CINXE.COM
Search results for: Chase type friction tester
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Chase type friction tester</title> <meta name="description" content="Search results for: Chase type friction tester"> <meta name="keywords" content="Chase type friction tester"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Chase type friction tester" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Chase type friction tester"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7515</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Chase type friction tester</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7515</span> Effects of Ingredients Proportions on the Friction Performance of a Brake Pad Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rukiye%20Ertan">Rukiye Ertan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a brake friction material composition was investigated experimentally related to the effects of the friction modifiers and abrasive proportions on the tribological properties. The investigation was based on a simple experimental formulation, consisting of seven friction materials with different proportions of abrasives (ZrSiO4 and Fe2O3) and friction modifiers (cashew dust). The friction materials were evaluated using a Chase friction tester. The tribological properties, such as the wear resistance and friction stability, depending on the test temperature and the number of braking were obtained related to the friction material ingredient proportions. The results showed that the tribological properties of the brake pad were greatly affected by the abrasive and then cashew dust proportion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20pad" title="brake pad">brake pad</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasives" title=" abrasives"> abrasives</a> </p> <a href="https://publications.waset.org/abstracts/12601/effects-of-ingredients-proportions-on-the-friction-performance-of-a-brake-pad-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7514</span> Stainless Steel Swarfs for Replacement of Copper in Non-Asbestos Organic Brake-Pads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Mahale">Vishal Mahale</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayashree%20Bijwe"> Jayashree Bijwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujeet%20K.%20Sinha"> Sujeet K. Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays extensive research is going on in the field of friction materials (FMs) for development of eco-friendly brake-materials by removing copper as it is a proven threat to the aquatic organisms. Researchers are keen to find the solution for copper-free FMs by using different metals or without metals. Steel wool is used as a reinforcement in non-asbestos organic (NAO) FMs mainly for increasing thermal conductivity, and it affects wear adversely, most of the times and also adds friction fluctuations. Copper and brass used to be the preferred choices because of superior performance in almost every aspect except cost. Since these are being phased out because of a proven threat to the aquatic life. Keeping this in view, a series of realistic multi-ingredient FMs containing stainless steel (SS) swarfs as a theme ingredient in increasing amount (0, 5, 10 and 15 wt. %- S₅, S₁₀, and S₁₅) were developed in the form of brake-pads. One more composite containing copper instead of SS swarfs (C₁₀) was developed. These composites were characterized for physical, mechanical, chemical and tribological performance. Composites were tribo-evaluated on a chase machine with various test loops as per SAE J661 standards. Various performance parameters such as normal µ, hot µ, performance µ, fade µ, recovery µ, % fade, % recovery, wear resistance, etc. were used to evaluate the role of amount of SS swarfs in FMs. It was concluded that SS swarfs proved successful in Cu replacement almost in all respects except wear resistance. With increase in amount of SS swarfs, most of the properties improved. Worn surface analysis and wear mechanism were studied using SEM and EDAX techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chase%20type%20friction%20tester" title="Chase type friction tester">Chase type friction tester</a>, <a href="https://publications.waset.org/abstracts/search?q=copper-free" title=" copper-free"> copper-free</a>, <a href="https://publications.waset.org/abstracts/search?q=non-asbestos%20organic%20%28NAO%29%20friction%20materials" title=" non-asbestos organic (NAO) friction materials"> non-asbestos organic (NAO) friction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20swarfs" title=" stainless steel swarfs"> stainless steel swarfs</a> </p> <a href="https://publications.waset.org/abstracts/80071/stainless-steel-swarfs-for-replacement-of-copper-in-non-asbestos-organic-brake-pads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7513</span> Assessment of Runway Micro Texture Using Surface Laser Scanners: An Explorative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gerard%20Van%20Es">Gerard Van Es</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the use of a high resolution surface laser scanner to assess the micro texture of runway surfaces was investigated experimentally. Micro texture is one of the important surface components that helps to provide high braking friction between aircraft tires and a wet runway surface. Algorithms to derive different parameters that characterise micro texture was developed. Surface scans with a high resolution laser scanner were conducted on 40 different runway (like) surfaces. For each surface micro texture parameters were calculated from the laser scan data. These results were correlated with results obtained from a British pendulum tester that was used on the same surface. Results obtained with the British pendulum tester are generally considered to be indicative for the micro texture related friction characteristics. The results show that a meaningful correlation can be found between different parameters that characterise micro texture obtained with the laser scanner and the British pendulum tester results. Surface laser scanners are easier to operate and give more consistent results than a British pendulum tester. Therefore for airport operators surface laser scanners can be a useful tool to determine if their runway becomes slippery when wet due to a smooth micro texture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=runway%20friction" title="runway friction">runway friction</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20texture" title=" micro texture"> micro texture</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20braking%20performance" title=" aircraft braking performance"> aircraft braking performance</a>, <a href="https://publications.waset.org/abstracts/search?q=slippery%20runways" title=" slippery runways"> slippery runways</a> </p> <a href="https://publications.waset.org/abstracts/151466/assessment-of-runway-micro-texture-using-surface-laser-scanners-an-explorative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7512</span> Tribological Behaviour Improvement of Lubricant Using Copper (II) Oxide Nanoparticles as Additive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hassan">M. A. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Sakinah"> M. H. Sakinah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kadirgama"> K. Kadirgama</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ramasamy"> D. Ramasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Noor"> M. M. Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rahman"> M. M. Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tribological properties that include nanoparticles are an alternative to improve the tribological behaviour of lubricating oil, which has been investigated by many researchers for the past few decades. Various nanostructures can be used as additives for tribological improvement. However, this also depends on the characteristics of the nanoparticles. In this study, tribological investigation was performed to examine the effect of CuO nanoparticles on the tribological behaviour of Syntium 800 SL 10W−30. Three parameters used in the analysis using the wear tester (piston ring) were load, revolutions per minute (rpm), and concentration. The specifications of the nanoparticles, such as size, concentration, hardness, and shape, can affect the tribological behaviour of the lubricant. The friction and wear experiment was conducted using a tribo-tester and the Response Surface Methodology method was used to analyse any improvement of the performance. Therefore, two concentrations of 40 nm nanoparticles were used to conduct the experiments, namely, 0.005 wt % and 0.01 wt % and compared with base oil 0 wt % (control). A water bath sonicator was used to disperse the nanoparticles in base oil, while a tribo-tester was used to measure the coefficient of friction and wear rate. In addition, the thermal properties of the nanolubricant were also measured. The results have shown that the thermal conductivity of the nanolubricant was increased when compared with the base oil. Therefore, the results indicated that CuO nanoparticles had improved the tribological behaviour as well as the thermal properties of the nanolubricant oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentration" title="concentration">concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement" title=" improvement"> improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological" title=" tribological"> tribological</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20%28II%29%20oxide" title=" copper (II) oxide"> copper (II) oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20lubricant" title=" nano lubricant"> nano lubricant</a> </p> <a href="https://publications.waset.org/abstracts/38109/tribological-behaviour-improvement-of-lubricant-using-copper-ii-oxide-nanoparticles-as-additive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7511</span> Simulation of Kinetic Friction in L-Bending of Sheet Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maziar%20Ramezani">Maziar Ramezani</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Neitzert"> Thomas Neitzert</a>, <a href="https://publications.waset.org/abstracts/search?q=Timotius%20Pasang"> Timotius Pasang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=L-bending" title=" L-bending"> L-bending</a>, <a href="https://publications.waset.org/abstracts/search?q=springback" title=" springback"> springback</a>, <a href="https://publications.waset.org/abstracts/search?q=Stribeck%20curves" title=" Stribeck curves"> Stribeck curves</a> </p> <a href="https://publications.waset.org/abstracts/7441/simulation-of-kinetic-friction-in-l-bending-of-sheet-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7510</span> Influence of Boron Doping and Thermal Treatment on Internal Friction of Monocrystalline Si1-xGex(x≤0,02) Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Kurashvili">I. Kurashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Darsavelidze"> G. Darsavelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Bokuchava"> G. Bokuchava</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sichinava"> A. Sichinava</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Tabatadze"> I. Tabatadze </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impact of boron doping on the internal friction (IF) and shear modulus temperature spectra of Si<sub>1-x</sub>Ge<sub>x</sub>(x≤0,02) monocrsytals has been investigated by reverse torsional pendulum oscillations characteristics testing. At room temperatures, microhardness and indentation modulus of the same specimens have been measured by dynamic ultra microhardness tester. It is shown that boron doping causes two kinds effect: At low boron concentration (~10<sup>15 </sup>cm<sup>-3</sup>) significant strengthening is revealed, while at the high boron concentration (~10<sup>19 </sup>cm<sup>-3</sup>) strengthening effect and activation characteristics of relaxation origin IF processes are reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron" title="boron">boron</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20friction" title=" internal friction"> internal friction</a>, <a href="https://publications.waset.org/abstracts/search?q=si-ge%20alloys" title=" si-ge alloys"> si-ge alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20treatment" title=" thermal treatment"> thermal treatment</a> </p> <a href="https://publications.waset.org/abstracts/45812/influence-of-boron-doping-and-thermal-treatment-on-internal-friction-of-monocrystalline-si1-xgexx002-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7509</span> Friction Stir Welding Process as a Solid State Joining -A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Anees%20Siddiqui">Mohd Anees Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20H.%20Jafri"> S. A. H. Jafri</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahnawaz%20Alam"> Shahnawaz Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through this paper an attempt is made to review a special welding technology of friction stir welding (FSW) which is a solid-state joining. Friction stir welding is used for joining of two plates which are applied compressive force by using fixtures over the work table. This is a non consumable type welding technique in which a rotating tool of cylindrical shape is used. Process parameters such as tool geometry, joint design and process speed are discussed in the paper. Comparative study of Friction stir welding with other welding techniques such as MIG, TIG & GMAW is also done. Some light is put on several major applications of friction stir welding in different industries. Quality and environmental aspects of friction stir welding is also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding%20%28FSW%29" title="friction stir welding (FSW)">friction stir welding (FSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20parameters" title=" process parameters"> process parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=tool" title=" tool"> tool</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20joining%20processes" title=" solid state joining processes "> solid state joining processes </a> </p> <a href="https://publications.waset.org/abstracts/24239/friction-stir-welding-process-as-a-solid-state-joining-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7508</span> Probability of Passing the Brake Test at Ministry of Transport Facilities of Each City at Alicante Region from Spain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Senabre%20Blanes">Carolina Senabre Blanes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Valero%20Verd%C3%BA"> Sergio Valero Verdú</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilio%20Velasco%20S%C3%A1Nchez"> Emilio Velasco SáNchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research objective is to obtain a percentage of success for each Ministry of Transport (MOT) facilities of each city of the Alicante region from Comunidad Valenciana from Spain by comparing results obtained by using different brake testers. It has been studied which types of brake tester are being used at each city nowadays. Different types of brake testers are used at each city, and the mechanical engineering staffs from the Miguel Hernández University have studied differences between all of them, and have obtained measures from each type. A percentage of probability of success will be given to each MOT station when you try to pass the exam with the same car with same characteristics and the same wheels. In other words, parameters of the vehicle have been controlled to be the same at