CINXE.COM
Search results for: antimicrobial agent
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: antimicrobial agent</title> <meta name="description" content="Search results for: antimicrobial agent"> <meta name="keywords" content="antimicrobial agent"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="antimicrobial agent" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="antimicrobial agent"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2252</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: antimicrobial agent</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2252</span> Natural Preservatives: An Alternative for Chemical Preservative Used in Foods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zerrin%20Erginkaya">Zerrin Erginkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6zde%20Konuray"> Gözde Konuray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial degradation of foods is defined as a decrease of food safety due to microorganism activity. Organic acids, sulfur dioxide, sulfide, nitrate, nitrite, dimethyl dicarbonate and several preservative gases have been used as chemical preservatives in foods as well as natural preservatives which are indigenous in foods. It is determined that usage of herbal preservatives such as blueberry, dried grape, prune, garlic, mustard, spices inhibited several microorganisms. Moreover, it is determined that animal origin preservatives such as whey, honey, lysosomes of duck egg and chicken egg, chitosan have antimicrobial effect. Other than indigenous antimicrobials in foods, antimicrobial agents produced by microorganisms could be used as natural preservatives. The antimicrobial feature of preservatives depends on the antimicrobial spectrum, chemical and physical features of material, concentration, mode of action, components of food, process conditions, and pH and storage temperature. In this review, studies about antimicrobial components which are indigenous in food (such as herbal and animal origin antimicrobial agents), antimicrobial materials synthesized by microorganisms, and their usage as an antimicrobial agent to preserve foods are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=animal%20origin%20preservatives" title="animal origin preservatives">animal origin preservatives</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20preservatives" title=" chemical preservatives"> chemical preservatives</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20preservatives" title=" herbal preservatives"> herbal preservatives</a> </p> <a href="https://publications.waset.org/abstracts/61833/natural-preservatives-an-alternative-for-chemical-preservative-used-in-foods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2251</span> Control of Microbial Pollution Using Biodegradable Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20H.%20Abu%20Elella">Mahmoud H. Abu Elella</a>, <a href="https://publications.waset.org/abstracts/search?q=Riham%20R.%20Mohamed"> Riham R. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdy%20W.%20Sabaa"> Magdy W. Sabaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Microbial pollution is global problem threatening the human health. It is resulted by pathogenic microorganisms such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and other pathogenic strains. They cause a dangerous effect on human health, so great efforts have been exerted to produce new and effective antimicrobial agents. Nowadays, natural polysaccharides, such as chitosan and its derivatives are used as antimicrobial agents. The aim of our work is to synthesize of a biodegradable polymer such as N-quaternized chitosan (NQC) then Characterization of NQC by using different analysis techniques such as Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM) and using it as an antibacterial agent against different pathogenic bacteria. Methods: Synthesis of NQC using dimethylsulphate. Results: FTIR technique exhibited absorption peaks of NQC, SEM images illustrated that surface of NQC was smooth and antibacterial results showed that NQC had a high antibacterial effect. Discussion: NQC was prepared and it was proved by FTIR technique and SEM images antibacterial results exhibited that NQC was an antibacterial agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent" title="antimicrobial agent">antimicrobial agent</a>, <a href="https://publications.waset.org/abstracts/search?q=N-quaternized%20chitosan%20chloride" title=" N-quaternized chitosan chloride"> N-quaternized chitosan chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanocomposites" title=" silver nanocomposites"> silver nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20polyacrylate" title=" sodium polyacrylate"> sodium polyacrylate</a> </p> <a href="https://publications.waset.org/abstracts/58758/control-of-microbial-pollution-using-biodegradable-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2250</span> The Effect of Solution pH of Chitosan on Antimicrobial Properties of Nylon 6,6 Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nil%C3%BCfer%20Y%C4%B1ld%C4%B1z%20Varan">Nilüfer Yıldız Varan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The antimicrobial activities of chitosan against various bacteria and fungi are well known, and the antimicrobial activity of chitosan depends on pH. This study investigates the antimicrobial activity at different pH levels. Nylon 6,6 fabrics were treated with different chitosan solutions. Additionally, samples were treated also in basic conditions to see the antimicrobial activities. AATCC Test Method 100 was followed to evaluate the antimicrobial activity using Staphylococcus aureus ATCC 6538 test inoculum. The pH of the chitosan solutions was controlled below 6.5 since chitosan shows its antimicrobial activity only in acidic conditions because of its poor solubility above 6.5. In basic conditions, the samples did not show any antimicrobial activity. It appears from SEM images that the bonded chitosan in the structures exists. In acidic media (ph < 6.5), all samples showed antimicrobial activity. No correlation was found between pH levels and antimicrobial activity in acidic media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=nylon%206" title=" nylon 6"> nylon 6</a>, <a href="https://publications.waset.org/abstracts/search?q=6" title="6">6</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslinking" title=" crosslinking"> crosslinking</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20stability" title=" pH stability"> pH stability</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a> </p> <a href="https://publications.waset.org/abstracts/74096/the-effect-of-solution-ph-of-chitosan-on-antimicrobial-properties-of-nylon-66-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2249</span> Production of Antimicrobial Agents against Multidrug-Resistant Staphylococcus aureus through the Biocatalysis of Vegetable Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hak-Ryul%20Kim">Hak-Ryul Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung-Geun%20Lee"> Hyung-Geun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Long"> Qi Long</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching%20Hou"> Ching Hou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural modification of natural lipids via chemical reaction or microbial bioconversion can change their properties or even create novel functionalities. Enzymatic oxidation of lipids leading to formation of oxylipin is one of those modifications. Hydroxy fatty acids, one of those oxylipins have gained important attentions because of their structural and functional properties compared with other non-hydroxy fatty acids. Recently 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was produced with high yield from lipid-containing oleic acid by microbial conversion, and the further study confirmed that DOD contained strong antimicrobial activities against a broad range of microorganisms. In this study, we tried to modify DOD molecules by the enzymatic or physical reaction to create new functionality or to enhance the antimicrobial activity of DOD. After modification of DOD molecules by different ways, we confirmed that the antimicrobial activity of DOD was highly enhanced and presented strong antimicrobial activities against multidrug-resistant Staphylococcus aureus, suggesting that DOD and its derivatives can be used as efficient