CINXE.COM

Search results for: fluid and thermal

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fluid and thermal</title> <meta name="description" content="Search results for: fluid and thermal"> <meta name="keywords" content="fluid and thermal"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fluid and thermal" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fluid and thermal"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5367</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fluid and thermal</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5127</span> Magnetic Field Induced Tribological Properties of Magnetic Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kinjal%20Trivedi">Kinjal Trivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20V.%20Upadhyay"> Ramesh V. Upadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic fluid as a nanolubricant is a most recent field of study due to its unusual properties that can be tuned by applying a magnetic field. In present work, four ball tester has been used to investigate the tribological properties of the magnetic fluid having a 4 wt% of nanoparticles. The structural characterization of fluid shows crystallite size of particle is 11.7 nm and particles are nearly spherical in nature. The magnetic characterization shows the fluid saturation magnetization is 2.2 kA/m. The magnetic field applied using permanent strip magnet (0 to 1.6 mT) on the faces of the lock nut and fixing a solenoid (0 to 50 mT) around a shaft, such that shaft rotates freely. The magnetic flux line for both the systems analyzed using finite elemental analysis. The coefficient of friction increases with the application of magnetic field using permanent strip magnet compared to zero field value. While for the solenoid, it decreases at 20 mT. The wear scar diameter is lower for 1.1 mT and 20 mT when the magnetic field applied using permanent strip magnet and solenoid, respectively. The coefficient of friction and wear scar reduced by 29 % and 7 % at 20 mT using solenoid. The worn surface analysis carried out using Scanning Electron Microscope and Atomic Force Microscope to understand the wear mechanism. The results are explained on the basis of structure formation in a magnetic fluid upon application of magnetic field. It is concluded that the tribological properties of magnetic fluid depend on magnetic field and its applied direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=four%20ball%20tester" title="four ball tester">four ball tester</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20fluid" title=" magnetic fluid"> magnetic fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=nanolubricant" title=" nanolubricant"> nanolubricant</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a> </p> <a href="https://publications.waset.org/abstracts/88005/magnetic-field-induced-tribological-properties-of-magnetic-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5126</span> Biodegradable Cellulose-Based Materials for the Use in Food Packaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azza%20A.%20Al-Ghamdi">Azza A. Al-Ghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abir%20S.%20Abdel-Naby"> Abir S. Abdel-Naby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellulose acetate (CA) is a natural biodegradable polymer. It forms transparent films by the casting technique. CA suffers from high degree of water permeability as well as the low thermal stability at high temperatures. To adjust the CA polymeric films to the manufacture of food packaging, its thermal and mechanical properties should be improved. The modification of CA by grafting it with N-Amino phenyl maleimide (N-APhM) led to the construction of hydrophobic branches throughout the polymeric matrix which reduced its wettability as compared to the parent CA. The branches built onto the polymeric chains had been characterized by UV/Vis, <sup>13</sup>C-NMR and ESEM. The improvement of the thermal properties was investigated and compared to the parent CA using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), differential thermal analysis (DTA), contact angle and mechanical testing measurements. The results revealed that the water-uptake was reduced by increasing the graft percentage. The thermal and mechanical properties were also improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose%20acetate" title="cellulose acetate">cellulose acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20packaging" title=" food packaging"> food packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=graft%20copolymerization" title=" graft copolymerization"> graft copolymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a> </p> <a href="https://publications.waset.org/abstracts/88229/biodegradable-cellulose-based-materials-for-the-use-in-food-packaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5125</span> Performance Analysis of Photovoltaic Solar Energy Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakariyya%20Hassan%20Abdullahi">Zakariyya Hassan Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Suleiman%20Abdullahi"> Zainab Suleiman Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuhu%20Alhaji%20Muhammad"> Nuhu Alhaji Muhammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a thorough review of photovoltaic and photovoltaic thermal systems is done on the basis of its performance based on electrical as well as thermal output. Photovoltaic systems are classified according to their use, i.e., electricity production, and thermal, Photovoltaic systems behave in an extraordinary and useful way, they react to light by transforming part of it into electricity useful way and unique, since photovoltaic and thermal applications along with the electricity production. The application of various photovoltaic systems is also discussed in detail. The performance analysis including all aspects, e.g., electrical, thermal, energy, and energy efficiency are also discussed. A case study for PV and PV/T system based on energetic analysis is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title="photovoltaic">photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable" title=" renewable"> renewable</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a> </p> <a href="https://publications.waset.org/abstracts/47848/performance-analysis-of-photovoltaic-solar-energy-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5124</span> Enhancement Production and Development of Hot Dry Rock System by Using Supercritical CO2 as Working Fluid Instead of Water to Advance Indonesia&#039;s Geothermal Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhara%20Adhnandya%20Kumara">Dhara Adhnandya Kumara</a>, <a href="https://publications.waset.org/abstracts/search?q=Novrizal%20Novrizal"> Novrizal Novrizal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hot Dry Rock (HDR) is one of geothermal energy which is abundant in many provinces in Indonesia. Heat exploitation from HDR would need a method which injects fluid to subsurface to crack the rock and sweep the heat. Water is commonly used as the working fluid but known to be less effective in some ways. The new research found out that Supercritical CO2 (SCCO2) can be used to replace water as the working fluid. By studying heat transfer efficiency, pumping power, and characteristics of the returning fluid, we might decide how effective SCCO2 to replace water as working fluid. The method used to study those parameters quantitatively could be obtained from pre-existing researches which observe the returning fluids from the same reservoir with same pumping power. The result shows that SCCO2 works better than water. For cold and hot SCCO2 has lower density difference than water, this results in higher buoyancy in the system that allows the fluid to circulate with lower pumping power. Besides, lower viscosity of SCCO2 impacts in higher flow rate in circulation. The interaction between SCCO2 and minerals in reservoir could induce dehydration of the minerals and enhancement of rock porosity and permeability. While the dissolution and transportation of minerals by SCCO2 are unlikely to occur because of the nature of SCCO2 as poor solvent, and this will reduce the mineral scaling in the system. Under those conditions, using SCCO2 as working fluid for HDR extraction would give great advantages to advance