all tests; therefore, brake measurements variability will be due to the type of testers could be used at the MOT station. A percentage of probability to pass the brake exam at each city will be given by comparing results of tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20tester" title="brake tester">brake tester</a>, <a href="https://publications.waset.org/abstracts/search?q=Mot%20station" title=" Mot station"> Mot station</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20to%20pass%20the%20exam" title=" probability to pass the exam"> probability to pass the exam</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20tester%20characteristics" title=" brake tester characteristics"> brake tester characteristics</a> </p> <a href="https://publications.waset.org/abstracts/58227/probability-of-passing-the-brake-test-at-ministry-of-transport-facilities-of-each-city-at-alicante-region-from-spain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7507</span> Synthesis and Tribological Properties of the Al-Cr-N/MoS₂ Self-Lubricating Coatings by Hybrid Magnetron Sputtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tie-Gang%20Wang">Tie-Gang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=De-Qiang%20Meng"> De-Qiang Meng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan-Mei%20Liu"> Yan-Mei Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ternary AlCrN coatings were widely used to prolong cutting tool life because of their high hardness and excellent abrasion resistance. However, the friction between the workpiece and cutter surface was increased remarkably during machining difficult-to-cut materials (such as superalloy, titanium, etc.). As a result, a lot of cutting heat was generated and cutting tool life was shortened. In this work, an appropriate amount of solid lubricant MoS₂ was added into the AlCrN coating to reduce the friction between the tool and the workpiece. A series of Al-Cr-N/MoS₂ self-lubricating coatings with different MoS₂ contents were prepared by high power impulse magnetron sputtering (HiPIMS) and pulsed direct current magnetron sputtering (Pulsed DC) compound system. The MoS₂ content in the coatings was changed by adjusting the sputtering power of the MoS₂ target. The composition, structure and mechanical properties of the Al-Cr-N/MoS2 coatings were systematically evaluated by energy dispersive spectrometer, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometer, nano-indenter tester, scratch tester, and ball-on-disk tribometer. The results indicated the lubricant content played an important role in the coating properties. As the sputtering power of the MoS₂ target was 0.1 kW, the coating possessed the highest hardness 14.1GPa, the highest critical load 44.8 N, and the lowest wear rate 4.4×10−3μm2/N. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-lubricating%20coating" title="self-lubricating coating">self-lubricating coating</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Cr-N%2FMoS%E2%82%82%20coating" title=" Al-Cr-N/MoS₂ coating"> Al-Cr-N/MoS₂ coating</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20rate" title=" wear rate"> wear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a> </p> <a href="https://publications.waset.org/abstracts/116546/synthesis-and-tribological-properties-of-the-al-cr-nmos2-self-lubricating-coatings-by-hybrid-magnetron-sputtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7506</span> Wear Map for Cu-Based Friction Materials with Different Contents of Fe Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haibin%20Zhou">Haibin Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Pingping%20Yao"> Pingping Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunyang%20Fan"> Kunyang Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper-based sintered friction materials are widely used in the brake system of different applications such as engineering machinery or high-speed train, due to the excellent mechanical, thermal and tribological performance. Considering the diversity of the working conditions of brake system, it is necessary to identify well and understand the tribological performance and wear mechanisms of friction materials for different conditions. Fe has been a preferred reinforcement for copper-based friction materials, due to its ability to improve the wear resistance and mechanical properties of material. Wear map is well accepted as a useful research method for evaluation of wear performances and wear mechanisms over a wider range of working conditions. Therefore, it is significantly important to construct a wear map which can give out the effects of work condition and Fe reinforcement on tribological performance of Cu-based friction materials. In this study, the copper-based sintered friction materials with the different addition of Fe reinforcement (0-20 vol. %) were studied. The tribological tests were performed against stainless steel in a ring-on-ring braking tester with varying braking energy density (0-5000 J/cm2). The linear wear and friction coefficient were measured. The worn surface, cross section and debris were analyzed to determine the dominant wear mechanisms for different testing conditions. On the basis of experimental results, the wear map and wear mechanism map were established, in terms of braking energy density and the addition of Fe. It was found that with low contents of Fe and low braking energy density, adhesive wear was the dominant wear mechanism of friction materials. Oxidative wear and abrasive wear mainly occurred under moderate braking energy density. In the condition of high braking energy density, with both high and low addition of Fe, delamination appeared as the main wear mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-based%20friction%20materials" title="Cu-based friction materials">Cu-based friction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe%20reinforcement" title=" Fe reinforcement"> Fe reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20map" title=" wear map"> wear map</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20mechanism" title=" wear mechanism"> wear mechanism</a> </p> <a href="https://publications.waset.org/abstracts/64328/wear-map-for-cu-based-friction-materials-with-different-contents-of-fe-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7505</span> Wheel Diameter and Width Influence in Variability of Brake Data Measurement at Ministry of Transport Facilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Senabre">Carolina Senabre</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Valero"> Sergio Valero</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilio%20Velasco"> Emilio Velasco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The brake systems of vehicles are tested periodically by a “brake tester” at Ministry of Transport (MOT) stations. This tester measures the effectiveness of vehicle. This parameter is established by the International Committee of Vehicle Inspection (CITA). In this paper, we present an investigation of the influence of the tire size on the measurements of brake force on three MOT brake testers. We performed an analysis of the vehicle braking capacity test at MOT stations. The influence of varying wheel diameter and width on the measurement of braking at MOT stations has been analyzed. Thereby, the MOT brake tester as a verification system for a vehicle has been evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20tester" title="brake tester">brake tester</a>, <a href="https://publications.waset.org/abstracts/search?q=ministry%20of%20transport%20facilities" title=" ministry of transport facilities"> ministry of transport facilities</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20diameter" title=" wheel diameter"> wheel diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/48087/wheel-diameter-and-width-influence-in-variability-of-brake-data-measurement-at-ministry-of-transport-facilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7504</span> Magnetic Field Induced Tribological Properties of Magnetic Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kinjal%20Trivedi">Kinjal Trivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20V.