CINXE.COM

Search results for: core sediments

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: core sediments</title> <meta name="description" content="Search results for: core sediments"> <meta name="keywords" content="core sediments"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="core sediments" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="core sediments"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2266</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: core sediments</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2266</span> Vertical Distribution of Heavy Metals and Enrichment in Core Marine Sediments of East Malaysia by INAA and ICP-MS </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmadreza%20Ashraf">Ahmadreza Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20Saion"> Elias Saion</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Gharib%20Shahi"> Elham Gharib Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chee%20Kong%20Yap"> Chee Kong Yap</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Suhaimi%20Hamzah"> Mohd Suhaimi Hamzah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fifty-five core marine sediments from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea of coastal East Malaysia was analyzed for heavy metals using Instrumental Neutron Activation Analysis and Inductively Coupled Plasma Mass Spectroscopy. The enrichment factor of As, Cd, Cr, Cu, Ni, Pb, and Zn varied from 0.42 to 4.26, 0.50 to 2.34, 0.31 to 0.82, 0.20 to 0.61, 0.91 to 1.92, 0.23 to 1.52, and 0.90 to 1.28 respectively, with the modified degree of contamination values below 0.6. Comparative data show that coastal East Malaysia is of low levels of contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20East%20Malaysia" title="coastal East Malaysia">coastal East Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=core%20marine%20sediments" title=" core marine sediments"> core marine sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=enrichment%20factor" title=" enrichment factor"> enrichment factor</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=INAA%20and%20ICP%20method" title=" INAA and ICP method"> INAA and ICP method</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20degree%20of%20contamination" title=" modified degree of contamination"> modified degree of contamination</a> </p> <a href="https://publications.waset.org/abstracts/44263/vertical-distribution-of-heavy-metals-and-enrichment-in-core-marine-sediments-of-east-malaysia-by-inaa-and-icp-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2265</span> Assessment of Trace Metals Contamination in Surficial and Core Sediments from Ghannouch- Gabes Coastline, Impact of Phosphogypsum Discharge, Southeastern of Tunisia, Mediterranean Sea: Geochemical and Mineralogical Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rim%20Ben%20Amor">Rim Ben Amor</a>, <a href="https://publications.waset.org/abstracts/search?q=Myriam%20Abidi"> Myriam Abidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Moncef%20Gueddari"> Moncef Gueddari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study is to assess the level and the distribution of CaO, SO3, Cd, Cu, Pb and Zn incore sediments of Ghannouch-Gabes coast, Gulf of Gabes, Tunisian Mediterranean coast. The XRD analyses indicate that the sediments of Ghannouch-Gabes coast are mainly composed of quartz, calcite, gypsum and fluorine reflecting the impact of the phosphate fertilizer industrial waste. The vertical distribution of surface sediments shows for all the elements analyzed, that the area located between the commercial and the fishing port of Gabes, is the most polluted zone, where the two harbors acted as barriers and limited the dispersion of phosphogypsum discharge. The abundance order of metals was found to be Zn > Cd > Cu >Pb and that the highest levels of heavy metals were found in the uppermost segment of the sediment core compared to lower depth subsurface due to a continuous input of PG release and showed that the area between the two harbor suffered from several types of pollutants compared to reference core C1, collected from non-industrialized area. The level of pollution was evaluated using contamination factor (Cf), pollution load index (PLI) and the geoaccumulation index (Igeo). The obtained results of Igeo allowed us to distinguish that the area between the commercial harbor of Ghannouch and the fishing harbor of Gabes is the most polluted where sediments are strongly contaminated for Pb, Cu and Cd. The pollution load index (PLI) of all sediments collected classified them as "polluted". According to contamination factor (Cf), the sediments can be considered as ‘considerable’ to ‘very high’ contaminated for Pb, ‘very high to moderate’ for Cd, ‘ moderate’ for Zn, between ‘moderate’ and ‘considerable’ for Cu. Statistical analyses show that heavy metals, fluoride, calcium and sulphate are resulting from the same anthropogenic origin. The metallic pollution status of sediments of Ghanouch -Gabes coast is worrying and requires a serious intervention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title="trace metals">trace metals</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphogypsum" title=" phosphogypsum"> phosphogypsum</a>, <a href="https://publications.waset.org/abstracts/search?q=core%20sediments" title=" core sediments"> core sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=accumulation%20factor" title=" accumulation factor"> accumulation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20factor" title=" contamination factor"> contamination factor</a> </p> <a href="https://publications.waset.org/abstracts/73427/assessment-of-trace-metals-contamination-in-surficial-and-core-sediments-from-ghannouch-gabes-coastline-impact-of-phosphogypsum-discharge-southeastern-of-tunisia-mediterranean-sea-geochemical-and-mineralogical-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2264</span> Physicochemical Characterizations of Marine and River Sediments in the North of France</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abriak%20Nor%20Edine">Abriak Nor Edine</a>, <a href="https://publications.waset.org/abstracts/search?q=Zentar%20Rachid"> Zentar Rachid</a>, <a href="https://publications.waset.org/abstracts/search?q=Achour%20Raouf"> Achour Raouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Ngoc%20Thanh"> Tran Ngoc Thanh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is undertaken to develop a methodology to enhance the management of dredged marine and river sediments in the North of France. The main objective of this study is to determine the main characteristics of these sediments. In this order, physical, mineralogical and chemical properties of both types of sediments are measured. Moreover, their potential impacts on the environment are assessed throughout leaching tests. From the obtained results, the potential of their use in road engineering is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20sediments" title="marine sediments">marine sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20sediments" title=" river sediments"> river sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=physico%20chemical%20characterizations" title=" physico chemical characterizations"> physico chemical characterizations</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20characterizations" title=" environmental characterizations"> environmental characterizations</a> </p> <a href="https://publications.waset.org/abstracts/18912/physicochemical-characterizations-of-marine-and-river-sediments-in-the-north-of-france" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2263</span> Treatment of Dredged Marine Sediments for Their Reuse in Road Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Ben%20Abdelghani">F. Ben Abdelghani</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Maherezi"> W. Maherezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dredging operations generate, each year, a great quantity of marine sediments. These raw materials can not be used in road construction without a specific treatment process. Sediments suitability tests has shown that most of studied sediments are not suitable to be used in road construction. In order to improve their compacity and their mechanical performance, addition of a granular material is recommended. The use of a dredged sand, to improve the granular mixture containing sediments, allows a better management of the two types of dredge materials (sand and sediment). In this study, a new road material containing dredged marine sediments and dredged sand is formulated and treated by adding various binders. Mechanical performance investigation of different mixtures by measuring Proctor-IPI values and simple compressive strengths is realized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dredged%20sediments" title="dredged sediments">dredged sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=suitability%20tests" title=" suitability tests"> suitability tests</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20construction" title=" road construction"> road construction</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20binder" title=" hydraulic binder"> hydraulic binder</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20performance" title=" mechanical performance"> mechanical performance</a> </p> <a href="https://publications.waset.org/abstracts/41254/treatment-of-dredged-marine-sediments-for-their-reuse-in-road-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2262</span> [Keynote Speech]: Determination of Naturally Occurring and Artificial Radionuclide Activity Concentrations in Marine Sediments in Western Marmara, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erol%20Kam">Erol Kam</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20U.