geothermal energy in Indonesia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal" title="geothermal">geothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20CO2" title=" supercritical CO2"> supercritical CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20fluid" title=" injection fluid"> injection fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20dry%20rock" title=" hot dry rock"> hot dry rock</a> </p> <a href="https://publications.waset.org/abstracts/78634/enhancement-production-and-development-of-hot-dry-rock-system-by-using-supercritical-co2-as-working-fluid-instead-of-water-to-advance-indonesias-geothermal-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5123</span> Investigation of Heating Behaviour of E-Textile Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hande%20Sezgin">Hande Sezgin</a>, <a href="https://publications.waset.org/abstracts/search?q=Senem%20Kursun%20Bahad%C4%B1r"> Senem Kursun Bahadır</a>, <a href="https://publications.waset.org/abstracts/search?q=Yakup%20Erhan%20Boke"> Yakup Erhan Boke</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Kalao%C4%9Flu"> Fatma Kalaoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electronic textiles (e-textiles) are fabrics that contain electronics and interconnections with them. In this study, two types of base yarns (cotton and acrylic) and three conductive steel yarns with different linear resistance values (14Ω/m, 30Ω/m, 70Ω/m) were used to investigate the effect of base yarn type and linear resistance of conductive yarns on thermal behavior of e-textile structures. Thermal behavior of samples were examined by thermal camera. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20yarn" title="conductive yarn">conductive yarn</a>, <a href="https://publications.waset.org/abstracts/search?q=e-textiles" title=" e-textiles"> e-textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20textiles" title=" smart textiles"> smart textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a> </p> <a href="https://publications.waset.org/abstracts/29743/investigation-of-heating-behaviour-of-e-textile-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5122</span> Study of Mixed Convection in a Vertical Channel Filled with a Reactive Porous Medium in the Absence of Local Thermal Equilibrium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Maidat">Hamid Maidat</a>, <a href="https://publications.waset.org/abstracts/search?q=Khedidja%20Bouhadef"> Khedidja Bouhadef</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Eddine%20Ameziani"> Djamel Eddine Ameziani</a>, <a href="https://publications.waset.org/abstracts/search?q=Azzedine%20Abdedou"> Azzedine Abdedou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work consists of a numerical simulation of convective heat transfer in a vertical plane channel filled with a heat generating porous medium, in the absence of local thermal equilibrium. The walls are maintained to a constant temperature and the inlet velocity is uniform. The dynamic range is described by the Darcy-Brinkman model and the thermal field by two energy equations model. A dimensionless formulation is developed for performing a parametric study based on certain dimensionless groups such as, the Biot interstitial number, the thermal conductivity ratio and the volumetric heat generation. The governing equations are solved using the finite volume method, gave rise to a multitude of results concerning in particular the thermal field in the porous channel and the existence or not of the local thermal equilibrium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20thermal%20non%20equilibrium%20model" title="local thermal non equilibrium model">local thermal non equilibrium model</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20generation" title=" power generation"> power generation</a> </p> <a href="https://publications.waset.org/abstracts/32918/study-of-mixed-convection-in-a-vertical-channel-filled-with-a-reactive-porous-medium-in-the-absence-of-local-thermal-equilibrium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5121</span> An Energy and Economic Comparison of Solar Thermal Collectors for Domestic Hot Water Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Ghani">F. Ghani</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20O%E2%80%99Donovan"> T. S. O’Donovan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the global solar thermal market is dominated by two collector types; the flat plate and evacuated tube collector. With regards to the number of installations worldwide, the evacuated tube collector is the dominant variant primarily due to the Chinese market but the flat plate collector dominates both the Australian and European markets. The market share of the evacuated tube collector is, however, growing in Australia due to a common belief that this collector type is ‘more efficient’ and, therefore, the better choice for hot water applications. In this study, we investigate this issue further to assess the validity of this statement. This was achieved by methodically comparing the performance and economics of several solar thermal systems comprising of; a low-performance flat plate collector, a high-performance flat collector, and an evacuated tube collector coupled with a storage tank and pump. All systems were simulated using the commercial software package Polysun for four climate zones in Australia to take into account different weather profiles in the study and subjected to a thermal load equivalent to a household comprising of four people. Our study revealed that the energy savings and payback periods varied significantly for systems operating under specific environmental conditions. Solar fractions ranged between 58 and 100 per cent, while payback periods range between 3.8 and 10.1 years. Although the evacuated tube collector was found to operate with a marginally higher thermal efficiency over the selective surface flat plate collector due to reduced ambient heat loss, the high-performance flat plate collector outperformed the evacuated tube collector on thermal yield. This result was obtained as the flat plate collector possesses a significantly higher absorber to gross collector area ratio over the evacuated tube collector. Furthermore, it was found for Australian regions operating with a high average solar radiation intensity and ambient temperature, the lower performance collector is the preferred choice due to favorable economics and reduced stagnation temperature. Our study has provided additional insight into the thermal performance and economics of the two prevalent solar thermal collectors currently available. A computational investigation has been carried out specifically for the Australian climate due to its geographic size and significant variation in weather. For domestic hot water applications were fluid temperatures between 50 and 60 degrees Celsius are sought, the flat plate collector is both technically and economically favorable over the evacuated tube collector. This research will be useful to system design engineers, solar thermal manufacturers, and those involved in policy to encourage the implementation of solar thermal systems into the hot water market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20thermal" title="solar thermal">solar thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20analysis" title=" energy analysis"> energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20plate" title=" flat plate"> flat plate</a>, <a href="https://publications.waset.org/abstracts/search?q=evacuated%20tube" title=" evacuated tube"> evacuated tube</a>, <a href="https://publications.waset.org/abstracts/search?q=collector%20performance" title=" collector performance"> collector performance</a> </p> <a href="https://publications.waset.org/abstracts/43384/an-energy-and-economic-comparison-of-solar-thermal-collectors-for-domestic-hot-water-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5120</span> Second-Order Slip Flow and Heat Transfer in a Long Isothermal Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huei%20Chu%20Weng">Huei Chu Weng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Hung%20Liu"> Chien-Hung Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study on the effect of second-order slip and jump on forced convection through a long isothermally heated or cooled planar microchannel. The