antimicrobial agents for medical and industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocatalysis" title="biocatalysis">biocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent" title=" antimicrobial agent"> antimicrobial agent</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug-resistant%20bacteria" title=" multidrug-resistant bacteria"> multidrug-resistant bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oil" title=" vegetable oil"> vegetable oil</a> </p> <a href="https://publications.waset.org/abstracts/75239/production-of-antimicrobial-agents-against-multidrug-resistant-staphylococcus-aureus-through-the-biocatalysis-of-vegetable-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2248</span> Recent Advancements and Future Trends in the Development of Antimicrobial Edible Films for Food Preservation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raana%20Babadi%20Fathipour">Raana Babadi Fathipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food packaging plays a crucial role in protecting food from unwanted external factors. Antibacterial edible films are a promising option for food packaging due to their biodegradability, environmental friendliness, and safety. This paper reviews recent research progress on antimicrobial edible films, focusing on those made from polysaccharides, proteins, and lipids. Polysaccharides and proteins are the primary components of antimicrobial edible films, while lipids primarily serve as plasticizers and carriers for active substances in composite films. For instance, second-generation liposomes have shown great potential as carriers for antimicrobial substances and other bioactive compounds due to their exceptional stability. Furthermore, this paper analyzes recent advancements and future trends in antimicrobial edible films. One promising direction is the integration of antimicrobial edible film materials with delivery systems, such as nanoemulsion and microencapsulation technologies, to ensure stable loading of bioactive substances. Another emerging area of interest is the development of smart and active packaging that allows consumers to assess the freshness of food products without opening the package. pH-sensitive films and smart fluorescent "on-off" sensors for humidity are currently being explored as materials for smart and active packaging to monitor food product freshness, with further exploration anticipated in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20edible%20film" title="antimicrobial edible film">antimicrobial edible film</a>, <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title=" biopolymer"> biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent" title=" antimicrobial agent"> antimicrobial agent</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20assay" title=" antimicrobial assay"> antimicrobial assay</a> </p> <a href="https://publications.waset.org/abstracts/176779/recent-advancements-and-future-trends-in-the-development-of-antimicrobial-edible-films-for-food-preservation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2247</span> Antimicrobial Activity of Igusa and the Application to Foam Materials for Food Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Nanako">I. Nanako</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Era"> Mariko Era</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Japanese uses TATAMI rather than flooring at home. Igusa ( Juncus effuses var. decipiens ), which is commonly known in the forms of TATAMI. Juncus spp. grow at a relatively high humidity area (Japan, China and Southeast Asia ). Yatsushiro region in the southern part of Kumamoto prefecture is major produing area of Igusa. Igusa found to have honeycomb structure and was also shown to have the ability to control humidity. And Igusa has been used as a medicinal herb for diuretic and antiphlogistic agent. In previous study, we investigated antimicrobial effects of Igusa, and showed high antimicrobial activity against food poisoning bacteria. Therefore, the food trays blended Igusa can be kept clean by antimicrobial activity of Igusa. We focus on ‘Igusa foam materials’. In this study, we investigated the antibacterial and antifungal activity of Igusa, and new application to foam materials for food industry. Materials and method: We used Igusa foam materials (3 × 3 × 3 cm) as a sample. We set about fifteen types of samples combined with a commercial antibacterial agent A, a commercial antibacterial agent B, potassium laurate (C12K) and a commercial antifungal agent C, a commercial antifungal agent D and a commercial antifungal agent E. We selected four bacteria strains (Escherichia coli NBRC 3972, Staphylococus aureus NBRC 12732, Salmonella typhimurium NBRC 13245, Bacillus subtilis NBRC 3335 ) and three fungus strains (Penicillium pinophilum NBRC 6345, Cladosporium cladosporioides NBRC 30314, Aspergillus oryzae NBRC 5238 ). The fungus was cultured at 30 °C on Igusa foam materials after inoculation of the fungus for fourteen days. The bacteria was cultured at 30 °C on Igusa foam materials after inoculation of the bacteria for three days. And the Igusa foam materials were washed with 10 mL normal saline after three days. The normal saline washed Igusa foam materials plated the NA medium. After, It was cultured at 30 °C and used colony counting method. Result and Conclusion: The fifteen types of sample of Igusa foam materials had antifungal activity against C. cladosporioides, A. oryzae and P. pinophilum for fourteen days. The four types of sample contained potassium laurate and antibacterial agent A, sample contained antibacterial agent B and antifungal agent D, sample contained A and antifungal agent E, sample contained B and E had antibacterial activity against B. subtilis. The three types of sample contained potassium laurate and A, sample contained B and D, sample contained A and E had antibacterial activity against S. typhimurium. The five types of sample contained potassium laurate and A, sample contained B and D, sample contained A and E, sample contained B and E, sample contained B and antifungal agent C had antibacterial activity against E. coli and S. aureus. These results indicate that Igusa of Igusa foam materials had high antifungal activity. In addition, Igusa foam materials combined with a commercial antibacterial agent had antibacterial activity. In the future, we consider that use of Igusa foam materials may be spread from food industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal" title=" antifungal"> antifungal</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20materials" title=" foam materials"> foam materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Igusa" title=" Igusa"> Igusa</a> </p> <a href="https://publications.waset.org/abstracts/49379/antimicrobial-activity-of-igusa-and-the-application-to-foam-materials-for-food-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2246</span> Discerning of Antimicrobial Potential of Phenylpropanoic Acid Derived Oxadiazoles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Fuloria">Neeraj Kumar Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivkanya%20Fuloria"> Shivkanya Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20%20Singh"> Amit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 2-Phenyl propionic acid and oxadiazoles possess antimicrobial potential. 