%20Upadhyay"> Ramesh V. Upadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic fluid as a nanolubricant is a most recent field of study due to its unusual properties that can be tuned by applying a magnetic field. In present work, four ball tester has been used to investigate the tribological properties of the magnetic fluid having a 4 wt% of nanoparticles. The structural characterization of fluid shows crystallite size of particle is 11.7 nm and particles are nearly spherical in nature. The magnetic characterization shows the fluid saturation magnetization is 2.2 kA/m. The magnetic field applied using permanent strip magnet (0 to 1.6 mT) on the faces of the lock nut and fixing a solenoid (0 to 50 mT) around a shaft, such that shaft rotates freely. The magnetic flux line for both the systems analyzed using finite elemental analysis. The coefficient of friction increases with the application of magnetic field using permanent strip magnet compared to zero field value. While for the solenoid, it decreases at 20 mT. The wear scar diameter is lower for 1.1 mT and 20 mT when the magnetic field applied using permanent strip magnet and solenoid, respectively. The coefficient of friction and wear scar reduced by 29 % and 7 % at 20 mT using solenoid. The worn surface analysis carried out using Scanning Electron Microscope and Atomic Force Microscope to understand the wear mechanism. The results are explained on the basis of structure formation in a magnetic fluid upon application of magnetic field. It is concluded that the tribological properties of magnetic fluid depend on magnetic field and its applied direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=four%20ball%20tester" title="four ball tester">four ball tester</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20fluid" title=" magnetic fluid"> magnetic fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=nanolubricant" title=" nanolubricant"> nanolubricant</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a> </p> <a href="https://publications.waset.org/abstracts/88005/magnetic-field-induced-tribological-properties-of-magnetic-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7503</span> Effect of Rotation Speed on Microstructure and Microhardness of AA7039 Rods Joined by Friction Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Karakoc">H. Karakoc</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Uzun"> A. Uzun</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20K%C4%B1rm%C4%B1z%C4%B1"> G. Kırmızı</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20%C3%87inici"> H. Çinici</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20%C3%87itak"> R. Çitak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this investigation was to apply friction welding for joining of AA7039 rods produced by powder metallurgy. Friction welding joints were carried out using a rotational friction welding machine. Friction welds were obtained under different rotational speeds between (2700 and 2900 rpm). The friction pressure of 10 MPa and friction time of 30 s was kept constant. The cross sections of joints were observed by optical microscopy. The microstructures were analyzed using scanning electron microscope/energy dispersive X-ray spectroscopy. The Vickers micro hardness measurement of the interface was evaluated using a micro hardness testing machine. Finally the results obtained were compared and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aluminum%20alloy" title="Aluminum alloy">Aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20welding" title=" friction welding"> friction welding</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/30362/effect-of-rotation-speed-on-microstructure-and-microhardness-of-aa7039-rods-joined-by-friction-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7502</span> Friction Estimation and Compensation for Steering Angle Control for Highly Automated Driving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcus%20Walter">Marcus Walter</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbert%20Nitzsche"> Norbert Nitzsche</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Odenthal"> Dirk Odenthal</a>, <a href="https://publications.waset.org/abstracts/search?q=Steffen%20M%C3%BCller"> Steffen Müller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This contribution presents a friction estimator for industrial purposes which identifies Coulomb friction in a steering system. The estimator only needs a few, usually known, steering system parameters. Friction occurs on almost every mechanical system and has a negative influence on high-precision position control. This is demonstrated on a steering angle controller for highly automated driving. In this steering system the friction induces limit cycles which cause oscillating vehicle movement when the vehicle follows a given reference trajectory. When compensating the friction with the introduced estimator, limit cycles can be suppressed. This is demonstrated by measurements in a series vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20estimation" title="friction estimation">friction estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20compensation" title=" friction compensation"> friction compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20system" title=" steering system"> steering system</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20vehicle%20guidance" title=" lateral vehicle guidance"> lateral vehicle guidance</a> </p> <a href="https://publications.waset.org/abstracts/27641/friction-estimation-and-compensation-for-steering-angle-control-for-highly-automated-driving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7501</span> Friction Calculation and Simulation of Column Electric Power Steering System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Hamid%20Mirmohammad%20Sadeghi">Seyed Hamid Mirmohammad Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raffaella%20Sesana"> Raffaella Sesana</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Maffiodo"> Daniela Maffiodo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a procedure for friction calculation of column electric power steering (C-EPS) system which affects handling and comfort in driving. The friction losses estimation is obtained from experimental tests and mathematical calculation. Parts in C-EPS mainly involved in friction losses are bearings and worm gear. In the theoretical approach, the gear geometry and Hertz law were employed to measure the normal load and the sliding velocity and contact areas from the worm gears driving conditions. The viscous friction generated in the worm gear was obtained with a theoretical approach and the result was applied to model the friction in the steering system. Finally, by viscous friction coefficient and Coulomb friction coefficient, values of friction in worm gear were calculated. According to the Bearing Company and the characteristics of each bearing, the friction torques due to load and due to speed were calculated. A MATLAB Simulink model for calculating the friction in bearings and worm gear in C-EPS were done and the total friction value was estimated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=worm%20gear" title=" worm gear"> worm gear</a>, <a href="https://publications.waset.org/abstracts/search?q=column%20electric%20power%20steering%20system" title=" column electric power steering system"> column electric power steering system</a>, <a