fully developed solutions of thermal flow fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and Smoluchowski jump boundary conditions. Results reveal that the second-order term in the Karniadakis slip boundary condition is found to contribute a negative velocity slip and then to lead to a higher pressure drop as well as a higher fluid temperature for the heated-wall case or to a lower fluid temperature for the cooled-wall case. These findings are contrary to predictions made by the Deissler model. In addition, the role of second-order slip becomes more significant when the Knudsen number increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20rarefaction" title=" gas rarefaction"> gas rarefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=second-order%20boundary%20conditions" title=" second-order boundary conditions"> second-order boundary conditions</a> </p> <a href="https://publications.waset.org/abstracts/26201/second-order-slip-flow-and-heat-transfer-in-a-long-isothermal-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5119</span> Effects of ECCS on the Cold-Leg Fluid Temperature during SGTR Accidents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tadashi%20Watanabe">Tadashi Watanabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The LSTF experiment simulating the SGTR accident at the Mihama Unit-2 reactor is analyzed using the RELAP5/MOD3.3 code. In the accident and thus in the experiment, the ECC water was injected not only into the cold legs but into the upper plenum. Overall transients during the experiment such as pressures and fluid temperatures are simulated well by the code. The cold-leg fluid temperatures are shown to decrease if the upper plenum injection system is connected to the cold leg. It is found that the cold-leg fluid temperatures also decrease if the upper-plenum injection is not used and the cold-leg injection alone is actuated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SGTR" title="SGTR">SGTR</a>, <a href="https://publications.waset.org/abstracts/search?q=LSTF" title=" LSTF"> LSTF</a>, <a href="https://publications.waset.org/abstracts/search?q=RELAP5" title=" RELAP5"> RELAP5</a>, <a href="https://publications.waset.org/abstracts/search?q=ECCS" title=" ECCS"> ECCS</a> </p> <a href="https://publications.waset.org/abstracts/30723/effects-of-eccs-on-the-cold-leg-fluid-temperature-during-sgtr-accidents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">666</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5118</span> Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghanbari">M. Ghanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hossainpour"> S. Hossainpour</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Rezazadeh"> G. Rezazadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model<strong>,</strong> the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-polar%20theory" title="micro-polar theory">micro-polar theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20method" title=" Galerkin method"> Galerkin method</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-fluid" title=" micro-fluid"> micro-fluid</a> </p> <a href="https://publications.waset.org/abstracts/83933/longitudinal-vibration-of-a-micro-beam-in-a-micro-scale-fluid-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5117</span> Evolution and Merging of Double-Diffusive Layers in a Vertically Stable Compositional Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ila%20Thakur">Ila Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20Srivastava"> Atul Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyamprasad%20Karagadde"> Shyamprasad Karagadde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phenomenon of double-diffusive convection is driven by density gradients created by two different components (e.g., temperature and concentration) having different molecular diffusivities. The evolution of horizontal double-diffusive layers (DDLs) is one of the outcomes of double-diffusive convection occurring in a laterally/vertically cooled rectangular cavity having a pre-existing vertically stable composition field. The present work mainly focuses on different characteristics of the formation and merging of double-diffusive layers by imposing lateral/vertical thermal gradients in a vertically stable compositional field. A CFD-based twodimensional fluent model has been developed for the investigation of the aforesaid phenomena. The configuration containing vertical thermal gradients shows the evolution and merging of DDLs, where, elements from the same horizontal plane move vertically and mix with surroundings, creating a horizontal layer. In the configuration of lateral thermal gradients, a specially oriented convective roll was found inside each DDL and each roll was driven by the competing density change due to the already existing composition field and imposed thermal field. When the thermal boundary layer near the vertical wall penetrates the salinity interface, it can disrupt the compositional interface and can lead to layer merging. Different analytical scales were quantified and compared for both configurations. Various combinations of solutal and thermal Rayleigh numbers were investigated to get three different regimes, namely; stagnant regime, layered regime and unicellular regime. For a particular solutal Rayleigh number, a layered structure can originate only for a range of thermal Rayleigh numbers. Lower thermal Rayleigh numbers correspond to a diffusion-dominated stagnant regime. Very high thermal Rayleigh corresponds to a unicellular regime with high convective mixing. Different plots identifying these three regimes, number, thickness and time of existence of DDLs have been studied and plotted. For a given solutal Rayleigh number, an increase in thermal Rayleigh number increases the width but decreases both the number and time of existence of DDLs in the fluid domain. Sudden peaks in the velocity and heat transfer coefficient have also been observed and discussed at the time of merging. The present study is expected to be useful in correlating the double-diffusive convection in many large-scale applications including oceanography, metallurgy, geology, etc. The model has also been developed for three-dimensional geometry, but the results were quite similar to that of 2-D simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20diffusive%20layers" title="double diffusive layers">double diffusive layers</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20number" title=" Rayleigh number"> Rayleigh number</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20gradients" title=" thermal gradients"> thermal gradients</a>, <a href="https://publications.waset.org/abstracts/search?q=compositional%20gradients" title=" compositional gradients"> compositional gradients</a> </p> <a href="https://publications.waset.org/abstracts/151589/evolution-and-merging-of-double-diffusive-layers-in-a-vertically-stable-compositional-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5116</span> Entropy Generation Analysis of Cylindrical Heat Pipe Using Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Ghanbarpour">Morteza Ghanbarpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmatollah%20Khodabandeh"> Rahmatollah Khodabandeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, second law of thermodynamic is employed to evaluate heat pipe thermal performance. In fact, nanofluids potential to decrease the entropy generation of cylindrical heat pipes are studied and the results are compared with experimental data. Some cylindrical copper heat pipes of 200 mm length and 6.35 mm outer diameter were fabricated and tested with distilled water and water based Al2O3 nanofluids with volume concentrations of 1-5% as working fluids. Nanofluids are nanotechnology-based colloidal suspensions fabricated by suspending nanoparticles in a base liquid. These fluids have shown potential to enhance heat transfer properties of the base liquids used in heat transfer application. When the working fluid undergoes between different states in heat pipe cycle the entropy is generated. Different sources of irreversibility in heat pipe thermodynamic cycle are investigated and nanofluid effect on each of these sources is studied. Both experimental and theoretical studies reveal that nanofluid is a good choice to minimize the entropy generation in heat pipe thermodynamic cycle which results in higher thermal performance and efficiency of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title="heat pipe">heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20generation" title=" entropy generation"> entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20resistance" title=" thermal resistance"> thermal resistance</a> </p> <a href="https://publications.waset.org/abstracts/8659/entropy-generation-analysis-of-cylindrical-heat-pipe-using-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5115</span> Mineral Thermal Insulation Materials Based on Sodium Liquid Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zin%20Min%20Htet">Zin Min Htet</a>, <a href="https://publications.waset.org/abstracts/search?q=Tikhomirova%20Irina%20Nikolaevna"> Tikhomirova Irina Nikolaevna</a>, <a href="https://publications.waset.org/abstracts/search?q=Karpenko%20Marina%20A."