}f''(x)\left(y^{2}-y+{\tfrac {1}{6}}\right)~{\rm {d}}x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>″</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>y</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{1}=-{\frac {1}{2!}}\int _{p}^{q}f''(x){B_{2}(y)}~{\rm {d}}x=-{\frac {1}{2}}\int _{p}^{q}f''(x)\left(y^{2}-y+{\tfrac {1}{6}}\right)~{\rm {d}}x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5156ba34d7edb9ada1616d51b3230a91eaf1eb30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:64.017ex; height:6.176ex;" alt="{\displaystyle R_{1}=-{\frac {1}{2!}}\int _{p}^{q}f''(x){B_{2}(y)}~{\rm {d}}x=-{\frac {1}{2}}\int _{p}^{q}f''(x)\left(y^{2}-y+{\tfrac {1}{6}}\right)~{\rm {d}}x.}"></span></dd></dl> <p>Si <span class="texhtml mvar" style="font-style:italic;">f</span> est continûment dérivable trois fois : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{1}={\frac {1}{3!}}\int _{p}^{q}f'''(x){B_{3}(y)}~{\rm {d}}x={\frac {1}{6}}\int _{p}^{q}f'''(x)\left(y^{3}-{\tfrac {3}{2}}y^{2}+{\tfrac {1}{2}}y\right)~{\rm {d}}x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>‴</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mo>‴</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{1}={\frac {1}{3!}}\int _{p}^{q}f'''(x){B_{3}(y)}~{\rm {d}}x={\frac {1}{6}}\int _{p}^{q}f'''(x)\left(y^{3}-{\tfrac {3}{2}}y^{2}+{\tfrac {1}{2}}y\right)~{\rm {d}}x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6817e045c5ba5bc320a21de080e9a0ffd51b34bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:65.178ex; height:6.176ex;" alt="{\displaystyle R_{1}={\frac {1}{3!}}\int _{p}^{q}f'''(x){B_{3}(y)}~{\rm {d}}x={\frac {1}{6}}\int _{p}^{q}f'''(x)\left(y^{3}-{\tfrac {3}{2}}y^{2}+{\tfrac {1}{2}}y\right)~{\rm {d}}x.}"></span></dd></dl> <p>Si <span class="texhtml mvar" style="font-style:italic;">f</span> est une fonction réelle continûment dérivable quatre fois : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{1}=-{\frac {1}{4!}}\int _{p}^{q}f^{(4)}(x)\left(B_{4}(y)+{\tfrac {1}{30}}\right)~{\rm {d}}x=-{\frac {1}{24}}\int _{p}^{q}f^{(4)}(x)(y^{2}-y)^{2}~{\rm {d}}x=-{\frac {q-p}{720}}f^{(4)}(\xi )\qquad ({\text{avec }}\;\xi \in \left]p,q\right[).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>30</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>24</mn> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>y</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>q</mi> <mo>−<!-- − --></mo> <mi>p</mi> </mrow> <mn>720</mn> </mfrac> </mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>ξ<!-- ξ --></mi> <mo stretchy="false">)</mo> <mspace width="2em" /> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>avec </mtext> </mrow> <mspace width="thickmathspace" /> <mi>ξ<!-- ξ --></mi> <mo>∈<!-- ∈ --></mo> <mrow> <mo>]</mo> <mrow> <mi>p</mi> <mo>,</mo> <mi>q</mi> </mrow> <mo>[</mo> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{1}=-{\frac {1}{4!}}\int _{p}^{q}f^{(4)}(x)\left(B_{4}(y)+{\tfrac {1}{30}}\right)~{\rm {d}}x=-{\frac {1}{24}}\int _{p}^{q}f^{(4)}(x)(y^{2}-y)^{2}~{\rm {d}}x=-{\frac {q-p}{720}}f^{(4)}(\xi )\qquad ({\text{avec }}\;\xi \in \left]p,q\right[).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a8530806de13b4b7cf6e46612c38901984d08a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:109.146ex; height:6.176ex;" alt="{\displaystyle R_{1}=-{\frac {1}{4!}}\int _{p}^{q}f^{(4)}(x)\left(B_{4}(y)+{\tfrac {1}{30}}\right)~{\rm {d}}x=-{\frac {1}{24}}\int _{p}^{q}f^{(4)}(x)(y^{2}-y)^{2}~{\rm {d}}x=-{\frac {q-p}{720}}f^{(4)}(\xi )\qquad ({\text{avec }}\;\xi \in \left]p,q\right[).}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Autres_applications">Autres applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=17" title="Modifier la section : Autres applications" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=17" title="Modifier le code source de la section : Autres applications"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Le_problème_de_Bâle"><span id="Le_probl.C3.A8me_de_B.C3.A2le"></span>Le problème de Bâle</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=18" title="Modifier la section : Le problème de Bâle" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=18" title="Modifier le code source de la section : Le problème de Bâle"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Le <a href="/wiki/Probl%C3%A8me_de_B%C3%A2le" title="Problème de Bâle">problème de Bâle</a> demandait de déterminer la somme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+{\frac {1}{4}}+{\frac {1}{9}}+{\frac {1}{16}}+{\frac {1}{25}}+\cdots =\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>9</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>16</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>25</mn> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+{\frac {1}{4}}+{\frac {1}{9}}+{\frac {1}{16}}+{\frac {1}{25}}+\cdots =\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09c78a1f2fb594dfe67841b595213d4f69c07394" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:39.179ex; height:6.843ex;" alt="{\displaystyle 1+{\frac {1}{4}}+{\frac {1}{9}}+{\frac {1}{16}}+{\frac {1}{25}}+\cdots =\sum _{n=1}^{\infty }{\frac {1}{n^{2}}}.