CINXE.COM
distributive law in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> distributive law in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> distributive law </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/1943/#Item_33" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title></title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="categorical_algebra">Categorical algebra</h4> <div class="hide"><div> <p><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a>+<a class="existingWikiWord" href="/nlab/show/algebra">algebra</a></p> <p><strong><a class="existingWikiWord" href="/nlab/show/internalization">internalization</a> and <a class="existingWikiWord" href="/nlab/show/categorical+algebra">categorical algebra</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid+object">monoid object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+object">group object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ring+object">ring object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+object">algebra object</a> (associative, <a class="existingWikiWord" href="/nlab/show/Lie+algebra+object">Lie</a>, …)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/module+object">module object</a>/<a class="existingWikiWord" href="/nlab/show/action+object">action object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+locale">internal locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+category">internal category</a> (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/internal+infinity-categories+contents">more</a>)</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+groupoid">internal groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+site">internal site</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+diagram">internal diagram</a></p> </li> </ul> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+Lawvere+theory">algebras over</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/algebraic+theories">algebraic theories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+monad">algebras over</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/monads">monads</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+operad">algebras over</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/operads">operads</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/categorical+semantics">categorical semantics</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+logic">internal logic</a>, <a class="existingWikiWord" href="/nlab/show/internal+language">internal language</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+category+theory+and+type+theory">relation between category theory and type theory</a></p> </li> </ul> </div></div> <h4 id="2category_theory">2-Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/2-category+theory">2-category theory</a></strong></p> <p><strong>Definitions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-category">2-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/strict+2-category">strict 2-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bicategory">bicategory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+bicategory">enriched bicategory</a></p> </li> </ul> <p><strong>Transfors between 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-functor">2-functor</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudofunctor">pseudofunctor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lax+functor">lax functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivalence+of+2-categories">equivalence of 2-categories</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-natural+transformation">2-natural transformation</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/lax+natural+transformation">lax natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/icon">icon</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/modification">modification</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma+for+bicategories">Yoneda lemma for bicategories</a></p> </li> </ul> <p><strong>Morphisms in 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fully+faithful+morphism">fully faithful morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/faithful+morphism">faithful morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/conservative+morphism">conservative morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudomonic+morphism">pseudomonic morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/discrete+morphism">discrete morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/eso+morphism">eso morphism</a></p> </li> </ul> <p><strong>Structures in 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mate">mate</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monad">monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+object">cartesian object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fibration+in+a+2-category">fibration in a 2-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/codiscrete+cofibration">codiscrete cofibration</a></p> </li> </ul> <p><strong>Limits in 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-limit">2-limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-pullback">2-pullback</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/comma+object">comma object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inserter">inserter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inverter">inverter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equifier">equifier</a></p> </li> </ul> <p><strong>Structures on 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-monad">2-monad</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/lax-idempotent+2-monad">lax-idempotent 2-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudomonad">pseudomonad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudoalgebra+for+a+2-monad">pseudoalgebra for a 2-monad</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+2-category">monoidal 2-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cartesian+bicategory">cartesian bicategory</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gray+tensor+product">Gray tensor product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proarrow+equipment">proarrow equipment</a></p> </li> </ul> </div></div> </div> </div> <h1 id='section_table_of_contents'>Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#BigPicture'>Big picture</a></li> <li><a href='#explicit_definition'>Explicit definition</a></li> <ul> <li><a href='#monad_distributing_over_monad'>Monad distributing over monad</a></li> <li><a href='#monad_distributing_over_a_comonad'>Monad distributing over a comonad</a></li> <li><a href='#ComonadDistributingOverMonad'>Comonad distributing over monad</a></li> </ul> <li><a href='#examples'>Examples</a></li> <ul> <li><a href='#products_distributing_over_coproducts'>Products distributing over coproducts</a></li> <li><a href='#in_cat'>In Cat</a></li> <ul> <li><a href='#tensor_products_distributing_over_direct_sums'>Tensor products distributing over direct sums</a></li> </ul> <li><a href='#in_other_2categories'>In other 2-categories</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#Literature'>Literature</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>Sometimes in <a class="existingWikiWord" href="/nlab/show/mathematics">mathematics</a> one considers objects equipped with two different types of <a class="existingWikiWord" href="/nlab/show/extra+structure">extra structure</a> which interact in a suitable way. For instance, a <a class="existingWikiWord" href="/nlab/show/ring">ring</a> is a <a class="existingWikiWord" href="/nlab/show/set">set</a> equipped with both (1) the structure of an (additive) <a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a> and (2) the structure of a (multiplicative) <a class="existingWikiWord" href="/nlab/show/monoid">monoid</a>, which satisfy the distributive laws <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>⋅</mo><mo stretchy="false">(</mo><mi>b</mi><mo>+</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi><mo>⋅</mo><mi>b</mi><mo>+</mo><mi>a</mi><mo>⋅</mo><mi>c</mi></mrow><annotation encoding="application/x-tex">a\cdot (b+c) = a\cdot b + a\cdot c</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>⋅</mo><mn>0</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">a\cdot 0 = 0</annotation></semantics></math>.</p> <p>Abstractly, there are two <a class="existingWikiWord" href="/nlab/show/monads">monads</a> on the <a class="existingWikiWord" href="/nlab/show/category">category</a> <a class="existingWikiWord" href="/nlab/show/Set">Set</a>, one (call it <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>) whose <a class="existingWikiWord" href="/nlab/show/algebra+over+a+monad">algebras</a> are abelian groups, and one (call it <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>) whose algebras are monoids, and so we might ask “can we construct, from these two monads, a third monad whose algebras are rings?” Such a monad would assign to each set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/free+object">free</a> ring on that set, which consists of formal sums of formal products of elements of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>—in other words, it can be identified with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">T(S(X))</annotation></semantics></math>. Thus the question becomes “given two monads <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>, what further structure is required to make the composite <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>S</mi></mrow><annotation encoding="application/x-tex">T S</annotation></semantics></math> into a monad?”</p> <p>It is easy to give <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>S</mi></mrow><annotation encoding="application/x-tex">T S</annotation></semantics></math> a unit, as the composite <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Id</mi><mover><mo>→</mo><mrow><msup><mi>η</mi> <mi>S</mi></msup></mrow></mover><mi>S</mi><mover><mo>→</mo><mrow><msup><mi>η</mi> <mi>T</mi></msup><mi>S</mi></mrow></mover><mi>T</mi><mi>S</mi></mrow><annotation encoding="application/x-tex">Id \xrightarrow{\eta^S} S \xrightarrow{\eta^T S} T S</annotation></semantics></math>, but to give it a multiplication we need a transformation from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>S</mi><mi>T</mi><mi>S</mi></mrow><annotation encoding="application/x-tex">T S T S</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>S</mi></mrow><annotation encoding="application/x-tex">T S</annotation></semantics></math>. We naturally want to use the multiplications <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>μ</mi> <mi>T</mi></msup><mo lspace="verythinmathspace">:</mo><mi>T</mi><mi>T</mi><mo>→</mo><mi>T</mi></mrow><annotation encoding="application/x-tex">\mu^T\colon T T \to T</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>μ</mi> <mi>S</mi></msup><mo lspace="verythinmathspace">:</mo><mi>S</mi><mi>S</mi><mo>→</mo><mi>S</mi></mrow><annotation encoding="application/x-tex">\mu^S\colon S S \to S</annotation></semantics></math>, but in order to do this we first need to switch the order of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>. However, if we have a transformation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi><mo lspace="verythinmathspace">:</mo><mi>S</mi><mi>T</mi><mo>→</mo><mi>T</mi><mi>S</mi></mrow><annotation encoding="application/x-tex">\lambda\colon S T \to T S</annotation></semantics></math>, then we can define <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>μ</mi> <mrow><mi>T</mi><mi>S</mi></mrow></msup></mrow><annotation encoding="application/x-tex">\mu^{T S}</annotation></semantics></math> to be the composite <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>S</mi><mi>T</mi><mi>S</mi><mover><mo>→</mo><mi>λ</mi></mover><mi>T</mi><mi>T</mi><mi>S</mi><mi>S</mi><mover><mo>→</mo><mrow><msup><mi>μ</mi> <mi>T</mi></msup><msup><mi>μ</mi> <mi>S</mi></msup></mrow></mover><mi>T</mi><mi>S</mi></mrow><annotation encoding="application/x-tex">T S T S \xrightarrow{\lambda} T T S S \xrightarrow{\mu^T\mu^S} T S</annotation></semantics></math>.