%20Y%C3%BCm%C3%BCn"> Z. U. Yümün</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural and artificial radionuclides cause radioactive contamination in environments, just as the other non-biodegradable pollutants (heavy metals, etc.) sink to the sea floor and accumulate in sediments. Especially the habitat of benthic foraminifera living on the surface of sediments or in sediments at the seafloor are affected by radioactive pollution in the marine environment. Thus, it is important for pollution analysis to determine the radionuclides. Radioactive pollution accumulates in the lowest level of the food chain and reaches humans at the highest level. The more the accumulation, the more the environment is endangered. This study used gamma spectrometry to investigate the natural and artificial radionuclide distribution of sediment samples taken from living benthic foraminifera habitats in the Western Marmara Sea. The radionuclides, K-40, Cs-137, Ra-226, Mn 54, Zr-95+ and Th-232, were identified in the sediment samples. For this purpose, 18 core samples were taken from depths of about 25-30 meters in the Marmara Sea in 2016. The locations of the core samples were specifically selected exclusively from discharge points for domestic and industrial areas, port locations, and so forth to represent pollution in the study area. Gamma spectrometric analysis was used to determine the radioactive properties of sediments. The radionuclide concentration activity values in the sediment samples obtained were Cs-137=0.9-9.4 Bq/kg, Th-232=18.9-86 Bq/kg, Ra-226=10-50 Bq/kg, K-40=24.4–670 Bq/kg, Mn 54=0.71–0.9 Bq/kg and Zr-95+=0.18–0.19 Bq/kg. These values were compared with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) data, and an environmental analysis was carried out. The Ra-226 series, the Th-232 series, and the K-40 radionuclides accumulate naturally and are increasing every day due to anthropogenic pollution. Although the Ra-226 values obtained in the study areas remained within normal limits according to the UNSCEAR values, the K-40, and Th-232 series values were found to be high in almost all the locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ra-226" title="Ra-226">Ra-226</a>, <a href="https://publications.waset.org/abstracts/search?q=Th-232" title=" Th-232"> Th-232</a>, <a href="https://publications.waset.org/abstracts/search?q=K-40" title=" K-40"> K-40</a>, <a href="https://publications.waset.org/abstracts/search?q=Cs-137" title=" Cs-137"> Cs-137</a>, <a href="https://publications.waset.org/abstracts/search?q=Mn%2054" title=" Mn 54"> Mn 54</a>, <a href="https://publications.waset.org/abstracts/search?q=Zr-95%2B" title=" Zr-95+"> Zr-95+</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=Western%20Marmara%20Sea" title=" Western Marmara Sea"> Western Marmara Sea</a> </p> <a href="https://publications.waset.org/abstracts/64866/keynote-speech-determination-of-naturally-occurring-and-artificial-radionuclide-activity-concentrations-in-marine-sediments-in-western-marmara-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2261</span> Experimental Evaluation of Workability and Compressive Strength of Concrete With Sediments From Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khouadjia%20Mohamed%20Lyes%20Kamel">Khouadjia Mohamed Lyes Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensalem%20Sara"> Bensalem Sara</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdou%20Kamel"> Abdou Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkadi%20Ahmed%20Abderraouf"> Belkadi Ahmed Abderraouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kessal%20Oussama"> Kessal Oussama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimental study was conducted on sediments dredging from the dam of Bni Haroun, the most important and the largest dam in Algeria. The first phase of the work was to substitution of crushed sand with sediments to study the workability and compressive strength of ordinary concretes. The second phase of the work is to study the behavior of concrete with sediment under the effect of the freeze-thaw cycles. The results showed that the mechanical performance of concretes with sediments is better with a substitution rate of 10%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediments" title="sediments">sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=dam" title=" dam"> dam</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-thaw%20cycles" title=" freeze-thaw cycles"> freeze-thaw cycles</a> </p> <a href="https://publications.waset.org/abstracts/160304/experimental-evaluation-of-workability-and-compressive-strength-of-concrete-with-sediments-from-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2260</span> Geochemical Approach of Rare Earth Element Distribution: A Case Study from Lake Acigol, Denizli, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Budakoglu">M. Budakoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karaman"> M. Karaman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdelnasser"> A. Abdelnasser</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kiran"> D. Kiran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kumral"> M. Kumral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> About 50 mg lake sediment was digested in two steps. While first stage was completed with 6 ml 37% HCl, 2 ml 65% HNO3 and 1 ml 38-40% HF in an pressure and temperature controlled Teflon beaker using Berghoff Microwave™ at average 135°C, digestion procedure was completed with the addition of 6 ml 5% boric acid solution. REE contents of sediment samples were determined by Perkin Elmer DRC II ICP-MS in Geochemistry Research Laboratories (JAL/GRL) of Faculty of Mines, Istanbul Technical University. Chondrite-normalized REE patterns of Lake Acıgöl sediments show generally high abundance of REE compared to chondritic concentrations, with particular enrichment in LREE [(La/Lu)N = 4.85-19.90], [(La/Lu)N = 7.09-15.14], [(La/Lu)N = 9.42-15.52] and [(La/Lu)N = 7.69-15.63] for the surface sediment and 0-10 cm-, 10-20 cm- and 20-30 cm-subsurface sediments respectively. Also these samples showed flat HREE normalized to chondrite as (La/Sm)N ranging from 2.98 to 4.8 for surface sediments and for subsurface sediments from 3.28 to 3.97 (0-10 cm), 3.57 to 3.94 (10-20 cm) and 3.36 to 3.94 (20-30 cm) while (Gd/Yb)N ranging from 2.14 to 2.93, from 2.03 to 2.76, from 2.26 to 2.79 and from 2.05 to 2.76 from the surface and subsurface sediments respectively. Moreover, their REE profiles are similar to profiles of the continental collision basin (CCB) with negative Eu anomalies. In addition, their REE patterns illustrate generally low abundance of REE compared to concentrations of NASC, PAAS and UCC with very slight enrichment of LREE and positive Eu* anomalies. Therefore there is no comparable between our samples of surface and subsurface sediments and these types of international sediments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chondrite-normalized%20REE%20patterns" title="chondrite-normalized REE patterns">chondrite-normalized REE patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=hypersaline%20lake" title=" hypersaline lake"> hypersaline lake</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20sediments" title=" surface sediments"> surface sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=subsurface%20sediments" title=" subsurface sediments"> subsurface sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=Lake%20Ac%C4%B1g%C3%B6l" title=" Lake Acıgöl"> Lake Acıgöl</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/10632/geochemical-approach-of-rare-earth-element-distribution-a-case-study-from-lake-acigol-denizli-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2259</span> Assessment of Heavy Metal Contamination for the Sustainable Management of Vulnerable Mangrove Ecosystem, the Sundarbans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Begum">S. Begum</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Biswas"> T. Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Islam"> M. A. Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research investigates the distribution and contamination of heavy metals in core sediments collected from three locations of the Sundarbans mangrove forest. In this research, quality of the analysis is evaluated by analyzing certified reference materials IAEA-SL-1 (lake sediment), IAEA-Soil-7, and NIST-1633b (coal fly ash). Total concentrations of 28 heavy metals (Na, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Zn, Ga, As, Sb, Cs, La, Ce, Sm, Eu, Tb, Dy, Ho, Yb, Hf, Ta, Th, and U) have determined in core sediments of the Sundarbans mangrove by neutron activation analysis (NAA) technique. When compared with upper continental crustal (UCC) values, it is observed that mean concentrations of K, Ti, Zn, Cs, La, Ce, Sm, Hf, and Th show elevated values in the research area is high. In this research, the assessments of metal contamination levels using different environmental contamination indices (EF, Igeo, CF) indicate that Ti, Sb, Cs, REEs, and Th have minor enrichment of the sediments of the Sundarbans. The modified degree of contamination (mCd) of studied samples of the Sundarbans ecosystem show low contamination. The pollution load index (PLI) values for the cores suggested that sampling points are moderately polluted. The possible sources of the deterioration of the sediment quality can be attributed to the different chemical carrying cargo accidents, port activities, ship breaking, agricultural and aquaculture run-off of the area. Pearson correlation matrix (PCM) established relationships among elements. The PCM indicates that most of the metal's distributions have been controlled by the same factors such as Fe-oxy-hydroxides and clay minerals, and also they have a similar origin. The poor correlations of Ca with most of the elements in the sediment cores indicate that calcium carbonate has a less significant role in this mangrove sediment. Finally, the data from this research will be used as a benchmark for future research and help to quantify levels of metal pollutions, as well as to manage future ecological risks of the vulnerable mangrove ecosystem, the Sundarbans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=core%20sediment" title=" core sediment"> core sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20element" title=" trace element"> trace element</a>, <a href="https://publications.waset.org/abstracts/search?q=sundarbans" title=" sundarbans"> sundarbans</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerable" title=" vulnerable "> vulnerable </a> </p> <a href="https://publications.waset.org/abstracts/120508/assessment-of-heavy-metal-contamination-for-the-sustainable-management-of-vulnerable-mangrove-ecosystem-the-sundarbans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2258</span> Availability of Metals in Fired Bricks Incorporating Harbour Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabienne%20Baraud">Fabienne Baraud</a>, <a href="https://publications.waset.org/abstracts/search?q=Lydia%20Leleyter"> Lydia Leleyter</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Poree"> Sandra Poree</a>, <a href="https://publications.waset.org/abstracts/search?q=Melanie%20Lemoine"> Melanie Lemoine</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Oudghiri"> Fatiha Oudghiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alternative solutions to immersion at sea are searched for the huge amounts of dredged sediments around the world that might contain various types of contaminants. Possible re-uses of such materials in civil engineering appear as sustainable solutions. The French SEDIBRIC project (valorisation de SEDIments en BRIQues et tuiles) aims to replace a part of natural clays with dredged sediments in the preparation of fired bricks. The potential environmental impact of this re-use is explored to complete the technical and economic feasibility of the study. As part of the project, we investigate the environmental availability of metallic elements (Al, Ca, Cd, Co, Cr, Cu, Fe, Ni, Mg, Mn, Pb, Ti, and Zn) initially present in the dredged sediments selected for the project. Leaching tests (with H₂O, HCl, or EDTA) are conducted in the sediments than in the final bricks in order to evaluate the possible influence of some steps of the bricks manufacturing (desalination pre-treatment, firing, etc.). The desalination pre-treatment using tap water has no or few impacts on the environmental availability of the studied elements. On the opposite, the firing process (900°C) affects the value of the total content of elements detected in the bricks but also the environmental availability for various elements. For instance, Cd, Cu, Pb, and Zn are stabilized in the bricks, whereas the availability of some other elements (i.e., Cr, Ni) increases, depending on the nature of the extracting solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=availability" title="availability">availability</a>, <a href="https://publications.waset.org/abstracts/search?q=bricks" title=" bricks"> bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=dredged%20sediments" title=" dredged sediments"> dredged sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a> </p> <a href="https://publications.waset.org/abstracts/129774/availability-of-metals-in-fired-bricks-incorporating-harbour-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2257</span> Effect of Weathering on the Mineralogy and Geochemistry of Sediments of the Hyper Saline Urmia Salt Lake, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samad%20Alipour">Samad Alipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadije%20Mosavi%20Onlaghi"> Khadije Mosavi Onlaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urmia Salt Lake (USL) is a hypersaline lake in the northwest of Iran. It contains halite as main dissolved and precipitated mineral and the major mineral mixed with lake bed sediments. Other detrital minerals such as calcite, aragonite, dolomite, quartz, feldspars, augite are forming lake sediments. This study examined the impact of weathering of this sediments collected from 1.5 meters depth and augite placers. The study indicated that weathering of tephritic and adakite rocks of the Islamic Island at the immediate boundary of the lake play a main control of lake bed sediments and has produced a large volume of augite placer along the lake bank. Weathering increases from south to toward north with increasing distance from Islamic Island. Geochemistry of lake sediments demonstrated the enrichment of MgO, CaO, Sr with an elevated anomaly of Eu, possibly due to surface absorbance of Mn and Fe associated Sr elevation originating from adakite volcanic rocks in the vicinity of the lake basin. The study shows the local geology is the major factor in origin of lake sediments than chemical and biochemical produced mineral during diagenetic processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urmia%20Lake" title="Urmia Lake">Urmia Lake</a>, <a href="https://publications.waset.org/abstracts/search?q=weathering" title=" weathering"> weathering</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=augite" title=" augite"> augite</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/54597/effect-of-weathering-on-the-mineralogy-and-geochemistry-of-sediments-of-the-hyper-saline-urmia-salt-lake-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2256</span> Study of the Potential of Raw Sediments and Sediments Treated with Lime or Cement for Use in a Foundation Layer and the Base Layer of a Roadway </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor-Edine%20Abriak">Nor-Edine Abriak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Benzerzour"> Mahfoud Benzerzour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhamadou%20Amar"> Mouhamadou Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdeljalil%20Zri"> Abdeljalil Zri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, firstly we have studied the potential of raw sediments and sediments treated with lime or cement for use in a foundation layer and the base layer of a roadway. Secondly, we have examined mineral changes caused by the addition of lime or cement in order to explain the mechanical performance of stabilized sediments. After determining the amount of lime and cement required stabilizing the sediments, the compaction characteristics and Immediate Bearing Capacity (IBI) were studied using the Modified Proctor method. Then, the evolution of the three parameters, which are optimum water content, maximum dry density and IBI, were determined. Mechanical performances can be evaluated through resistance to compression, resistance under traction and the elasticity modulus. The resistances of the formulations treated with ROLAC&reg;645 increase with the amount of ROLAC&reg;645. Traction resistance and the elastic modulus were used to evaluate the potential of the formulations as road construction materials using the classification diagram. The results show that all the other formulations with ROLAC&reg;645 can be used in subgrades and foundation layers for roads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment" title="sediment">sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=roadway" title=" roadway"> roadway</a> </p> <a href="https://publications.waset.org/abstracts/53905/study-of-the-potential-of-raw-sediments-and-sediments-treated-with-lime-or-cement-for-use-in-a-foundation-layer-and-the-base-layer-of-a-roadway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2255</span> Concentrations and History of Heavy Metals in Sediment Cores: Geochemistry and Geochronology Using 210Pb</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Fernandes">F. Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Poleto"> C. Poleto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at assessing the concentrations of heavy metals and the isotopic composition of lead <sup>210</sup>Pb in different fractions of sediment produced in the watershed that makes up the M&atilde;e d&#39;&aacute;gua dam and thus characterizing the distribution of metals along the sedimentary column and inferencing in the urbanization of the same process. Sample collection was carried out in June 2014; eight sediment cores were sampled in the lake of the dam. For extraction of the sediments core, a core sampler &ldquo;Piston Core&rdquo; was used. The trace metal concentrations were determined by conventional atomic absorption spectrophotometric methods. The samples were subjected to radiochemical analysis of <sup>210</sup>Po. <sup>210</sup>Pb activity was obtained by measuring <sup>210</sup>Po activity. The chronology was calculated using the constant rate of supply (CRS). <sup>210</sup>Pb is used to estimate the sedimentation rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C2%B2%C2%B9%E2%81%B0Pb%20dating%20method" title="²¹⁰Pb dating method">²¹⁰Pb dating method</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=lakes%20urban" title=" lakes urban"> lakes urban</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20history" title=" pollution history"> pollution history</a> </p> <a href="https://publications.waset.org/abstracts/47912/concentrations-and-history-of-heavy-metals-in-sediment-cores-geochemistry-and-geochronology-using-210pb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2254</span> Spatial REE Geochemical Modeling at Lake Acıgöl, Denizli, Turkey: Analytical Approaches on Spatial Interpolation and Spatial Correlation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Budakoglu">M. Budakoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karaman"> M. Karaman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdelnasser"> A. Abdelnasser</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kumral"> M. Kumral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spatial interpolation and spatial correlation of the rare earth elements (REE) of lake surface sediments of Lake Acıgöl and its surrounding lithological units is carried out by using GIS techniques like Inverse Distance Weighted (IDW) and Geographically Weighted Regression (GWR) techniques. IDW technique which makes the spatial interpolation shows that the lithological units like Hayrettin Formation at north of Lake Acigol have high REE contents than lake sediments as well as ∑LREE and ∑HREE contents. However, Eu/Eu* values (based on chondrite-normalized REE pattern) show high value in some lake surface sediments than in lithological units and that refers to negative Eu-anomaly. Also, the spatial interpolation of the V/Cr ratio indicated that Acıgöl lithological units and lake sediments deposited in in oxic and dysoxic conditions. But, the spatial correlation is carried out by GWR technique. This technique shows high spatial correlation coefficient between ∑LREE and ∑HREE which is higher in the lithological units (Hayrettin Formation and Cameli Formation) than in the other lithological units and lake surface sediments. Also, the matching between REEs and Sc and Al refers to REE abundances of Lake Acıgöl sediments weathered from local bedrock around the lake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20geochemical%20modeling" title="spatial geochemical modeling">spatial geochemical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=IDW" title=" IDW"> IDW</a>, <a href="https://publications.waset.org/abstracts/search?q=GWR%20techniques" title=" GWR techniques"> GWR techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=REE" title=" REE"> REE</a>, <a href="https://publications.waset.org/abstracts/search?q=lake%20sediments" title=" lake sediments"> lake sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=Lake%20Ac%C4%B1g%C3%B6l" title=" Lake Acıgöl"> Lake Acıgöl</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/10634/spatial-ree-geochemical-modeling-at-lake-acigol-denizli-turkey-analytical-approaches-on-spatial-interpolation-and-spatial-correlation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2253</span> Detailed Depositional Resolutions in Upper Miocene Sands of HT-3X Well, Nam Con Son Basin, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vo%20Thi%20Hai%20Quan">Vo Thi Hai Quan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nam Con Son sedimentary basin is one of the very important oil and gas basins in offshore Vietnam. Hai Thach field of block 05-2 contains mostly gas accumulations in fine-grained, sand/mud-rich turbidite system, which was deposited in a turbidite channel and fan environment. Major Upper Miocene reservoir of HT-3X lies above a well-developed unconformity. The main objectives of this study are to reconstruct depositional environment and to assess the reservoir quality using data from 14 meters of core samples and digital wireline data of the well HT-3X. The wireline log and core data showed that the vertical sequences of representative facies of the well mainly range from Tb to Te divisions of Bouma sequences with predominance of Tb and Tc compared to Td and Te divisions. Sediments in this well were deposited in a submarine fan association with very fine to fine-grained, homogeneous sandstones that have high porosity and permeability, high- density turbidity currents with longer transport route from the sediment source to the basin, indicating good quality of reservoir. Sediments are comprised mainly of the following sedimentary structures: massive, laminated sandstones, convoluted bedding, laminated ripples, cross-laminated ripples, deformed sandstones, contorted bedding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hai%20Thach%20field" title="Hai Thach field">Hai Thach field</a>, <a href="https://publications.waset.org/abstracts/search?q=Miocene%20sand" title=" Miocene sand"> Miocene sand</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidite" title=" turbidite"> turbidite</a>, <a href="https://publications.waset.org/abstracts/search?q=wireline%20data" title=" wireline data"> wireline data</a> </p> <a href="https://publications.waset.org/abstracts/69815/detailed-depositional-resolutions-in-upper-miocene-sands-of-ht-3x-well-nam-con-son-basin-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2252</span> Use of Chemical Extractions to Estimate the Metals Availability in Bricks Made of Dredged Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabienne%20Baraud">Fabienne Baraud</a>, <a href="https://publications.waset.org/abstracts/search?q=Lydia%20Leleyter"> Lydia Leleyter</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Poree"> Sandra Poree</a>, <a href="https://publications.waset.org/abstracts/search?q=Melanie%20Lemoine"> Melanie Lemoine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SEDIBRIC (valorization de SEDIments en BRIQues et tuiles) is a French project that aims to replace a part of natural clays with dredged sediments in the preparation of fired bricks in order to propose an alternative solution for the management of harbor dredged sediments. The feasibility of such re-use is explored from a technical, economic, and environmental point of view. The present study focuses on the potential environmental impact of various chemical elements (Al, Ca, Cd, Co, Cr, Cu, Fe, Ni, Mg, Mn, Pb, Ti, and Zn) that are initially present in the dredged sediments. The total content (after acid digestion) and the environmental availability (estimated by single extractions with various extractants) of these elements are determined in the raw sediments and in the obtained fired bricks. The possible influence of some steps of the manufacturing process (sediment pre-treatment, firing) is also explored. The first results show that the pre-treatment step, which uses tap water to desalinate the raw sediment, does not influence the environmental availability of the studied elements. However, the firing process, performed at 900°C, can affect the amount of some elements detected in the bricks, as well as their environmental availability. We note that for Cr, or Ni, the HCl or EDTA availability was increased in the brick (compared