2-Phenyl propane hydrazide (1), on cyclization with aromatic acids offered 2-aryl-5-(1-phenylethyl)-1,3,4-oxadiazole derivatives (1A-E). The PPA derived oxadiazoles were characterized by elemental analysis and spectral studies. The compounds were screened for antimicrobial potential. The compound 1D bearing strong electron withdrawing group showed maximum antimicrobial potential. Other compounds also displayed antimicrobial potential to a certain extent. The SAR of newer oxadiazoles indicated that substitution of strong electronegative group in the PPA derived oxadiazoles enhanced their antimicrobial potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=imines" title=" imines"> imines</a>, <a href="https://publications.waset.org/abstracts/search?q=oxadiazoles" title=" oxadiazoles"> oxadiazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=PPA" title=" PPA"> PPA</a> </p> <a href="https://publications.waset.org/abstracts/67533/discerning-of-antimicrobial-potential-of-phenylpropanoic-acid-derived-oxadiazoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2245</span> Broadcasting Stabilization for Dynamical Multi-Agent Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myung-Gon%20Yoon">Myung-Gon Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon"> Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a stabilization problem for multi-agent systems, when all agents in a multi-agent system receive the same broadcasting control signal and the controller can measure not each agent output but the sum of all agent outputs. It is analytically shown that when the sum of all agent outputs is bounded with a certain broadcasting controller for a given reference, each agent output is separately bounded:stabilization of the sum of agent outputs always results in the stability of every agent output. A numerical example is presented to illustrate our theoretic findings in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broadcasting%20control" title="broadcasting control">broadcasting control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20function" title=" transfer function"> transfer function</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a> </p> <a href="https://publications.waset.org/abstracts/11214/broadcasting-stabilization-for-dynamical-multi-agent-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2244</span> The Chewing Gum Confectionary Development for Oral Hygiene with Nine Hour Oral Antibacterial Activity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20Bacchaw">Yogesh Bacchaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Dabade"> Ashish Dabade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays oral health is raising concern in society. Acid producing microorganisms changes the oral pH and creates a favorable environment for microbial growth. This growth not only promotes dental decay but also bad breath. Generally Recognized As Safe (GRAS) listed component was incorporated in chewing gum as an antimicrobial agent. The chewing gum produced exhibited up to 9 hours of antimicrobial activity against oral microflora. The toxicity of GRAS component per RACC value of chewing gum was negligible as compared to actual toxicity level of GRAS component. The antibacterial efficiency of chewing gum was tested by using total plate count (TPC) and colony forming unit (CFU). Nine hours were required to microflora to reach TPC/CFU of before chewing gum consumption. This chewing gum not only provides mouth freshening activity but also helps in lowering dental decay, bad breath, and enamel whitening. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colony%20forming%20unit%20%28CFU%29" title="colony forming unit (CFU)">colony forming unit (CFU)</a>, <a href="https://publications.waset.org/abstracts/search?q=chewing%20gum" title=" chewing gum"> chewing gum</a>, <a href="https://publications.waset.org/abstracts/search?q=generally%20recognized%20as%20safe%20%28GRAS%29" title=" generally recognized as safe (GRAS)"> generally recognized as safe (GRAS)</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20growth" title=" microbial growth"> microbial growth</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20health" title=" oral health"> oral health</a>, <a href="https://publications.waset.org/abstracts/search?q=RACC" title=" RACC"> RACC</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20plate%20count%20%28TPC%29" title=" total plate count (TPC)"> total plate count (TPC)</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent" title=" antimicrobial agent"> antimicrobial agent</a>, <a href="https://publications.waset.org/abstracts/search?q=enamel%20whitening" title=" enamel whitening"> enamel whitening</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20pH" title=" oral pH"> oral pH</a> </p> <a href="https://publications.waset.org/abstracts/75454/the-chewing-gum-confectionary-development-for-oral-hygiene-with-nine-hour-oral-antibacterial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2243</span> Bacterial Decontamination of Nurses' White Coats by Application of Antimicrobial Finish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Gupta">Priyanka Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilanjana%20Bairagi"> Nilanjana Bairagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepti%20Gupta"> Deepti Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New pathogenic strains of microbes are continually emerging and resistance of bacteria to antibiotics is growing. Hospitals in India have a high burden of infections in their intensive care units and general wards. Rising incidence of hospital infections is a matter of great concern in India. This growth is often attributed to the absence of effective infection control strategies in healthcare facilities. Government, therefore, is looking for cost effective strategies that are effective against HAIs. One possible method is by application of an antimicrobial finish on the uniform. But there are limited studies to show the effect of antimicrobial activity of antimicrobial finish treated nurses’ uniforms in a real hospital set up. This paper proposes a prospective non-destructive sampling technique, based on the use of a detachable fabric patch, to assess the effectiveness of silver based antimicrobial agent across five wards in a tertiary care government hospital in Delhi, India. Fabrics like polyester and polyester cotton blend fabric which are more prevalent for making coats were selected for the study. Polyester and polyester cotton blend fabric was treated with silver based antimicrobial (AM) finish. At the beginning of shift, a composite patch of untreated and treated fabric respectively was stitched on the abdominal region on the left and right side of the washed white coat of participating nurse. At the end of the shift, the patch was removed and taken for bacterial sampling on Brain Heart Infusion (BHI) plates. Microbial contamination on polyester and blend fabrics after 6 hours shift was compared in Brain Heart Infusion broth (BHI). All patches treated with silver based antimicrobial agent showed decreased bacterial counts. Percent reduction in the bacterial colonies after the antimicrobial treatment in both fabrics was 81.0 %. Antimicrobial finish was equally effective in reducing microbial adhesion on both fabric types. White coats of nurses become progressively contaminated during clinical care. Type of fabric used to make the coat can affect the extent of contamination which is higher on polyester cotton blend as compared to 100% polyester. The study highlights the importance of silver based antimicrobial finish in the area of uniform hygiene. Bacterial load can be reduced by using antimicrobial finish on hospital uniforms. Hospital staff uniforms endowed with antimicrobial properties may be of great help in reducing the occurrence and spread of infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20finish" title="antimicrobial finish">antimicrobial finish</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=infection%20control" title=" infection control"> infection control</a>, <a href="https://publications.waset.org/abstracts/search?q=silver" title=" silver"> silver</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20coat" title=" white coat"> white coat</a> </p> <a href="https://publications.waset.org/abstracts/79300/bacterial-decontamination-of-nurses-white-coats-by-application-of-antimicrobial-finish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2242</span> Synthesis and Antimicrobial Activity of Tolyloxy Derived Oxadiazoles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivkanya%20Fuloria">Shivkanya Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Fuloria"> Neeraj Kumar Fuloria</a>, <a href="https://publications.waset.org/abstracts/search?q=Sokinder%20Kumar"> Sokinder Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> m-Cresol and oxadiazoles are the potent antimicrobial moieties. 