}"></span> </p><p>Euler calcula cette somme à 20 décimales en utilisant seulement quelques termes de la formule d'Euler-Maclaurin. Ce calcul le convainquit probablement qu'elle valait <span class="texhtml"><span style="display:inline-block; vertical-align:-0.5em; font-size:85%; text-align:center;"><span style="display:block; line-height:1em; margin:0 0.1em;">π<sup>2</sup></span><span style="position:absolute;left:-10000px;top:auto;width:1px;height:1px;overflow:hidden">/</span><span style="display:block; line-height:1em; margin:0 0.1em; border-top:1px solid;">6</span></span></span>, résultat qu'il publia en 1735 (mais avec des arguments incorrects ; il lui fallut six ans de plus pour trouver <a href="/wiki/Probl%C3%A8me_de_B%C3%A2le#La_démonstration_d'Euler" title="Problème de Bâle">une démonstration rigoureuse</a>)<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite_crochet">[</span>12<span class="cite_crochet">]</span></a></sup>. </p> <div class="mw-heading mw-heading3"><h3 id="Sommes_polynomiales">Sommes polynomiales</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=19" title="Modifier la section : Sommes polynomiales" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=19" title="Modifier le code source de la section : Sommes polynomiales"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="bandeau-container bandeau-section metadata bandeau-niveau-information"><div class="bandeau-cell bandeau-icone-css loupe">Article détaillé : <a href="/wiki/Formule_de_Faulhaber" title="Formule de Faulhaber">formule de Faulhaber</a>.</div></div> <p>Si <span class="texhtml mvar" style="font-style:italic;">f</span> est un <a href="/wiki/Polyn%C3%B4me" title="Polynôme">polynôme</a> de degré <i>d</i> et si l'on applique la formule sommatoire avec <i>p</i> = 0, <i>q</i> = <i>n</i> et <i>k</i> choisi tel que <span class="texhtml"><i>d</i> ≤ 2<i>k</i> +1</span>, le reste <span class="texhtml mvar" style="font-style:italic;">R<sub>k</sub></span> disparaît. </p><p>Par exemple, si <span class="texhtml"><i>f</i>(<i>x</i>) = <i>x</i><sup>3</sup></span>, on peut prendre <i>k</i> = 1 pour obtenir </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=0}^{n}i^{3}=\int _{0}^{n}x^{3}\mathrm {d} x+{\frac {0^{3}+n^{3}}{2}}+{\frac {1}{6}}{\frac {3n^{2}-0}{2!}}={\frac {n^{4}}{4}}+{\frac {n^{3}}{2}}+{\frac {n^{2}}{4}}={\frac {n^{4}+2n^{3}+n^{2}}{4}}=\left({\frac {n(n+1)}{2}}\right)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mn>4</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>4</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=0}^{n}i^{3}=\int _{0}^{n}x^{3}\mathrm {d} x+{\frac {0^{3}+n^{3}}{2}}+{\frac {1}{6}}{\frac {3n^{2}-0}{2!}}={\frac {n^{4}}{4}}+{\frac {n^{3}}{2}}+{\frac {n^{2}}{4}}={\frac {n^{4}+2n^{3}+n^{2}}{4}}=\left({\frac {n(n+1)}{2}}\right)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20daeaa1814b3013a27bf3a85ef1561183fa0fcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:96.016ex; height:7.176ex;" alt="{\displaystyle \sum _{i=0}^{n}i^{3}=\int _{0}^{n}x^{3}\mathrm {d} x+{\frac {0^{3}+n^{3}}{2}}+{\frac {1}{6}}{\frac {3n^{2}-0}{2!}}={\frac {n^{4}}{4}}+{\frac {n^{3}}{2}}+{\frac {n^{2}}{4}}={\frac {n^{4}+2n^{3}+n^{2}}{4}}=\left({\frac {n(n+1)}{2}}\right)^{2}}"></span>.</center> <div class="mw-heading mw-heading3"><h3 id="Développements_asymptotiques_de_fonctions_définies_par_une_série"><span id="D.C3.A9veloppements_asymptotiques_de_fonctions_d.C3.A9finies_par_une_s.C3.A9rie"></span>Développements asymptotiques de fonctions définies par une série</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=20" title="Modifier la section : Développements asymptotiques de fonctions définies par une série" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=20" title="Modifier le code source de la section : Développements asymptotiques de fonctions définies par une série"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Pour déterminer des <a href="/wiki/D%C3%A9veloppement_asymptotique" title="Développement asymptotique">développements asymptotiques</a> de sommes et de séries, la forme la plus utile de la formule sommatoire est sans doute (pour <i>a</i> et <i>b</i> entiers) : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=a}^{b}f(n)\sim \int _{a}^{b}f(x)~{\rm {d}}x+{\frac {f(a)+f(b)}{2}}+\sum _{j=1}^{\infty }\,{\frac {B_{2j}}{(2j)!}}\left(f^{(2j-1)}(b)-f^{(2j-1)}(a)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>∼<!-- ∼ --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=a}^{b}f(n)\sim \int _{a}^{b}f(x)~{\rm {d}}x+{\frac {f(a)+f(b)}{2}}+\sum _{j=1}^{\infty }\,{\frac {B_{2j}}{(2j)!}}\left(f^{(2j-1)}(b)-f^{(2j-1)}(a)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cedce66b95f1682760cd902af167103b013983c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:74.748ex; height:7.676ex;" alt="{\displaystyle \sum _{n=a}^{b}f(n)\sim \int _{a}^{b}f(x)~{\rm {d}}x+{\frac {f(a)+f(b)}{2}}+\sum _{j=1}^{\infty }\,{\frac {B_{2j}}{(2j)!}}\left(f^{(2j-1)}(b)-f^{(2j-1)}(a)\right)}"></span></center> <p>Ce développement reste souvent valide même lorsque l'on prend les limites quand <span class="texhtml"><i>a </i>→ –∞</span> ou <span class="texhtml"><i>b </i>→ +∞</span>, ou les deux. Dans de nombreux cas, l'intégrale de droite peut être calculée de manière exacte avec des fonctions élémentaires, alors que ce n'est pas le cas de la somme. </p><p>L'écriture précédente doit être interprétée comme une <a href="/wiki/S%C3%A9rie_formelle" title="Série formelle">série formelle</a>, car, le plus souvent, cette série est <a href="/wiki/S%C3%A9rie_divergente" title="Série divergente">divergente</a> ; la formule ne peut en général pas être exploitée directement sous cette forme. Toutefois, Euler avait déjà remarqué qu'on obtenait une précision numérique remarquable en tronquant la formule au plus petit terme de la série, ce qui fut précisé et expliqué par les travaux d'<a href="/wiki/%C3%89mile_Borel" title="Émile Borel">Émile Borel</a><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite_crochet">[</span>13<span class="cite_crochet">]</span></a></sup>. </p><p>Par exemple : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \underbrace {\sum _{k=0}^{\infty }{\frac {1}{(z+k)^{2}}}} _{=\psi _{1}(z)}\sim \underbrace {\int _{0}^{\infty }{\frac {1}{(z+x)^{2}}}~{\rm {d}}x} _{=1/z}+{\frac {1}{2z^{2}}}+\sum _{j=1}^{\infty }{\frac {B_{2j}}{z^{2j+1}}}.