to the availability in the raw sediment). For Cd, Cu, Pb, and Zn, the HCl and EDTA availability was reduced in the bricks, meaning that these elements were stabilized within the bricks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bricks" title="bricks">bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20extraction" title=" chemical extraction"> chemical extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/132584/use-of-chemical-extractions-to-estimate-the-metals-availability-in-bricks-made-of-dredged-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2251</span> Radioactive Contamination by ¹³⁷Cs in Marine Sediments Taken up from Cuba&#039;s North and South Coast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maris%C3%A9%20Garc%C3%ADa%20Batlle">Marisé García Batlle</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Manuel%20Navarrete%20Tejero"> Juan Manuel Navarrete Tejero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In aquatic ecosystems, the main indicators of pollution are contaminated sediments, which are the primary repository of radionuclides and chemicals elements in the marine environment. Radioactive Contamination Factor (RCF) has been proposed as a suitable unit to measure the magnitude of radioactive contamination at global scale, caused mainly by more than 2,000 nuclear explosions tests performed during the 1945-65 period. It is obtained as percentage of contaminant radioactivity (¹³⁷Cs) compared to natural radioactivity (⁴⁰K), both expressed in Bq/g of marine sediments conditioned in Marinelli containers and detected in both NaI(Tl) and HPGe detectors. So, in this paper samples of marine sediments were taken up along the occidental Cuban coasts and analyzed by gamma spectrometry for the determination of gamma-emitting radioisotopes with energies between 60 and 2000 keV. The results proved that the proposed method is simple and suitable to evaluated radioactive contamination. Also, the RCF values provide an appropriate indicator to predict which pollution levels in the future will be and if the rate will go down as disintegrates the ¹³⁷Cs present when only 2,4 half-lives have passed away. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cuba" title="Cuba">Cuba</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20spectrometry" title=" gamma spectrometry"> gamma spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20sediments" title=" marine sediments"> marine sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20pollution" title=" radioactive pollution"> radioactive pollution</a> </p> <a href="https://publications.waset.org/abstracts/81508/radioactive-contamination-by-137cs-in-marine-sediments-taken-up-from-cubas-north-and-south-coast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2250</span> Seismic Behavior of Short Core Buckling Restrained Braces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nader%20Hoveidae">Nader Hoveidae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the seismic behavior of a new type of buckling restrained braces (BRBs) called "Short Core BRBs" in which a shorter core segment is used as an energy dissipating part and an elastic part is serially connected to the core. It seems that a short core BRB is easy to be fabricated, inspected and replaced after a severe earthquake. In addition, the energy dissipating capacity in a short core BRB is higher because of larger core strains. However, higher core strain demands result in high potential of low-cycle fatigue fracture. In this paper, a strategy is proposed to estimate the minimum core length in a short core BRBs. The seismic behavior of short core buckling restrained brace is experimentally examined. The results revealed that the short core buckling restrained brace is able to sustain large inelastic strains without any significant instability or strength degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=short%20core" title="short core">short core</a>, <a href="https://publications.waset.org/abstracts/search?q=Buckling%20Restrained%20Brace" title=" Buckling Restrained Brace"> Buckling Restrained Brace</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20test" title=" cyclic test"> cyclic test</a> </p> <a href="https://publications.waset.org/abstracts/37090/seismic-behavior-of-short-core-buckling-restrained-braces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2249</span> Investigation of the Catalytic Role of Surfactants on Carbon Dioxide Hydrate Formation in Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Heidaryan">Ehsan Heidaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas hydrate sediments are ice like permafrost in deep see and oceans. Methane production in sequestration process and reducing atmospheric carbon dioxide, a main source of greenhouse gas, has been accentuated recently. One focus is capture, separation, and sequestration of industrial carbon dioxide. As a hydrate former, carbon dioxide forms hydrates at moderate temperatures and pressures. This phenomenon could be utilized to capture and separate carbon dioxide from flue gases, and also has the potential to sequester carbon dioxide in the deep seabeds. This research investigated the effect of synthetic surfactants on carbon dioxide hydrate formation, catalysis and consequently, methane production from hydrate permafrosts in sediments. It investigated the sequestration potential of carbon dioxide hydrates in ocean sediments. Also, the catalytic effect of biosurfactants in these processes was investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title="carbon dioxide">carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrate" title=" hydrate"> hydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=sequestration" title=" sequestration"> sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a> </p> <a href="https://publications.waset.org/abstracts/24778/investigation-of-the-catalytic-role-of-surfactants-on-carbon-dioxide-hydrate-formation-in-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2248</span> Measure Determination and Zoning of Oil Pollution (TPH) on ‎Costal Sediments of Bandar Abbas (Hormoz Strait) ‎</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Ehsanpour">Maryam Ehsanpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Afkhami%20%E2%80%8E"> Majid Afkhami ‎ </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the presence of hydrocarbon pollution in industrial waste water sediments found in west coast of Bandar Abass (northern part of Hormoz strait). Therefore, six transects from west of the city were selected. Each transect consists of three stations intervals 100, 600 and 1100 meter from the low tide were sampled in both the summer and winter season (July and January 2009). Physical and chemical parameters of water, concentration of total petroleum hydrocarbons (TPH) and soil tissue deposition were evaluated according to standard procedures of MOOPAM. Average results of dissolved oxygen were 6.42 mg/l, temperature 26.31°C, pH 8.55, EC 54.47 ms/cm and salinity 35.98 g/l respectively. Results indicate that minimum, maximum and average concentration of total petroleum hydrocarbons (TPH) in sediments were, 60.18, 751.83, and 229.21 µg/kg respectively which are less than comparable studies in other parts of Persian Gulf. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20pollution" title="oil pollution">oil pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=Bandar%20Abbas" title=" Bandar Abbas"> Bandar Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=costal%20sediments" title=" costal sediments"> costal sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=TPH%20%E2%80%8E" title=" TPH ‎"> TPH ‎</a> </p> <a href="https://publications.waset.org/abstracts/13330/measure-determination-and-zoning-of-oil-pollution-tph-on-costal-sediments-of-bandar-abbas-hormoz-strait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">718</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2247</span> Vertical and Horizantal Distribution Patterns of Major and Trace Elements: Surface and Subsurface Sediments of Endhorheic Lake Acigol Basin, Denizli Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Budakoglu">M. Budakoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karaman"> M. Karaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lake Acıgöl is located in area with limited influences from urban and industrial pollution sources, there is nevertheless a need to understand all potential lithological and anthropogenic sources of priority contaminants in this closed basin. This study discusses vertical and horizontal distribution pattern of major, trace elements of recent lake sediments to better understand their current geochemical analog with lithological units in the Lake Acıgöl basin. This study also provides reliable background levels for the region by the detailed surfaced lithological units data. The detail results of surface, subsurface and shallow core sediments from these relatively