2-(m-Tolyloxy)acetohydrazide (1) on cyclization with aromatic acids yielded 2-(aryl)-5-(m-tolyloxymethyl)-1,3,4-oxadiazole (1A-E). The structures of newer oxadiazoles were confirmed by elemental and spectral analysis. The newer compounds were evaluated for their antimicrobial potential. The compound 1E containing strong electron withdrawing group showed maximum antimicrobial potential. Other compounds also displayed antimicrobial potential to certain extent. The SAR of newer oxadiazoles indicated that substitution of strong electronegative group in the tolyloxy derived oxadiazoles enhanced their antimicrobial potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=cresol" title=" cresol"> cresol</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrazide" title=" hydrazide"> hydrazide</a>, <a href="https://publications.waset.org/abstracts/search?q=oxadiazoles" title=" oxadiazoles"> oxadiazoles</a> </p> <a href="https://publications.waset.org/abstracts/67547/synthesis-and-antimicrobial-activity-of-tolyloxy-derived-oxadiazoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2241</span> Determination of Antimicrobial Effect and Essential Oil Composition Salvia verticillata L. Subsp. amasiaca</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanju%20Teker">Tanju Teker</a>, <a href="https://publications.waset.org/abstracts/search?q=Yener%20Tekeli%CC%87"> Yener Tekeli̇</a>, <a href="https://publications.waset.org/abstracts/search?q=Esra%20Karpuz"> Esra Karpuz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salvia species are known as medicinal plant and often used in public. The antimicrobial effects and essential oil composition of Salvia verticillata L. subsp. amasiaca were determined. The antimicrobial activity is determined by using disk diffusion method against two Gram-positive bacteria, two Gram-negative bacteria and one kind of yeast and essential oil composition was determined by GC - MS. As a result of antimicrobial analysis while sample has shown very strong antimicrobial activity against Staphylococcus aureus, moderately effective against Pseudomonas aeruginosa and low effective against Enterococcus faecalis, it has not shown antimicrobial activity against Escherichia coli and C. albicans. Trans-caryophyllene (% 35.07), germacrene-d (% 10.98) and caryopyllene oxide (% 5.81) are the main components of essential oil composition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salvia" title="salvia">salvia</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plant" title=" medicinal plant"> medicinal plant</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a> </p> <a href="https://publications.waset.org/abstracts/35132/determination-of-antimicrobial-effect-and-essential-oil-composition-salvia-verticillata-l-subsp-amasiaca" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2240</span> Essential Oil Composition and Antimicrobial Activity of Rosmarinus officinalis L. Grown in Algeria (Djelfa)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samah%20Lakehal">Samah Lakehal</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Meliani"> A. Meliani</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Benrebiha"> F. Z. Benrebiha</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Chaouia"> C. Chaouia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last few years, due to the misuse of antibiotics and an increasing incidence of immunodeficiency-related diseases, the development of microbial drug resistance has become more and more of a pressing problem. Recently, natural products from medicinal plants represent a fertile ground for the development of novel antibacterial agents. Plants essential oils have come more into the focus of phytomedicine. The present study describes antimicrobial activity of Rosmarinus officinalis L. essential oil known medicinally for its powerful antibacterial properties. The essential oil of rosemary obtained by hydrodistillation (using Clevenger type apparatus) growing in Algeria (Djelfa city of south Algeria) was investigated by GC-MS. The essential oil yield of the study was 1.4 %. The major components were found to be camphor, camphene, 1,8-cineole. The essential oil has been tested for antimicrobial activity against eight bacteria (Gram-negative and Gram-positive), and three fungi including Candida albicans. Inhibition of growth was tested by the agar diffusion method based on the determination of the diameter of inhibition. The oil was found to have significant antibacterial activity and therefore can be used as a natural antimicrobial agent for the treatment of several infectious diseases caused by those germs, which have developed resistance to antibiotics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosmarinus%20officinalis%20L." title=" Rosmarinus officinalis L."> Rosmarinus officinalis L.</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=GC%2FMS" title=" GC/MS"> GC/MS</a>, <a href="https://publications.waset.org/abstracts/search?q=camphor" title=" camphor"> camphor</a> </p> <a href="https://publications.waset.org/abstracts/11783/essential-oil-composition-and-antimicrobial-activity-of-rosmarinus-officinalis-l-grown-in-algeria-djelfa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2239</span> Antimicrobial Activity of Seed Oil of Garlic and Moringa oleifera against Some Food-Borne Microorganisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansur%20Abdulrasheed">Mansur Abdulrasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20I.%20Hussein"> Ibrahim I. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Mubarak"> Ahmed M. Mubarak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20F.%20Umar"> Ahmed F. Umar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed at evaluating the phytochemical constituents and the antimicrobial activity of the seed oil of Moringa oleifera and garlic against some selected food-borne microorganisms (Staphylococcus aureus, Escherichia coli, Salmonella spp and Pseudomonas aeruginosa) using disc diffusion method. The results of the phytochemical screening revealed differences in the presence of the phytochemicals among the extracts. Saponins were detected in both Moringa oleifera and garlic seed oil, while alkaloid and tannins were observed in seed oil of garlic. Furthermore, the antibacterial assay results show that the seed oil of Moringa oleifera was inactive against all the tested organisms, even at 100 % concentration. In contrast, garlic oil was found to be active against all the tested organisms. The highest inhibition was observed in E. coli (12 mm) at 100 % concentration, while at 20 % concentration, Salmonella Sp and P. aeruginosa showed the least inhibiton (6 mm). The antimicrobial activity of the seed oil of garlic may be attributed to its phytochemicals components which were not detected in the seed oil of Moringa oleifera. The results of this study have shown the potentials of the seed oil of garlic as an antimicrobial agent more especially in foods, by inhibiting the growth of the test organisms, which range from food-borne pathogens to food spoilage organisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic" title=" garlic"> garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa%20oleifera" title=" Moringa oleifera"> Moringa oleifera</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20borne%20pathogens" title=" food borne pathogens"> food borne pathogens</a> </p> <a href="https://publications.waset.org/abstracts/43278/antimicrobial-activity-of-seed-oil-of-garlic-and-moringa-oleifera-against-some-food-borne-microorganisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2238</span> Comparison of Antimicrobial Activity of Seed Oil of Garlic and Moringa oleifera against Some Food-Borne Microorganisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansur%20Abdulrasheed">Mansur Abdulrasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20I.%20Hussein"> Ibrahim I. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Mubarak"> Ahmed M. Mubarak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20F.