\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>+</mo> <mi>k</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>=</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </munder> <mo>∼<!-- ∼ --></mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>+</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mrow> <mo>⏟<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>z</mi> </mrow> </munder> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \underbrace {\sum _{k=0}^{\infty }{\frac {1}{(z+k)^{2}}}} _{=\psi _{1}(z)}\sim \underbrace {\int _{0}^{\infty }{\frac {1}{(z+x)^{2}}}~{\rm {d}}x} _{=1/z}+{\frac {1}{2z^{2}}}+\sum _{j=1}^{\infty }{\frac {B_{2j}}{z^{2j+1}}}.\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9de04dfc80bb87965374180d9d100d1c4b38e829" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.005ex; width:52.926ex; height:10.843ex;" alt="{\displaystyle \underbrace {\sum _{k=0}^{\infty }{\frac {1}{(z+k)^{2}}}} _{=\psi _{1}(z)}\sim \underbrace {\int _{0}^{\infty }{\frac {1}{(z+x)^{2}}}~{\rm {d}}x} _{=1/z}+{\frac {1}{2z^{2}}}+\sum _{j=1}^{\infty }{\frac {B_{2j}}{z^{2j+1}}}.\,}"></span></center> <p>Ici, le membre de gauche est égal à <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{1}(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi _{1}(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68b482f10339e8d27125edcc1ab412367db38865" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.465ex; height:2.843ex;" alt="{\displaystyle \psi _{1}(z)}"></span>, c'est-à-dire à la <a href="/wiki/Fonction_polygamma" title="Fonction polygamma">fonction polygamma</a> d'ordre 1 (appelée aussi fonction trigamma) définie à partir de la <a href="/wiki/Fonction_Gamma" class="mw-redirect" title="Fonction Gamma">fonction Gamma</a> : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{1}(z)={\frac {\mathrm {d} ^{2}}{\mathrm {d} z^{2}}}\ln \Gamma (z)=\sum _{k=0}^{\infty }{\frac {1}{(z+k)^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo>+</mo> <mi>k</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi _{1}(z)={\frac {\mathrm {d} ^{2}}{\mathrm {d} z^{2}}}\ln \Gamma (z)=\sum _{k=0}^{\infty }{\frac {1}{(z+k)^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a754e5f5aedbd0eb9a7978b9640fd307af964f4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:35.58ex; height:7.009ex;" alt="{\displaystyle \psi _{1}(z)={\frac {\mathrm {d} ^{2}}{\mathrm {d} z^{2}}}\ln \Gamma (z)=\sum _{k=0}^{\infty }{\frac {1}{(z+k)^{2}}}}"></span>. </p><p>La formule d'Euler Maclaurin amène à un <a href="/wiki/D%C3%A9veloppement_asymptotique" title="Développement asymptotique">développement asymptotique</a> de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{1}(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi _{1}(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68b482f10339e8d27125edcc1ab412367db38865" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.465ex; height:2.843ex;" alt="{\displaystyle \psi _{1}(z)}"></span>, lequel permet une estimation précise de l'erreur de la <a href="/wiki/Formule_de_Stirling" title="Formule de Stirling">formule de Stirling</a> pour la fonction Gamma : </p> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln \Gamma (z)=z\ln z-z-{\frac {1}{2}}\ln {z}+{\frac {1}{2}}\ln(2\pi )+\sum _{n=1}^{N}{\frac {B_{2n}}{2n(2n-1)z^{2n-1}}}+R_{N}(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>z</mi> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi>z</mi> <mo>−<!-- − --></mo> <mi>z</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> <mrow> <mn>2</mn> <mi>n</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln \Gamma (z)=z\ln z-z-{\frac {1}{2}}\ln {z}+{\frac {1}{2}}\ln(2\pi )+\sum _{n=1}^{N}{\frac {B_{2n}}{2n(2n-1)z^{2n-1}}}+R_{N}(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8eb7ba6c56a232301d07df24a88ad8e2b77ffb2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:71.473ex; height:7.343ex;" alt="{\displaystyle \ln \Gamma (z)=z\ln z-z-{\frac {1}{2}}\ln {z}+{\frac {1}{2}}\ln(2\pi )+\sum _{n=1}^{N}{\frac {B_{2n}}{2n(2n-1)z^{2n-1}}}+R_{N}(z)}"></span>.</center> <center><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma (z)={\sqrt {\frac {2\pi }{z}}}\,{\left({\frac {z}{e}}\right)}^{z}\left(1+O\left({\frac {1}{z}}\right)\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> <mi>z</mi> </mfrac> </msqrt> </mrow> <mspace width="thinmathspace" /> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mi>e</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>z</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma (z)={\sqrt {\frac {2\pi }{z}}}\,{\left({\frac {z}{e}}\right)}^{z}\left(1+O\left({\frac {1}{z}}\right)\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ed4a7a21192f91f42e90e0f2dbc5cbc851a089a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.617ex; height:6.343ex;" alt="{\displaystyle \Gamma (z)={\sqrt {\frac {2\pi }{z}}}\,{\left({\frac {z}{e}}\right)}^{z}\left(1+O\left({\frac {1}{z}}\right)\right).