unperturbed ecosystems, highlight its importance as conservation area, despite the high-scale industrial salt production activity. While P2O5/TiO2 versus MgO/CaO classification diagram indicate magmatic and sedimentary origin of lake sediment, Log(SiO2/Al2O3) versus Log(Na2O/K2O) classification diagrams express lithological assemblages of shale, iron-shale, vacke and arkose. The plot between TiO2 vs. SiO2 and P2O5/TiO2 vs. MgO/CaO also supports the origin of the primary magma source. The average compositions of the 20 different lithological units used as a proxy for geochemical background in the study area. As expected from weathered rock materials, there is a large variation in the major element content for all analyzed lake samples. The A-CN-K and A-CNK-FM ternary diagrams were used to deduce weathering trends. Surface and subsurface sediments display an intense weathering history according to these ternary diagrams. The most of the sediments samples plot around UCC and TTG, suggesting a low to moderate weathering history for the provenance. The sediments plot in a region clearly suggesting relative similar contents in Al2O3, CaO, Na2O, and K2O from those of lithological samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lake%20Ac%C4%B1g%C3%B6l" title="Lake Acıgöl">Lake Acıgöl</a>, <a href="https://publications.waset.org/abstracts/search?q=recent%20lake%20sediment" title=" recent lake sediment"> recent lake sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemical%20speciation%20of%20major%20and%20trace%20elements" title=" geochemical speciation of major and trace elements"> geochemical speciation of major and trace elements</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=Denizli" title=" Denizli"> Denizli</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/10630/vertical-and-horizantal-distribution-patterns-of-major-and-trace-elements-surface-and-subsurface-sediments-of-endhorheic-lake-acigol-basin-denizli-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2246</span> Enhancing Value of Dam Dredged Sediments as a Component of a Self Compacting Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Belas">N. Belas</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Belaribi"> O. Belaribi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Aggoun"> S. Aggoun</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bendani"> K. Bendani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bouhamou"> N. Bouhamou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mebrouki"> A. Mebrouki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experimental work is a part of a long research on the valorization of the dam dredged sediments issued from Fergoug Dam (Mascara-West Algeria). These sediments have to be subjected to thermal treatment to become reactive with the cement and thus to obtain an artificial pozzolana. It is therefore a question of developing the calcined mud as substitutable material in part to the cement used in the composition of self compacting concrete. The objective of the present work is to highlight its influence on the behavior of self compacting concrete compared to that of the natural pozzolana and this, in fresh and hardened states. The study is being conducted on three SCC, the first using 20% in volume of natural pozzolana, the second with 20 % of calcined mud and the third for the sake of comparison is made with cement only. The first results showed the possibility of obtaining SCC with calcined mud complying with the AFGC recommendations having a good mechanical behavior which makes interesting its development as construction materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dam" title="dam">dam</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20state" title=" fresh state"> fresh state</a>, <a href="https://publications.waset.org/abstracts/search?q=hardened%20state%20mud" title=" hardened state mud"> hardened state mud</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20compacting%20concrete" title=" self compacting concrete"> self compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization "> valorization </a> </p> <a href="https://publications.waset.org/abstracts/19053/enhancing-value-of-dam-dredged-sediments-as-a-component-of-a-self-compacting-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2245</span> Mechanical Characterization and Impact Study on the Environment of Raw Sediments and Sediments Dehydrated by Addition of Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kasmi">A. Kasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20E.%20Abriak"> N. E. Abriak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Benzerzour"> M. Benzerzour</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Shahrour"> I. Shahrour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large volumes of river sediments are dredged each year in Europe in order to maintain harbour activities and prevent floods. The management of this sediment has become increasingly complex. Several European projects were implemented to find environmentally sound solutions for these materials. The main objective of this study is to show the ability of river sediment to be used in road. Since sediments contain a high amount of water, then a dehydrating treatment by addition of the flocculation aid has been used. Firstly, a lot of physical characteristics are measured and discussed for a better identification of the raw sediment and this dehydrated sediment by addition the flocculation aid. The identified parameters are, for example, the initial water content, the density, the organic matter content, the grain size distribution, the liquid limit and plastic limit and geotechnical parameters. The environmental impacts of the used material were evaluated. The results obtained show that there is a slight change on the physical-chemical and geotechnical characteristics of sediment after dehydration by the addition of polymer. However, these sediments cannot be used in road construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rive%20sediment" title="rive sediment">rive sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydration" title=" dehydration"> dehydration</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculation%20aid%20or%20polymer" title=" flocculation aid or polymer"> flocculation aid or polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristics" title=" characteristics"> characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=treatments" title=" treatments"> treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=valorisation" title=" valorisation"> valorisation</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20construction" title=" road construction"> road construction</a> </p> <a href="https://publications.waset.org/abstracts/36314/mechanical-characterization-and-impact-study-on-the-environment-of-raw-sediments-and-sediments-dehydrated-by-addition-of-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2244</span> Mobility of Metallic Trace Elements (MTE) in Water and Sediment of the Rivers: Case of Nil River, North-Eastern Algerian</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Benessam">S. Benessam</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Debieche"> T. H. Debieche</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Amiour"> S. Amiour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chine"> A. Chine</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khelili"> S. Khelili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The metallic trace elements (MTE) are present in water and sediments of the rivers with weak concentrations. Several physicochemical parameters (Eh, pH and oxygen dissolved) and chemical processes (adsorption, absorption, complexation and precipitation) as well as nature of the sediments control their mobility. In order to determine the effect of these factors on the mobility of some MTE (Cd, Cr, Cu, Fe, Pb and Zn) in water of the rivers, a two-monthly monitoring of the physicochemical parameters and chemistry of water and sediments of the Nil wadi (Algeria) was carried out during the period from November 2013 to January 2015. The results show that each MTE has its own conditions of mobility and generally are very influence by the variations of the pH and Eh. Under the natural conditions, neutral pH with basic and medium oxidizing, only the lead presented in water with raised values, indicating its solubility in water and its salting out of the sediments. The other MTE present raised concentrations in the sediments, indicating their trapping by adsorption and/or chemical precipitation. The chemical form of each ETM was given by Eh-pH diagrams. The spatio-temporal monitoring of these ETM shows the effect of the rains, the dry periods and the rejects in the variation of their concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemistry" title="chemistry">chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20trace%20elements" title=" metallic