href="https://publications.waset.org/abstracts/search?q=simulink" title=" simulink"> simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing" title=" bearing"> bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=EPS" title=" EPS"> EPS</a> </p> <a href="https://publications.waset.org/abstracts/58098/friction-calculation-and-simulation-of-column-electric-power-steering-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7500</span> Identification of Dynamic Friction Model for High-Precision Motion Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Goubej">Martin Goubej</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Popule"> Tomas Popule</a>, <a href="https://publications.waset.org/abstracts/search?q=Alois%20Krejci"> Alois Krejci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with experimental identification of mechanical systems with nonlinear friction characteristics. Dynamic LuGre friction model is adopted and a systematic approach to parameter identification of both linear and nonlinear subsystems is given. The identification procedure consists of three subsequent experiments which deal with the individual parts of plant dynamics. The proposed method is experimentally verified on an industrial-grade robotic manipulator. Model fidelity is compared with the results achieved with a static friction model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20friction" title="mechanical friction">mechanical friction</a>, <a href="https://publications.waset.org/abstracts/search?q=LuGre%20model" title=" LuGre model"> LuGre model</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20identification" title=" friction identification"> friction identification</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20control" title=" motion control"> motion control</a> </p> <a href="https://publications.waset.org/abstracts/51897/identification-of-dynamic-friction-model-for-high-precision-motion-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7499</span> Determination of the Friction Coefficient of AL5754 Alloy by Ring Compression Test: Experimental and Numerical Survey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Keshtiban">P. M. Keshtiban</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zadshakoyan"> M. Zadshakoyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important factors that alter different process and geometrical parameters on metal forming processes is friction between contacting surfaces. Some important factors that effected directly by friction are: stress, strain, required load, wear of surfaces and then geometrical parameters. In order to control friction effects permanent lubrication is necessary. In this article, the friction coefficient is elicited by the most effective method, ring compression tests. The tests were done by both finite element method and practical tests. Different friction curves that extracted by finite element simulations and has good conformity with published results, used for obtaining final friction coefficient. In this study Mos2 is used as the lubricant and Al5754 alloy used as the specimens material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experiment" title="experiment">experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20compression" title=" ring compression"> ring compression</a> </p> <a href="https://publications.waset.org/abstracts/37586/determination-of-the-friction-coefficient-of-al5754-alloy-by-ring-compression-test-experimental-and-numerical-survey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7498</span> Viability of Slab Sliding System for Single Story Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Iihoshi">C. Iihoshi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20MacRae"> G. A. MacRae</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20W.%20Rodgers"> G. W. Rodgers</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20G.%20Chase"> J. G. Chase</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Slab Sliding System (SSS) with Coulomb friction interface between slab and supporting frame is a passive structural vibration control technology. The system can significantly reduce the slab acceleration and accompanied lateral force of the frame. At the same time it is expected to cause the slab displacement magnification by sliding movement. To obtain the general comprehensive seismic response of a single story structure, inelastic response spectra were computed for a large ensemble of ground motions and a practical range of structural periods and friction coefficient values. It was shown that long period structures have no trade-off relation between force reduction and displacement magnification with respect to elastic response, unlike short period structures. For structures with the majority of mass in the slab, the displacement magnification value can be predicted according to simple inelastic displacement relation for in elastically responding SDOF structures because the system behaves elastically to a SDOF structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=slab" title=" slab"> slab</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding" title=" sliding"> sliding</a> </p> <a href="https://publications.waset.org/abstracts/2706/viability-of-slab-sliding-system-for-single-story-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7497</span> Change of Internal Friction on Magnesium Alloy with 5.48% Al Dependence on the Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milan%20Uhr%C3%AD%C4%8Dik">Milan Uhríčik</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Soviarov%C3%A1"> Andrea Soviarová</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuzana%20Dresslerov%C3%A1"> Zuzana Dresslerová</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Pal%C4%8Dek"> Peter Palček</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Va%C5%A1ko"> Alan Vaško</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article is focused on the analysis changes dependence on the temperature on the magnesium alloy with 5,48% Al, 0,813% Zn and 0,398% Mn by internal friction. Internal friction is a property of the material is measured on the ultrasonic resonant aparature at a frequency about f = 20470 Hz. The measured temperature range was from 30 °C up to 420 °C. Precisely measurement of the internal friction can be monitored ongoing structural changes and various mechanisms that prevent these changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20friction" title="internal friction">internal friction</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloy" title=" magnesium alloy"> magnesium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20frequency" title=" resonant frequency"> resonant frequency</a> </p> <a href="https://publications.waset.org/abstracts/20361/change-of-internal-friction-on-magnesium-alloy-with-548-al-dependence-on-the-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">701</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7496</span> Parallel PRBS Generation and Parallel BER Tester for 8-Gbps On-chip Interconnection Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Bin">Zhao Bin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Dan%20Lei"> Yan Dan Lei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a multi-pattern parallel PRBS generator and a dedicated parallel BER tester is proposed for the 8-Gbps On-chip interconnection testing. A unique full-parallel PRBS checker is also proposed. The proposed design, together with the custom-designed high-speed parallel-to-serial and the serial-to-parallel circuit, will be used to test different on-chip interconnection transceivers. The design is implemented in TSMC 28nm CMOS technology with working voltage at 1.0 V. The serial to parallel ratio is 8:1 so the parallel PRBS generation and BER Tester can be run at lower speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PRBS" title="PRBS">PRBS</a>, <a