}"></span></center> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=21" title="Modifier la section : Notes" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=21" title="Modifier le code source de la section : Notes"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="references-small decimal" style=""><div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Cohen22-2"><span class="mw-cite-backlink noprint">↑ <sup><a href="#cite_ref-Cohen22_2-0">a</a> et <a href="#cite_ref-Cohen22_2-1">b</a></sup> </span><span class="reference-text"><a href="#Cohen2007">Cohen 2007</a>, <abbr class="abbr" title="page(s)">p.</abbr> 23. La formule avec son reste est donnée dans le cas, plus général, où les extrémités de l'intervalle sont des nombres réels <i>a</i> et <i>a</i>+<i>N</i> qui diffèrent d'un nombre entier naturel <i>N</i>. Cette formule est un cas particulier d'une formule donnée page 22 où les nombres de Bernoulli <span class="texhtml mvar" style="font-style:italic;">b<sub>j</sub></span> sont remplacés par les valeurs des polynômes de Bernoulli <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{r}(x-\lfloor x\rfloor )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{r}(x-\lfloor x\rfloor )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a1ac5c885cf342b919dbc4ab8738d687f3a9529" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.112ex; height:2.843ex;" alt="{\displaystyle B_{r}(x-\lfloor x\rfloor )}"></span> aux extrémités <i>a</i> et <i>b</i>.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink noprint"><a href="#cite_ref-4">↑</a> </span><span class="reference-text"><a href="#Dieudonné1980">Dieudonné 1980</a>, <abbr class="abbr" title="page(s)">p.</abbr> 303. Selon Dieudonné, il suffit que <span class="texhtml mvar" style="font-style:italic;">f</span> admette une dérivée (2<i>k</i> + 1)-ème continue par morceaux.</span> </li> <li id="cite_note-D301-7"><span class="mw-cite-backlink noprint"><a href="#cite_ref-D301_7-0">↑</a> </span><span class="reference-text"><a href="#Dieudonné1980">Dieudonné 1980</a>, <abbr class="abbr" title="page(s)">p.</abbr> 301. Dieudonné note <span class="texhtml mvar" style="font-style:italic;">B<sub>k</sub></span> les coefficients <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |b_{2k}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |b_{2k}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9a4b4e5de2caa015c859451d3bdf5d8ba50d689" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.202ex; height:2.843ex;" alt="{\displaystyle |b_{2k}|}"></span>.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink noprint"><a href="#cite_ref-8">↑</a> </span><span class="reference-text"><span class="ouvrage" id="Lehmer1940"><span class="ouvrage" id="Derrick_Lehmer1940"><abbr class="abbr indicateur-langue" title="Langue : anglais">(en)</abbr> <a href="/wiki/Derrick_Lehmer" title="Derrick Lehmer">Derrick <span class="nom_auteur">Lehmer</span></a>, « <cite style="font-style:normal" lang="en">On the maxima and minima of Bernoulli polynomials</cite> », <i><span class="lang-en" lang="en"><a href="/wiki/The_American_Mathematical_Monthly" title="The American Mathematical Monthly">The American Mathematical Monthly</a></span></i>, <abbr class="abbr" title="volume">vol.</abbr> 47, <abbr class="abbr" title="numéro">n<sup>o</sup></abbr> 8,‎ <time>1940</time>, <abbr class="abbr" title="pages">p.</abbr> <span class="nowrap">533–538</span> <small style="line-height:1em;">(<a href="/wiki/Digital_Object_Identifier" title="Digital Object Identifier">DOI</a> <span class="plainlinks noarchive nowrap"><a rel="nofollow" class="external text" href="https://dx.doi.org/10.2307/2303833">10.2307/2303833</a></span>, <a href="/wiki/JSTOR" title="JSTOR">JSTOR</a> <span class="plainlinks noarchive nowrap"><a rel="nofollow" class="external text" href="https://jstor.org/stable/2303833">2303833</a></span>)</small><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+maxima+and+minima+of+Bernoulli+polynomials&rft.jtitle=The+American+Mathematical+Monthly&rft.issue=8&rft.aulast=Lehmer&rft.aufirst=Derrick&rft.date=1940&rft.volume=47&rft.pages=533%E2%80%93538&rft_id=info%3Adoi%2F10.2307%2F2303833&rfr_id=info%3Asid%2Ffr.wikipedia.org%3AFormule+d%27Euler-Maclaurin"></span></span></span>.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink noprint"><a href="#cite_ref-9">↑</a> </span><span class="reference-text">Selon <a href="#Bourbaki,_FVR">Bourbaki, FVR</a>, <abbr class="abbr" title="page(s)">p.</abbr> VI.26, il suffit que <span class="texhtml mvar" style="font-style:italic;">f</span> soit 2<i>k</i> + 1 fois dérivable et que la dérivée d'ordre 2<i>k</i> + 1 soit monotone.</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink noprint"><a href="#cite_ref-16">↑</a> </span><span class="reference-text"><a href="#Deheuvels1980">Deheuvels 1980</a>, <abbr class="abbr" title="page(s)">p.</abbr> 189. Noter que dans la notation de Deheuvels, les nombres de Bernoulli sont considérés sans leur signe (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{2k}=|b_{2k}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{2k}=|b_{2k}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b65dcd1558d079d7a44b0a60b272b95bceaacb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.975ex; height:2.843ex;" alt="{\displaystyle B_{2k}=|b_{2k}|}"></span>).