%20Umar"> Ahmed F. Umar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed at evaluating the phytochemical constituents and the antimicrobial activity of the seed oil of Moringa oleifera and garlic against some selected food-borne microorganisms (Staphylococcus aureus, Escherichia coli, Salmonella spp and Pseudomonas aeruginosa) using disc diffusion method. The results of the phytochemical screening revealed differences in the presence of the phytochemicals among the extracts. Saponins were detected in both Moringa oleifera and garlic seed oil, while alkaloid and tannins were observed in seed oil of garlic. Furthermore, the antibacterial assay results show that the seed oil of Moringa oleifera was inactive against all the tested organisms, even at 100 % concentration. In contrast, garlic oil was found to be active against all the tested organisms. The highest inhibition was observed in E. coli (12 mm)at 100 % concentration, while at 20 % concentration, Salmonella Sp and P. aeruginosa showed the least inhibit on (6 mm). The antimicrobial activity of the seed oil of garlic may be attributed to its phytochemicals components which were not detected in the seed oil of Moringa oleifera. The results of this study have shown the potentials of the seed oil of garlic as an antimicrobial agent more especially in foods, by inhibiting the growth of the test organisms, which range from food-borne pathogens to food spoilage organisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic" title=" garlic"> garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa%20oleifera" title=" Moringa oleifera"> Moringa oleifera</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20borne%20pathogens" title=" food borne pathogens"> food borne pathogens</a> </p> <a href="https://publications.waset.org/abstracts/46577/comparison-of-antimicrobial-activity-of-seed-oil-of-garlic-and-moringa-oleifera-against-some-food-borne-microorganisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2237</span> Fapitow: An Advanced AI Agent for Travel Agent Competition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faiz%20Ul%20Haque%20Zeya">Faiz Ul Haque Zeya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Fapitow’s bidding strategy and approach to participate in Travel Agent Competition (TAC) is described. Previously, Fapitow is designed using the agents provided by the TAC Team and mainly used their modification for developing our strategy. But later, by observing the behavior of the agent, it is decided to come up with strategies that will be the main cause of improved utilities of the agent, and by theoretical examination, it is evident that the strategies will provide a significant improvement in performance which is later proved by agent’s performance in the games. The techniques and strategies for further possible improvement are also described. TAC provides a real-time, uncertain environment for learning, experimenting, and implementing various AI techniques. Some lessons learned about handling uncertain environments are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent" title="agent">agent</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20agent%20competition" title=" travel agent competition"> travel agent competition</a>, <a href="https://publications.waset.org/abstracts/search?q=bidding" title=" bidding"> bidding</a>, <a href="https://publications.waset.org/abstracts/search?q=TAC" title=" TAC"> TAC</a> </p> <a href="https://publications.waset.org/abstracts/171771/fapitow-an-advanced-ai-agent-for-travel-agent-competition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2236</span> Synthesis of Brominated Pyrazoline Derived from Chalcone and Its Antimicrobial Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annisa%20I.%20Reza">Annisa I. Reza</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasril%20Karim"> Jasril Karim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the availability of antimicrobial agents in the market, the urge to study and find other chemical compounds with the better potential of replacing them still tempting the scientists. This experiment is in the aim to explore a novel brominated pyrazoline ring which was made from intermediate chalcone as a candidate to answer the challenge. Using green chemistry approach by microwave irradiation from domestic oven, both known chalcone and 5-(2-bromophenyl)-3-(naphthalen-1-yl)-4,5-dihydro-1H-pyrazole were successfully synthesized. Pyrazoline’s structure was confirmed based on UV, IR, ¹H-NMR, ¹³C-NMR and MS and together with its intermediate were examined against some microorganisms (Bacillus subtilis, Escherichia coli, and Candida albicans) under agar diffusion method. The results collected during experiment revealed that both tested compounds showed weak activity on B.subtilis which was proven by a zone of inhibitions, while there was no zone of inhibitions observed in E. coli and C. albicans. This is suggested because of the bulky structure around pyrazoline could not provide the main ring to interact with microbial’s cell wall. The study shows that the proposed compound had the low capability as a promising antimicrobial agent, yet it still enriches the information about pyrazoline ring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=chalcone" title=" chalcone"> chalcone</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20irradiation" title=" microwave irradiation"> microwave irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrazoline" title=" pyrazoline"> pyrazoline</a> </p> <a href="https://publications.waset.org/abstracts/95950/synthesis-of-brominated-pyrazoline-derived-from-chalcone-and-its-antimicrobial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2235</span> Innovative Textile Design Using in-situ Ag NPs incorporation into Natural Fabric Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rehan">M. Rehan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mashaly"> H. Mashaly</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Emam"> H. Emam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abou%20El-Kheir"> A. Abou El-Kheir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mowafi">S. Mowafi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we will study a simple highly efficient technique to impart multi functional properties to different fabric substrates by in situ Ag NPs incorporation into fabric matrix. Ag NPs as a coloration and antimicrobial agent were prepared in situ incorporation into fabric matrix (Cotton and Wool) by using trisodium citrate as reducing and stabilizing agent. The Ag NPs treated fabric (Cotton and Wool) showed different color because of localized surface Plasmon resonance (LSPR) property of Ag NPs. The formation of Ag NPs was confirmed by UV/Vis spectra for the supernatant solutions and The Ag NPs treated fabric (Cotton and Wool) were characterized by scanning electron microscopy (SEM) and X-ray photo electron spectroscopy (XPS). The dependence of color properties characterized by colorimetric, fastness and antibacterial properties evaluated by Escherichia coli using counting method and the reaction parameters were studied. The results indicate that, the in situ Ag NPs incorporation into fabric matrix approach can simultaneously impart colorant and antimicrobial properties into different fabric substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ag%20NPs" title="Ag NPs">Ag NPs</a>, <a href="https://publications.waset.org/abstracts/search?q=coloration" title=" coloration"> coloration</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=wool" title=" wool"> wool</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title=" cotton fabric"> cotton fabric</a> </p> <a href="https://publications.waset.org/abstracts/11113/innovative-textile-design-using-in-situ-ag-nps-incorporation-into-natural-fabric-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2234</span> Determination of the Effect of Kaolin on the Antimicrobial Activity of Metronidazole-Kaolin Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omaimah%20Algohary">Omaimah Algohary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kaolin is one of the principle intestinal adsorbents, has traditionally been used internally in the treatment of various enteric disorders, colitis, enteritis, dysentery, and diarrhea associated with food and alkaloidal poisoning and in traveler’s diarrhea. It binds to and traps bacteria and its toxins and gases in the gut. It also binds to water in the gut, which helps to make the stools firmer, hence giving symptomatic relief. Metronidazole is a synthetic antibacterial agent that is used primarily in the treatment of various anaerobic infections such as intra-abdominal infections, antiprotozoal, and as amebicidal. The need for safe, therapeutically effective antidiarrheal combination continuously lead to effective treatment. Metronidazol used for treatment of anaerobic bacteria and kaolin , when administered simultaneously, Metronidazole–Kaolin interactions have been reported by FDA but not studied. This project is the first to study the effect of Metronidazole–Kaolin interactions on the antimicrobial activity of metronidazole. Agar diffusion method performed to test the antimicrobial activity of metronidazole–kaolin antidiarrheal combination from aqueous solutions at an in-vivo simulated pHs conditions that obtained at 37+0.5 °C on Helicobacter pylori as anaerobic bacteria and E.coli as aerobic bacteria and used as a control for the technique. The antimicrobial activity of metronidazole combination as 1:1 and 1:2 with kaolin was abolished in acidic media as no zones of inhibition shown compared to only metronidazole that used as a control. In alkaline media metronidazole combination as 1:1 and 1:2 with kaolin showed diminutive activity compared to the control. These results proved that the kaolin adsorb metronidazole and abolish its antimicrobial activity and such combination should be avoided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kaolin" title="kaolin">kaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=metronidazole" title=" metronidazole"> metronidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Helicobacter%20pylori.