href="https://publications.waset.org/abstracts/search?q=BER" title=" BER"> BER</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed" title=" high speed"> high speed</a>, <a href="https://publications.waset.org/abstracts/search?q=generator" title=" generator"> generator</a> </p> <a href="https://publications.waset.org/abstracts/35064/parallel-prbs-generation-and-parallel-ber-tester-for-8-gbps-on-chip-interconnection-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">760</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7495</span> Dry Friction Fluctuations in Plain Journal Bearings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Moran">James Moran</a>, <a href="https://publications.waset.org/abstracts/search?q=Anusarn%20Permsuwan"> Anusarn Permsuwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares oscillations in the dry friction coefficient in different journal bearings. Measurements are made of the average and standard deviation in the coefficient of friction as a function of sliding velocity. The standard deviation of the friction coefficient changed dramatically with sliding velocity. The magnitude and frequency of the oscillations were a function of the velocity. A numerical model was developed for the frictional oscillations. There was good agreement between the model and results. Five different materials were used as the sliding surfaces in the experiments, Aluminum, Bronze, Mild Steel, Stainless Steel, and Nylon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coulomb%20friction" title="Coulomb friction">Coulomb friction</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20friction" title=" dynamic friction"> dynamic friction</a>, <a href="https://publications.waset.org/abstracts/search?q=non-lubricated%20bearings" title=" non-lubricated bearings"> non-lubricated bearings</a>, <a href="https://publications.waset.org/abstracts/search?q=frictional%20oscillations" title=" frictional oscillations"> frictional oscillations</a> </p> <a href="https://publications.waset.org/abstracts/67083/dry-friction-fluctuations-in-plain-journal-bearings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7494</span> Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Almontas%20Vilutis">Almontas Vilutis</a>, <a href="https://publications.waset.org/abstracts/search?q=Vytenis%20Jankauskas"> Vytenis Jankauskas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against WC-Co cemented carbide. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy dispersive spectroscopy (EDS), based on elemental composition, provided important insights into the friction process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=carbide" title=" carbide"> carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=factors" title=" factors"> factors</a> </p> <a href="https://publications.waset.org/abstracts/170669/friction-behavior-of-wood-plastic-composites-against-uncoated-cemented-carbide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7493</span> Mechanical Properties of Diamond Reinforced Ni Nanocomposite Coatings Made by Co-Electrodeposition with Glycine as Additive </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanheng%20Zhang">Yanheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Feng"> Lu Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yilan%20Kang"> Yilan Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Donghui%20Fu"> Donghui Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Zhang"> Qian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiu%20Li"> Qiu Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Qiu"> Wei Qiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diamond-reinforced Ni matrix composite has been widely applied in engineering for coating large-area structural parts owing to its high hardness, good wear resistance and corrosion resistance compared with those features of pure nickel. The mechanical properties of Ni-diamond composite coating can be promoted by the high incorporation and uniform distribution of diamond particles in the nickel matrix, while the distribution features of particles are affected by electrodeposition process parameters, especially the additives in the plating bath. Glycine has been utilized as an organic additive during the preparation of pure nickel coating, which can effectively increase the coating hardness. Nevertheless, to author’s best knowledge, no research about the effects of glycine on the Ni-diamond co-deposition has been reported. In this work, the diamond reinforced Ni nanocomposite coatings were fabricated by a co-electrodeposition technique from a modified Watt’s type bath in the presence of glycine. After preparation, the SEM morphology of the composite coatings was observed combined with energy dispersive X-ray spectrometer, and the diamond incorporation was analyzed. The surface morphology and roughness were obtained by a three-dimensional profile instrument. 3D-Debye rings formed by XRD were analyzed to characterize the nickel grain size and orientation in the coatings. The average coating thickness was measured by a digital micrometer to deduce the deposition rate. The microhardness was tested by automatic microhardness tester. The friction coefficient and wear volume were measured by reciprocating wear tester to characterize the coating wear resistance and cutting performance. The experimental results confirmed that the presence of glycine effectively improved the surface morphology and roughness of the composite coatings. By optimizing the glycine concentration, the incorporation of diamond particles was increased, while the nickel grain size decreased with increasing glycine. The hardness of the composite coatings was increased as the glycine concentration increased. The friction and wear properties were evaluated as the glycine concentration was optimized, showing a decrease in the wear volume. The wear resistance of the composite coatings increased as the glycine content was increased to an optimum value, beyond which the wear resistance decreased. Glycine complexation contributed to the nickel grain refinement and improved the diamond dispersion in the coatings, both of which made a positive contribution to the amount and uniformity of embedded diamond particles, thus enhancing the microhardness, reducing the friction coefficient, and hence increasing the wear resistance of the composite coatings. Therefore, additive glycine can be used during the co-deposition process to improve the mechanical properties of protective coatings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-electrodeposition" title="co-electrodeposition">co-electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=glycine" title=" glycine"> glycine</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni-diamond%20nanocomposite%20coatings" title=" Ni-diamond nanocomposite coatings"> Ni-diamond nanocomposite coatings</a> </p> <a href="https://publications.waset.org/abstracts/105213/mechanical-properties-of-diamond-reinforced-ni-nanocomposite-coatings-made-by-co-electrodeposition-with-glycine-as-additive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7492</span> Comparative Analysis of VTEC Bank of Rollers Brake Testers versus Maha, Ryme and Dynamometric Platform Testers Used at Ministry of Transport Facilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Senabre">Carolina Senabre</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Valero"> Sergio Valero</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilio%20Velasco"> Emilio Velasco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research objective is to compare the differences of brake measurements obtained with the same vehicle when braking on VTEQ Ministry of Transport (MOT) brake testers versus others such as Maha, Ryme and a dynamometric platform. These different types of brake testers have been used and