</span> </li> </ol></div> </div> <div class="mw-heading mw-heading2"><h2 id="Voir_aussi">Voir aussi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=22" title="Modifier la section : Voir aussi" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=22" title="Modifier le code source de la section : Voir aussi"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Formule_d%27Abel-Plana" title="Formule d'Abel-Plana">Formule d'Abel-Plana</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Références"><span id="R.C3.A9f.C3.A9rences"></span>Références</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=23" title="Modifier la section : Références" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=23" title="Modifier le code source de la section : Références"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="references-small decimal" style="column-width:20em;"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink noprint"><a href="#cite_ref-1">↑</a> </span><span class="reference-text"><span class="ouvrage">« <a rel="nofollow" class="external text" href="http://www.bibmath.net/dico/index.php?action=affiche&quoi=./e/eulermaclaurin.html"><cite style="font-style:normal;">Formule d'Euler-MacLaurin [sic]</cite></a> », sur <span class="italique">bibmath.net/dico</span></span>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink noprint"><a href="#cite_ref-3">↑</a> </span><span class="reference-text"><a href="#Tenenbaum2008">Tenenbaum 2008</a>, <abbr class="abbr" title="page(s)">p.</abbr> 23.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink noprint"><a href="#cite_ref-5">↑</a> </span><span class="reference-text"><a href="#Rombaldi2005">Rombaldi 2005</a>, <abbr class="abbr" title="page(s)">p.</abbr> 527 ; <a href="#Hardy1949">Hardy 1949</a>, <abbr class="abbr" title="page(s)">p.</abbr> 325.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink noprint"><a href="#cite_ref-6">↑</a> </span><span class="reference-text"><a href="#Deheuvels1980">Deheuvels 1980</a>, <abbr class="abbr" title="page(s)">p.</abbr> 185-187 et p. 195.</span> </li> <li id="cite_note-Cohen25-10"><span class="mw-cite-backlink noprint">↑ <sup><a href="#cite_ref-Cohen25_10-0">a</a> <a href="#cite_ref-Cohen25_10-1">b</a> et <a href="#cite_ref-Cohen25_10-2">c</a></sup> </span><span class="reference-text"><a href="#Cohen2007">Cohen 2007</a>, <abbr class="abbr" title="page(s)">p.</abbr> 25.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink noprint"><a href="#cite_ref-11">↑</a> </span><span class="reference-text"><a href="#Tenenbaum2008">Tenenbaum 2008</a>, <abbr class="abbr" title="page(s)">p.</abbr> 26.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink noprint"><a href="#cite_ref-12">↑</a> </span><span class="reference-text"><a href="#Rombaldi2005">Rombaldi 2005</a>, <abbr class="abbr" title="page(s)">p.</abbr> 330.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink noprint"><a href="#cite_ref-13">↑</a> </span><span class="reference-text"><a href="#Deheuvels1980">Deheuvels 1980</a>, <abbr class="abbr" title="page(s)">p.</abbr> 188.</span> </li> <li id="cite_note-Hardy-14"><span class="mw-cite-backlink noprint">↑ <sup><a href="#cite_ref-Hardy_14-0">a</a> et <a href="#cite_ref-Hardy_14-1">b</a></sup> </span><span class="reference-text"><a href="#Hardy1949">Hardy 1949</a>, <abbr class="abbr" title="page(s)">p.</abbr> 318.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink noprint"><a href="#cite_ref-15">↑</a> </span><span class="reference-text"><a href="#Hardy1949">Hardy 1949</a>, <abbr class="abbr" title="page(s)">p.</abbr> 319.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink noprint"><a href="#cite_ref-17">↑</a> </span><span class="reference-text"><a href="#Rombaldi2005">Rombaldi 2005</a>, <abbr class="abbr" title="page(s)">p.</abbr> 328.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink noprint"><a href="#cite_ref-18">↑</a> </span><span class="reference-text"><span class="ouvrage" id="Pengelley2003"><span class="ouvrage" id="David_J._Pengelley2003"><abbr class="abbr indicateur-langue" title="Langue : anglais">(en)</abbr> David J. <span class="nom_auteur">Pengelley</span>, <cite style="font-style:normal" lang="en">« Dances between continuous and discrete: Euler's summation formula »</cite>, dans Robert Bradley et Ed Sandifer, <cite class="italique" lang="en">Proceedings, Euler 2K+2 Conference (Rumford, Maine, 2002)</cite>, Euler Society, <time>2003</time> <small style="line-height:1em;">(<a rel="nofollow" class="external text" href="http://www.math.nmsu.edu/~davidp/euler2k2.pdf">lire en ligne</a>)</small><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.btitle=Proceedings%2C+Euler+2K%2B2+Conference+%28Rumford%2C+Maine%2C+2002%29&rft.atitle=Dances+between+continuous+and+discrete%3A+Euler%27s+summation+formula&rft.pub=Euler+Society&rft.aulast=Pengelley&rft.aufirst=David+J.&rft.date=2003&rft_id=http%3A%2F%2Fwww.math.nmsu.edu%2F~davidp%2Feuler2k2.pdf&rfr_id=info%3Asid%2Ffr.wikipedia.org%3AFormule+d%27Euler-Maclaurin"></span></span></span>.