%20E.%20coli" title=" Helicobacter pylori. E. coli"> Helicobacter pylori. E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/14957/determination-of-the-effect-of-kaolin-on-the-antimicrobial-activity-of-metronidazole-kaolin-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2233</span> Bacterial Cellulose: A New Generation Antimicrobial Wound Dressing Biomaterial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhavana%20V.%20Mohite">Bhavana V. Mohite</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20V.%20Patil"> Satish V. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacterial cellulose (BC) is an alternative for plant cellulose (PC) that prevents global warming leads to preservation of nature. Although PC and BC have the same chemical structure, BC is superior with its properties like its size, purity, porosity, degree of polymerization, crystallinity and water holding capacity, thermal stability etc. On this background the present study focus production and applications of BC as antimicrobial wound dressing material. BC was produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and statistically enhanced upto 7.2 g/l from 3.0 g/l. BC was analyzed for its physico mechanical, structural and thermal characteristics. BC produced at shaking condition exhibits more suitable properties in support to its high performance applications. The potential of nano silver impregnated BC was determined for sustained release modern antimicrobial wound dressing material by swelling ratio, mechanical properties and antimicrobial activity against Staphylococcus aureus. BC in nanocomposite form with other synthetic polymer like PVA shows improvement in its properties such as swelling ratio (757% to 979%) and sustainable release of antibacterial agent. The high drug loading and release potential of BC was evidenced in support to its nature as antimicrobial wound dressing material. The nontoxic biocompatible nature of BC was confirmed by MTT assay on human epidermal cells with 90% cell viability that allows its application as a regenerative biomaterial. Thus, BC as a promising new generation antimicrobial wound dressing material was projected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agitated%20culture" title="agitated culture">agitated culture</a>, <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title=" biopolymer"> biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=gluconoacetobacter%20hansenii" title=" gluconoacetobacter hansenii"> gluconoacetobacter hansenii</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/40913/bacterial-cellulose-a-new-generation-antimicrobial-wound-dressing-biomaterial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2232</span> In Vitro Antifungal Activity of Essential Oil Artemisia Absinthium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouchenak%20Fatima">Bouchenak Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Lmegharbi%20Abdelbaki"> Lmegharbi Abdelbaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Houssem%20Degaichia"> Houssem Degaichia</a>, <a href="https://publications.waset.org/abstracts/search?q=Benrebiha%20Fatima"> Benrebiha Fatima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The essential oil composition of the leaf of Artemisia absinthium from region of Cherchell (The south of Algeria) was investigated by GC, GC-MS. 27 constituents were identified correspond to 84, 63% of the total oil. The major components are Thujone (60, 82%), Chamazulènel (16, 62%), ρ-cymène (4, 29%) and 2-carène (4.25%). The antimicrobial activity of oil was tested in vitro by two methods (agar diffusion and microdilution) on three plant pathogenic fungi. This oil has been tested for antimicrobial activity against three pathogenic fungi (Botrytis cinerea, Fusarium culmorum and Helminthosporium Sp.).The study of activity was evaluated by two methods: Method of diffusion in gelose and the minimum inhibitory concentration MIC. This oil exhibited an interesting antimicrobial activity. A preliminary study showed that this oil presented high toxicity against this fungus. These results, although preliminary show a good antifungal activity, to limit and inhibit stop the development of those pathogen agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artemisia%20absinthian" title="artemisia absinthian">artemisia absinthian</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction%20process" title=" extraction process"> extraction process</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20study" title=" chemical study"> chemical study</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title=" antifungal activity"> antifungal activity</a> </p> <a href="https://publications.waset.org/abstracts/23681/in-vitro-antifungal-activity-of-essential-oil-artemisia-absinthium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2231</span> Characterization and Optimization of Antimicrobial Compound/S Produced by Asperigillus Fumigatus Isolated from Monuments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20M.%20Kewisha">Mohammad A. M. Kewisha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Xerophilic fungi , which are responsible for many cases of biodeterioration monuments, have been known as an interesting source of antimicrobial compounds. Sixty nine fungal strains, isolated from different localities and species inside Egyptian museums, were screened for antimicrobial activity against some bacterial species and unicellular fungi. The most potent antimicrobial activity was obtained by Asperigillus fumigatus which was identified by ITS4 ……. and showed activity against Staphylococcus aureus with 20 mm and C. albicans with18 mm of inhibition zone. Different parameters were optimized to enhance this activity. The culture grown under stationary conditions for 8 days at 30°C and pH 8 gave the best antimicrobial activity. Moreover, both starch and yeast extract showed the most suitable carbon and nitrogen sources, respectively. The antimicrobial compound was purified and subjected to spectroscopic characterization, which revealed that the antimicrobial compound might be 5,7 ethoxy, 4\,5\ methoxy isorhamnetin -3- O- galactoside. This study suggests that Aspergillus fumagates as a potential candidate offering a better scope for the production, purification and isolation of broad-spectrum antimicrobial compounds. These findings will facilitate the scale-up and further purification to ascertain the compounds responsible for antimicrobial activity, which can be exploited for the treatment of biodeterioration monuments and pharmaceutical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=asperigillus%20fumigatus" title=" asperigillus fumigatus"> asperigillus fumigatus</a>, <a href="https://publications.waset.org/abstracts/search?q=Identification%20by%20ITS4" title=" Identification by ITS4"> Identification by ITS4</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20aureus" title=" Staphylococcus aureus"> Staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=C.albicans" title=" C.albicans"> C.albicans</a> </p> <a href="https://publications.waset.org/abstracts/171668/characterization-and-optimization-of-antimicrobial-compounds-produced-by-asperigillus-fumigatus-isolated-from-monuments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2230</span> Egyptian Soil Isolate Shows Promise as a Source of a New Broad-spectrum Antimicrobial Agent Against Multidrug-resistant Pathogens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norhan%20H.