</p> <p>Such a transformation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi><mo lspace="verythinmathspace">:</mo><mi>S</mi><mi>T</mi><mo>→</mo><mi>T</mi><mi>S</mi></mrow><annotation encoding="application/x-tex">\lambda\colon S T \to T S</annotation></semantics></math>, satisfying suitable axioms to make <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>S</mi></mrow><annotation encoding="application/x-tex">T S</annotation></semantics></math> into a monad, is called a <em>distributive law</em>, because of the motivating example relating addition to multiplication in a ring. In that case, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi><mi>T</mi><mi>X</mi></mrow><annotation encoding="application/x-tex">S T X</annotation></semantics></math> is a formal product of formal sums such as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>+</mo><msub><mi>x</mi> <mn>2</mn></msub><mo>+</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">)</mo><mo>⋅</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>4</mn></msub><mo>+</mo><msub><mi>x</mi> <mn>5</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x_1 + x_2 + x_3)\cdot (x_4 + x_5)</annotation></semantics></math>, and the distributive law <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math> is given by multiplying out such an expression formally, resulting in a formal sum of formal products such as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>1</mn></msub><mo>⋅</mo><msub><mi>x</mi> <mn>4</mn></msub><mo>+</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>⋅</mo><msub><mi>x</mi> <mn>5</mn></msub><mo>+</mo><msub><mi>x</mi> <mn>2</mn></msub><mo>⋅</mo><msub><mi>x</mi> <mn>4</mn></msub><mo>+</mo><msub><mi>x</mi> <mn>2</mn></msub><mo>⋅</mo><msub><mi>x</mi> <mn>5</mn></msub><mo>+</mo><msub><mi>x</mi> <mn>3</mn></msub><mo>⋅</mo><msub><mi>x</mi> <mn>4</mn></msub><mo>+</mo><msub><mi>x</mi> <mn>3</mn></msub><mo>⋅</mo><msub><mi>x</mi> <mn>5</mn></msub></mrow><annotation encoding="application/x-tex">x_1\cdot x_4 + x_1 \cdot x_5 + x_2 \cdot x_4 + x_2 \cdot x_5 + x_3\cdot x_4 + x_3 \cdot x_5</annotation></semantics></math>.</p> <p>Given two monads <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi><mo>,</mo><mi>T</mi></mrow><annotation encoding="application/x-tex">S, T</annotation></semantics></math> on a category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, a distributive law <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mo>∘</mo><mi>S</mi><mo>⟶</mo><mi>S</mi><mo>∘</mo><mi>T</mi></mrow><annotation encoding="application/x-tex"> T \circ S \longrightarrow S \circ T </annotation></semantics></math> gives a way of lifting the monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> to a monad on the category of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-algebras, namely the <a class="existingWikiWord" href="/nlab/show/Eilenberg-Moore+category">Eilenberg-Moore category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>C</mi> <mi>T</mi></msup></mrow><annotation encoding="application/x-tex">C^T</annotation></semantics></math>. In the example above, the distributive law gives a way to lift the monad for monoids (which is a monad on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>=</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">C = Set</annotation></semantics></math>) to the monad for rings (which is a monad on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>C</mi> <mi>T</mi></msup><mo>=</mo><mi>AbGp</mi></mrow><annotation encoding="application/x-tex">C^T = AbGp</annotation></semantics></math>). This is a way of making rigorous the intuition that “rings are to abelian groups as monoids are to sets”.</p> <p> <div class='num_remark' id='TerminologyWhatDistributesOverWhat'> <h6>Remark</h6> <p><strong>(terminology – what distributes over what)</strong> <br /> The eponymous example of distributivity in <a class="existingWikiWord" href="/nlab/show/arithmetic">arithmetic</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>×</mo><munder><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mi>i</mi></munder><msub><mi>b</mi> <mi>i</mi></msub><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><munder><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo> <mi>i</mi></munder><mi>a</mi><mo>×</mo><msub><mi>b</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex"> a \times \sum_i b_i \;=\; \sum_i a \times b_i </annotation></semantics></math></div> <p>hence</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>a</mi><mo>×</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mo>∘</mo><mo maxsize="1.2em" minsize="1.2em">(</mo><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo maxsize="1.2em" minsize="1.2em">(</mo><mo lspace="thinmathspace" rspace="thinmathspace">∑</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mo>∘</mo><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>a</mi><mo>×</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow><annotation encoding="application/x-tex"> \big( a \times (-) \big) \circ \big( \sum (-) \big) \;\; = \;\; \big( \sum (-) \big) \circ \big( a \times (-) \big) </annotation></semantics></math></div> <p>(where, of course, the <a class="existingWikiWord" href="/nlab/show/equality">equality</a> as such works in both directions, but the <em>distribution</em> of factors over summands is the step from left to right) suggests that a suitable transformation of (co)monads of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>S</mi><mo>∘</mo><mi>T</mi><mo>⟶</mo><mi>T</mi><mo>∘</mo><mi>S</mi></mrow><annotation encoding="application/x-tex"> S \circ T \longrightarrow T \circ S </annotation></semantics></math></div> <p>should be referred to as <em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math> distributing over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math></em> instead of the other way around.</p> <p>However, already the original reference <a href="#Beck69">Beck 1969 §1</a> uses the opposite terminology.</p> <p>Authors sticking to this original but arguably reverse terminological convention include <a href="#BrookesVanStone93">Brookes & Van Stone 1993</a>, while other authors tacitly switch to the other terminological convention (eg. <a href="#BarrWells85">Barr & Wells 1985 §9 2.1</a>, <a href="#PowerWatanabe02">Power & Watanabe 2002 p. 138</a>).</p> </div> </p> <h2 id="BigPicture">Big picture</h2> <p><a class="existingWikiWord" href="/nlab/show/monad">Monads</a> in any <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> make themselves a 2-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">Mnd</mi></mrow><annotation encoding="application/x-tex">\mathrm{Mnd}</annotation></semantics></math> in which <a class="existingWikiWord" href="/nlab/show/1-morphisms">1-morphisms</a> are either lax or colax <a class="existingWikiWord" href="/nlab/show/homomorphisms">homomorphisms</a> of monads (cf. <em><a class="existingWikiWord" href="/nlab/show/monad+transformations">monad transformations</a></em>). By <a class="existingWikiWord" href="/nlab/show/formal+duality">formal duality</a> the analogue is true for <a class="existingWikiWord" href="/nlab/show/comonads">comonads</a>.</p> <p>Distributivity laws may be understood as monads <a class="existingWikiWord" href="/nlab/show/internalization">internal</a> to this 2-category of monads.</p> <p>In particular, distributive laws themselves make a 2-category.</p> <p>There are other variants like distributive laws between a monad and an <a class="existingWikiWord" href="/nlab/show/endofunctor">endofunctor</a>, <strong>mixed distributive laws</strong> between a monad and a comonad (the variants for algebras and coalgebras called <a class="existingWikiWord" href="/nlab/show/entwining+structures">entwining structures</a>), distributive laws between actions of two different monoidal categories on the same category, for <a class="existingWikiWord" href="/nlab/show/PROP">PROP</a>s and so on.</p> <p>Having a distributive law <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>l</mi></mrow><annotation encoding="application/x-tex">l</annotation></semantics></math> from one monad to another enables to define the composite monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>T</mi></mstyle><msub><mo>∘</mo> <mi>l</mi></msub><mstyle mathvariant="bold"><mi>P</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf T\circ_l\mathbf P</annotation></semantics></math>. This correspondence extends to a 2-functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">comp</mi><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi mathvariant="normal">Mnd</mi><mo stretchy="false">(</mo><mi mathvariant="normal">Mnd</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><mi mathvariant="normal">Mnd</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathrm{comp} \,\colon\, \mathrm{Mnd}(\mathrm{Mnd}(C))\to\mathrm{Mnd}(C)</annotation></semantics></math>. An analogue of this 2-functor in the mixed setup is a <a class="existingWikiWord" href="/nlab/show/2-functor">2-functor</a> from the bicategory of entwinings to a bicategory of <a class="existingWikiWord" href="/nlab/show/corings">corings</a>.</p> <h2 id="explicit_definition">Explicit definition</h2> <h3 id="monad_distributing_over_monad">Monad distributing over monad</h3> <p> <div class='num_defn'> <h6>Definition</h6> <p>A <strong>distributive law</strong> for a monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>T</mi></mstyle><mo>=</mo><mo stretchy="false">(</mo><mi>T</mi><mo>,</mo><msup><mi>μ</mi> <mi>T</mi></msup><mo>,</mo><msup><mi>η</mi> <mi>T</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{T} = (T, \mu^T, \eta^T)</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> over an endofunctor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/2-morphism">2-morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>l</mi><mo>:</mo><mi>T</mi><mi>P</mi><mo>⇒</mo><mi>P</mi><mi>T</mi></mrow><annotation encoding="application/x-tex">l : T P \Rightarrow P T</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>l</mi><mo>∘</mo><mo stretchy="false">(</mo><msup><mi>η</mi> <mi>T</mi></msup><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><mi>P</mi><mo stretchy="false">(</mo><msup><mi>η</mi> <mi>T</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">l \circ (\eta^T)_P = P(\eta^T)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>l</mi><mo>∘</mo><mo stretchy="false">(</mo><msup><mi>μ</mi> <mi>T</mi></msup><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><mi>P</mi><mo stretchy="false">(</mo><msup><mi>μ</mi> <mi>T</mi></msup><mo stretchy="false">)</mo><mo>∘</mo><msub><mi>l</mi> <mi>T</mi></msub><mo>∘</mo><mi>T</mi><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">l \circ (\mu^T)_P = P(\mu^T) \circ l_T \circ T(l)</annotation></semantics></math>. In diagrams:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="206.591" height="84.441" viewBox="0 0 206.591 84.441"> <defs> <g> <g id="2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-0-0"> </g> <g id="2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-0-1"> <path d="M 4.421875 -4.75 L 6.9375 -4.75 C 9 -4.75 11.046875 -6.28125 11.046875 -7.984375 C 11.046875 -9.140625 10.0625 -10.203125 8.1875 -10.203125 L 3.5625 -10.203125 C 3.28125 -10.203125 3.15625 -10.203125 3.15625 -9.921875 C 3.15625 -9.765625 3.28125 -9.765625 3.515625 -9.765625 C 4.421875 -9.765625 4.421875 -9.65625 4.421875 -9.484375 C 4.421875 -9.453125 4.421875 -9.359375 4.359375 -9.140625 L 2.34375 -1.109375 C 2.203125 -0.578125 2.1875 -0.4375 1.140625 -0.4375 C 0.84375 -0.4375 0.703125 -0.4375 0.703125 -0.171875 C 0.703125 0 0.84375 0 0.921875 0 C 1.203125 0 1.515625 -0.03125 1.796875 -0.03125 L 3.546875 -0.03125 C 3.828125 -0.03125 4.140625 0 4.421875 0 C 4.546875 0 4.703125 0 4.703125 -0.28125 C 4.703125 -0.4375 4.578125 -0.4375 4.34375 -0.4375 C 3.453125 -0.4375 3.4375 -0.53125 3.4375 -0.6875 C 3.4375 -0.765625 3.453125 -0.859375 3.46875 -0.9375 Z M 5.5 -9.1875 C 5.625 -9.734375 5.6875 -9.765625 6.28125 -9.765625 L 7.75 -9.765625 C 8.875 -9.765625 9.796875 -9.40625 9.796875 -8.296875 C 9.796875 -7.90625 9.609375 -6.625 8.921875 -5.9375 C 8.65625 -5.671875 7.953125 -5.109375 6.59375 -5.109375 L 4.484375 -5.109375 Z M 5.5 -9.1875 "></path> </g> <g id="2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-0-2"> <path d="M 6.234375 -9.109375 C 6.3125 -9.46875 6.34375 -9.609375 6.578125 -9.671875 C 6.6875 -9.6875 7.1875 -9.6875 7.5 -9.6875 C 9 -9.6875 9.6875 -9.640625 9.6875 -8.46875 C 9.6875 -8.25 9.640625 -7.671875 9.546875 -7.125 L 9.53125 -6.953125 C 9.53125 -6.890625 9.59375 -6.796875 9.671875 -6.796875 C 9.828125 -6.796875 9.828125 -6.875 9.875 -7.109375 L 10.3125 -9.75 C 10.34375 -9.890625 10.34375 -9.921875 10.34375 -9.96875 C 10.34375 -10.125 10.25 -10.125 9.953125 -10.125 L 1.78125 -10.125 C 1.4375 -10.125 1.421875 -10.109375 