> Karpenko Marina A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, thermal insulation materials based on sodium liquid glass with light fillers as foam glass granules with different sizes and wollastonite - M325 (U.S.A production) were studied. Effective mineral thermal insulation materials are in demand in many industries because of their incombustibility and durability. A method for the preparation of such materials based on mechanically foamed sodium liquid glass and light mineral fillers is proposed. The thermal insulation properties depend on the type, amount of filler and on the foaming factor, which is determined by the concentration of the foaming agent. The water resistance of the material is provided by using an additive to neutralize the glass and transfer it to the silica gel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation%20material" title="thermal insulation material">thermal insulation material</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20liquid%20glass" title=" sodium liquid glass"> sodium liquid glass</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20glass%20granules" title=" foam glass granules"> foam glass granules</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20agent" title=" foaming agent"> foaming agent</a>, <a href="https://publications.waset.org/abstracts/search?q=hardener" title=" hardener"> hardener</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=apparent%20density" title=" apparent density"> apparent density</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/92313/mineral-thermal-insulation-materials-based-on-sodium-liquid-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5114</span> Thermal Transport Properties of Common Transition Single Metal Atom Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuxi%20Zhu">Yuxi Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenqian%20Chen"> Zhenqian Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is of great interest to investigate the thermal properties of non-precious metal catalysts for Proton exchange membrane fuel cell (PEMFC) based on the thermal management requirements. Due to the low symmetry of materials, to accurately obtain the thermal conductivity of materials, it is necessary to obtain the second and third order force constants by combining density functional theory and machine learning interatomic potential. To be specific, the interatomic force constants are obtained by moment tensor potential (MTP), which is trained by the computational trajectory of Ab initio molecular dynamics (AIMD) at 50, 300, 600, and 900 K for 1 ps each, with a time step of 1 fs in the AIMD computation. And then the thermal conductivity can be obtained by solving the Boltzmann transport equation. In this paper, the thermal transport properties of single metal atom catalysts are studied for the first time to our best knowledge by machine-learning interatomic potential (MLIP). Results show that the single metal atom catalysts exhibit anisotropic thermal conductivities and partially exhibit good thermal conductivity. The average lattice thermal conductivities of G-FeN₄, G-CoN₄ and G-NiN₄ at 300 K are 88.61 W/mK, 205.32 W/mK and 210.57 W/mK, respectively. While other single metal atom catalysts show low thermal conductivity due to their low phonon lifetime. The results also show that low-frequency phonons (0-10 THz) dominate thermal transport properties. The results provide theoretical insights into the application of single metal atom catalysts in thermal management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proton%20exchange%20membrane%20fuel%20cell" title="proton exchange membrane fuel cell">proton exchange membrane fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20metal%20atom%20catalysts" title=" single metal atom catalysts"> single metal atom catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=machine-learning%20interatomic%20potential" title=" machine-learning interatomic potential"> machine-learning interatomic potential</a> </p> <a href="https://publications.waset.org/abstracts/190217/thermal-transport-properties-of-common-transition-single-metal-atom-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5113</span> Numerical Study of Pressure Losses of Turbulence Drilling Fluid Flow in the Oil Wellbore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Mehdizadeh">Alireza Mehdizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghanbarali%20Sheikhzadeh"> Ghanbarali Sheikhzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the pressure loss of drilling fluid flow in the annulus is investigated. On this purpose the domains between two concentric and two eccentric cylinders are considered as computational domains. In this research foam is used as drilling fluid. Firstly simulation results for laminar flow and non Newtonian fluid and different density like 100, 200, 300 kg/m3 and different inner cylinder rotational velocity like 100, 200, 300 RPM is presented. These results are compared and matched with references results. The power law and Herschel Bulkly methods are used for non Newtonian fluid modeling. After that computations are repeated with turbulence flow considering. K- Model is used for turbulence modeling. Results show that in laminar flow Herschel bulkly model has best result in comparison with power law model. And pressure loss in turbulence flow is higher than laminar flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=concentric%20cylinders" title=" concentric cylinders"> concentric cylinders</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20Newtonian" title=" non Newtonian"> non Newtonian</a> </p> <a href="https://publications.waset.org/abstracts/16391/numerical-study-of-pressure-losses-of-turbulence-drilling-fluid-flow-in-the-oil-wellbore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5112</span> A Comprehensive Safety Analysis for a Pressurized Water Reactor Fueled with Mixed-Oxide Fuel as an Accident Tolerant Fuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Y.%20M.%20Mohsen">Mohamed Y. M. Mohsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The viability of utilising mixed-oxide fuel (MOX) ((U₀.₉, rgPu₀.₁) O₂) as an accident-tolerant fuel (ATF) has been thoroughly investigated. MOX fuel provides the best example of a nuclear waste recycling process. The MCNPX 2.7 code was used to determine the main neutronic features, especially the radial power distribution, to identify the hot channel on which the thermal-hydraulic (TH) study was performed. Based on the computational fluid dynamics technique, the simulation of the rod-centered thermal-hydraulic subchannel model was implemented using COMSOL Multiphysics. TH analysis was utilised to determine the axially and radially distributed temperatures of the fuel and cladding materials, as well as the departure from the nucleate boiling ratio (DNBR) along the coolant channel. COMSOL Multiphysics can simulate reality by coupling multiphysics, such as coupling between heat transfer and solid mechanics. The main solid structure parameters, such as the von Mises stress, volumetric strain, and displacement, were simulated using this coupling. When the neutronic, TH, and solid structure performances of UO₂ and ((U₀.₉, rgPu₀.₁) O₂) were compared, the results showed considerable improvement and an increase in safety margins with the use of ((U₀.₉, rgPu₀.₁) O₂). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed-oxide" title="mixed-oxide">mixed-oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=MCNPX" title=" MCNPX"> MCNPX</a>, <a href="https://publications.waset.org/abstracts/search?q=neutronic%20analysis" title=" neutronic analysis"> neutronic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=COMSOL-multiphysics" title=" COMSOL-multiphysics"> COMSOL-multiphysics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal-hydraulic" title=" thermal-hydraulic"> thermal-hydraulic</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20structure" title=" solid structure"> solid structure</a> </p> <a href="https://publications.waset.org/abstracts/154310/a-comprehensive-safety-analysis-for-a-pressurized-water-reactor-fueled-with-mixed-oxide-fuel-as-an-accident-tolerant-fuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5111</span> Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Markus%20R%C3%BCtten">Markus Rütten</a>, <a href="https://publications.waset.org/abstracts/search?q=Olaf%20W%C3%BCnsch"> Olaf Wünsch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K&acute;arm&acute;an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-viscous%20fluids" title=" thermo-viscous fluids"> thermo-viscous fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20thinning" title=" shear thinning"> shear thinning</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a> </p> <a href="https://publications.waset.org/abstracts/66430/heat-transfer-dependent-vortex-shedding-of-thermo-viscous-shear-thinning-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5110</span> Change of the Thermal Conductivity of Polystyrene Insulation in term of Temperature at the Mid Thickness of the Insulation Material: Impact on the Cooling Load </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khoukhi">M. Khoukhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate prediction of the cooling/heating load and consequently, the sizing of the heating, ventilating, and air-conditioning equipment require precise calculation of the heat transfer mainly by conduction through envelope components of a building. The thermal resistance of most thermal insulation materials depends on the operating temperature. The temperature to which the insulation materials are exposed varies, depending on the thermal resistance of the materials, the location of the insulation layer within the assembly system, and the effective temperature which depends on the amount of solar radiation received on the surface of the assembly. The main objective of this paper is to investigate the change of the thermal conductivity of polystyrene insulation material in terms of the temperature at the mid-thickness of the material and its effect on the cooling load required by the building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operating%20temperature" title="operating temperature">operating temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene%20insulation" title=" polystyrene insulation"> polystyrene insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20load" title=" cooling load"> cooling load</a> </p> <a href="https://publications.waset.org/abstracts/43335/change-of-the-thermal-conductivity-of-polystyrene-insulation-in-term-of-temperature-at-the-mid-thickness-of-the-insulation-material-impact-on-the-cooling-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5109</span> Timing Equation for Capturing Satellite Thermal Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toufic%20Abd%20El-Latif%20Sadek">Toufic Abd El-Latif Sadek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Asphalt object represents the asphalted areas, like roads. The best original data of thermal images occurred at a specific time during the days of the year, by preventing the gaps in times which give the close and same brightness from different objects, using seven sample objects, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found in this study a general timing equation for capturing satellite thermal images at different locations, depends on a fixed time the sunrise and sunset; Capture Time= Tcap =(TM*TSR) ±TS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt" title="asphalt">asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite" title=" satellite"> satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20images" title=" thermal images"> thermal images</a>, <a href="https://publications.waset.org/abstracts/search?q=timing%20equation" title=" timing equation"> timing equation</a> </p> <a href="https://publications.waset.org/abstracts/51769/timing-equation-for-capturing-satellite-thermal-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5108</span> A Study on Thermal and Flow Characteristics by Solar Radiation for Single-Span Greenhouse by Computational Fluid Dynamics Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonghyuk%20Yoon">Jonghyuk Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoungwoon%20Song"> Hyoungwoon Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, there are lots of increasing interest in a smart farming that represents application of modern Information and Communication Technologies (ICT) into agriculture since it provides a methodology to optimize production efficiencies by managing growing conditions of crops automatically. In order to obtain high performance and stability for smart greenhouse, it is important to identify the effect of various working parameters such as capacity of ventilation fan, vent opening area and etc. In the present study, a 3-dimensional CFD (Computational Fluid Dynamics) simulation for single-span greenhouse was conducted using the commercial program, Ansys CFX 18.0. The numerical simulation for single-span greenhouse was implemented to figure out the internal thermal and flow characteristics. In order to numerically model solar radiation that spread over a wide range of wavelengths, the multiband model that discretizes the spectrum into finite bands of wavelength based on Wien’s law is applied to the simulation. In addition, absorption coefficient of vinyl varied with the wavelength bands is also applied based on Beer-Lambert Law. To validate the numerical method applied herein, the numerical results of the temperature at specific monitoring points were compared with the experimental data. The average error rates (12.2~14.2%) between them was shown and numerical results of temperature distribution are in good agreement with the experimental data. The results of the present study can be useful information for the design of various greenhouses. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Advanced Production Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(315093-03). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-span%20greenhouse" title="single-span greenhouse">single-span greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20%28computational%20fluid%20dynamics%29" title=" CFD (computational fluid dynamics)"> CFD (computational fluid dynamics)</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation" title=" solar radiation"> solar radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiband%20model" title=" multiband model"> multiband model</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption%20coefficient" title=" absorption coefficient"> absorption coefficient</a> </p> <a href="https://publications.waset.org/abstracts/86810/a-study-on-thermal-and-flow-characteristics-by-solar-radiation-for-single-span-greenhouse-by-computational-fluid-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5107</span> Wiedemann-Franz Law Violation Domain for Graphene and Nonrelativistic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thandar%20Zaw%20Win">Thandar Zaw Win</a>, <a href="https://publications.waset.org/abstracts/search?q=Cho%20Win%20Aung"> Cho Win Aung</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Khandal"> Gaurav Khandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabyasachi%20Ghosh"> Sabyasachi Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Systematic and comparative research on Lorenz ratios for graphene and nonrelativistic systems has been studied to identify their Wiedemann-Franz law violation domain. Fermi energy and temperature are the main governing parameters for deciding the values of the Lorenz ratio, which is basically thermal conductivity divided by electrical conductivity times temperature