%20Mahdally">Norhan H. Mahdally</a>, <a href="https://publications.waset.org/abstracts/search?q=Bathini%20Thissera%20Riham%20A.%20ElShiekh"> Bathini Thissera Riham A. ElShiekh</a>, <a href="https://publications.waset.org/abstracts/search?q=Noha%20M.%20Elhosseiny"> Noha M. Elhosseiny</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20T.%20Kashef"> Mona T. Kashef</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20El%20Halawany"> Ali M. El Halawany</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20E.%20Rateb"> Mostafa E. Rateb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Attia"> Ahmed S. Attia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multidrug-resistant (MDR) pathogens pose a global threat to healthcare settings. The exhaustion of the current antibiotic arsenal and the scarcity of new antimicrobials in the pipeline aggravate this threat and necessitate a prompt and effective response. This study focused on two major pathogens that can cause serious infections: carbapenem-resistant Acinetobacter baumannii (CRAB) and methicillin-resistant Staphylococcus aureus (MRSA). Multiple soil isolates were collected from several locations throughout Egypt and screened for their conventional and non-conventional antimicrobial activities against MDR pathogens. One isolate exhibited potent antimicrobial activity and was subjected to multiple rounds of fractionation. After fermentation and bio-guided fractionation, we identified pure microbial secondary metabolites with two scaffolds that exhibited promising effects against CRAB and MRSA. Scaling up and chemical synthesis of derivatives of the identified metabolite resulted in obtaining a more potent derivative, which we designated as 2HP. Cytotoxicity studies indicated that 2HP is well-tolerated by human cells. Ongoing work is focusing on formulating the new compound into a nano-formulation to enhance its delivery. Also, to have a better idea about how this compound works, a proteomic approach is currently underway. Our findings suggest that 2HP is a potential new broad-spectrum antimicrobial agent. Further studies are needed to confirm these findings and to develop 2HP into a safe and effective treatment for MDR infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broad-spectrum%20antimicrobials" title="broad-spectrum antimicrobials">broad-spectrum antimicrobials</a>, <a href="https://publications.waset.org/abstracts/search?q=carbapenem-resistant%20acinetobacter%20baumannii" title=" carbapenem-resistant acinetobacter baumannii"> carbapenem-resistant acinetobacter baumannii</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20discovery" title=" drug discovery"> drug discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=methicillin-resistant%20staphylococcus%20aureus" title=" methicillin-resistant staphylococcus aureus"> methicillin-resistant staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug-resistant" title=" multidrug-resistant"> multidrug-resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20products" title=" natural products"> natural products</a> </p> <a href="https://publications.waset.org/abstracts/170540/egyptian-soil-isolate-shows-promise-as-a-source-of-a-new-broad-spectrum-antimicrobial-agent-against-multidrug-resistant-pathogens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2229</span> Drug Use Knowledge and Antimicrobial Drug Use Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pimporn%20Thongmuang">Pimporn Thongmuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The import value of antimicrobial drugs reached approximately fifteen million Baht in 2010, considered as the highest import value of all modern drugs, and this value is rising every year. Antimicrobials are considered the hazardous drugs by the Ministry of Public Health. This research was conducted in order to investigate the past knowledge of drug use and Antimicrobial drug use behavior. A total of 757 students were selected as the samples out of a population of 1,800 students. This selected students had the experience of Antimicrobial drugs use a year ago. A questionnaire was utilized in this research. The findings put on the view that knowledge gained by the students about proper use of antimicrobial drugs was not brought into practice. This suggests that the education procedure regarding drug use needs adjustment. And therefore the findings of this research are expected to be utilized as guidelines for educating people about the proper use of antimicrobial drugs. At a broader perspective, correct drug use behavior of the public may potentially reduce drug cost of the Ministry of Public Health of Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20use%20knowledge" title="drug use knowledge">drug use knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20drugs" title=" antimicrobial drugs"> antimicrobial drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20use%20behavior" title=" drug use behavior"> drug use behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=drug" title=" drug"> drug</a> </p> <a href="https://publications.waset.org/abstracts/3900/drug-use-knowledge-and-antimicrobial-drug-use-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2228</span> Cotton Treated with Spent Coffee Extract for Realizing Functional Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Hwa%20Hong">Kyung Hwa Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to evaluate the ability of spent coffee extract to enhance the antioxidant and antimicrobial properties of cotton fabrics. The emergence and spread of infectious diseases has raised a global interest in the antimicrobial substances. The safety of chemical agents, such as antimicrobials and dyes, which may irritate the skin, cause cellular and organ damage, and have adverse environmental impacts during their manufacturing, in relation to the human body has not been established. Nevertheless, there is a growing interest in natural antimicrobials that kill microorganisms or stop their growth without dangerous effects on human health. Spent coffee is the by-product of coffee brewing and amounted to 96,000 tons worldwide in 2015. Coffee components such as caffeine, melanoidins, and chlorogenic acid have been reported to possess multifunctional properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Therefore, the current study examined the possibility of applying spent coffee in functional textile finishing. Spent coffee was extracted with 60% methanol solution, and the major components of the extract were quantified. In addition, cotton fabrics treated with spent coffee extract through a pad-dry-cure process were investigated for antioxidant and antimicrobial activities. The cotton fabrics finished with the spent coffee extract showed an increase in yellowness, which is an unfavorable outcome from the fabric finishing process. However, the cotton fabrics finished with the spent coffee extract exhibited considerable antioxidant activity. In particular, the antioxidant ability significantly increased with increasing concentrations of the spent coffee extract. The finished cotton fabrics showed antimicrobial ability against S. aureus but relatively low antimicrobial ability against K. pneumoniae. Therefore, further investigations are needed to determine the appropriate concentration of spent coffee extract to inhibit the growth of various pathogenic bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spent%20coffee%20grounds" title="spent coffee grounds">spent coffee grounds</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20finishing%20agent" title=" natural finishing agent"> natural finishing agent</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/82466/cotton-treated-with-spent-coffee-extract-for-realizing-functional-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2227</span> Antimicrobial Activity of the Cyanobacteria spp. against Fish Pathogens in Aquaculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Tulay%20Cagatay">I. Tulay Cagatay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blue-green microalgae cyanobacteria, which are important photosynthetic organisms of aquatic ecosystems, are the primary sources of many bioactive compounds such as proteins, carbohydrates, lipids, vitamins and enzymes that can be used as antimicrobial and antiviral agents. Some of these organisms are nowadays used directly in the food, cosmetic and pharmaceutical industry, or in aquaculture and biotechnological approaches like