1.328125 -9.84375 L 0.421875 -7.15625 C 0.40625 -7.125 0.359375 -6.953125 0.359375 -6.953125 C 0.359375 -6.875 0.421875 -6.796875 0.515625 -6.796875 C 0.625 -6.796875 0.65625 -6.859375 0.71875 -7.046875 C 1.34375 -8.859375 1.65625 -9.6875 3.640625 -9.6875 L 4.640625 -9.6875 C 5 -9.6875 5.15625 -9.6875 5.15625 -9.53125 C 5.15625 -9.484375 5.15625 -9.453125 5.078125 -9.1875 L 3.078125 -1.171875 C 2.921875 -0.578125 2.890625 -0.4375 1.3125 -0.4375 C 0.9375 -0.4375 0.84375 -0.4375 0.84375 -0.15625 C 0.84375 0 1 0 1.078125 0 C 1.453125 0 1.84375 -0.03125 2.203125 -0.03125 L 4.546875 -0.03125 C 4.921875 -0.03125 5.3125 0 5.6875 0 C 5.859375 0 6 0 6 -0.28125 C 6 -0.4375 5.90625 -0.4375 5.515625 -0.4375 C 4.171875 -0.4375 4.171875 -0.5625 4.171875 -0.796875 C 4.171875 -0.8125 4.171875 -0.90625 4.234375 -1.15625 Z M 6.234375 -9.109375 "></path> </g> <g id="2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-1-0"> </g> <g id="2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-1-1"> <path d="M 5.1875 -2.75 C 5.234375 -2.90625 5.28125 -3.078125 5.28125 -3.296875 C 5.28125 -4.03125 4.75 -4.390625 4.03125 -4.390625 C 3.234375 -4.390625 2.71875 -3.90625 2.421875 -3.53125 C 2.359375 -4.078125 1.90625 -4.390625 1.40625 -4.390625 C 1.046875 -4.390625 0.796875 -4.171875 0.640625 -3.859375 C 0.40625 -3.40625 0.296875 -2.90625 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.78125 0.65625 -3.046875 C 0.78125 -3.546875 0.96875 -4.109375 1.375 -4.109375 C 1.625 -4.109375 1.6875 -3.890625 1.6875 -3.65625 C 1.6875 -3.46875 1.640625 -3.28125 1.5625 -2.953125 C 1.546875 -2.875 1.390625 -2.28125 1.359375 -2.140625 L 0.984375 -0.640625 C 0.953125 -0.5 0.890625 -0.25 0.890625 -0.203125 C 0.890625 0.015625 1.078125 0.09375 1.203125 0.09375 C 1.390625 0.09375 1.53125 -0.015625 1.609375 -0.140625 C 1.640625 -0.203125 1.71875 -0.53125 1.765625 -0.75 L 2 -1.640625 C 2.03125 -1.78125 2.125 -2.15625 2.15625 -2.3125 C 2.296875 -2.84375 2.296875 -2.859375 2.515625 -3.1875 C 2.84375 -3.671875 3.3125 -4.109375 3.984375 -4.109375 C 4.34375 -4.109375 4.5625 -3.90625 4.5625 -3.4375 C 4.5625 -3.25 4.46875 -2.875 4.46875 -2.875 L 3.34375 1.609375 C 3.3125 1.75 3.3125 1.8125 3.3125 1.828125 C 3.3125 2.078125 3.515625 2.140625 3.625 2.140625 C 3.984375 2.140625 4.0625 1.8125 4.09375 1.6875 Z M 5.1875 -2.75 "></path> </g> <g id="2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-1-2"> <path d="M 3.140625 -3.109375 L 4.953125 -3.109375 C 6.390625 -3.109375 7.890625 -4.109375 7.890625 -5.28125 C 7.890625 -6.125 7.09375 -6.8125 5.796875 -6.8125 L 2.4375 -6.8125 C 2.265625 -6.8125 2.140625 -6.8125 2.140625 -6.625 C 2.140625 -6.484375 2.265625 -6.484375 2.421875 -6.484375 C 2.75 -6.484375 3.046875 -6.484375 3.046875 -6.3125 C 3.046875 -6.28125 3.03125 -6.265625 3 -6.140625 L 1.671875 -0.78125 C 1.578125 -0.421875 1.5625 -0.328125 0.84375 -0.328125 C 0.625 -0.328125 0.515625 -0.328125 0.515625 -0.140625 C 0.515625 -0.09375 0.53125 0 0.671875 0 C 0.859375 0 1.09375 -0.015625 1.28125 -0.03125 L 1.921875 -0.03125 C 2.875 -0.03125 3.140625 0 3.203125 0 C 3.265625 0 3.40625 0 3.40625 -0.1875 C 3.40625 -0.328125 3.28125 -0.328125 3.109375 -0.328125 C 3.078125 -0.328125 2.90625 -0.328125 2.734375 -0.34375 C 2.515625 -0.375 2.5 -0.40625 2.5 -0.484375 C 2.5 -0.53125 2.515625 -0.59375 2.53125 -0.640625 Z M 3.875 -6.109375 C 3.953125 -6.453125 3.96875 -6.484375 4.375 -6.484375 L 5.46875 -6.484375 C 6.296875 -6.484375 6.921875 -6.234375 6.921875 -5.5 C 6.921875 -5.375 6.875 -4.484375 6.3125 -3.9375 C 6.15625 -3.78125 5.6875 -3.40625 4.703125 -3.40625 L 3.1875 -3.40625 Z M 3.875 -6.109375 "></path> </g> <g id="2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-1-3"> <path d="M 2.609375 -6.625 C 2.625 -6.640625 2.65625 -6.765625 2.65625 -6.78125 C 2.65625 -6.828125 2.609375 -6.921875 2.5 -6.921875 L 1.484375 -6.84375 C 1.109375 -6.8125 1.03125 -6.796875 1.03125 -6.625 C 1.03125 -6.484375 1.171875 -6.484375 1.296875 -6.484375 C 1.78125 -6.484375 1.78125 -6.421875 1.78125 -6.328125 C 1.78125 -6.296875 1.78125 -6.28125 1.71875 -6.09375 L 0.484375 -1.15625 C 0.453125 -1 0.453125 -0.84375 0.453125 -0.84375 C 0.453125 -0.21875 0.953125 0.09375 1.453125 0.09375 C 1.890625 0.09375 2.109375 -0.234375 2.21875 -0.453125 C 2.40625 -0.78125 2.546875 -1.375 2.546875 -1.421875 C 2.546875 -1.484375 2.515625 -1.5625 2.390625 -1.5625 C 2.296875 -1.5625 2.265625 -1.5 2.265625 -1.5 C 2.25 -1.46875 2.203125 -1.28125 2.171875 -1.171875 C 2.03125 -0.59375 1.828125 -0.171875 1.46875 -0.171875 C 1.234375 -0.171875 1.171875 -0.40625 1.171875 -0.640625 C 1.171875 -0.84375 1.203125 -0.953125 1.21875 -1.078125 Z M 2.609375 -6.625 "></path> </g> <g id="2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-2-0"> </g> <g id="2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-2-1"> <path d="M 3.890625 -4.5 C 3.9375 -4.734375 3.953125 -4.75 4.265625 -4.75 L 4.953125 -4.75 C 5.75 -4.75 5.859375 -4.515625 5.859375 -4.078125 C 5.859375 -3.984375 5.84375 -3.78125 5.8125 -3.546875 C 5.8125 -3.53125 5.796875 -3.4375 5.796875 -3.421875 C 5.796875 -3.34375 5.859375 -3.296875 5.9375 -3.296875 C 6.0625 -3.296875 6.078125 -3.375 6.09375 -3.484375 L 6.28125 -4.921875 C 6.28125 -5.046875 6.203125 -5.046875 6.0625 -5.046875 L 1.203125 -5.046875 C 1.015625 -5.046875 1 -5.046875 0.9375 -4.890625 L 0.453125 -3.53125 C 0.421875 -3.4375 0.421875 -3.421875 0.421875 -3.40625 C 0.421875 -3.390625 0.4375 -3.296875 0.5625 -3.296875 C 0.671875 -3.296875 0.671875 -3.328125 0.734375 -3.515625 C 1.078125 -4.421875 1.3125 -4.75 2.265625 -4.75 L 2.953125 -4.75 C 3.09375 -4.75 3.109375 -4.75 3.203125 -4.734375 L 2.1875 -0.640625 C 2.140625 -0.4375 2.09375 -0.359375 1.890625 -0.34375 C 1.6875 -0.296875 1.25 -0.296875 1.234375 -0.296875 C 1.046875 -0.296875 1.03125 -0.296875 1 -0.28125 C 0.96875 -0.25 0.9375 -0.140625 0.9375 -0.109375 C 0.9375 -0.09375 0.953125 0 1.078125 0 C 1.28125 0 1.5 -0.015625 1.703125 -0.015625 C 2 -0.015625 2.203125 -0.03125 2.390625 -0.03125 C 2.625 -0.03125 2.84375 -0.015625 3.0625 -0.015625 C 3.28125 -0.015625 3.53125 0 3.734375 0 C 3.796875 0 3.859375 0 3.890625 -0.046875 C 3.90625 -0.078125 3.921875 -0.171875 3.921875 -0.1875 C 3.90625 -0.296875 3.859375 -0.296875 3.625 -0.296875 C 3.453125 -0.296875 3.296875 -0.3125 3.140625 -0.3125 C 2.96875 -0.328125 2.875 -0.34375 2.875 -0.453125 Z M 3.890625 -4.5 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-0-1" x="97.564" y="15.68"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-0-2" x="6.434" y="78.972"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-0-1" x="17.042746" y="78.972"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-0-1" x="178.085" y="78.972"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-0-2" x="189.548542" y="78.972"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -12.417094 21.12625 L -68.909281 -20.537812 " transform="matrix(1, 0, 0, -1, 103.296, 42.22)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485152 2.86943 C -2.032173 1.14714 -1.020836 0.333337 -0.000857934 -0.00144554 C -1.020123 -0.337031 -2.031643 -1.149161 -2.484239 -2.86859 " transform="matrix(-0.80476, 0.5935, 0.5935, 0.80476, 34.19548, 62.90011)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-1-1" x="37.779" y="36.615"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-2-1" x="43.449" y="33.1"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-1-2" x="50.74525" y="36.615"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 12.414937 21.12625 L 68.911031 -20.537812 " transform="matrix(1, 0, 0, -1, 103.296, 42.22)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486884 2.86664 C -2.034287 1.147211 -1.019624 0.337399 -0.000358923 0.00181356 C -1.020337 -0.332969 -2.031674 -1.146772 -2.484653 -2.869062 " transform="matrix(0.80476, 0.5935, 0.5935, -0.80476, 172.39765, 62.90011)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-1-2" x="147.666" y="36.615"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-1-1" x="155.851293" y="36.615"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-2-1" x="161.516" y="33.1"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -68.1085 -33.014375 L 67.629781 -33.014375 " transform="matrix(1, 0, 0, -1, 103.296, 42.22)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487799 2.868813 C -2.030768 1.146156 -1.019049 0.333656 0.0004825 0.001625 C -1.019049 -0.334312 -2.030768 -1.146812 -2.487799 -2.869469 " transform="matrix(1, 0, 0, -1, 171.16358, 75.236)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#2TBviE8LowXlhqGjJPP6ivzGhqg=-glyph-1-3" x="101.657" y="71.72"></use> </g> </svg><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="254.83" height="86.148" viewBox="0 0 254.83 86.148"> <defs> <g> <g id="Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-0"> </g> <g id="Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-1"> <path d="M 6.234375 -9.109375 C 6.3125 -9.46875 6.34375 -9.609375 6.578125 -9.671875 C 6.6875 -9.6875 7.1875 -9.6875 7.5 -9.6875 C 9 -9.6875 9.6875 -9.640625 9.6875 -8.46875 C 9.6875 -8.25 9.640625 -7.671875 9.546875 -7.125 L 9.53125 -6.953125 C 9.53125 -6.890625 9.59375 -6.796875 9.671875 -6.796875 C 9.828125 -6.796875 9.828125 -6.875 9.875 -7.109375 L 10.3125 -9.75 C 10.34375 -9.890625 10.34375 -9.921875 10.34375 -9.96875 C 10.34375 -10.125 10.25 -10.125 9.953125 -10.125 L 1.78125 -10.125 C 1.4375 -10.125 1.421875 -10.109375 1.328125 -9.84375 L 0.421875 -7.15625 C 0.40625 -7.125 0.359375 -6.953125 0.359375 -6.953125 C 0.359375 -6.875 0.421875 -6.796875 0.515625 -6.796875 C 0.625 -6.796875 0.65625 -6.859375 0.71875 -7.046875 C 1.34375 -8.859375 1.65625 -9.6875 3.640625 -9.6875 L 4.640625 -9.6875 C 5 -9.6875 5.15625 -9.6875 5.15625 -9.53125 C 5.15625 -9.484375 5.15625 -9.453125 5.078125 -9.1875 L 3.078125 -1.171875 C 2.921875 -0.578125 2.890625 -0.4375 1.3125 -0.4375 C 0.9375 -0.4375 0.84375 -0.4375 0.84375 -0.15625 C 0.84375 0 1 0 1.078125 0 C 1.453125 0 1.84375 -0.03125 2.203125 -0.03125 L 4.546875 -0.03125 C 4.921875 -0.03125 5.3125 0 5.6875 0 C 5.859375 0 6 0 6 -0.28125 C 6 -0.4375 5.90625 -0.4375 5.515625 -0.4375 C 4.171875 -0.4375 4.171875 -0.5625 4.171875 -0.796875 C 4.171875 -0.8125 4.171875 -0.90625 4.234375 -1.15625 Z M 6.234375 -9.109375 "></path> </g> <g id="Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-2"> <path d="M 4.421875 -4.75 L 6.9375 -4.75 C 9 -4.75 11.046875 -6.28125 11.046875 -7.984375 C 11.046875 -9.140625 10.0625 -10.203125 8.1875 -10.203125 L 3.5625 -10.203125 C 3.28125 -10.203125 3.15625 -10.203125 3.15625 -9.921875 C 3.15625 -9.765625 3.28125 -9.765625 3.515625 -9.765625 C 4.421875 -9.765625 4.421875 -9.65625 4.421875 -9.484375 C 4.421875 -9.453125 4.421875 -9.359375 4.359375 -9.140625 L 2.34375 -1.109375 C 2.203125 -0.578125 2.1875 -0.4375 1.140625 -0.4375 C 0.84375 -0.4375 0.703125 -0.4375 0.703125 -0.171875 C 0.703125 0 0.84375 0 0.921875 0 C 1.203125 0 1.515625 -0.03125 1.796875 -0.03125 L 3.546875 -0.03125 C 3.828125 -0.03125 4.140625 0 4.421875 0 C 4.546875 0 4.703125 0 4.703125 -0.28125 C 4.703125 -0.4375 4.578125 -0.4375 4.34375 -0.4375 C 3.453125 -0.4375 3.4375 -0.53125 3.4375 -0.6875 C 3.4375 -0.765625 3.453125 -0.859375 3.46875 -0.9375 Z M 5.5 -9.1875 C 5.625 -9.734375 5.6875 -9.765625 6.28125 -9.765625 L 7.75 -9.765625 C 8.875 -9.765625 9.796875 -9.40625 9.796875 -8.296875 C 9.796875 -7.90625 9.609375 -6.625 8.921875 -5.9375 C 8.65625 -5.671875 7.953125 -5.109375 6.59375 -5.109375 L 4.484375 -5.109375 Z M 5.5 -9.1875 "></path> </g> <g id="Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-1-0"> </g> <g id="Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-1-1"> <path d="M 2.40625 -3.515625 C 2.46875 -3.703125 2.546875 -4.03125 2.546875 -4.09375 C 2.546875 -4.296875 2.375 -4.390625 2.21875 -4.390625 C 1.875 -4.390625 1.796875 -4.0625 1.75 -3.921875 L 0.375 1.609375 C 0.328125 1.765625 0.328125 1.8125 0.328125 1.828125 C 0.328125 2.078125 0.53125 2.140625 0.640625 2.140625 C 0.703125 2.140625 0.921875 2.140625 1.0625 1.875 C 1.09375 1.796875 1.375 0.609375 1.578125 -0.1875 C 1.75 -0.0625 2.078125 0.09375 2.59375 0.09375 C 3.40625 0.09375 3.953125 -0.5625 3.984375 -0.609375 C 4.15625 0.078125 4.828125 0.09375 4.953125 0.09375 C 5.40625 0.09375 5.640625 -0.28125 5.71875 -0.453125 C 5.921875 -0.8125 6.0625 -1.390625 6.0625 -1.421875 C 6.0625 -1.484375 6.015625 -1.5625 5.90625 -1.5625 C 5.78125 -1.5625 5.765625 -1.5 5.703125 -1.25 C 5.5625 -0.703125 5.375 -0.171875 4.984375 -0.171875 C 4.75 -0.171875 4.671875 -0.375 4.671875 -0.640625 C 4.671875 -0.8125 4.78125 -1.25 4.84375 -1.53125 L 5.109375 -2.546875 C 5.15625 -2.8125 5.21875 -3.015625 5.296875 -3.3125 C 5.34375 -3.53125 5.4375 -3.921875 5.4375 -3.984375 C 5.4375 -4.234375 5.25 -4.296875 5.125 -4.296875 C 4.78125 -4.296875 4.71875 -4.046875 4.609375 -3.59375 L 4.390625 -2.765625 L 4.09375 -1.53125 L 3.984375 -1.125 C 3.96875 -1.0625 3.703125 -0.6875 3.46875 -0.5 C 3.296875 -0.375 3.015625 -0.171875 2.640625 -0.171875 C 2.171875 -0.171875 1.859375 -0.421875 1.859375 -1.046875 C 1.859375 -1.3125 1.9375 -1.609375 2 -1.84375 Z M 2.40625 -3.515625 "></path> </g> <g id="Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-1-2"> <path d="M 3.140625 -3.109375 L 4.953125 -3.109375 C 6.390625 -3.109375 7.890625 -4.109375 7.890625 -5.28125 C 7.890625 -6.125 7.09375 -6.8125 5.796875 -6.8125 L 2.4375 -6.8125 C 2.265625 -6.8125 2.140625 -6.8125 2.140625 -6.625 C 2.140625 -6.484375 2.265625 -6.484375 2.421875 -6.484375 C 2.75 -6.484375 3.046875 -6.484375 3.046875 -6.3125 C 3.046875 -6.28125 3.03125 -6.265625 3 -6.140625 L 1.671875 -0.78125 C 1.578125 -0.421875 1.5625 -0.328125 0.84375 -0.328125 C 0.625 -0.328125 0.515625 -0.328125 0.515625 -0.140625 C 0.515625 -0.09375 0.53125 0 0.671875 0 C 0.859375 0 1.09375 -0.015625 1.28125 -0.03125 L 1.921875 -0.03125 C 2.875 -0.03125 3.140625 0 3.203125 0 C 3.265625 0 3.40625 0 3.40625 -0.1875 C 3.40625 -0.328125 3.28125 -0.328125 3.109375 -0.328125 C 3.078125 -0.328125 2.90625 -0.328125 2.734375 -0.34375 C 2.515625 -0.375 2.5 -0.40625 2.5 -0.484375 C 2.5 -0.53125 2.515625 -0.59375 2.53125 -0.640625 Z M 3.875 -6.109375 C 3.953125 -6.453125 3.96875 -6.484375 4.375 -6.484375 L 5.46875 -6.484375 C 6.296875 -6.484375 6.921875 -6.234375 6.921875 -5.5 C 6.921875 -5.375 6.875 -4.484375 6.3125 -3.9375 C 6.15625 -3.78125 5.6875 -3.40625 4.703125 -3.40625 L 3.1875 -3.40625 Z M 3.875 -6.109375 "></path> </g> <g id="Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-1-3"> <path d="M 4.5 -6.03125 C 4.59375 -6.390625 4.609375 -6.40625 5.015625 -6.40625 L 5.765625 -6.40625 C 6.8125 -6.40625 6.921875 -6.078125 6.921875 -5.578125 C 6.921875 -5.328125 6.875 -4.90625 6.859375 -4.859375 C 6.84375 -4.75 6.828125 -4.65625 6.828125 -4.640625 C 6.828125 -4.5 6.921875 -4.46875 6.984375 -4.46875 C 7.09375 -4.46875 7.125 -4.53125 7.15625 -4.71875 L 7.421875 -6.59375 C 7.421875 -6.734375 7.3125 -6.734375 7.125 -6.734375 L 1.25 -6.734375 C 1 -6.734375 0.984375 -6.734375 0.921875 -6.53125 L 0.3125 -4.8125 C 0.296875 -4.75 0.265625 -4.671875 0.265625 -4.609375 C 0.265625 -4.53125 0.328125 -4.46875 0.40625 -4.46875 C 0.515625 -4.46875 0.53125 -4.53125 0.59375 -4.6875 C 1.171875 -6.296875 1.453125 -6.40625 2.96875 -6.40625 L 3.359375 -6.40625 C 3.65625 -6.40625 3.671875 -6.40625 3.671875 -6.3125 C 3.671875 -6.296875 3.625 -6.09375 3.625 -6.046875 L 2.296875 -0.8125 C 2.21875 -0.4375 2.1875 -0.328125 1.140625 -0.328125 C 0.828125 -0.328125 0.734375 -0.328125 0.734375 -0.140625 C 0.734375 -0.125 0.734375 0 0.890625 0 C 1.171875 0 1.859375 -0.03125 2.125 -0.03125 L 2.96875 -0.03125 C 3.25 -0.03125 3.953125 0 4.234375 0 C 4.3125 0 4.453125 0 4.453125 -0.1875 C 4.453125 -0.328125 4.34375 -0.328125 4.078125 -0.328125 C 3.84375 -0.328125 3.765625 -0.328125 3.5 -0.34375 C 3.1875 -0.375 3.140625 -0.421875 3.140625 -0.546875 C 3.140625 -0.59375 3.15625 -0.625 3.1875 -0.734375 Z M 4.5 -6.03125 "></path> </g> <g id="Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-1-4"> <path d="M 2.609375 -6.625 C 2.625 -6.640625 2.65625 -6.765625 2.65625 -6.78125 C 2.65625 -6.828125 2.609375 -6.921875 2.5 -6.921875 L 1.484375 -6.84375 C 1.109375 -6.8125 1.03125 -6.796875 1.03125 -6.625 C 1.03125 -6.484375 1.171875 -6.484375 1.296875 -6.484375 C 1.78125 -6.484375 1.78125 -6.421875 1.78125 -6.328125 C 1.78125 -6.296875 1.78125 -6.28125 1.71875 -6.09375 L 0.484375 -1.15625 C 0.453125 -1 0.453125 -0.84375 0.453125 -0.84375 C 0.453125 -0.21875 0.953125 0.09375 1.453125 0.09375 C 1.890625 0.09375 2.109375 -0.234375 2.21875 -0.453125 C 2.40625 -0.78125 2.546875 -1.375 2.546875 -1.421875 C 2.546875 -1.484375 2.515625 -1.5625 2.390625 -1.5625 C 2.296875 -1.5625 2.265625 -1.5 2.265625 -1.5 C 2.25 -1.46875 2.203125 -1.28125 2.171875 -1.171875 C 2.03125 -0.59375 1.828125 -0.171875 1.46875 -0.171875 C 1.234375 -0.171875 1.171875 -0.40625 1.171875 -0.640625 C 1.171875 -0.84375 1.203125 -0.953125 1.21875 -1.078125 Z M 2.609375 -6.625 "></path> </g> <g id="Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-2-0"> </g> <g id="Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-2-1"> <path d="M 3.890625 -4.5 C 3.9375 -4.734375 3.953125 -4.75 4.265625 -4.75 L 4.953125 -4.75 C 5.75 -4.75 5.859375 -4.515625 5.859375 -4.078125 C 5.859375 -3.984375 5.84375 -3.78125 5.8125 -3.546875 C 5.8125 -3.53125 5.796875 -3.4375 5.796875 -3.421875 C 5.796875 -3.34375 5.859375 -3.296875 5.9375 -3.296875 C 6.0625 -3.296875 6.078125 -3.375 6.09375 -3.484375 L 6.28125 -4.921875 C 6.28125 -5.046875 6.203125 -5.046875 6.0625 -5.046875 L 1.203125 -5.046875 C 1.015625 -5.046875 1 -5.046875 0.9375 -4.890625 L 0.453125 -3.53125 C 0.421875 -3.4375 0.421875 -3.421875 0.421875 -3.40625 C 0.421875 -3.390625 0.4375 -3.296875 0.5625 -3.296875 C 0.671875 -3.296875 0.671875 -3.328125 0.734375 -3.515625 C 1.078125 -4.421875 1.3125 -4.75 2.265625 -4.75 L 2.953125 -4.75 C 3.09375 -4.75 3.109375 -4.75 3.203125 -4.734375 L 2.1875 -0.640625 C 2.140625 -0.4375 2.09375 -0.359375 1.890625 -0.34375 C 1.6875 -0.296875 1.25 -0.296875 1.234375 -0.296875 C 1.046875 -0.296875 1.03125 -0.296875 1 -0.28125 C 0.96875 -0.25 0.9375 -0.140625 0.9375 -0.109375 C 0.9375 -0.09375 0.953125 0 1.078125 0 C 1.28125 0 1.5 -0.015625 1.703125 -0.015625 C 2 -0.015625 2.203125 -0.03125 2.390625 -0.03125 C 2.625 -0.03125 2.84375 -0.015625 3.0625 -0.015625 C 3.28125 -0.015625 3.53125 0 3.734375 0 C 3.796875 0 3.859375 0 3.890625 -0.046875 C 3.90625 -0.078125 3.921875 -0.171875 3.921875 -0.1875 C 3.90625 -0.296875 3.859375 -0.296875 3.625 -0.296875 C 3.453125 -0.296875 3.296875 -0.3125 3.140625 -0.3125 C 2.96875 -0.328125 2.875 -0.34375 2.875 -0.453125 Z M 3.890625 -4.5 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-1" x="6.434" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-1" x="17.042746" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-2" x="27.651491" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-1" x="108.172" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-2" x="118.780746" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-1" x="130.244288" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-2" x="209.91" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-1" x="221.373542" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-1" x="231.982288" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-1" x="11.738" y="80.679"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-2" x="22.346746" y="80.679"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-2" x="215.215" y="80.679"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-0-1" x="226.678542" y="80.679"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -101.739563 20.821531 L -101.739563 -20.342531 " transform="matrix(1, 0, 0, -1, 124.513, 43.927)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486482 2.870541 C -2.033357 1.147885 -1.021639 0.335385 0.00179875 -0.0005525 C -1.021639 -0.33649 -2.033357 -1.14899 -2.486482 -2.86774 " transform="matrix(0, 1, 1, 0, 22.77399, 64.50992)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-1-1" x="26.291" y="47.27"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-2-1" x="32.65975" y="43.75375"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-1-2" x="39.956" y="47.27"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -78.716125 30.274656 L -23.501281 30.274656 " transform="matrix(1, 0, 0, -1, 124.513, 43.927)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488161 2.86949 C -2.03113 1.146834 -1.019411 0.334334 0.00012 -0.00160375 C -1.019411 -0.333635 -2.03113 -1.146135 -2.488161 -2.868791 " transform="matrix(1, 0, 0, -1, 101.24988, 13.65074)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-1-3" x="68.188" y="10.135"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-1-4" x="75.825348" y="10.135"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 23.022156 30.274656 L 78.237 30.274656 " transform="matrix(1, 0, 0, -1, 124.513, 43.927)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485354 2.86949 C -2.032229 1.146834 -1.02051 0.334334 -0.00097875 -0.00160375 C -1.02051 -0.333635 -2.032229 -1.146135 -2.485354 -2.868791 " transform="matrix(1, 0, 0, -1, 202.98926, 13.65074)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-1-4" x="169.927" y="10.135"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-1-3" x="173.2057" y="10.135"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 101.740906 20.821531 L 101.740906 -20.342531 " transform="matrix(1, 0, 0, -1, 124.513, 43.927)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486482 2.868344 C -2.033357 1.145688 -1.021639 0.333188 0.00179875 0.00115625 C -1.021639 -0.334781 -2.033357 -1.147281 -2.486482 -2.869937 " transform="matrix(0, 1, 1, 0, 226.25275, 64.50992)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-1-2" x="229.767" y="47.27"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-1-1" x="237.952293" y="47.27"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-2-1" x="244.317" y="43.75375"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -84.020813 -33.014406 L 83.541687 -33.014406 " transform="matrix(1, 0, 0, -1, 124.513, 43.927)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485006 2.868781 C -2.031881 1.146125 -1.020163 0.333625 -0.00063125 0.00159375 C -1.020163 -0.334344 -2.031881 -1.146844 -2.485006 -2.8695 " transform="matrix(1, 0, 0, -1, 208.2936, 76.943)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#Y1AWf1W1ZzKlg2wOOH3b6tCh3ts=-glyph-1-4" x="122.874" y="73.427"></use> </g> </svg> <p></p> </div> </p> <p>Distributive laws for the monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>T</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{T}</annotation></semantics></math> over the endofunctor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> are in a canonical bijection with lifts of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> to an <a class="existingWikiWord" href="/nlab/show/endofunctor">endofunctor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>P</mi> <mstyle mathvariant="bold"><mi>T</mi></mstyle></msup></mrow><annotation encoding="application/x-tex">P^{\mathbf T}</annotation></semantics></math> in the <a class="existingWikiWord" href="/nlab/show/Eilenberg-Moore+category">Eilenberg-Moore category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>A</mi> <mstyle mathvariant="bold"><mi>T</mi></mstyle></msup></mrow><annotation encoding="application/x-tex">A^{\mathbf T}</annotation></semantics></math>, satisfying <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>U</mi> <mstyle mathvariant="bold"><mi>T</mi></mstyle></msup><msup><mi>P</mi> <mstyle mathvariant="bold"><mi>T</mi></mstyle></msup><mo>=</mo><mi>P</mi><msup><mi>U</mi> <mstyle mathvariant="bold"><mi>T</mi></mstyle></msup></mrow><annotation encoding="application/x-tex">U^{\mathbf T} P^{\mathbf T} = P U^{\mathbf T}</annotation></semantics></math>. Indeed, the endofunctor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>P</mi> <mstyle mathvariant="bold"><mi>T</mi></mstyle></msup></mrow><annotation encoding="application/x-tex">P^{\mathbf T}</annotation></semantics></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mi>ν</mi><mo stretchy="false">)</mo><mo>↦</mo><mo stretchy="false">(</mo><mi>P</mi><mi>M</mi><mo>,</mo><mi>P</mi><mo stretchy="false">(</mo><mi>ν</mi><mo stretchy="false">)</mo><mo>∘</mo><msub><mi>l</mi> <mi>M</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(M,\nu) \mapsto (P M,P(\nu)\circ l_M)</annotation></semantics></math>.