times Lorenz number. Metals as three-dimensional nonrelativistic electron gas are located at higher Fermi-energy by temperature domain, where Lorenz ratio remains one. Hence, they obey the Wiedemann-Franz law. By creating higher doping in a two-dimensional graphene system, one can again reach a higher Fermi-energy by temperature domain and get a constant Lorenz ratio. For both graphene and nonrelativistic systems, the Lorenz ratio goes below one if we go lower Fermi-energy by temperature domain, which is possible for the graphene system by decreasing the doping concentration. Experimentally observed greater than one Lorenz ratio in this lower Fermi-energy by temperature domain or Dirac Fluid domain indicates that nonfluid expressions of Lorenz ratio should be replaced by fluidtype expressions. We have noticed a divergent trend of Lorenz ratio in the Dirac Fluid domain using its fluid-type expression, and it matches the trend of experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorentz%20ratio" title=" Lorentz ratio"> Lorentz ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20heat" title=" specific heat"> specific heat</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiedeann-Franz%20law" title=" Wiedeann-Franz law"> Wiedeann-Franz law</a> </p> <a href="https://publications.waset.org/abstracts/190245/wiedemann-franz-law-violation-domain-for-graphene-and-nonrelativistic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5106</span> Simplified Linear Regression Model to Quantify the Thermal Resilience of Office Buildings in Three Different Power Outage Day Times</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagham%20Ismail">Nagham Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Ouahrani"> Djamel Ouahrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal resilience in the built environment reflects the building's capacity to adapt to extreme climate changes. In hot climates, power outages in office buildings pose risks to the health and productivity of workers. Therefore, it is of interest to quantify the thermal resilience of office buildings by developing a user-friendly simplified model. This simplified model begins with creating an assessment metric of thermal resilience that measures the duration between the power outage and the point at which the thermal habitability condition is compromised, considering different power interruption times (morning, noon, and afternoon). In this context, energy simulations of an office building are conducted for Qatar's summer weather by changing different parameters that are related to the (i) wall characteristics, (ii) glazing characteristics, (iii) load, (iv) orientation and (v) air leakage. The simulation results are processed using SPSS to derive linear regression equations, aiding stakeholders in evaluating the performance of commercial buildings during different power interruption times. The findings reveal the significant influence of glazing characteristics on thermal resilience, with the morning power outage scenario posing the most detrimental impact in terms of the shortest duration before compromising thermal resilience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20resilience" title="thermal resilience">thermal resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20envelope" title=" thermal envelope"> thermal envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20modeling" title=" energy modeling"> energy modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20simulation" title=" building simulation"> building simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20disruption" title=" power disruption"> power disruption</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20weather" title=" extreme weather"> extreme weather</a> </p> <a href="https://publications.waset.org/abstracts/173363/simplified-linear-regression-model-to-quantify-the-thermal-resilience-of-office-buildings-in-three-different-power-outage-day-times" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5105</span> Topology Optimization of Heat and Mass Transfer for Two Fluids under Steady State Laminar Regime: Application on Heat Exchangers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rony%20Tawk">Rony Tawk</a>, <a href="https://publications.waset.org/abstracts/search?q=Boutros%20Ghannam"> Boutros Ghannam</a>, <a href="https://publications.waset.org/abstracts/search?q=Maroun%20Nemer"> Maroun Nemer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Topology optimization technique presents a potential tool for the design and optimization of structures involved in mass and heat transfer. The method starts with an initial intermediate domain and should be able to progressively distribute the solid and the two fluids exchanging heat. The multi-objective function of the problem takes into account minimization of total pressure loss and maximization of heat transfer between solid and fluid subdomains. Existing methods account for the presence of only one fluid, while the actual work extends optimization distribution of solid and two different fluids. This requires to separate the channels of both fluids and to ensure a minimum solid thickness between them. This is done by adding a third objective function to the multi-objective optimization problem. This article uses density approach where each cell holds two local design parameters ranging from 0 to 1, where the combination of their extremums defines the presence of solid, cold fluid or hot fluid in this cell. Finite volume method is used for direct solver coupled with a discrete adjoint approach for sensitivity analysis and method of moving asymptotes for numerical optimization. Several examples are presented to show the ability of the method to find a trade-off between minimization of power dissipation and maximization of heat transfer while ensuring the separation and continuity of the channel of each fluid without crossing or mixing the fluids. The main conclusion is the possibility to find an optimal bi-fluid domain using topology optimization, defining a fluid to fluid heat exchanger device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topology%20optimization" title="topology optimization">topology optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20approach" title=" density approach"> density approach</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-fluid%20domain" title=" bi-fluid domain"> bi-fluid domain</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20steady%20state%20regime" title=" laminar steady state regime"> laminar steady state regime</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-to-fluid%20heat%20exchanger" title=" fluid-to-fluid heat exchanger"> fluid-to-fluid heat exchanger</a> </p> <a href="https://publications.waset.org/abstracts/65390/topology-optimization-of-heat-and-mass-transfer-for-two-fluids-under-steady-state-laminar-regime-application-on-heat-exchangers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5104</span> Magnetic Bio-Nano-Fluids for Hyperthermia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kolacinski">Z. Kolacinski</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Szymanski.%20G.