biofuel or drug therapy. Finding the effective, environmental friendly chemotropic and antimicrobial agents to control fish pathogens are crucial in a country like Turkey which has a production capacity of about 240 thousand tons of cultured fish and has 2377 production farms and which is the second biggest producer in Europe. In our study, we tested the antimicrobial activity of cyanobacterium spp. against some fish pathogens Aeromonas hydrophila and Yersinia ruckeri that are important pathogens for rainbow trout farms. Agar disk diffusion test method was used for studying antimicrobial activity on pathogens. Both tested microorganisms have shown antimicrobial activity positively as the inhibition zones were 0.45 mm and 0.40 mm respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fish%20pathogen" title="fish pathogen">fish pathogen</a>, <a href="https://publications.waset.org/abstracts/search?q=cyanobacteria" title=" cyanobacteria"> cyanobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=trout" title=" trout"> trout</a> </p> <a href="https://publications.waset.org/abstracts/83606/antimicrobial-activity-of-the-cyanobacteria-spp-against-fish-pathogens-in-aquaculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2226</span> Phytochimical Screening and Antimicrobial Activity of Ethanolic Extract of Solenostemma Argel (Asclepiadaceae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Acheuk">Fatma Acheuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Akila%20Hamichi"> Akila Hamichi</a>, <a href="https://publications.waset.org/abstracts/search?q=Siham%20Semmar"> Siham Semmar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crude ethanolic extract from Solenostemma argel was obtained by maceration of leaves and stems of the plant. Phytochimical study revealed the richness of the species on flavonoids, alkaloids, tannins and glycosides. Antimicrobial activity of the growth of clinical isolates of Eschirichia coli, Pseudomonas aeriginosa, Staphylococus aureus and Bacillus Subtilis was carried out using agar disc diffusion. The results of the study revealed that the test compound has antimicrobial activity against gram-positive bacteria which are resistant to commonly antimicrobial agents used. However, no effect was observed on other species tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Solenostemma%20argel" title="Solenostemma argel">Solenostemma argel</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20extract" title=" crude extract"> crude extract</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20screening" title=" phytochemical screening"> phytochemical screening</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity "> antimicrobial activity </a> </p> <a href="https://publications.waset.org/abstracts/37158/phytochimical-screening-and-antimicrobial-activity-of-ethanolic-extract-of-solenostemma-argel-asclepiadaceae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2225</span> Polyphenol and Antimicrobial Activity in Olive Oil from Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Zemour">Kamel Zemour</a>, <a href="https://publications.waset.org/abstracts/search?q=Kada%20Mohamed%20Amine%20Chouhim"> Kada Mohamed Amine Chouhim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mairif"> Mohamed Mairif</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadj%20Eddine%20Adda%20Ardjan"> Tadj Eddine Adda Ardjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many recent studies show the positive effect of phenolic compounds in olive oil on health. They are known for their biological properties, where they have shown potential activity as an antioxidant, anti-inflammatory, and antimicrobial agents. However, this characteristic is rarely studied in olive oil from different regions of Algeria. Different samples collected from the western region of Algeria were evaluated for their polyphenol content, antioxidant activity, and antimicrobial effect. The obtained results demonstrated that this oil is rich in polyphenols and revealed high antimicrobial activity against Staphylococcus aureus and Escherichia coli. Finally, this study has highlighted the nutritional and pharmaceutical importance of olive oil grown in Algeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive%20oil" title="olive oil">olive oil</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/159649/polyphenol-and-antimicrobial-activity-in-olive-oil-from-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2224</span> Antimicrobial Potential of Calendula officinalis Extracts on Flavobacterium columnare of Clarias gariepinus Fingerlings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nelson%20Rotimi%20Osungbemiro">Nelson Rotimi Osungbemiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanni%20Rafiu%20Olugbenga"> Sanni Rafiu Olugbenga</a>, <a href="https://publications.waset.org/abstracts/search?q=Abayomi%20Olufemi%20Olajuyigbe"> Abayomi Olufemi Olajuyigbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ninety Fingerlings of Clarias gariepinus were exposed to the pathogenic Flavobacterium columnare a Gram Negative bacteria responsible for high mortality in fish pond raised young fish (fries and fingerlings) of Clarias sp. in Southwestern Nigeria. After feeding with 40% crude protein pelletized fish feed for 5 days, the fishes were divided into two groups, one group was treated with extracts from Calendula officinalis flowers, while the second group was not treated (control). The results indicated that, at day 5, colony formation had been manifesting and at day 7, skin lesion occurred and at the 8th day, first mortality of fish occurred, and this continued steadily on the 9th-12th day when all the fishes were dead. Whereas, in the group that was treated with Calendula sp., no single mortality was recorded. This research shows that plant extract from Calendula flowers is an effective antimicrobial agent against the virulent pathogenic Flavobacterium columnare disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavobacterium%20columnare" title=" Flavobacterium columnare"> Flavobacterium columnare</a>, <a href="https://publications.waset.org/abstracts/search?q=Clarias%20gariepinus" title=" Clarias gariepinus"> Clarias gariepinus</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a> </p> <a href="https://publications.waset.org/abstracts/25461/antimicrobial-potential-of-calendula-officinalis-extracts-on-flavobacterium-columnare-of-clarias-gariepinus-fingerlings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">608</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2223</span> Preparation and Characterization of Cellulose Based Antimicrobial Food Packaging Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Memet%20Vezir%20Kahraman">Memet Vezir Kahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Sen"> Ferhat Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to develop polyelectrolyte structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic hydroxyethyl cellulose was synthesized and characterized by Fourier Transform Infrared, carbon and proton Nuclear Magnetic Resonance spectroscopy. Its nitrogen content was determined by the Kjeldahl method. Polyelectrolyte structured antimicrobial food packaging materials were prepared using hydroxyethyl cellulose, cationic hydroxyethyl cellulose, and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of samples was investigated by scanning electron microscope. The obtained results prove that produced food packaging materials have good thermal and antimicrobial properties, and they can be used as food packaging material in many industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20food%20packaging" title="antimicrobial food packaging">antimicrobial food packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20hydroxyethyl%20cellulose" title=" cationic hydroxyethyl cellulose"> cationic hydroxyethyl cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=polyelectrolyte" title=" polyelectrolyte"> polyelectrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20alginate" title=" sodium alginate"> sodium alginate</a> </p> <a href="https://publications.waset.org/abstracts/93166/preparation-and-characterization-of-cellulose-based-antimicrobial-food-packaging-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent&page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent&page=76">76</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>