</p> <p> <div class='num_defn'> <h6>Definition</h6> <p>A <strong>distributive law</strong> for a monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>T</mi></mstyle><mo>=</mo><mo stretchy="false">(</mo><mi>T</mi><mo>,</mo><msup><mi>μ</mi> <mi>T</mi></msup><mo>,</mo><msup><mi>η</mi> <mi>T</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{T} = (T, \mu^T, \eta^T)</annotation></semantics></math> over a monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>P</mi></mstyle><mo>=</mo><mo stretchy="false">(</mo><mi>P</mi><mo>,</mo><msup><mi>μ</mi> <mi>P</mi></msup><mo>,</mo><msup><mi>η</mi> <mi>P</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{P} = (P, \mu^P, \eta^P)</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is a distributive law for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>T</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf T</annotation></semantics></math> over the endofunctor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math>, compatible with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>μ</mi> <mi>P</mi></msup><mo>,</mo><msup><mi>η</mi> <mi>P</mi></msup></mrow><annotation encoding="application/x-tex">\mu^P,\eta^P</annotation></semantics></math> in the sense that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>l</mi><mo>∘</mo><mi>T</mi><mo stretchy="false">(</mo><msup><mi>η</mi> <mi>P</mi></msup><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msup><mi>η</mi> <mi>P</mi></msup><msub><mo stretchy="false">)</mo> <mi>T</mi></msub></mrow><annotation encoding="application/x-tex">l \circ T(\eta^P) = (\eta^P)_T</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>l</mi><mo>∘</mo><mi>T</mi><mo stretchy="false">(</mo><msup><mi>μ</mi> <mi>P</mi></msup><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msup><mi>μ</mi> <mi>P</mi></msup><msub><mo stretchy="false">)</mo> <mi>T</mi></msub><mo>∘</mo><mi>P</mi><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">)</mo><mo>∘</mo><msub><mi>l</mi> <mi>P</mi></msub></mrow><annotation encoding="application/x-tex">l \circ T(\mu^P) = (\mu^P)_T \circ P(l) \circ l_P</annotation></semantics></math>. In diagrams:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="205.736" height="84.441" viewBox="0 0 205.736 84.441"> <defs> <g> <g id="eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-0-0"> </g> <g id="eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-0-1"> <path d="M 6.234375 -9.109375 C 6.3125 -9.46875 6.34375 -9.609375 6.578125 -9.671875 C 6.6875 -9.6875 7.1875 -9.6875 7.5 -9.6875 C 9 -9.6875 9.6875 -9.640625 9.6875 -8.46875 C 9.6875 -8.25 9.640625 -7.671875 9.546875 -7.125 L 9.53125 -6.953125 C 9.53125 -6.890625 9.59375 -6.796875 9.671875 -6.796875 C 9.828125 -6.796875 9.828125 -6.875 9.875 -7.109375 L 10.3125 -9.75 C 10.34375 -9.890625 10.34375 -9.921875 10.34375 -9.96875 C 10.34375 -10.125 10.25 -10.125 9.953125 -10.125 L 1.78125 -10.125 C 1.4375 -10.125 1.421875 -10.109375 1.328125 -9.84375 L 0.421875 -7.15625 C 0.40625 -7.125 0.359375 -6.953125 0.359375 -6.953125 C 0.359375 -6.875 0.421875 -6.796875 0.515625 -6.796875 C 0.625 -6.796875 0.65625 -6.859375 0.71875 -7.046875 C 1.34375 -8.859375 1.65625 -9.6875 3.640625 -9.6875 L 4.640625 -9.6875 C 5 -9.6875 5.15625 -9.6875 5.15625 -9.53125 C 5.15625 -9.484375 5.15625 -9.453125 5.078125 -9.1875 L 3.078125 -1.171875 C 2.921875 -0.578125 2.890625 -0.4375 1.3125 -0.4375 C 0.9375 -0.4375 0.84375 -0.4375 0.84375 -0.15625 C 0.84375 0 1 0 1.078125 0 C 1.453125 0 1.84375 -0.03125 2.203125 -0.03125 L 4.546875 -0.03125 C 4.921875 -0.03125 5.3125 0 5.6875 0 C 5.859375 0 6 0 6 -0.28125 C 6 -0.4375 5.90625 -0.4375 5.515625 -0.4375 C 4.171875 -0.4375 4.171875 -0.5625 4.171875 -0.796875 C 4.171875 -0.8125 4.171875 -0.90625 4.234375 -1.15625 Z M 6.234375 -9.109375 "></path> </g> <g id="eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-0-2"> <path d="M 4.421875 -4.75 L 6.9375 -4.75 C 9 -4.75 11.046875 -6.28125 11.046875 -7.984375 C 11.046875 -9.140625 10.0625 -10.203125 8.1875 -10.203125 L 3.5625 -10.203125 C 3.28125 -10.203125 3.15625 -10.203125 3.15625 -9.921875 C 3.15625 -9.765625 3.28125 -9.765625 3.515625 -9.765625 C 4.421875 -9.765625 4.421875 -9.65625 4.421875 -9.484375 C 4.421875 -9.453125 4.421875 -9.359375 4.359375 -9.140625 L 2.34375 -1.109375 C 2.203125 -0.578125 2.1875 -0.4375 1.140625 -0.4375 C 0.84375 -0.4375 0.703125 -0.4375 0.703125 -0.171875 C 0.703125 0 0.84375 0 0.921875 0 C 1.203125 0 1.515625 -0.03125 1.796875 -0.03125 L 3.546875 -0.03125 C 3.828125 -0.03125 4.140625 0 4.421875 0 C 4.546875 0 4.703125 0 4.703125 -0.28125 C 4.703125 -0.4375 4.578125 -0.4375 4.34375 -0.4375 C 3.453125 -0.4375 3.4375 -0.53125 3.4375 -0.6875 C 3.4375 -0.765625 3.453125 -0.859375 3.46875 -0.9375 Z M 5.5 -9.1875 C 5.625 -9.734375 5.6875 -9.765625 6.28125 -9.765625 L 7.75 -9.765625 C 8.875 -9.765625 9.796875 -9.40625 9.796875 -8.296875 C 9.796875 -7.90625 9.609375 -6.625 8.921875 -5.9375 C 8.65625 -5.671875 7.953125 -5.109375 6.59375 -5.109375 L 4.484375 -5.109375 Z M 5.5 -9.1875 "></path> </g> <g id="eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-1-0"> </g> <g id="eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-1-1"> <path d="M 4.5 -6.03125 C 4.59375 -6.390625 4.609375 -6.40625 5.015625 -6.40625 L 5.765625 -6.40625 C 6.8125 -6.40625 6.921875 -6.078125 6.921875 -5.578125 C 6.921875 -5.328125 6.875 -4.90625 6.859375 -4.859375 C 6.84375 -4.75 6.828125 -4.65625 6.828125 -4.640625 C 6.828125 -4.5 6.921875 -4.46875 6.984375 -4.46875 C 7.09375 -4.46875 7.125 -4.53125 7.15625 -4.71875 L 7.421875 -6.59375 C 7.421875 -6.734375 7.3125 -6.734375 7.125 -6.734375 L 1.25 -6.734375 C 1 -6.734375 0.984375 -6.734375 0.921875 -6.53125 L 0.3125 -4.8125 C 0.296875 -4.75 0.265625 -4.671875 0.265625 -4.609375 C 0.265625 -4.53125 0.328125 -4.46875 0.40625 -4.46875 C 0.515625 -4.46875 0.53125 -4.53125 0.59375 -4.6875 C 1.171875 -6.296875 1.453125 -6.40625 2.96875 -6.40625 L 3.359375 -6.40625 C 3.65625 -6.40625 3.671875 -6.40625 3.671875 -6.3125 C 3.671875 -6.296875 3.625 -6.09375 3.625 -6.046875 L 2.296875 -0.8125 C 2.21875 -0.4375 2.1875 -0.328125 1.140625 -0.328125 C 0.828125 -0.328125 0.734375 -0.328125 0.734375 -0.140625 C 0.734375 -0.125 0.734375 0 0.890625 0 C 1.171875 0 1.859375 -0.03125 2.125 -0.03125 L 2.96875 -0.03125 C 3.25 -0.03125 3.953125 0 4.234375 0 C 4.3125 0 4.453125 0 4.453125 -0.1875 C 4.453125 -0.328125 4.34375 -0.328125 4.078125 -0.328125 C 3.84375 -0.328125 3.765625 -0.328125 3.5 -0.34375 C 3.1875 -0.375 3.140625 -0.421875 3.140625 -0.546875 C 3.140625 -0.59375 3.15625 -0.625 3.1875 -0.734375 Z M 4.5 -6.03125 "></path> </g> <g id="eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-1-2"> <path d="M 5.1875 -2.75 C 5.234375 -2.90625 5.28125 -3.078125 5.28125 -3.296875 C 5.28125 -4.03125 4.75 -4.390625 4.03125 -4.390625 C 3.234375 -4.390625 2.71875 -3.90625 2.421875 -3.53125 C 2.359375 -4.078125 1.90625 -4.390625 1.40625 -4.390625 C 1.046875 -4.390625 0.796875 -4.171875 0.640625 -3.859375 C 0.40625 -3.40625 0.296875 -2.90625 0.296875 -2.875 C 0.296875 -2.78125 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.78125 0.65625 -3.046875 C 0.78125 -3.546875 0.96875 -4.109375 1.375 -4.109375 C 1.625 -4.109375 1.6875 -3.890625 1.6875 -3.65625 C 1.6875 -3.46875 1.640625 -3.28125 1.5625 -2.953125 C 1.546875 -2.875 1.390625 -2.28125 1.359375 -2.140625 L 0.984375 -0.640625 C 0.953125 -0.5 0.890625 -0.25 0.890625 -0.203125 C 0.890625 0.015625 1.078125 0.09375 1.203125 0.09375 C 1.390625 0.09375 1.53125 -0.015625 1.609375 -0.140625 C 1.640625 -0.203125 1.71875 -0.53125 1.765625 -0.75 L 2 -1.640625 C 2.03125 -1.78125 2.125 -2.15625 2.15625 -2.3125 C 2.296875 -2.84375 2.296875 -2.859375 2.515625 -3.1875 C 2.84375 -3.671875 3.3125 -4.109375 3.984375 -4.109375 C 4.34375 -4.109375 4.5625 -3.90625 4.5625 -3.4375 C 4.5625 -3.25 4.46875 -2.875 4.46875 -2.875 L 3.34375 1.609375 C 3.3125 1.75 3.3125 1.8125 3.3125 1.828125 C 3.3125 2.078125 3.515625 2.140625 3.625 2.140625 C 3.984375 2.140625 4.0625 1.8125 4.09375 1.6875 Z M 5.1875 -2.75 "></path> </g> <g id="eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-1-3"> <path d="M 2.609375 -6.625 C 2.625 -6.640625 2.65625 -6.765625 2.65625 -6.78125 C 2.65625 -6.828125 2.609375 -6.921875 2.5 -6.921875 L 1.484375 -6.84375 C 1.109375 -6.8125 1.03125 -6.796875 1.03125 -6.625 C 1.03125 -6.484375 1.171875 -6.484375 1.296875 -6.484375 C 1.78125 -6.484375 1.78125 -6.421875 1.78125 -6.328125 C 1.78125 -6.296875 1.78125 -6.28125 1.71875 -6.09375 L 0.484375 -1.15625 C 0.453125 -1 0.453125 -0.84375 0.453125 -0.84375 C 0.453125 -0.21875 0.953125 0.09375 1.453125 0.09375 C 1.890625 0.09375 2.109375 -0.234375 2.21875 -0.453125 C 2.40625 -0.78125 2.546875 -1.375 2.546875 -1.421875 C 2.546875 -1.484375 2.515625 -1.5625 2.390625 -1.5625 C 2.296875 -1.5625 2.265625 -1.5 2.265625 -1.5 C 2.25 -1.46875 2.203125 -1.28125 2.171875 -1.171875 C 2.03125 -0.59375 1.828125 -0.171875 1.46875 -0.171875 C 1.234375 -0.171875 1.171875 -0.40625 1.171875 -0.640625 C 1.171875 -0.84375 1.203125 -0.953125 1.21875 -1.078125 Z M 2.609375 -6.625 "></path> </g> <g id="eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-2-0"> </g> <g id="eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-2-1"> <path d="M 2.71875 -2.28125 L 4.21875 -2.28125 C 5.328125 -2.28125 6.5625 -3.015625 6.5625 -3.921875 C 6.5625 -4.578125 5.875 -5.09375 4.84375 -5.09375 L 2.09375 -5.09375 C 1.953125 -5.09375 1.859375 -5.09375 1.859375 -4.921875 C 1.859375 -4.796875 1.953125 -4.796875 2.09375 -4.796875 C 2.21875 -4.796875 2.40625 -4.796875 2.5625 -4.75 C 2.5625 -4.671875 2.5625 -4.625 2.546875 -4.515625 L 1.5625 -0.625 C 1.5 -0.34375 1.484375 -0.296875 0.921875 -0.296875 C 0.75 -0.296875 0.65625 -0.296875 0.65625 -0.109375 C 0.65625 -0.046875 0.6875 0 0.78125 0 C 0.9375 0 1.109375 -0.015625 1.28125 -0.015625 C 1.453125 -0.015625 1.609375 -0.03125 1.78125 -0.03125 C 1.953125 -0.03125 2.125 -0.015625 2.296875 -0.015625 C 2.453125 -0.015625 2.640625 0 2.796875 0 C 2.859375 0 2.96875 0 2.96875 -0.1875 C 2.96875 -0.296875 2.890625 -0.296875 2.71875 -0.296875 C 2.71875 -0.296875 2.578125 -0.296875 2.4375 -0.3125 C 2.296875 -0.328125 2.25 -0.328125 2.25 -0.40625 C 2.25 -0.4375 2.25 -0.46875 2.28125 -0.546875 Z M 3.25 -4.546875 C 3.3125 -4.78125 3.3125 -4.796875 3.625 -4.796875 L 4.59375 -4.796875 C 5.265625 -4.796875 5.765625 -4.625 5.765625 -4.0625 C 5.765625 -3.828125 5.671875 -3.21875 5.265625 -2.890625 C 4.921875 -2.640625 4.453125 -2.546875 4.03125 -2.546875 L 2.75 -2.546875 Z M 3.25 -4.546875 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-0-1" x="97.564" y="15.68"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-0-1" x="6.434" y="78.972"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-0-2" x="17.042746" y="78.972"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-0-2" x="177.229" y="78.972"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-0-1" x="188.692542" y="78.972"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -11.989094 21.395781 L -68.563312 -20.537812 " transform="matrix(1, 0, 0, -1, 102.868, 42.22)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485896 2.86696 C -2.032363 1.149862 -1.020633 0.336788 -0.00144821 -0.000423505 C -1.021516 -0.333584 -2.031833 -1.145636 -2.487711 -2.869458 " transform="matrix(-0.80334, 0.59541, 0.59541, 0.80334, 34.11237, 62.89964)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-1-1" x="37.921" y="36.48"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-1-2" x="45.558348" y="36.48"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-2-1" x="51.2235" y="32.965"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 11.987469 21.395781 L 68.565594 -20.537812 " transform="matrix(1, 0, 0, -1, 102.868, 42.22)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486543 2.870252 C -2.030693 1.146452 -1.020402 0.334402 -0.000354504 0.0012341 C -1.019527 -0.33596 -2.03125 -1.149009 -2.487935 -2.8684 " transform="matrix(0.80336, 0.59541, 0.59541, -0.80336, 171.62455, 62.89964)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-1-2" x="146.852" y="36.48"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-2-1" x="152.52075" y="32.965"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-1-1" x="160.182" y="36.48"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -67.6805 -33.014375 L 67.202313 -33.014375 " transform="matrix(1, 0, 0, -1, 102.868, 42.22)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487597 2.868813 C -2.030566 1.146156 -1.018847 0.333656 0.00068375 0.001625 C -1.018847 -0.334312 -2.030566 -1.146812 -2.487597 -2.869469 " transform="matrix(1, 0, 0, -1, 170.30791, 75.236)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#eOxReKCFQrMKKy-xhyo5AOHeo7I=-glyph-1-3" x="101.229" y="71.72"></use> </g> </svg><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="256.785" height="86.148" viewBox="0 0 256.785 86.148"> <defs> <g> <g id="lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-0"> </g> <g id="lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-1"> <path d="M 6.234375 -9.109375 C 6.3125 -9.46875 6.34375 -9.609375 6.578125 -9.671875 C 6.6875 -9.6875 7.1875 -9.6875 7.5 -9.6875 C 9 -9.6875 9.6875 -9.640625 9.6875 -8.46875 C 9.6875 -8.25 9.640625 -7.671875 