analyzed by the mechanical engineering staffs at the mechanical laboratory at the Miguel Hernández University. Parameters of the vehicle have been controlled to be the same in all tests. Therefore, brake measurements variability will be due to the tester used. Advances and disadvantages of each brake tester have been analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20tester" title="brake tester">brake tester</a>, <a href="https://publications.waset.org/abstracts/search?q=Ministry%20of%20transport" title=" Ministry of transport"> Ministry of transport</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20braking" title=" longitudinal braking"> longitudinal braking</a>, <a href="https://publications.waset.org/abstracts/search?q=Bank%20of%20Rollers" title=" Bank of Rollers"> Bank of Rollers</a> </p> <a href="https://publications.waset.org/abstracts/54505/comparative-analysis-of-vtec-bank-of-rollers-brake-testers-versus-maha-ryme-and-dynamometric-platform-testers-used-at-ministry-of-transport-facilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7491</span> Study of the Tribological Behavior of a Pin on Disc Type of Contact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Djebali">S. Djebali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Larbi"> S. Larbi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bilek"> A. Bilek </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work aims at contributing to the study of the complex phenomenon of wear of pin on disc contact in dry sliding friction between two material couples (bronze/steel and unsaturated polyester virgin and charged with graphite powder/steel). The work consists of the determination of the coefficient of friction, the study of the influence of the tribological parameters on this coefficient and the determination of the mass loss and the wear rate of the pin. This study is also widened to the highlighting of the influence of the addition of graphite powder on the tribological properties of the polymer constituting the pin. The experiments are carried out on a pin-disc type tribometer that we have designed and manufactured. Tests are conducted according to the standards DIN 50321 and DIN EN 50324. The discs are made of annealed XC48 steel and quenched and tempered XC48 steel. The main results are described here after. The increase of the normal load and the sliding speed causes the increase of the friction coefficient, whereas the increase of the percentage of graphite and the hardness of the disc surface contributes to its reduction. The mass loss also increases with the normal load. The influence of the normal load on the friction coefficient is more significant than that of the sliding speed. The effect of the sliding speed decreases for large speed values. The increase of the amount of graphite powder leads to a decrease of the coefficient of friction, the mass loss and the wear rate. The addition of graphite to the UP resin is beneficial; it plays the role of solid lubricant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bronze" title="bronze">bronze</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite" title=" graphite"> graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20loss" title=" mass loss"> mass loss</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20rate" title=" wear rate"> wear rate</a> </p> <a href="https://publications.waset.org/abstracts/49238/study-of-the-tribological-behavior-of-a-pin-on-disc-type-of-contact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7490</span> Frictional Behavior of Glass Epoxy and Aluminium Particulate Glass Epoxy Composites Sliding against Smooth Stainless Steel Counterface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pujan%20Sarkar">Pujan Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frictional behavior of glass epoxy and Al particulate glass-epoxy composites sliding against mild steel are investigated experimentally at normal atmospheric condition. Glass epoxy (0 wt% Al) and 5, 10 and 15 wt% Al particulate filled glass-epoxy composites are fabricated in conventional hand lay-up technique followed by light compression moulding process. A pin on disc type friction apparatus is used under dry sliding conditions. Experiments are carried out at a normal load of 5-50 N, and sliding speeds of 0.5-5.0 m/s for a fixed duration. Variations of friction coefficient with sliding time at different loads and speeds for all the samples are considered. Results show that the friction coefficient is influenced by sliding time, normal loads, sliding speeds, and wt% of Al content. In general, with respect to time, friction coefficient increases initially with a lot of fluctuations for a certain duration. After that, it becomes stable for the rest of the experimental time. With the increase of normal load, friction coefficient decreases at all speed levels and for all the samples whereas, friction coefficient increases with the increase of sliding speed at all normal loads for glass epoxy and 5 wt% Al content glass-epoxy composites. But for 10 and 15 wt%, Al content composites at all loads, reverse trend of friction coefficient has been recorded. Under different tribological conditions, the suitability of composites in respect of wt% of Al content is noted, and 5 wt% Al content glass-epoxy composite reports as the lowest frictional material at all loads compared to other samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al%20powder" title="Al powder">Al powder</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fiber" title=" glass fiber"> glass fiber</a> </p> <a href="https://publications.waset.org/abstracts/114202/frictional-behavior-of-glass-epoxy-and-aluminium-particulate-glass-epoxy-composites-sliding-against-smooth-stainless-steel-counterface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7489</span> Estimation of Consolidating Settlement Based on a Time-Dependent Skin Friction Model Considering Column Surface Roughness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Zhenbo">Jiang Zhenbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishikura%20Ryohei"> Ishikura Ryohei</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasufuku%20Noriyuki"> Yasufuku Noriyuki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improvement of soft clay deposits by the combination of surface stabilization and floating type cement-treated columns is one of the most popular techniques worldwide. On the basis of one dimensional consolidation model, a time-dependent skin friction model for the column-soil interaction is proposed. The nonlinear relationship between column shaft shear stresses and effective vertical pressure of the surrounding soil can be described in this model. The influence of column-soil surface roughness can be represented using a roughness coefficient R, which plays an important role in the design of column length. Based on the homogenization method, a part of floating type improved ground will be treated as an unimproved portion, which with a length of αH1 is defined as a time-dependent equivalent skin friction length. The compression settlement of this unimproved portion can be predicted only using the soft clay parameters. Apart from calculating the settlement of this composited ground, the load transfer mechanism is discussed utilizing model tests. The proposed model is validated by comparing with calculations and laboratory results of model and ring shear tests, which indicate the suitability and accuracy of the solutions in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20type%20improved%20foundation" title="floating type improved foundation">floating type improved foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=time-dependent%20skin%20friction" title=" time-dependent skin friction"> time-dependent skin friction</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a> </p> <a href="https://publications.waset.org/abstracts/29987/estimation-of-consolidating-settlement-based-on-a-time-dependent-skin-friction-model-considering-column-surface-roughness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7488</span> Reliability of Movement Assessment Battery for Children-2 Age Band 3 Using Multiple Testers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jernice%20S.