</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink noprint"><a href="#cite_ref-19">↑</a> </span><span class="reference-text">Voir <a rel="nofollow" class="external text" href="http://www-fourier.ujf-grenoble.fr/~faure/enseignement/M1_math_pour_physique/Documents/Article_de_F_Pham_Borel.pdf">cette conférence de F. Pham</a></span> </li> </ol> </div> <div class="mw-heading mw-heading2"><h2 id="Bibliographie">Bibliographie</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&veaction=edit&section=24" title="Modifier la section : Bibliographie" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Formule_d%27Euler-Maclaurin&action=edit&section=24" title="Modifier le code source de la section : Bibliographie"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span title="Document utilisé pour la rédaction de l’article"><span typeof="mw:File"><span><img alt="Document utilisé pour la rédaction de l’article" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/20px-Icon_flat_design_plume.svg.png" decoding="async" width="20" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/30px-Icon_flat_design_plume.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/40px-Icon_flat_design_plume.svg.png 2x" data-file-width="330" data-file-height="158" /></span></span></span> : document utilisé comme source pour la rédaction de cet article. </p> <ul><li><span class="ouvrage" id="Bourbaki,_FVR"><a href="/wiki/Nicolas_Bourbaki" title="Nicolas Bourbaki">N. Bourbaki</a>, <cite class="italique"><a href="/wiki/%C3%89l%C3%A9ments_de_math%C3%A9matique" title="Éléments de mathématique">Éléments de mathématique</a></cite>, <span class="italique">Fonctions d'une variable réelle</span>, <abbr class="abbr" title="chapitre(s)">chap.</abbr> VI<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%C3%89l%C3%A9ments+de+math%C3%A9matique&rft.au=N.+Bourbaki&rfr_id=info%3Asid%2Ffr.wikipedia.org%3AFormule+d%27Euler-Maclaurin"></span></span><span title="Document utilisé pour la rédaction de l’article"><span typeof="mw:File"><span><img alt="Document utilisé pour la rédaction de l’article" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/20px-Icon_flat_design_plume.svg.png" decoding="async" width="20" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/30px-Icon_flat_design_plume.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/40px-Icon_flat_design_plume.svg.png 2x" data-file-width="330" data-file-height="158" /></span></span></span></li> <li><span class="ouvrage" id="Cohen2007"><span class="ouvrage" id="Henri_Cohen2007"><abbr class="abbr indicateur-langue" title="Langue : anglais">(en)</abbr> <a href="/wiki/Henri_Cohen_(math%C3%A9maticien)" title="Henri Cohen (mathématicien)">Henri Cohen</a>, <cite class="italique" lang="en">Number Theory</cite>, <abbr class="abbr" title="volume">vol.</abbr> II : <span class="lang-en italique" lang="en">Analytic and Modern Tools</span>, <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <time>2007</time><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Number+Theory&rft.pub=Springer-Verlag&rft.aulast=Cohen&rft.aufirst=Henri&rft.date=2007&rft.volume=II&rfr_id=info%3Asid%2Ffr.wikipedia.org%3AFormule+d%27Euler-Maclaurin"></span></span></span><span title="Document utilisé pour la rédaction de l’article"><span typeof="mw:File"><span><img alt="Document utilisé pour la rédaction de l’article" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/20px-Icon_flat_design_plume.svg.png" decoding="async" width="20" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/30px-Icon_flat_design_plume.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/40px-Icon_flat_design_plume.svg.png 2x" data-file-width="330" data-file-height="158" /></span></span></span></li> <li><span class="ouvrage" id="Deheuvels1980"><span class="ouvrage" id="Paul_Deheuvels1980"><a href="/wiki/Paul_Deheuvels" title="Paul Deheuvels">Paul Deheuvels</a>, <cite class="italique">L'Intégrale</cite>, <a href="/wiki/PUF" class="mw-redirect" title="PUF">PUF</a>, <abbr class="abbr" title="collection">coll.</abbr> « mathématiques », <time>1980</time><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=L%27Int%C3%A9grale&rft.pub=PUF&rft.aulast=Deheuvels&rft.aufirst=Paul&rft.date=1980&rfr_id=info%3Asid%2Ffr.wikipedia.org%3AFormule+d%27Euler-Maclaurin"></span></span></span><span title="Document utilisé pour la rédaction de l’article"><span typeof="mw:File"><span><img alt="Document utilisé pour la rédaction de l’article" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/20px-Icon_flat_design_plume.svg.png" decoding="async" width="20" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/30px-Icon_flat_design_plume.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/40px-Icon_flat_design_plume.svg.png 2x" data-file-width="330" data-file-height="158" /></span></span></span></li> <li><a href="/wiki/Jean-Pierre_Demailly" title="Jean-Pierre Demailly">Jean-Pierre Demailly</a>, <i>Analyse numérique et équations différentielles</i>, <a href="/wiki/Presses_universitaires_de_Grenoble" title="Presses universitaires de Grenoble">Presses universitaires de Grenoble</a></li> <li><span class="ouvrage" id="Dieudonné1980"><span class="ouvrage" id="Jean_Dieudonné1980"><a href="/wiki/Jean_Dieudonn%C3%A9" title="Jean Dieudonné">Jean Dieudonné</a>, <cite class="italique">Calcul infinitésimal</cite>, Paris, <a href="/wiki/Hermann_(%C3%A9ditions)" class="mw-redirect" title="Hermann (éditions)">Hermann</a>, <time>1980</time><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calcul+infinit%C3%A9simal&rft.place=Paris&rft.pub=Hermann&rft.aulast=Dieudonn%C3%A9&rft.aufirst=Jean&rft.date=1980&rfr_id=info%3Asid%2Ffr.wikipedia.org%3AFormule+d%27Euler-Maclaurin"></span></span></span><span title="Document utilisé pour la rédaction de l’article"><span typeof="mw:File"><span><img alt="Document utilisé pour la rédaction de l’article" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/20px-Icon_flat_design_plume.svg.png" decoding="async" width="20" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/30px-Icon_flat_design_plume.