9.546875 -7.125 L 9.53125 -6.953125 C 9.53125 -6.890625 9.59375 -6.796875 9.671875 -6.796875 C 9.828125 -6.796875 9.828125 -6.875 9.875 -7.109375 L 10.3125 -9.75 C 10.34375 -9.890625 10.34375 -9.921875 10.34375 -9.96875 C 10.34375 -10.125 10.25 -10.125 9.953125 -10.125 L 1.78125 -10.125 C 1.4375 -10.125 1.421875 -10.109375 1.328125 -9.84375 L 0.421875 -7.15625 C 0.40625 -7.125 0.359375 -6.953125 0.359375 -6.953125 C 0.359375 -6.875 0.421875 -6.796875 0.515625 -6.796875 C 0.625 -6.796875 0.65625 -6.859375 0.71875 -7.046875 C 1.34375 -8.859375 1.65625 -9.6875 3.640625 -9.6875 L 4.640625 -9.6875 C 5 -9.6875 5.15625 -9.6875 5.15625 -9.53125 C 5.15625 -9.484375 5.15625 -9.453125 5.078125 -9.1875 L 3.078125 -1.171875 C 2.921875 -0.578125 2.890625 -0.4375 1.3125 -0.4375 C 0.9375 -0.4375 0.84375 -0.4375 0.84375 -0.15625 C 0.84375 0 1 0 1.078125 0 C 1.453125 0 1.84375 -0.03125 2.203125 -0.03125 L 4.546875 -0.03125 C 4.921875 -0.03125 5.3125 0 5.6875 0 C 5.859375 0 6 0 6 -0.28125 C 6 -0.4375 5.90625 -0.4375 5.515625 -0.4375 C 4.171875 -0.4375 4.171875 -0.5625 4.171875 -0.796875 C 4.171875 -0.8125 4.171875 -0.90625 4.234375 -1.15625 Z M 6.234375 -9.109375 "></path> </g> <g id="lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-2"> <path d="M 4.421875 -4.75 L 6.9375 -4.75 C 9 -4.75 11.046875 -6.28125 11.046875 -7.984375 C 11.046875 -9.140625 10.0625 -10.203125 8.1875 -10.203125 L 3.5625 -10.203125 C 3.28125 -10.203125 3.15625 -10.203125 3.15625 -9.921875 C 3.15625 -9.765625 3.28125 -9.765625 3.515625 -9.765625 C 4.421875 -9.765625 4.421875 -9.65625 4.421875 -9.484375 C 4.421875 -9.453125 4.421875 -9.359375 4.359375 -9.140625 L 2.34375 -1.109375 C 2.203125 -0.578125 2.1875 -0.4375 1.140625 -0.4375 C 0.84375 -0.4375 0.703125 -0.4375 0.703125 -0.171875 C 0.703125 0 0.84375 0 0.921875 0 C 1.203125 0 1.515625 -0.03125 1.796875 -0.03125 L 3.546875 -0.03125 C 3.828125 -0.03125 4.140625 0 4.421875 0 C 4.546875 0 4.703125 0 4.703125 -0.28125 C 4.703125 -0.4375 4.578125 -0.4375 4.34375 -0.4375 C 3.453125 -0.4375 3.4375 -0.53125 3.4375 -0.6875 C 3.4375 -0.765625 3.453125 -0.859375 3.46875 -0.9375 Z M 5.5 -9.1875 C 5.625 -9.734375 5.6875 -9.765625 6.28125 -9.765625 L 7.75 -9.765625 C 8.875 -9.765625 9.796875 -9.40625 9.796875 -8.296875 C 9.796875 -7.90625 9.609375 -6.625 8.921875 -5.9375 C 8.65625 -5.671875 7.953125 -5.109375 6.59375 -5.109375 L 4.484375 -5.109375 Z M 5.5 -9.1875 "></path> </g> <g id="lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-1-0"> </g> <g id="lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-1-1"> <path d="M 4.5 -6.03125 C 4.59375 -6.390625 4.609375 -6.40625 5.015625 -6.40625 L 5.765625 -6.40625 C 6.8125 -6.40625 6.921875 -6.078125 6.921875 -5.578125 C 6.921875 -5.328125 6.875 -4.90625 6.859375 -4.859375 C 6.84375 -4.75 6.828125 -4.65625 6.828125 -4.640625 C 6.828125 -4.5 6.921875 -4.46875 6.984375 -4.46875 C 7.09375 -4.46875 7.125 -4.53125 7.15625 -4.71875 L 7.421875 -6.59375 C 7.421875 -6.734375 7.3125 -6.734375 7.125 -6.734375 L 1.25 -6.734375 C 1 -6.734375 0.984375 -6.734375 0.921875 -6.53125 L 0.3125 -4.8125 C 0.296875 -4.75 0.265625 -4.671875 0.265625 -4.609375 C 0.265625 -4.53125 0.328125 -4.46875 0.40625 -4.46875 C 0.515625 -4.46875 0.53125 -4.53125 0.59375 -4.6875 C 1.171875 -6.296875 1.453125 -6.40625 2.96875 -6.40625 L 3.359375 -6.40625 C 3.65625 -6.40625 3.671875 -6.40625 3.671875 -6.3125 C 3.671875 -6.296875 3.625 -6.09375 3.625 -6.046875 L 2.296875 -0.8125 C 2.21875 -0.4375 2.1875 -0.328125 1.140625 -0.328125 C 0.828125 -0.328125 0.734375 -0.328125 0.734375 -0.140625 C 0.734375 -0.125 0.734375 0 0.890625 0 C 1.171875 0 1.859375 -0.03125 2.125 -0.03125 L 2.96875 -0.03125 C 3.25 -0.03125 3.953125 0 4.234375 0 C 4.3125 0 4.453125 0 4.453125 -0.1875 C 4.453125 -0.328125 4.34375 -0.328125 4.078125 -0.328125 C 3.84375 -0.328125 3.765625 -0.328125 3.5 -0.34375 C 3.1875 -0.375 3.140625 -0.421875 3.140625 -0.546875 C 3.140625 -0.59375 3.15625 -0.625 3.1875 -0.734375 Z M 4.5 -6.03125 "></path> </g> <g id="lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-1-2"> <path d="M 2.40625 -3.515625 C 2.46875 -3.703125 2.546875 -4.03125 2.546875 -4.09375 C 2.546875 -4.296875 2.375 -4.390625 2.21875 -4.390625 C 1.875 -4.390625 1.796875 -4.0625 1.75 -3.921875 L 0.375 1.609375 C 0.328125 1.765625 0.328125 1.8125 0.328125 1.828125 C 0.328125 2.078125 0.53125 2.140625 0.640625 2.140625 C 0.703125 2.140625 0.921875 2.140625 1.0625 1.875 C 1.09375 1.796875 1.375 0.609375 1.578125 -0.1875 C 1.75 -0.0625 2.078125 0.09375 2.59375 0.09375 C 3.40625 0.09375 3.953125 -0.5625 3.984375 -0.609375 C 4.15625 0.078125 4.828125 0.09375 4.953125 0.09375 C 5.40625 0.09375 5.640625 -0.28125 5.71875 -0.453125 C 5.921875 -0.8125 6.0625 -1.390625 6.0625 -1.421875 C 6.0625 -1.484375 6.015625 -1.5625 5.90625 -1.5625 C 5.78125 -1.5625 5.765625 -1.5 5.703125 -1.25 C 5.5625 -0.703125 5.375 -0.171875 4.984375 -0.171875 C 4.75 -0.171875 4.671875 -0.375 4.671875 -0.640625 C 4.671875 -0.8125 4.78125 -1.25 4.84375 -1.53125 L 5.109375 -2.546875 C 5.15625 -2.8125 5.21875 -3.015625 5.296875 -3.3125 C 5.34375 -3.53125 5.4375 -3.921875 5.4375 -3.984375 C 5.4375 -4.234375 5.25 -4.296875 5.125 -4.296875 C 4.78125 -4.296875 4.71875 -4.046875 4.609375 -3.59375 L 4.390625 -2.765625 L 4.09375 -1.53125 L 3.984375 -1.125 C 3.96875 -1.0625 3.703125 -0.6875 3.46875 -0.5 C 3.296875 -0.375 3.015625 -0.171875 2.640625 -0.171875 C 2.171875 -0.171875 1.859375 -0.421875 1.859375 -1.046875 C 1.859375 -1.3125 1.9375 -1.609375 2 -1.84375 Z M 2.40625 -3.515625 "></path> </g> <g id="lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-1-3"> <path d="M 2.609375 -6.625 C 2.625 -6.640625 2.65625 -6.765625 2.65625 -6.78125 C 2.65625 -6.828125 2.609375 -6.921875 2.5 -6.921875 L 1.484375 -6.84375 C 1.109375 -6.8125 1.03125 -6.796875 1.03125 -6.625 C 1.03125 -6.484375 1.171875 -6.484375 1.296875 -6.484375 C 1.78125 -6.484375 1.78125 -6.421875 1.78125 -6.328125 C 1.78125 -6.296875 1.78125 -6.28125 1.71875 -6.09375 L 0.484375 -1.15625 C 0.453125 -1 0.453125 -0.84375 0.453125 -0.84375 C 0.453125 -0.21875 0.953125 0.09375 1.453125 0.09375 C 1.890625 0.09375 2.109375 -0.234375 2.21875 -0.453125 C 2.40625 -0.78125 2.546875 -1.375 2.546875 -1.421875 C 2.546875 -1.484375 2.515625 -1.5625 2.390625 -1.5625 C 2.296875 -1.5625 2.265625 -1.5 2.265625 -1.5 C 2.25 -1.46875 2.203125 -1.28125 2.171875 -1.171875 C 2.03125 -0.59375 1.828125 -0.171875 1.46875 -0.171875 C 1.234375 -0.171875 1.171875 -0.40625 1.171875 -0.640625 C 1.171875 -0.84375 1.203125 -0.953125 1.21875 -1.078125 Z M 2.609375 -6.625 "></path> </g> <g id="lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-1-4"> <path d="M 3.140625 -3.109375 L 4.953125 -3.109375 C 6.390625 -3.109375 7.890625 -4.109375 7.890625 -5.28125 C 7.890625 -6.125 7.09375 -6.8125 5.796875 -6.8125 L 2.4375 -6.8125 C 2.265625 -6.8125 2.140625 -6.8125 2.140625 -6.625 C 2.140625 -6.484375 2.265625 -6.484375 2.421875 -6.484375 C 2.75 -6.484375 3.046875 -6.484375 3.046875 -6.3125 C 3.046875 -6.28125 3.03125 -6.265625 3 -6.140625 L 1.671875 -0.78125 C 1.578125 -0.421875 1.5625 -0.328125 0.84375 -0.328125 C 0.625 -0.328125 0.515625 -0.328125 0.515625 -0.140625 C 0.515625 -0.09375 0.53125 0 0.671875 0 C 0.859375 0 1.09375 -0.015625 1.28125 -0.03125 L 1.921875 -0.03125 C 2.875 -0.03125 3.140625 0 3.203125 0 C 3.265625 0 3.40625 0 3.40625 -0.1875 C 3.40625 -0.328125 3.28125 -0.328125 3.109375 -0.328125 C 3.078125 -0.328125 2.90625 -0.328125 2.734375 -0.34375 C 2.515625 -0.375 2.5 -0.40625 2.5 -0.484375 C 2.5 -0.53125 2.515625 -0.59375 2.53125 -0.640625 Z M 3.875 -6.109375 C 3.953125 -6.453125 3.96875 -6.484375 4.375 -6.484375 L 5.46875 -6.484375 C 6.296875 -6.484375 6.921875 -6.234375 6.921875 -5.5 C 6.921875 -5.375 6.875 -4.484375 6.3125 -3.9375 C 6.15625 -3.78125 5.6875 -3.40625 4.703125 -3.40625 L 3.1875 -3.40625 Z M 3.875 -6.109375 "></path> </g> <g id="lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-2-0"> </g> <g id="lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-2-1"> <path d="M 2.71875 -2.28125 L 4.21875 -2.28125 C 5.328125 -2.28125 6.5625 -3.015625 6.5625 -3.921875 C 6.5625 -4.578125 5.875 -5.09375 4.84375 -5.09375 L 2.09375 -5.09375 C 1.953125 -5.09375 1.859375 -5.09375 1.859375 -4.921875 C 1.859375 -4.796875 1.953125 -4.796875 2.09375 -4.796875 C 2.21875 -4.796875 2.40625 -4.796875 2.5625 -4.75 C 2.5625 -4.671875 2.5625 -4.625 2.546875 -4.515625 L 1.5625 -0.625 C 1.5 -0.34375 1.484375 -0.296875 0.921875 -0.296875 C 0.75 -0.296875 0.65625 -0.296875 0.65625 -0.109375 C 0.65625 -0.046875 0.6875 0 0.78125 0 C 0.9375 0 1.109375 -0.015625 1.28125 -0.015625 C 1.453125 -0.015625 1.609375 -0.03125 1.78125 -0.03125 C 1.953125 -0.03125 2.125 -0.015625 2.296875 -0.015625 C 2.453125 -0.015625 2.640625 0 2.796875 0 C 2.859375 0 2.96875 0 2.96875 -0.1875 C 2.96875 -0.296875 2.890625 -0.296875 2.71875 -0.296875 C 2.71875 -0.296875 2.578125 -0.296875 2.4375 -0.3125 C 2.296875 -0.328125 2.25 -0.328125 2.25 -0.40625 C 2.25 -0.4375 2.25 -0.46875 2.28125 -0.546875 Z M 3.25 -4.546875 C 3.3125 -4.78125 3.3125 -4.796875 3.625 -4.796875 L 4.59375 -4.796875 C 5.265625 -4.796875 5.765625 -4.625 5.765625 -4.0625 C 5.765625 -3.828125 5.671875 -3.21875 5.265625 -2.890625 C 4.921875 -2.640625 4.453125 -2.546875 4.03125 -2.546875 L 2.75 -2.546875 Z M 3.25 -4.546875 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-1" x="6.434" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-2" x="17.042746" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-2" x="28.506288" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-2" x="109.028" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-1" x="120.491542" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-2" x="131.100288" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-2" x="211.621" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-2" x="223.084542" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-1" x="234.548085" y="17.387"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-1" x="12.166" y="80.679"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-2" x="22.774746" y="80.679"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-2" x="217.353" y="80.679"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-0-1" x="228.816542" y="80.679"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -102.592875 20.821531 L -102.592875 -20.342531 " transform="matrix(1, 0, 0, -1, 125.796, 43.927)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486482 2.868673 C -2.033357 1.146016 -1.021639 0.333516 0.00179875 0.001485 C -1.021639 -0.334452 -2.033357 -1.146952 -2.486482 -2.869609 " transform="matrix(0, 1, 1, 0, 23.20164, 64.50992)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-1-1" x="26.719" y="47.27"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-1-2" x="34.356348" y="47.27"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-2-1" x="40.72025" y="43.75375"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -79.143656 30.274656 L -23.928813 30.274656 " transform="matrix(1, 0, 0, -1, 125.796, 43.927)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488033 2.86949 C -2.031001 1.146834 -1.019283 0.334334 0.00024875 -0.00160375 C -1.019283 -0.333635 -2.031001 -1.146135 -2.488033 -2.868791 " transform="matrix(1, 0, 0, -1, 102.10522, 13.65074)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-1-3" x="68.77" y="10.135"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-1-4" x="72.0487" y="10.135"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 23.450094 30.274656 L 78.664937 30.274656 " transform="matrix(1, 0, 0, -1, 125.796, 43.927)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485086 2.86949 C -2.031961 1.146834 -1.020242 0.334334 -0.00071125 -0.00160375 C -1.020242 -0.333635 -2.031961 -1.146135 -2.485086 -2.868791 " transform="matrix(1, 0, 0, -1, 204.69993, 13.65074)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-1-4" x="171.363" y="10.135"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-1-3" x="179.548293" y="10.135"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 102.594625 20.821531 L 102.594625 -20.342531 " transform="matrix(1, 0, 0, -1, 125.796, 43.927)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486482 2.870619 C -2.033357 1.147963 -1.021639 0.335463 0.00179875 -0.000475 C -1.021639 -0.336412 -2.033357 -1.148912 -2.486482 -2.867662 " transform="matrix(0, 1, 1, 0, 228.3911, 64.50992)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-1-2" x="231.906" y="47.27"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-2-1" x="238.2735" y="43.75375"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-1-1" x="245.93475" y="47.27"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -84.874125 -33.014406 L 84.395406 -33.014406 " transform="matrix(1, 0, 0, -1, 125.796, 43.927)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486617 2.868781 C -2.033492 1.146125 -1.021774 0.333625 0.00166375 0.00159375 C -1.021774 -0.334344 -2.033492 -1.146844 -2.486617 -2.8695 " transform="matrix(1, 0, 0, -1, 210.43193, 76.943)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#lIqpFp2fS2V4Xvqh6euvCdP074M=-glyph-1-3" x="124.157" y="73.427"></use> </g> </svg> <p></p> </div> (due to <a href="#Beck69">Beck 1969</a>, review includes <a href="#BarrWells85">Barr & Wells 1985 §9 2.1</a>)</p> <p>The correspondence between distributive laws and <em>endofunctor</em> liftings extends to a correspondence between distributive laws and <em>monad</em> liftings. That is, distributive laws <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>l</mi><mo lspace="verythinmathspace">:</mo><mi>T</mi><mi>P</mi><mo>⇒</mo><mi>P</mi><mi>T</mi></mrow><annotation encoding="application/x-tex">l \colon T P \Rightarrow P T</annotation></semantics></math> from the monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>T</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{T}</annotation></semantics></math> to the monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>P</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{P}</annotation></semantics></math> are in a canonical bijection with lifts of the monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>P</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{P}</annotation></semantics></math> to a monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mstyle mathvariant="bold"><mi>P</mi></mstyle> <mstyle mathvariant="bold"><mi>T</mi></mstyle></msup></mrow><annotation encoding="application/x-tex">\mathbf{P}^{\mathbf T}</annotation></semantics></math> in the <a class="existingWikiWord" href="/nlab/show/Eilenberg-Moore+category">Eilenberg-Moore category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>A</mi> <mstyle mathvariant="bold"><mi>T</mi></mstyle></msup></mrow><annotation encoding="application/x-tex">A^{\mathbf T}</annotation></semantics></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>U</mi> <mstyle mathvariant="bold"><mi>T</mi></mstyle></msup><mo lspace="verythinmathspace">:</mo><msup><mi>A</mi> <mstyle mathvariant="bold"><mi>T</mi></mstyle></msup><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">U^{\mathbf T} \colon A^{\mathbf T}\to A</annotation></semantics></math> preserves the monad structure.</p> <p>Thus all together a distributive law for a monad over a monad is a 2-cell for which 2 triangles and 2 pentagons commute. In the entwining case, Brzeziński and Majid combined the 4 diagrams into one picture which they call the <em>bow-tie diagram</em>.</p> <p> <div class='num_remark' id='DistributivityAsMonadsInMonads'> <h6>Remark</h6> <p><strong>(distributivity as monads in monads)</strong> <br /> As mentioned earlier, one can understand a distributivity law of a monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a,s)</annotation></semantics></math> over another monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a,t)</annotation></semantics></math> as displaying <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>s</mi><mo lspace="verythinmathspace">:</mo><mi>a</mi><mo>→</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">s \colon a \to a</annotation></semantics></math> as a monad on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a,t)</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/internalization">in</a> the <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>Mnd</mi></mstyle><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{Mnd}(A)</annotation></semantics></math> of monads in a 2-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>.</p> <p>Specifically, a monad in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>Mnd</mi></mstyle><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{Mnd}(A)</annotation></semantics></math> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a,t)</annotation></semantics></math> (which is a monad in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>!) is comprised of the following data:</p> <ol> <li> <p>A <a class="existingWikiWord" href="/nlab/show/1-morphism">1-morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>s</mi><mo lspace="verythinmathspace">:</mo><mi>a</mi><mo>→</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">s \colon a \to a</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>, together with an intertwiner <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi><mo lspace="verythinmathspace">:</mo><mi>t</mi><mi>s</mi><mo>→</mo><mi>s</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">\lambda \colon t s \to s t</annotation></semantics></math> satisfying the equations <a class="existingWikiWord" href="/nlab/show/monad#BicategoryOfMonads">here</a></p> </li> <li> <p>Two <a class="existingWikiWord" href="/nlab/show/2-morphisms">2-morphisms</a> (in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>Mnd</mi></mstyle><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{Mnd}(A)</annotation></semantics></math>) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>σ</mi><mo lspace="verythinmathspace">:</mo><mn>1</mn><mo>⇒</mo><mo stretchy="false">(</mo><mi>s</mi><mo>,</mo><mi>λ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\sigma \colon 1 \Rightarrow (s,\lambda)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ν</mi><mo lspace="verythinmathspace">:</mo><mo stretchy="false">(</mo><mi>s</mi><mo>,</mo><mi>λ</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>s</mi><mo>,</mo><mi>λ</mi><mo stretchy="false">)</mo><mo>⇒</mo><mo stretchy="false">(</mo><mi>s</mi><mo>,</mo><mi>λ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\nu \colon (s,\lambda)(s,\lambda) \Rightarrow (s,\lambda)</annotation></semantics></math> which correspond to two 2-morpisms in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>σ</mi><mo lspace="verythinmathspace">:</mo><mn>1</mn><mo>⇒</mo><mi>s</mi></mrow><annotation encoding="application/x-tex">\sigma \colon 1 \Rightarrow s</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ν</mi><mo lspace="verythinmathspace">:</mo><mi>s</mi><mi>s</mi><mo>⇒</mo><mi>s</mi></mrow><annotation encoding="application/x-tex">\nu \colon s s \Rightarrow s</annotation></semantics></math> commuting with the intertwiners of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ss</mi></mrow><annotation encoding="application/x-tex">ss</annotation></semantics></math>.</p> </li> </ol> <p>Then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math> is the distributive law sought, and the laws <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>σ</mi></mrow><annotation encoding="application/x-tex">\sigma</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ν</mi></mrow><annotation encoding="application/x-tex">\nu</annotation></semantics></math> satisfy correspond to those of a distributive law.</p> </div> </p> <h3 id="monad_distributing_over_a_comonad">Monad distributing over a comonad</h3> <p><a href="#vanOsdol73">van Osdol 1973 p. 456</a></p> <p>(…)</p> <h3 id="ComonadDistributingOverMonad">Comonad distributing over monad</h3> <p>The distributivity law of</p> <ul> <li> <p>a comonad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> over</p> </li> <li> <p>a monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℰ</mi></mrow><annotation encoding="application/x-tex">\mathcal{E}</annotation></semantics></math></p> </li> </ul> <p>on the same <a class="existingWikiWord" href="/nlab/show/category">category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>C</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math></p> <p>is as follows (<a href="#BrookesVanStone93">Brookes & Van Stone 1993 Def. 3</a>, <a href="#PowerWatanabe02">Power & Watanabe 2002</a>):</p> <p>A <a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>distr</mi> <mrow><mo stretchy="false">(</mo><mtext>-</mtext><mo stretchy="false">)</mo></mrow> <mrow><mi>𝒞</mi><mo>,</mo><mi>ℰ</mi></mrow></msubsup><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>𝒞</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>ℰ</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo><mo>⟶</mo><mi>ℰ</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>𝒞</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow><annotation encoding="application/x-tex"> distr^{\mathcal{C}, \mathcal{E}}_{(\text{-})} \;\;\colon\;\; \mathcal{C} \big( \mathcal{E}(-) \big) \longrightarrow \mathcal{E} \big( \mathcal{C}(-) \big) </annotation></semantics></math></div> <p>such that the following <a class="existingWikiWord" href="/nlab/show/commuting+diagram">diagrams commute</a> for all objects <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math>:</p> <div style="margin: -20px 0px 20px 0px"> <img src="/nlab/files/MixedCoMonadDistributivity-230929.jpg" width="540px" /> </div> <p id="TwoSidedKleisliComposition"> Given this distributivity structure, there is a two-sided (“double”) <a class="existingWikiWord" href="/nlab/show/Kleisli+category">Kleisli category</a> (<a href="#BrookesVanStone93">Brookes & Van Stone 1993 Thm. 2</a>, <a href="#PowerWatanabe02">Power & Watanabe 2002, Prop. 7.4</a>) whose <a class="existingWikiWord" href="/nlab/show/objects">objects</a> are those of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>C</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math>, and whose morphisms <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>D</mi> <mn>1</mn></msub><mo>→</mo><msub><mi>D</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">D_1 \to D_2</annotation></semantics></math> are morphisms in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>C</mi></mstyle></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math> of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>prog</mi> <mn>12</mn></msub><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mi>𝒞</mi><mo stretchy="false">(</mo><msub><mi>D</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo>⟶</mo><mi>ℰ</mi><mo stretchy="false">(</mo><msub><mi>D</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> prog_{12} \;\colon\; \mathcal{C}(D_1) \longrightarrow \mathcal{E}(D_2) </annotation></semantics></math></div> <p>with two-sided Kleisli composition</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>prog</mi> <mn>12</mn></msub><mtext>>=></mtext><msub><mi>prog</mi> <mn>23</mn></msub><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>𝒞</mi><mo stretchy="false">(</mo><msub><mi>D</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo>⟶</mo><mi>ℰ</mi><mo stretchy="false">(</mo><msub><mi>D</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> prog_{12} \text{>=>} prog_{23} \;\; \colon \;\; \mathcal{C}(D_1) \longrightarrow \mathcal{E}(D_3) </annotation></semantics></math></div> <p>given by the (co-)<a class="existingWikiWord" href="/nlab/show/Kleisli+extension">bind-operation</a> on the factors connected by the distributivity transformation:</p> <div style="margin: -20px 0px 20px 0px"> <img src="/nlab/files/CoMonKleisliComposition-230930b.pdf" width="800px" /> </div> <h2 id="examples">Examples</h2> <h3 id="products_distributing_over_coproducts">Products distributing over coproducts</h3> <p>In a <em><a class="existingWikiWord" href="/nlab/show/distributive+category">distributive category</a></em> <a class="existingWikiWord" href="/nlab/show/products">products</a> distribute over <a class="existingWikiWord" href="/nlab/show/coproducts">coproducts</a>.</p> <h3 id="in_cat">In Cat</h3> <ul> <li>There is a distributive law of the monad (on <a class="existingWikiWord" href="/nlab/show/Set">Set</a>) for <a class="existingWikiWord" href="/nlab/show/monoids">monoids</a> over the monad for <a class="existingWikiWord" href="/nlab/show/abelian+groups">abelian groups</a>, whose composite is the monad for <a class="existingWikiWord" href="/nlab/show/rings">rings</a>. This is the canonical example which gives the name to the whole concept.</li> </ul> <h4 id="tensor_products_distributing_over_direct_sums">Tensor products distributing over direct sums</h4> <p>For many standard choices of <a class="existingWikiWord" href="/nlab/show/tensor+products">tensor products</a> in the presence of <a class="existingWikiWord" href="/nlab/show/direct+sums">direct sums</a> the former distribute over the latter. See at <em><a class="existingWikiWord" href="/nlab/show/tensor+product+of+abelian+groups">tensor product of abelian groups</a></em> and <em><a class="existingWikiWord" href="/nlab/show/tensor+product+of+modules">tensor product of modules</a></em>.