trace elements"> metallic trace elements</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/48257/mobility-of-metallic-trace-elements-mte-in-water-and-sediment-of-the-rivers-case-of-nil-river-north-eastern-algerian" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2243</span> Synthesis of Temperature Sensitive Nano/Microgels by Soap-Free Emulsion Polymerization and Their Application in Hydrate Sediments Drilling Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuan%20Li">Xuan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Weian%20Huang"> Weian Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinsheng%20Sun"> Jinsheng Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuhao%20Zhao"> Fuhao Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiyuan%20Wang"> Zhiyuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jintang%20Wang"> Jintang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural gas hydrates (NGHs) as promising alternative energy sources have gained increasing attention. Hydrate-bearing formation in marine areas is highly unconsolidated formation and is fragile, which is composed of weakly cemented sand-clay and silty sediments. During the drilling process, the invasion of drilling fluid can easily lead to excessive water content in the formation. It will change the soil liquid plastic limit index, which significantly affects the formation quality, leading to wellbore instability due to the metastable character of hydrate-bearing sediments. Therefore, controlling the filtrate loss into the formation in the drilling process has to be highly regarded for protecting the stability of the wellbore. In this study, the temperature-sensitive nanogel of P(NIPAM-co-AMPS-co-tBA) was prepared by soap-free emulsion polymerization, and the temperature-sensitive behavior was employed to achieve self-adaptive plugging in hydrate sediments. First, the effects of additional amounts of AMPS, tBA, and cross-linker MBA on the microgel synthesis process and temperature-sensitive behaviors were investigated. Results showed that, as a reactive emulsifier, AMPS can not only participate in the polymerization reaction but also act as an emulsifier to stabilize micelles and enhance the stability of nanoparticles. The volume phase transition temperature (VPTT) of nanogels gradually decreased with the increase of the contents of hydrophobic monomer tBA. An increase in the content of the cross-linking agent MBA can lead to a rise in the coagulum content and instability of the emulsion. The plugging performance of nanogel was evaluated in a core sample with a pore size distribution range of 100-1000nm. The temperature-sensitive nanogel can effectively improve the microfiltration performance of drilling fluid. Since a combination of a series of nanogels could have a wide particle size distribution at any temperature, around 200nm to 800nm, the self-adaptive plugging capacity of nanogels for the hydrate sediments was revealed. Thermosensitive nanogel is a potential intelligent plugging material for drilling operations in natural gas hydrate-bearing sediments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature-sensitive%20nanogel" title="temperature-sensitive nanogel">temperature-sensitive nanogel</a>, <a href="https://publications.waset.org/abstracts/search?q=NIPAM" title=" NIPAM"> NIPAM</a>, <a href="https://publications.waset.org/abstracts/search?q=self-adaptive%20plugging%20performance" title=" self-adaptive plugging performance"> self-adaptive plugging performance</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20operations" title=" drilling operations"> drilling operations</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrate-bearing%20sediments" title=" hydrate-bearing sediments"> hydrate-bearing sediments</a> </p> <a href="https://publications.waset.org/abstracts/166329/synthesis-of-temperature-sensitive-nanomicrogels-by-soap-free-emulsion-polymerization-and-their-application-in-hydrate-sediments-drilling-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2242</span> NFC Kenaf Core Graphene Paper: In-situ Method Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Izzati">M. A. Izzati</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rosazley"> R. Rosazley</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Fareezal"> A. W. Fareezal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Shazana"> M. Z. Shazana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rushdan"> I. Rushdan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jani"> M. Jani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonic probe were using to produce nanofibrillated cellulose (NFC) kenaf core. NFC kenaf core and graphene was mixed using in-situ method with the 5V voltage for 24 hours. The resulting NFC graphene paper was characterized by field emission scanning electron microscopy (FESEM), fourier transformed infrared (FTIR) spectra and thermogavimetric analysis (TGA). The properties of NFC kenaf core graphene paper are compared with properties of pure NFC kenaf core paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NFC" title="NFC">NFC</a>, <a href="https://publications.waset.org/abstracts/search?q=kenaf%20core" title=" kenaf core"> kenaf core</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20method" title=" in-situ method"> in-situ method</a> </p> <a href="https://publications.waset.org/abstracts/17245/nfc-kenaf-core-graphene-paper-in-situ-method-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2241</span> Petroleum Generative Potential of Eocene-Paleocene Sequences of Potwar Basin, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Bilawal%20Ali%20Shah">Syed Bilawal Ali Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation of the hydrocarbon source rock potential of Eocene-Paleocene formations of Potwar Basin, part of Upper Indus Basin Pakistan, was done using geochemical and petrological techniques. Analysis was performed on forty-five core-cutting samples from two wells. The sequences analysed are Sakesar, Lockhart and Patala formations of Potwar Basin. Patala Formation is one of Potwar Basin's major petroleum-bearing source rocks. The Lockhart Formation samples VR (%Ro) and Tmax data indicate that the formation is early mature to immature for petroleum generation for hydrocarbon generation; samples from the Patala and Sakesar formations, however, have a peak oil generation window and an early maturity (oil window). With 3.37 weight percent mean TOC and HI levels up to 498 mg HC/g TOC, the source rock characteristics of the Sakesar and Patala formations generally exhibit good to very strong petroleum generative potential. The majority of sediments representing Lockhart Formation have 1.5 wt.% mean TOC having fair to good potential with HI values ranging between 203-498 mg HC/g TOC. 1. The analysed sediments of all formations possess primarily mixed Type II/III and Type III kerogen. Analysed sediments indicate that both the Sakesar and Patala formations can possess good oil-generation potential and may act as an oil source rock in the Potwar Basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Potwar%20Basin" title="Potwar Basin">Potwar Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Patala%20Shale" title=" Patala Shale"> Patala Shale</a>, <a href="https://publications.waset.org/abstracts/search?q=Rock-Eval%20pyrolysis" title=" Rock-Eval pyrolysis"> Rock-Eval pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Indus%20Basin" title=" Indus Basin"> Indus Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=VR%20%25Ro" title=" VR %Ro"> VR %Ro</a> </p> <a href="https://publications.waset.org/abstracts/179984/petroleum-generative-potential-of-eocene-paleocene-sequences-of-potwar-basin-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2240</span> Precambrian/Neoproterozoic Sediments of the Sirt Basin, Libya: New Palynological Evidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20D.%20El-mehdawi">Ali D. El-mehdawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20E.