%20Raniszewski"> L. Szymanski. G. Raniszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Koza"> D. Koza</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Pietrzak"> L. Pietrzak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic Bio-Nano-Fluid (BNF) can be composed of a buffer fluid such as plasma and magnetic nanoparticles such as iron, nickel, cobalt and their oxides. However iron is one of the best elements for magnetization by electromagnetic radiation. It can be used as a tool for medical diagnosis and treatment. Radio frequency (RF) radiation is able to heat iron nanoparticles due to magnetic hysteresis. Electromagnetic heating of iron nanoparticles and ferro-fluids BNF can be successfully used for non-invasive thermal ablation of cancer cells. Moreover iron atoms can be carried by carbon nanotubes (CNTs) if iron is used as catalyst for CNTs synthesis. Then CNTs became the iron containers and they screen the iron content against oxidation. We will present a method of CNTs addressing to the required cells. For thermal ablation of cancer cells we use radio frequencies for which the interaction with human body should be limited to minimum. Generally, the application of RF energy fields for medical treatment is justified by deep tissue penetration. The highly iron doped CNTs as the carriers creating magnetic fluid will be presented. An excessive catalyst injection method using electrical furnace and microwave plasma reactor will be presented. This way it is possible to grow the Fe filled CNTs on a moving surface in continuous synthesis process. This also allows producing uniform carpet of the Fe filled CNTs carriers. For the experimental work targeted to cell ablation we used RF generator to measure the increase in temperature for some samples like: solution of Fe2O3 in BNF which can be plasma-like buffer, solutions of pure iron of different concentrations in plasma-like buffer and in buffer used for a cell culture, solutions of carbon nanotubes (MWCNTs) of different concentrations in plasma-like buffer and in buffer used for a cell culture. Then the targeted therapies which can be effective if the carriers are able to distinguish the difference between cancerous and healthy cell’s physiology are considered. We have developed an approach based on ligand-receptor or antibody-antigen interactions for the case of colon cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20treatment" title="cancer treatment">cancer treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nano%20tubes" title=" carbon nano tubes"> carbon nano tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20delivery" title=" drag delivery"> drag delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=iron" title=" iron"> iron</a> </p> <a href="https://publications.waset.org/abstracts/39149/magnetic-bio-nano-fluids-for-hyperthermia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5103</span> Multilayer Thermal Screens for Greenhouse Insulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clara%20Shenderey">Clara Shenderey</a>, <a href="https://publications.waset.org/abstracts/search?q=Helena%20Vitoshkin"> Helena Vitoshkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mordechai%20Barak"> Mordechai Barak</a>, <a href="https://publications.waset.org/abstracts/search?q=Avraham%20Arbel"> Avraham Arbel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Greenhouse cultivation is an energy-intensive process due to the high demands on cooling or heating according to external climatic conditions, which could be extreme in the summer or winter seasons. The thermal radiation rate inside a greenhouse depends mainly on the type of covering material and greenhouse construction. Using additional thermal screens under a greenhouse covering combined with a dehumidification system improves the insulation and could be cost-effective. Greenhouse covering material usually contains protective ultraviolet (UV) radiation additives to prevent the film wear, insect harm, and crop diseases. This paper investigates the overall heat transfer coefficient, or <em>U-value</em>, for greenhouse polyethylene covering contains UV-additives and glass covering with or without a thermal screen supplement. The hot-box method was employed to evaluate overall heat transfer coefficients experimentally as a function of the type and number of the thermal screens. The results show that the overall heat transfer coefficient decreases with increasing the number of thermal screens as a hyperbolic function. The overall heat transfer coefficient highly depends on the ability of the material to reflect thermal radiation. Using a greenhouse covering, i.e., polyethylene films or glass, in combination with high reflective thermal screens, i.e., containing about 98% of aluminum stripes or aluminum foil, the <em>U-value</em> reduces by 61%-89% in the first case, whereas by 70%-92% in the second case, depending on the number of the thermal screen. Using thermal screens made from low reflective materials may reduce the <em>U-value</em> by 30%-57%. The heat transfer coefficient is an indicator of the thermal insulation properties of the materials, which allows farmers to make decisions on the use of appropriate thermal screens depending on the external and internal climate conditions in a greenhouse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy-saving%20thermal%20screen" title="energy-saving thermal screen">energy-saving thermal screen</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20cover%20material" title=" greenhouse cover material"> greenhouse cover material</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20box" title=" hot box"> hot box</a> </p> <a href="https://publications.waset.org/abstracts/127384/multilayer-thermal-screens-for-greenhouse-insulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5102</span> Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saowaluck%20Ukrisdawithid">Saowaluck Ukrisdawithid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m&middot;K &plusmn; 3.5% (k = 2) at mean temperature 23.5 &deg;C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20laboratory%20validation%20approach" title="single laboratory validation approach">single laboratory validation approach</a>, <a href="https://publications.waset.org/abstracts/search?q=within-laboratory%20reproducibility" title=" within-laboratory reproducibility"> within-laboratory reproducibility</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20and%20laboratory%20bias" title=" method and laboratory bias"> method and laboratory bias</a>, <a href="https://publications.waset.org/abstracts/search?q=certified%20reference%20material" title=" certified reference material"> certified reference material</a> </p> <a href="https://publications.waset.org/abstracts/115436/estimation-of-uncertainty-of-thermal-conductivity-measurement-with-single-laboratory-validation-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5101</span> Rational Probabilistic Method for Calculating Thermal Cracking Risk of Mass Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naoyuki%20Sugihashi">Naoyuki Sugihashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiharu%20Kishi"> Toshiharu Kishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The probability of occurrence of thermal cracks in mass concrete in Japan is evaluated by the cracking probability diagram that represents the relationship between the thermal cracking index and the probability of occurrence of cracks in the actual structure. In this paper, we propose a method to directly calculate the cracking probability, following a probabilistic theory by modeling the variance of tensile stress and tensile strength. In this method, the relationship between the variance of tensile stress and tensile strength, the thermal cracking index, and the cracking probability are formulated and presented. In addition, standard deviation of tensile stress and tensile strength was identified, and the method of calculating cracking probability in a general construction controlled environment was also demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20crack%20control" title="thermal crack control">thermal crack control</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20concrete" title=" mass concrete"> mass concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cracking%20probability" title=" thermal cracking probability"> thermal cracking probability</a>, <a href="https://publications.waset.org/abstracts/search?q=durability%20of%20concrete" title=" durability of concrete"> durability of concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=calculating%20method%20of%20cracking%20probability" title=" calculating method of cracking probability"> calculating method of cracking probability</a> </p> <a href="https://publications.waset.org/abstracts/74943/rational-probabilistic-method-for-calculating-thermal-cracking-risk-of-mass-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5100</span> Design and Experimental Studies of a Centrifugal SWIRL Atomizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hemabushan%20K.">Hemabushan K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Manikandan"> Manikandan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a swirl atomizer, fluid undergoes a swirling motion as a result of centrifugal force created by opposed tangential inlets in the swirl chamber. The angular momentum of fluid continually increases as it reaches the exit orifice and forms a hollow sheet. Which disintegrates to form ligaments and droplets