</p> <h3 id="in_other_2categories">In other 2-categories</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/strict+factorization+systems">strict factorization systems</a> can be identified with distributive laws between categories regarded as monads in <a class="existingWikiWord" href="/nlab/show/span">Span(Set)</a>.</p> </li> <li> <p>More generally, <a class="existingWikiWord" href="/nlab/show/factorization+systems+over+a+subcategory">factorization systems over a subcategory</a> can be identified with distributive laws in <a class="existingWikiWord" href="/nlab/show/Prof">Prof</a>. Ordinary <a class="existingWikiWord" href="/nlab/show/orthogonal+factorization+systems">orthogonal factorization systems</a> are a special case. The latter can also be obtained by other weakenings; see for instance <a href="http://golem.ph.utexas.edu/category/2010/07/ternary_factorization_systems.html">this discussion</a>.</p> </li> </ul> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/weak+distributive+law">weak distributive law</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/iterated+distributive+law">iterated distributive law</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/wreath">wreath</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/distributivity+for+monoidal+structures">distributivity for monoidal structures</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monad+transformer">monad transformer</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudo-distributive+law">pseudo-distributive law</a></p> </li> </ul> <h2 id="Literature">Literature</h2> <ul> <li id="Beck69"> <p><a class="existingWikiWord" href="/nlab/show/Jon+Beck">Jon Beck</a>, <em>Distributive Laws</em>, in: <em><a class="existingWikiWord" href="/nlab/show/Seminar+on+Triples+and+Categorical+Homology+Theory">Seminar on Triples and Categorical Homology Theory</a></em>, ETH 1966/67, Lecture Notes in Mathemativs, Springer (1969), Reprints in Theory and Applications of Categories <strong>18</strong> (2008) 1-303 [<a href="http://www.tac.mta.ca/tac/reprints/articles/18/tr18abs.html">TAC:18</a>, <a href="http://www.tac.mta.ca/tac/reprints/articles/18/tr18.pdf#page=95">pdf</a>]</p> </li> <li id="vanOsdol73"> <p><a class="existingWikiWord" href="/nlab/show/Donovan+van+Osdol">Donovan van Osdol</a>, <em>Bicohomology Theory</em>, Transactions of the American Mathematical Society <strong>183</strong> (1973) 449-476 [<a href="https://www.jstor.org/stable/1996479">jstor:1996479</a>]</p> </li> <li id="Street72"> <p><a class="existingWikiWord" href="/nlab/show/Ross+Street">Ross Street</a>, §6 of: <em>The formal theory of monads</em>, Journal of Pure and Applied Algebra <strong>2</strong> 2 (1972) 149-168 [<a href="https://doi.org/10.1016/0022-4049(72)90019-9">doi:10.1016/0022-4049(72)90019-9</a>]</p> </li> <li id="BarrWells85"> <p><a class="existingWikiWord" href="/nlab/show/Michael+Barr">Michael Barr</a>, <a class="existingWikiWord" href="/nlab/show/Charles+Wells">Charles Wells</a>, <em><a class="existingWikiWord" href="/nlab/show/Toposes%2C+Triples%2C+and+Theories">Toposes, Triples, and Theories</a></em>, Springer (1985) republished in: <a class="existingWikiWord" href="/nlab/show/TAC+reprints+series">Reprints in Theory and Applications of Categories</a>, <strong>12</strong> (2005) 1-287 [<a href="http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html">tac:tr12</a>, <a href="http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html">tac:tr12</a>]</p> </li> <li id="BrookesVanStone93"> <p><a class="existingWikiWord" href="/nlab/show/Stephen+Brookes">Stephen Brookes</a>, <a class="existingWikiWord" href="/nlab/show/Kathryn+Van+Stone">Kathryn Van Stone</a>, <em>Monads and Comonads in Intensional Semantics</em> (1993) [<a href="https://apps.dtic.mil/sti/citations/ADA266522">dtic:ADA266522</a>, <a href="https://www.cs.cmu.edu/~brookes/papers/MonadsComonads.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/BrookesVanStone-CoMonads.pdf" title="pdf">pdf</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Martin+Markl">Martin Markl</a>, <em>Distributive laws and Koszulness</em>, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 2, 307–323 (<a href="http://www.numdam.org/numdam-bin/fitem?id=AIF_1996__46_2_307_0">numdam</a>)</p> </li> <li> <p>T. F. Fox, <a class="existingWikiWord" href="/nlab/show/Martin+Markl">Martin Markl</a>, <em>Distributive laws, bialgebras, and cohomology</em>, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemp. Math. <strong>202</strong> AMS (1997) 167-205</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/T.+Brzezi%C5%84ski">T. Brzeziński</a>, <a class="existingWikiWord" href="/nlab/show/S.+Majid">S. Majid</a>, <em>Coalgebra bundles</em>, Comm. Math. Phys. <strong>191</strong> 2 (1998) 467–492 [<a href="http://arxiv.org/abs/q-alg/9602022">arXiv:q-alg/9602022</a>]</p> </li> </ul> <p>For a study of distributive laws between monads and (pointed) endofunctors, see:</p> <ul> <li>Marina Lenisa, John Power, and Hiroshi Watanabe, <em>Distributivity for endofunctors, pointed and co-pointed endofunctors, monads and comonads</em>, Electronic Notes in Theoretical Computer Science 33 (2000): 230-260.</li> </ul> <p>For a thorough study of mixed distributive laws, see:</p> <ul> <li id="PowerWatanabe99"> <p><a class="existingWikiWord" href="/nlab/show/John+Power">John Power</a>, <a class="existingWikiWord" href="/nlab/show/Hiroshi+Watanabe">Hiroshi Watanabe</a>, <em>Distributivity for a monad and a comonad</em>, Electronic Notes in Theoretical Computer Science <strong>19</strong> (1999) 102 [<a href="https://doi.org/10.1016/S1571-0661(05)80271-3">doi:10.1016/S1571-0661(05)80271-3</a>, <a class="existingWikiWord" href="/nlab/files/PowerWatanabe-Distributivity.pdf" title="pdf">pdf</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Steve+Lack">Steve Lack</a>, <em>Composing PROPS</em>, <a href="http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html">Theory Appl. Categ.</a> 13 (2004), No. 9, 147–163.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Steve+Lack">Steve Lack</a>, <a class="existingWikiWord" href="/nlab/show/Ross+Street">Ross Street</a>, <em>The formal theory of monads II</em>, Special volume celebrating the 70th birthday of Professor Max Kelly, J. Pure Appl. Algebra <strong>175</strong> 1-3 (2002) 243-265</p> </li> <li id="PowerWatanabe02"> <p><a class="existingWikiWord" href="/nlab/show/John+Power">John Power</a>, <a class="existingWikiWord" href="/nlab/show/Hiroshi+Watanabe">Hiroshi Watanabe</a>, <em>Combining a monad and a comonad</em>, Theoretical Computer Science <strong>280</strong> 1–2 (2002) 137-162 [<a href="https://doi.org/10.1016/S0304-3975(01)00024-X">doi:10.1016/S0304-3975(01)00024-X</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/T.+Brzezi%C5%84ski">T. Brzeziński</a>, <a class="existingWikiWord" href="/nlab/show/Robert+Wisbauer">Robert Wisbauer</a>, <em>Corings and comodules</em>, London Math. Soc. Lec. Note Series 309, Cambridge (2003)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gabi+B%C3%B6hm">Gabi Böhm</a>, <em>Internal bialgebroids, entwining structures and corings</em>, AMS Contemp. Math. <strong>376</strong> (2005) 207-226 [<a href="http://front.math.ucdavis.edu/math.QA/0311244">arXiv:math.QA/0311244</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Ernie+Manes">Ernie Manes</a>, <a class="existingWikiWord" href="/nlab/show/Philip+Mulry">Philip Mulry</a>: <em>Monad compositions I: general constructions and recursive distributive laws</em>, Theory and Applications of Categories <strong>18</strong> 7 (2007) 172-208 [<a href="http://www.tac.mta.ca/tac/volumes/18/7/18-07abs.html">tac:18-07</a>, <a href="http://www.tac.mta.ca/tac/volumes/18/7/18-07.pdf">pdf</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Zoran+%C5%A0koda">Zoran Škoda</a>, <em>Distributive laws for monoidal categories</em> (<a href="http://front.math.ucdavis.edu/math.CT/0406310">arXiv:0406310</a>); <em>Equivariant monads and equivariant lifts versus a 2-category of distributive laws</em> (<a href="http://front.math.ucdavis.edu/0707.1609">arXiv:0707.1609</a>); <em>Bicategory of entwinings</em> (<a href="http://arxiv.org/abs/0805.4611">arXiv:0805.4611</a>)</p> </li> <li> <p>R. Wisbauer, <em>Algebras versus coalgebras</em>, Appl. Categ. Structures <strong>16</strong> 1-2 (2008) 255–295 [<a href="https://doi.org/10.1007/s10485-007-9076-5">doi:10.1007/s10485-007-9076-5</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Zoran+%C5%A0koda">Zoran Škoda</a>, <em>Some equivariant constructions in noncommutative geometry</em>, Georgian Math. J. 16 (2009) 1; 183–202 (<a href="http://front.math.ucdavis.edu/0811.4770">arXiv:0811.4770</a>)</p> </li> <li> <p>Bachuki Mesablishvili, <a class="existingWikiWord" href="/nlab/show/Robert+Wisbauer">Robert Wisbauer</a>, <em>Bimonads and Hopf monads on categories</em>, Journal of K-Theory <strong>7</strong> 2 (2011) 349-388 [<a href="https://arxiv.org/abs/0710.1163">arXiv:0710.1163</a>, <a href="https://doi.org/10.1017/is010001014jkt105">doi:10.1017/is010001014jkt105</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Francisco+Marmolejo">Francisco Marmolejo</a>, Adrian Vazquez-Marquez, <em>No-iteration mixed distributive laws</em>, Mathematical Structures in Computer Science <strong>27</strong> 1 (2017) 1-16 [<a href="https://doi.org/10.1017/S0960129514000656">doi:10.1017/S0960129514000656</a>]</p> </li> <li> <p>Liang Ze Wong, <em>Distributive laws</em>, post at <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>-<a href="https://golem.ph.utexas.edu/category/2017/02/distributive_laws.html">cafe</a>, Feb 2017</p> </li> <li> <p>Enrique Ruiz Hernández, <em>Another characterization of no-iteration distributive laws</em>, <a href="https://arxiv.org/abs/1910.06531">arxiv</a></p> </li> <li> <p>Werner Struckmann and Dietmar Wätjen, <em>A note on the number of distributive laws</em>, Algebra universalis 21 (1985): 305-306.</p> </li> </ul> <p>On distributive laws for <a class="existingWikiWord" href="/nlab/show/relative+monads">relative monads</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Gabriele+Lobbia">Gabriele Lobbia</a>, <em>Distributive Laws for Relative Monads</em>, Applied Categorical Structures <strong>31</strong> 19 (2023) [<a href="https://doi.org/10.1007/s10485-023-09716-1">doi:10.1007/s10485-023-09716-1</a>, <a href="https://arxiv.org/abs/2007.12982">arXiv:2007.12982</a>]</li> </ul> <p>Invertible distributive laws are considered in Lemma 4.12 of:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Bob+Rosebrugh">Bob Rosebrugh</a>, <a class="existingWikiWord" href="/nlab/show/Richard+J.+Wood">Richard J. Wood</a>, <em>Distributive Adjoint Strings</em>, Theory and Applications of Categories, <strong>1</strong> 6 (1995) 119-145 [<a href="http://www.tac.mta.ca/tac/volumes/1995/n6/1-06abs.html">tac:1-06</a>]</p> </li> <li> <p>Stefano Kasangian, <a class="existingWikiWord" href="/nlab/show/Stephen+Lack">Stephen Lack</a>, and <a class="existingWikiWord" href="/nlab/show/Enrico+Vitale">Enrico Vitale</a>. <em>Coalgebras, braidings, and distributive laws</em>, Theory and Applications of Categories 13.8 (2004): 129-146. (<a href="https://www.emis.de/journals/TAC/volumes/13/8/13-08abs.html">html</a>)</p> </li> <li> <p>Alain Bruguieres and Alexis Virelizier, <em>Quantum double of Hopf monads and categorical centers</em>, Transactions of the American Mathematical Society 364.3 (2012): 1225-1279.</p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on November 2, 2024 at 16:31:41. See the <a href="/nlab/history/distributive+law" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/distributive+law" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/1943/#Item_33">Discuss</a><span class="backintime"><a href="/nlab/revision/distributive+law/61" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/distributive+law" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/distributive+law" accesskey="S" class="navlink" id="history" rel="nofollow">History (61 revisions)</a> <a href="/nlab/show/distributive+law/cite" style="color: black">Cite</a> <a href="/nlab/print/distributive+law" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/distributive+law" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>