%20Elkanouni"> Ibrahim E. Elkanouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thick pre-Upper Cretaceous sandstones, sandstones intercalated with red/black shale or quarzitic sandstones, traditionally known to range in age from Cambrian to Early Cretaceous, mostly overlie the subsurface basement rocks of the Sirt Basin of Libya. These sediments known as Nubian, Sarir, Amal or Cambro-Ordovician sandstones. They are usually barren of any age datable palynomorphs and microfossils and represent the main hydrocarbon reservoirs in the basin. As a part of an ongoing regional project concerned with revision and updating of the stratigraphic nomenclature of the Sirt Basin and adjacent areas, sixteen core and ditch cutting samples from four wells penetrating the known Cambro-Ordovician sediments in the central and eastern parts of the basin were examined palynologicaly to investigate its age and the depositional paleoenvironment. The samples proved to be barren or yielded rare palynomorph assemblage, which dominated by dark grey to black small and large-sized sphaeromorph acritarchs assemblage of leiosphaerid types. The dominated species are Kildinosphaera chagrinata, K. cf. chagrinata, Kildinella ripheica, Kilinella timanica, Leiosphaeridia asperata and Leiosphaeridia spp. These leiosphaerides assemblage are comparable to those have been reported from the Late Precambrian, late Riphean age in Cyrenaica Platform, NE Libya, and would indicated shallow marine depositional environment. The age assignment suggests that this interval most probably equates to Mourizide, Bir Bayai and Wadi alHayt formations known in the Murzuq, Kufrah and Cyrenaica areas, respectively. This study proves the presence of Precambrian sediments in Jaghbub high and Amal Platform in the eastern part of Sirt Basin and probably in Maradah Trough and Aj Jahamah/Zoltun Platform northwestern part of the Sirt Basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palynology" title="palynology">palynology</a>, <a href="https://publications.waset.org/abstracts/search?q=leiosphaerides" title=" leiosphaerides"> leiosphaerides</a>, <a href="https://publications.waset.org/abstracts/search?q=precambrian" title=" precambrian"> precambrian</a>, <a href="https://publications.waset.org/abstracts/search?q=sirt%20basin" title=" sirt basin"> sirt basin</a>, <a href="https://publications.waset.org/abstracts/search?q=libya" title=" libya"> libya</a> </p> <a href="https://publications.waset.org/abstracts/172547/precambrianneoproterozoic-sediments-of-the-sirt-basin-libya-new-palynological-evidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2239</span> Organic Pollution of Waters and Sediments in the Middle and Lower Valley of the Medjerda, Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samia%20Khadhar">Samia Khadhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Anis%20Chekirbene"> Anis Chekirbene</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouha%20Khiari"> Nouha Khiari</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20Mabrouki"> Amira Mabrouki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The persistent organic pollutants (POPs) in aquatic environments are one of the most worrying problems for environmental sustainability and human health because of their carcinogenic and toxic characteristics. Human anthropogenic actions (wastewater discharges, agricultural and industrial activities) without prior treatment are the main cause of this organic pollution. Oued Madjerda is considered the most important river in Tunisia, hence the importance of assessing the level of organic pollution of water and sediments, taking into account the anthropogenic stress exerted on this river. Water and sediment samples were taken from the middle and lower valley of the Medjerda to determine the state of contamination by 7PCBs, priority 15PAHs, and pesticides. The analysis was performed by gas chromatography (GC) and liquid phase coupled to HPLC MS-MS mass spectroscopy. The results showed that for the waters, the total PAH and PCB contents vary respectively from 0.0023 to 7.72 mg/l and from 0.0001 to 0.179 mg/l. In surface sediments 0 to 15 cm, 7PCB levels vary from 1,112 to 110,062 µg/kg-1. In this study, we tried to determine the concentration of 96 pesticides in surface sediments; analyzes showed the presence of Buprofezin, propamocarb-HCl, hexaconazole, flutriafol, quinalphos, and tebufenpyrad with concentrations varying from 1.06 to 2.388 µg/kg-1. The pace of the spatial variation confirms the impact of wastewater discharged on the quality of water and sediments despite the perennial aspect of the river. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wadi%20Madjerda" title="Wadi Madjerda">Wadi Madjerda</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollution" title=" organic pollution"> organic pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20and%20sediments%20surface" title=" water and sediments surface"> water and sediments surface</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropics%20stress" title=" anthropics stress"> anthropics stress</a> </p> <a href="https://publications.waset.org/abstracts/150228/organic-pollution-of-waters-and-sediments-in-the-middle-and-lower-valley-of-the-medjerda-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2238</span> Heavy Metal Contamination and Its Ecological Risks in the Beach Sediments along the Atlantic Ocean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armel%20Zacharie%20Ekoa%20Bessa">Armel Zacharie Ekoa Bessa</a>, <a href="https://publications.waset.org/abstracts/search?q=Annick%20Kwewouo%20Janpou"> Annick Kwewouo Janpou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sediments collected along the beaches of the Atlantic Ocean in Africa were analyzed by geochemical proxies such as the ICP-MS technique to determine their heavy metal contamination and related ecological risks. Several metals were selected and show a decreasing trend: Fe > Mn > Ni > Cu > Co > Zn > Cr > Cd. Several pollution indices have been calculated, including the enrichment factor (EF), whose values are generally higher than 1. 5; the geo-accumulation index (I-geo), with values of some elements (Co, Ni and Cu) in the sediments of the study area being higher than 0, and other metals (Zn, Cr, Fe and Mn) being lower than 0; the contamination factor (CF), where the values of all the selected elements are between 1 and 3; and the pollution load index (PLI), where the values in almost all the study sites are higher than 1. These results show moderate contamination of the investigated sediments with heavy metals. The potential ecological risk assessment (Eri and RI) suggests that this part of the African coast is a low to a slight risk area. Statistical analyses indicate that heavy metals have shown fairly similar trends with anthropogenic and natural sources. This study shows that this coastal area is not highly concentrated in heavy metals and reveals that the Atlantic coast of Africa would be moderately polluted by the metals studied, with a low to moderate ecological risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=atlantic%20ocean" title=" atlantic ocean"> atlantic ocean</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a> </p> <a href="https://publications.waset.org/abstracts/165141/heavy-metal-contamination-and-its-ecological-risks-in-the-beach-sediments-along-the-atlantic-ocean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2237</span> Classifying the Role of Technology in Technology Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Joung%20No">Hyun Joung No</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Lee"> Chul Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though technology evolves and develops through interaction with each other, not all technologies contribute to the development of technology equally. While some technologies play a central role in developing technology, others play a secondary role. The role of the technological components can be classified as core or non-core (peripheral) technology. The core technologies have a considerable knowledge interaction with other technological components while the non-core technologies barely interact with others within the system. This study introduces the concept that classifies the technological components into core or peripheral technology according to their role and importance in the technology field. The study adapted the social network analysis to examine the relationship between technological components. Using a continuous core-periphery analysis, it identifies the technological network structure and classifies the core and peripheral nodes. Based on their knowledge inflow/outflow direction and their dependence/influence on core technologies, the technological clusters are classified into four categories: (1) high dependence and high influence on core technology, (2) high dependence and low influence on core technology, (3) low dependence and high influence on core technology, and (4) low dependence and low influence on core technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core%20technology" title="core technology">core technology</a>, <a href="https://publications.waset.org/abstracts/search?q=periphery%20technology" title=" periphery technology"> periphery technology</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20components" title=" technological components"> technological components</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20role" title=" technological role"> technological role</a> </p> <a href="https://publications.waset.org/abstracts/79729/classifying-the-role-of-technology-in-technology-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&amp;page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&amp;page=76">76</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=core%20sediments&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10