%20Y.%20Tan">Jernice S. Y. Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Reliability within and between testers is vital to ensure the accuracy of any motor assessment instrument. However, reliability checks of the Movement Assessment Battery for Children-2 (MABC-2) age band 3 using multiple testers assigned to different MABC-2 tasks for the same group of participants are uncommon. Multiple testers were not stated as a choice in the MABC-2 manual. Therefore, the purpose of this study was to determine the inter- and intra-tester reliability for using multiple testers to administer the test protocols of MABC-2 age band 3. Methods: Thirty volunteered adolescents (n = 30; 15 males, 15 females; age range: 13 – 16 years) performed the eight tasks in a randomised sequence at three different test stations for the MABC-2 task components (Manual Dexterity, Aiming and Catching, Balance). Ethics approval and parental consent were obtained. The participants were videotaped while performing the test protocols of MABC-2 age band 3. Five testers were involved in the data collection process. They were Sports Science graduating students doing their final year project and were supervised by experienced motor assessor. Inter- and intra-tester reliability checks using intra-class coefficient (ICC) were carried out using the videotaped data. Results: The inter-tester reliability between the five testers for the eight tasks ranged from rᵢcc = 0.705 to rᵢcc = 0.995. This suggests that the average agreement between them was considered good to excellent. With the exception of one tester who had rᵢcc = 0.687 for one of the eight tasks (i.e. zip-zap hopping), the intra-tester reliability within each tester ranged from rᵢcc = 0.728 to rᵢcc = 1.000, and this also suggested good to excellent consistency within testers. Discussion: The use of multiple testers with good intra-tester reliability for different test stations is feasible. This method allows several participants to be assessed concurrently at different test stations and saves overall data collection time. Therefore, it is recommended that the administering of MABC-2 with multiple testers should be extended to other age bands ensuring the feasibility of such method for other age bands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adolescents" title="adolescents">adolescents</a>, <a href="https://publications.waset.org/abstracts/search?q=MABC" title=" MABC"> MABC</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20assessment" title=" motor assessment"> motor assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20skills" title=" motor skills"> motor skills</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a> </p> <a href="https://publications.waset.org/abstracts/76590/reliability-of-movement-assessment-battery-for-children-2-age-band-3-using-multiple-testers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7487</span> Turbulent Flow in Corrugated Pipes with Helical Grooves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Mendes">P. Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Stel"> H. Stel</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20E.%20M.%20Morales"> R. E. M. Morales</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a numerical and experimental study of turbulent flow in corrugated pipes with helically “d-type" grooves, for Reynolds numbers between 7500 and 100,000. The ANSYS-CFX software is used to solve the RANS equations with the BSL two equation turbulence model, through the element-based finite-volume method approach. Different groove widths and helix angles are considered. Numerical results are validated with experimental pressure drop measurements for the friction factor. A correlation for the friction factor is also proposed considering the geometric parameters and Reynolds numbers evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title="turbulent flow">turbulent flow</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated%20pipe" title=" corrugated pipe"> corrugated pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=helical" title=" helical"> helical</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental" title=" experimental"> experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20factor" title=" friction factor"> friction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a> </p> <a href="https://publications.waset.org/abstracts/17407/turbulent-flow-in-corrugated-pipes-with-helical-grooves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7486</span> Shaft Friction of Bored Pile Socketed in Weathered Limestone in Qatar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanawat%20Chuleekiat">Thanawat Chuleekiat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Socketing of bored piles in rock is always seen as a matter of debate on construction sites between consultants and contractors. The socketing depth normally depends on the type of rock, depth at which the rock is available below the pile cap and load carrying capacity of the pile. In this paper, the review of field load test data of drilled shaft socketed in weathered limestone conducted using conventional static pile load test and dynamic pile load test was made to evaluate a unit shaft friction for the bored piles socketed in weathered limestone (weak rock). The borehole drilling data were also reviewed in conjunction with the pile test result. In addition, the back-calculated unit shaft friction was reviewed against various empirical methods for bored piles socketed in weak rock. The paper concludes with an estimated ultimate unit shaft friction from the case study in Qatar for preliminary design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piled%20foundation" title="piled foundation">piled foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=weathered%20limestone" title=" weathered limestone"> weathered limestone</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20friction" title=" shaft friction"> shaft friction</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20socket" title=" rock socket"> rock socket</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20load%20test" title=" pile load test"> pile load test</a> </p> <a href="https://publications.waset.org/abstracts/92705/shaft-friction-of-bored-pile-socketed-in-weathered-limestone-in-qatar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chase%20type%20friction%20tester&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chase%20type%20friction%20tester&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chase%20type%20friction%20tester&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chase%20type%20friction%20tester&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chase%20type%20friction%20tester&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chase%20type%20friction%20tester&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chase%20type%20friction%20tester&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chase%20type%20friction%20tester&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chase%20type%20friction%20tester&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chase%20type%20friction%20tester&page=250">250</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chase%20type%20friction%20tester&page=251">251</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Chase%20type%20friction%20tester&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>