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/40px-Icon_flat_design_plume.svg.png 2x" data-file-width="330" data-file-height="158" /></span></span></span></li> <li><span class="ouvrage" id="Hardy1949"><span class="ouvrage" id="G._H._Hardy1949"><abbr class="abbr indicateur-langue" title="Langue : anglais">(en)</abbr> <a href="/wiki/G._H._Hardy" class="mw-redirect" title="G. H. Hardy">G. H. <span class="nom_auteur">Hardy</span></a>, <cite class="italique" lang="en">Divergent Series</cite>, <a href="/wiki/Oxford_University_Press" title="Oxford University Press">OUP</a>, <time>1949</time><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Divergent+Series&rft.pub=OUP&rft.aulast=Hardy&rft.aufirst=G.+H.&rft.date=1949&rfr_id=info%3Asid%2Ffr.wikipedia.org%3AFormule+d%27Euler-Maclaurin"></span></span></span><span title="Document utilisé pour la rédaction de l’article"><span typeof="mw:File"><span><img alt="Document utilisé pour la rédaction de l’article" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/20px-Icon_flat_design_plume.svg.png" decoding="async" width="20" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/30px-Icon_flat_design_plume.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/40px-Icon_flat_design_plume.svg.png 2x" data-file-width="330" data-file-height="158" /></span></span></span></li> <li><span class="ouvrage" id="Rombaldi2005"><span class="ouvrage" id="Jean-Étienne_Rombaldi2005">Jean-Étienne Rombaldi, <cite class="italique">Interpolation et approximation</cite>, <a href="/wiki/Vuibert" title="Vuibert">Vuibert</a>, <time>2005</time><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Interpolation+et+approximation&rft.pub=Vuibert&rft.aulast=Rombaldi&rft.aufirst=Jean-%C3%89tienne&rft.date=2005&rfr_id=info%3Asid%2Ffr.wikipedia.org%3AFormule+d%27Euler-Maclaurin"></span></span></span><span title="Document utilisé pour la rédaction de l’article"><span typeof="mw:File"><span><img alt="Document utilisé pour la rédaction de l’article" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/20px-Icon_flat_design_plume.svg.png" decoding="async" width="20" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/30px-Icon_flat_design_plume.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/40px-Icon_flat_design_plume.svg.png 2x" data-file-width="330" data-file-height="158" /></span></span></span></li> <li><span class="ouvrage" id="Tenenbaum2008"><span class="ouvrage" id="Gérald_Tenenbaum2008"><a href="/wiki/G%C3%A9rald_Tenenbaum" title="Gérald Tenenbaum">Gérald Tenenbaum</a>, <cite class="italique">Introduction à la théorie analytique et probabiliste des nombres</cite>, <a href="/wiki/%C3%89ditions_Belin" class="mw-redirect" title="Éditions Belin">Belin</a>, <time>2008</time><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+%C3%A0+la+th%C3%A9orie+analytique+et+probabiliste+des+nombres&rft.pub=Belin&rft.aulast=Tenenbaum&rft.aufirst=G%C3%A9rald&rft.date=2008&rfr_id=info%3Asid%2Ffr.wikipedia.org%3AFormule+d%27Euler-Maclaurin"></span></span></span><span title="Document utilisé pour la rédaction de l’article"><span typeof="mw:File"><span><img alt="Document utilisé pour la rédaction de l’article" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/20px-Icon_flat_design_plume.svg.png" decoding="async" width="20" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/30px-Icon_flat_design_plume.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Icon_flat_design_plume.svg/40px-Icon_flat_design_plume.svg.png 2x" data-file-width="330" data-file-height="158" /></span></span></span></li></ul> <ul id="bandeau-portail" class="bandeau-portail"><li><span class="bandeau-portail-element"><span class="bandeau-portail-icone"><span class="noviewer" typeof="mw:File"><a href="/wiki/Portail:Analyse" title="Portail de l'analyse"><img alt="icône décorative" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Nuvola_apps_kmplot.svg/24px-Nuvola_apps_kmplot.svg.png" decoding="async" width="24" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Nuvola_apps_kmplot.svg/36px-Nuvola_apps_kmplot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Nuvola_apps_kmplot.svg/48px-Nuvola_apps_kmplot.svg.png 2x" data-file-width="400" data-file-height="400" /></a></span></span> <span class="bandeau-portail-texte"><a href="/wiki/Portail:Analyse" title="Portail:Analyse">Portail de l'analyse</a></span> </span></li> </ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐4xwft Cached time: 20241124184155 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.308 seconds Real time usage: 0.487 seconds Preprocessor visited node count: 3552/1000000 Post‐expand include size: 44335/2097152 bytes Template argument size: 7200/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 0/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 17296/5000000 bytes Lua time usage: 0.077/10.000 seconds Lua memory usage: 4778573/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 247.584 1 -total 40.75% 100.886 2 Modèle:Références 18.97% 46.968 1 Modèle:Article 18.13% 44.883 1 Modèle:Portail 13.31% 32.962 1 Modèle:Voir_homonymes 12.63% 31.282 1 Modèle:Méta_bandeau_de_note 12.11% 29.992 2 Modèle:Méta_bandeau 8.38% 20.743 16 Modèle:Harvsp 7.83% 19.378 1 Modèle:Suivi_des_biographies 7.09% 17.565 1 Modèle:Catégorisation_badges --> <!