respectively as it flows downstream. This type of atomizers used in rocket injectors and oil burner furnaces. In this present investigation a swirl atomizer with two opposed tangential inlets has been designed. Water as working fluid, experiments had been conducted for the fluid injection pressures in regime of 0.033 bar to 0.519 bar. The fluid has been pressured by a 0.5hp pump and regulated by a pressure regulator valve. Injection pressure of fluid has been measured by a U-tube mercury manometer. The spray pattern and the droplets has been captured with a high resolution camera in black background with a high intensity flash highlighting the fluid. The unprocessed images were processed in ImageJ processing software for measuring the droplet diameters and its shape characteristics along the downstream. The parameters such as mean droplet diameter and distribution, wave pattern, rupture distance and spray angle were studied for this atomizer. The above results were compared with theoretical results and also analysed for deviation with design parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirl%20atomizer" title="swirl atomizer">swirl atomizer</a>, <a href="https://publications.waset.org/abstracts/search?q=injector" title=" injector"> injector</a>, <a href="https://publications.waset.org/abstracts/search?q=spray" title=" spray"> spray</a>, <a href="https://publications.waset.org/abstracts/search?q=SWIRL" title=" SWIRL"> SWIRL</a> </p> <a href="https://publications.waset.org/abstracts/21828/design-and-experimental-studies-of-a-centrifugal-swirl-atomizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5099</span> Water-Controlled Fracturing with Fuzzy-Ball Fluid in Tight Gas Reservoirs of Deep Coal Measures in Sulige</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiangchun%20Wang">Xiangchun Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lihui%20Zheng"> Lihui Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Maozong%20Gan"> Maozong Gan</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Zhang"> Peng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Wu"> Tong Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=An%20Chang"> An Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The deep coal measure tight gas reservoir in Sulige is usually reformed by fracturing, because the reservoir thickness is small, the water layers can be easily communicated during fracturing, which will lead to water production of gas wells and lower production of gas wells. Therefore, it is necessary to control water during fracturing in deep coal measure tight gas reservoir. Using fuzzy-ball fluid to control water fracturing can not only increase the output but also reduce the water output. The fuzzy-ball fluid was prepared indoors to carry out evaluation experiments. The fuzzy ball fluid was mixed in equal volume with the pre-fluid and formation water to test its compatibility. The core displacement device was used to test the gas and water breaking through the matrix and fractured cores blocked by fuzzy-ball fluid. The breakthrough pressure of the plunger tests its water blocking performance. The experimental results show that there is no precipitation after the fuzzy-ball fluid is mixed with the pad fluid and the formation water, respectively. The breakthrough pressure gradients of gas and water after the fuzzy-ball fluid plugged the cracks were 0.02MPa/cm and 0.04MPa/cm, respectively, and the breakthrough pressure gradients of gas and water after the matrix was plugged were 0.03MPa/cm and 0.2MPa/cm, respectively, which meet the requirements of field operation. Two wells A and B in the Sulige Gas Field were used on site to implement water control fracturing. After the pre-fluid was injected into the two wells, 50m3 of fuzzy-ball fluid was pumped to plug the water. The construction went smoothly. After water control and fracturing, the average daily output in 161 days was increased by 13.71% and 6.99% compared with that of adjacent wells in the same layer. The adjacent wells were bubbled for 3 times and 63 times respectively, while there was no effusion in A and B construction wells. The results show that fuzzy-ball fluid is a water plugging material suitable for water control fracturing in tight gas wells, and its water control mechanism can also provide a new idea for the development of water control fracturing materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20seam" title="coal seam">coal seam</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20layer" title=" deep layer"> deep layer</a>, <a href="https://publications.waset.org/abstracts/search?q=fracking" title=" fracking"> fracking</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy-ball%20fluid" title=" fuzzy-ball fluid"> fuzzy-ball fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20reconstruction" title=" reservoir reconstruction"> reservoir reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/137940/water-controlled-fracturing-with-fuzzy-ball-fluid-in-tight-gas-reservoirs-of-deep-coal-measures-in-sulige" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5098</span> Conjugate Heat Transfer Analysis of a Combustion Chamber using ANSYS Computational Fluid Dynamics to Estimate the Thermocouple Positioning in a Chamber Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muzna%20Tariq">Muzna Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihtzaz%20Qamar"> Ihtzaz Qamar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In most engineering cases, the working temperatures inside a combustion chamber are high enough that they lie beyond the operational range of thermocouples. Furthermore, design and manufacturing limitations restrict the use of internal thermocouples in many applications. Heat transfer inside a combustion chamber is caused due to interaction of the post-combustion hot fluid with the chamber wall. Heat transfer that involves an interaction between the fluid and solid is categorized as Conjugate Heat Transfer (CHT). Therefore, to satisfy the needs of CHT, CHT Analysis is performed by using ANSYS CFD tool to estimate theoretically precise thermocouple positions at the combustion chamber wall where excessive temperatures (beyond thermocouple range) can be avoided. In accordance with these Computational Fluid Dynamics (CFD) results, a combustion chamber is designed, and a prototype is manufactured with multiple thermocouple ports positioned at the specified distances so that the temperature of hot gases can be measured on the chamber wall where the temperatures do not exceed the thermocouple working range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction" title=" conduction"> conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugate%20heat%20transfer" title=" conjugate heat transfer"> conjugate heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=convection" title=" convection"> convection</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow" title=" fluid flow"> fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=thermocouples" title=" thermocouples "> thermocouples </a> </p> <a href="https://publications.waset.org/abstracts/132074/conjugate-heat-transfer-analysis-of-a-combustion-chamber-using-ansys-computational-fluid-dynamics-to-estimate-the-thermocouple-positioning-in-a-chamber-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid%20and%20thermal&amp;page=8" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid%20and%20thermal&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid%20and%20thermal&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid%20and%20thermal&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid%20and%20thermal&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid%20and%20thermal&amp;page=8">8</a></li> <li class="page-item active"><span class="page-link">9</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid%20and%20thermal&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid%20and%20thermal&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid%20and%20thermal&amp;page=12">12</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid%20and%20thermal&amp;page=178">178</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid%20and%20thermal&amp;page=179">179</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fluid%20and%20thermal&amp;page=10" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10