-- Saved in parser cache with key frwiki:pcache:idhash:1195068-0!canonical and timestamp 20241124184155 and revision id 214816103. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Ce document provient de « <a dir="ltr" href="https://fr.wikipedia.org/w/index.php?title=Formule_d%27Euler-Maclaurin&oldid=214816103">https://fr.wikipedia.org/w/index.php?title=Formule_d%27Euler-Maclaurin&oldid=214816103</a> ».</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Cat%C3%A9gorie:Accueil" title="Catégorie:Accueil">Catégories</a> : <ul><li><a href="/wiki/Cat%C3%A9gorie:Analyse_r%C3%A9elle" title="Catégorie:Analyse réelle">Analyse réelle</a></li><li><a href="/wiki/Cat%C3%A9gorie:Th%C3%A9or%C3%A8me_d%27analyse" title="Catégorie:Théorème d'analyse">Théorème d'analyse</a></li><li><a href="/wiki/Cat%C3%A9gorie:Leonhard_Euler" title="Catégorie:Leonhard Euler">Leonhard Euler</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Catégories cachées : <ul><li><a href="/wiki/Cat%C3%A9gorie:Portail:Analyse/Articles_li%C3%A9s" title="Catégorie:Portail:Analyse/Articles liés">Portail:Analyse/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Math%C3%A9matiques/Articles_li%C3%A9s" title="Catégorie:Portail:Mathématiques/Articles liés">Portail:Mathématiques/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Sciences/Articles_li%C3%A9s" title="Catégorie:Portail:Sciences/Articles liés">Portail:Sciences/Articles liés</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> La dernière modification de cette page a été faite le 4 mai 2024 à 13:44.</li> <li id="footer-info-copyright"><span style="white-space: normal"><a href="/wiki/Wikip%C3%A9dia:Citation_et_r%C3%A9utilisation_du_contenu_de_Wikip%C3%A9dia" title="Wikipédia:Citation et réutilisation du contenu de Wikipédia">Droit d'auteur</a> : les textes sont disponibles sous <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fr">licence Creative Commons attribution, partage dans les mêmes conditions</a> ; d’autres conditions peuvent s’appliquer. Voyez les <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/fr">conditions d’utilisation</a> pour plus de détails, ainsi que les <a href="/wiki/Wikip%C3%A9dia:Cr%C3%A9dits_graphiques" title="Wikipédia:Crédits graphiques">crédits graphiques</a>. En cas de réutilisation des textes de cette page, voyez <a href="/wiki/Sp%C3%A9cial:Citer/Formule_d%27Euler-Maclaurin" title="Spécial:Citer/Formule d'Euler-Maclaurin">comment citer les auteurs et mentionner la licence</a>.<br /> Wikipedia® est une marque déposée de la <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, organisation de bienfaisance régie par le paragraphe <a href="/wiki/501c" title="501c">501(c)(3)</a> du code fiscal des États-Unis.</span><br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/fr">Politique de confidentialité</a></li> <li id="footer-places-about"><a href="/wiki/Wikip%C3%A9dia:%C3%80_propos_de_Wikip%C3%A9dia">À propos de Wikipédia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikip%C3%A9dia:Avertissements_g%C3%A9n%C3%A9raux">Avertissements</a></li> <li id="footer-places-contact"><a href="//fr.wikipedia.org/wiki/Wikipédia:Contact">Contact</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code de conduite</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Développeurs</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/fr.wikipedia.org">Statistiques</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Déclaration sur les témoins (cookies)</a></li> <li id="footer-places-mobileview"><a href="//fr.m.wikipedia.org/w/index.php?title=Formule_d%27Euler-Maclaurin&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Version mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-4xwft","wgBackendResponseTime":664,"wgPageParseReport":{"limitreport":{"cputime":"0.308","walltime":"0.487","ppvisitednodes":{"value":3552,"limit":1000000},"postexpandincludesize":{"value":44335,"limit":2097152},"templateargumentsize":{"value":7200,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":17296,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 247.584 1 -total"," 40.75% 100.886 2 Modèle:Références"," 18.97% 46.968 1 Modèle:Article"," 18.13% 44.883 1 Modèle:Portail"," 13.31% 32.962 1 Modèle:Voir_homonymes"," 12.63% 31.282 1 Modèle:Méta_bandeau_de_note"," 12.11% 29.992 2 Modèle:Méta_bandeau"," 8.38% 20.743 16 Modèle:Harvsp"," 7.83% 19.378 1 Modèle:Suivi_des_biographies"," 7.09% 17.565 1 Modèle:Catégorisation_badges"]},"scribunto":{"limitreport-timeusage":{"value":"0.077","limit":"10.000"},"limitreport-memusage":{"value":4778573,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-4xwft","timestamp":"20241124184155","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Formule d'Euler-Maclaurin","url":"https:\/\/fr.wikipedia.org\/wiki\/Formule_d%27Euler-Maclaurin","sameAs":"http:\/\/www.wikidata.org\/entity\/Q282023","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q282023","author":{"@type":"Organization","name":"Contributeurs aux projets Wikimedia"},"publisher":{"@type":"Organization","name":"Fondation Wikimedia, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-12-03T22:35:51Z","dateModified":"2024-05-04T12:44:04Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/c\/c8\/Colin_Maclaurin_color.jpg","headline":"relation math\u00e9matique entre sommes discr\u00e8tes et int\u00e9grales"}</script> </body> </html>