CINXE.COM

Search results for: quantum optics

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: quantum optics</title> <meta name="description" content="Search results for: quantum optics"> <meta name="keywords" content="quantum optics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="quantum optics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="quantum optics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 718</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: quantum optics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">538</span> On the Internal Structure of the ‘Enigmatic Electrons’</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natarajan%20Tirupattur%20Srinivasan">Natarajan Tirupattur Srinivasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum mechanics( QM) and (special) relativity (SR) have indeed revolutionized the very thinking of physicists, and the spectacular successes achieved over a century due to these two theories are mind-boggling. However, there is still a strong disquiet among some physicists. While the mathematical structure of these two theories has been established beyond any doubt, their physical interpretations are still being contested by many. Even after a hundred years of their existence, we cannot answer a very simple question, “What is an electron”? Physicists are struggling even now to come to grips with the different interpretations of quantum mechanics with all their ramifications. However, it is indeed strange that the (special) relativity theory of Einstein enjoys many orders of magnitude of “acceptance”, though both theories have their own stocks of weirdness in the results, like time dilation, mass increase with velocity, the collapse of the wave function, quantum jump, tunnelling, etc. Here, in this paper, it would be shown that by postulating an intrinsic internal motion to these enigmatic electrons, one can build a fairly consistent picture of reality, revealing a very simple picture of nature. This is also evidenced by Schrodinger’s ‘Zitterbewegung’ motion, about which so much has been written. This leads to a helical trajectory of electrons when they move in a laboratory frame. It will be shown that the helix is a three-dimensional wave having all the characteristics of our familiar 2D wave. Again, the helix, being a geodesic on an imaginary cylinder, supports ‘quantization’, and its representation is just the complex exponentials matching with the wave function of quantum mechanics. By postulating the instantaneous velocity of the electrons to be always ‘c’, the velocity of light, the entire relativity comes alive, and we can interpret the ‘time dilation’, ‘mass increase with velocity’, etc., in a very simple way. Thus, this model unifies both QM and SR without the need for a counterintuitive postulate of Einstein about the constancy of the velocity of light for all inertial observers. After all, if the motion of an inertial frame cannot affect the velocity of light, the converse that this constant also cannot affect the events in the frame must be true. But entire relativity is about how ‘c’ affects time, length, mass, etc., in different frames. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20reconstruction" title="quantum reconstruction">quantum reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20theory%20of%20relativity" title=" special theory of relativity"> special theory of relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=zitterbewegung" title=" zitterbewegung"> zitterbewegung</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20wave%20function" title=" complex wave function"> complex wave function</a>, <a href="https://publications.waset.org/abstracts/search?q=helix" title=" helix"> helix</a>, <a href="https://publications.waset.org/abstracts/search?q=geodesic" title=" geodesic"> geodesic</a>, <a href="https://publications.waset.org/abstracts/search?q=Schrodinger%E2%80%99s%20wave%20equations" title=" Schrodinger’s wave equations"> Schrodinger’s wave equations</a> </p> <a href="https://publications.waset.org/abstracts/171323/on-the-internal-structure-of-the-enigmatic-electrons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">537</span> Chaos in a Stadium-Shaped 2-D Quantum Dot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roger%20Yu">Roger Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical scheme has been developed to solve wave equations for chaotic systems such as stadium-shaped cavity. The same numerical method can also be used for finding wave properties of rectangle cavities with randomly placed obstacles. About 30k eigenvalues have been obtained accurately on a normal circumstance. For comparison, we also initiated an experimental study which determines both eigenfrequencies and eigenfunctions of a stadium-shaped cavity using pulse and normal mode analyzing techniques. The acoustic cavity was made adjustable so that the transition from nonchaotic (circle) to chaotic (stadium) waves can be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title="quantum dot">quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20method" title=" numerical method"> numerical method</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a> </p> <a href="https://publications.waset.org/abstracts/148129/chaos-in-a-stadium-shaped-2-d-quantum-dot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">536</span> A Low-Cost Memristor Based on Hybrid Structures of Metal-Oxide Quantum Dots and Thin Films </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Shariffar">Amir Shariffar</a>, <a href="https://publications.waset.org/abstracts/search?q=Haider%20Salman"> Haider Salman</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanveer%20Siddique"> Tanveer Siddique</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Manasreh"> Omar Manasreh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the recent studies on metal-oxide memristors, researchers tend to improve the stability, endurance, and uniformity of resistive switching (RS) behavior in memristors. Specifically, the main challenge is to prevent abrupt ruptures in the memristor’s filament during the RS process. To address this problem, we are proposing a low-cost hybrid structure of metal oxide quantum dots (QDs) and thin films to control the formation of filaments in memristors. We aim to use metal oxide quantum dots because of their unique electronic properties and quantum confinement, which may improve the resistive switching behavior. QDs have discrete energy spectra due to electron confinement in three-dimensional space. Because of Coulomb repulsion between electrons, only a few free electrons are contained in a quantum dot. This fact might guide the growth direction for the conducting filaments in the metal oxide memristor. As a result, it is expected that QDs can improve the endurance and uniformity of RS behavior in memristors. Moreover, we use a hybrid structure of intrinsic n-type quantum dots and p-type thin films to introduce a potential barrier at the junction that can smooth the transition between high and low resistance states. A bottom-up approach is used for fabricating the proposed memristor using different types of metal-oxide QDs and thin films. We synthesize QDs including, zinc oxide, molybdenum trioxide, and nickel oxide combined with spin-coated thin films of titanium dioxide, copper oxide, and hafnium dioxide. We employ fluorine-doped tin oxide (FTO) coated glass as the substrate for deposition and bottom electrode. Then, the active layer composed of one type of quantum dots, and the opposite type of thin films is spin-coated onto the FTO. Lastly, circular gold electrodes are deposited with a shadow mask by using electron-beam (e-beam) evaporation at room temperature. The fabricated devices are characterized using a probe station with a semiconductor parameter analyzer. The current-voltage (I-V) characterization is analyzed for each device to determine the conduction mechanism. We evaluate the memristor’s performance in terms of stability, endurance, and retention time to identify the optimal memristive structure. Finally, we assess the proposed hypothesis before we proceed to the optimization process for fabricating the memristor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=memristor" title="memristor">memristor</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title=" quantum dot"> quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20switching" title=" resistive switching"> resistive switching</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a> </p> <a href="https://publications.waset.org/abstracts/124980/a-low-cost-memristor-based-on-hybrid-structures-of-metal-oxide-quantum-dots-and-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">535</span> Generalized Dirac oscillators Associated to Non-Hermitian Quantum Mechanical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debjit%20Dutta">Debjit Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Roy"> P. Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Panella"> O. Panella</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, non Hermitian interaction in non relativistic as well as relativistic quantum mechanics have been examined from various aspect. We can observe interesting fact that for such systems a class of potentials, namely the PT symmetric and η-pseudo Hermitian admit real eigenvalues despite being non Hermitian and analogues of those system have been experimentally verified. Point to be noted that relativistic non Hermitian (PT symmetric) interactions can be realized in optical structures and also there exists photonic realization of the (1 + 1) dimensional Dirac oscillator. We have thoroughly studied generalized Dirac oscillators with non Hermitian interactions in (1 + 1) dimensions. To be more specific, we have examined η pseudo Hermitian interactions within the framework of generalized Dirac oscillator in (1 + 1) dimensions. In particular, we have obtained a class of interactions which are η-pseudo Hermitian and the metric operator η could have been also found explicitly. It is possible to have exact solutions of the generalized Dirac oscillator for some choices of the interactions. Subsequently we have employed the mapping between the generalized Dirac oscillator and the Jaynes Cummings (JC) model by spin flip to obtain a class of exactly solvable non Hermitian JC as well as anti Jaynes Cummings (AJC) type models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dirac%20oscillator" title="Dirac oscillator">Dirac oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Hermitian%20quantum%20system" title=" non-Hermitian quantum system"> non-Hermitian quantum system</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermitian" title=" Hermitian"> Hermitian</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic" title=" relativistic "> relativistic </a> </p> <a href="https://publications.waset.org/abstracts/4071/generalized-dirac-oscillators-associated-to-non-hermitian-quantum-mechanical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">534</span> Study of Quantum Lasers of Random Trimer Barrier AlxGa1-xAs Superlattices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bentata%20Samir">Bentata Samir</a>, <a href="https://publications.waset.org/abstracts/search?q=Bendahma%20Fatima"> Bendahma Fatima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have numerically studied the random trimer barrier AlxGa1-xAs superlattices (RTBSL). Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that the barriers of one kind appear in triply. An explicit formula is given for evaluating the transmission coefficient of superlattices (SL's) in intentional correlated disorder. We have specially investigated the effect of aluminum concentration on the laser wavelength. We discuss the impact of the aluminum concentration associated with the structure profile on the laser wavelengths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superlattices" title="superlattices">superlattices</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix%20method" title=" transfer matrix method"> transfer matrix method</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20coefficient" title=" transmission coefficient"> transmission coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20laser" title=" quantum laser"> quantum laser</a> </p> <a href="https://publications.waset.org/abstracts/24970/study-of-quantum-lasers-of-random-trimer-barrier-alxga1-xas-superlattices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">533</span> Investigation of the Effects of Gamma Radiation on the Electrically Active Defects in InAs/InGaAs Quantum Dots Laser Structures Grown by Molecular Beam Epitaxy on GaAs Substrates Using Deep Level Transient Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Al%20Huwayz">M. Al Huwayz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Salhi"> A. Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alhassan"> S. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alotaibi"> S. Alotaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Almalki"> A. Almalki</a>, <a href="https://publications.waset.org/abstracts/search?q=M.Almunyif"> M.Almunyif</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alhassni"> A. Alhassni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Henini"> M. Henini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, there has been much research carried out to investigate quantum dots (QDs) lasers with the aim to increase the gain of quantum well lasers. However, one of the difficulties with these structures is that electrically active defects can lead to serious issues in the performance of these devices. It is therefore essential to fully understand the types of defects introduced during the growth and/or the fabrication process. In this study, the effects of Gamma radiation on the electrically active defects in p-i-n InAs/InGaAsQDs laser structures grown by Molecular Beam Epitaxy (MBE) technique on GaAs substrates were investigated. Deep Level Transient Spectroscopy (DLTS), current-voltage (I-V), and capacitance-voltage (C-V) measurements were performed to explore these effects on the electrical properties of these QDs lasers. I-V measurements showed that as-grown sample had better electrical properties than the irradiated sample. However, DLTS and Laplace DLTS measurements at different reverse biases revealed that the defects in the-region of the p-i-n structures were decreased in the irradiated sample. In both samples, a trap with an activation energy of ~ 0.21 eV was assigned to the well-known defect M1 in GaAs layers <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots%20laser%20structures" title="quantum dots laser structures">quantum dots laser structures</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=DLTS" title=" DLTS"> DLTS</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a>, <a href="https://publications.waset.org/abstracts/search?q=nAs%2FIngaAs" title=" nAs/IngaAs"> nAs/IngaAs</a> </p> <a href="https://publications.waset.org/abstracts/141942/investigation-of-the-effects-of-gamma-radiation-on-the-electrically-active-defects-in-inasingaas-quantum-dots-laser-structures-grown-by-molecular-beam-epitaxy-on-gaas-substrates-using-deep-level-transient-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">532</span> Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyunho%20Shin">Hyunho Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaekwang%20Jung"> Jaekwang Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeongho%20Park"> Jeongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungwon%20Hwang"> Sungwon Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the application of graphene quantum dots (GQDs) to optoelectronic nanodevices, it is of critical importance to understand the mechanisms which result in novel phenomena of their light absorption/emission. The optical transitions are known to be available up to ~6 eV in GQDs, especially useful for ultraviolet (UV) photodetectors (PDs). Here, we present size-dependent shape/edge-state variations of GQDs and visible photoluminescence (PL) showing anomalous size dependencies. With varying the average size (da) of GQDs from 5 to 35 nm, the peak energy of the absorption spectra monotonically decreases, while that of the visible PL spectra unusually shows nonmonotonic behaviors having a minimum at diameter ∼17 nm. The PL behaviors can be attributed to the novel feature of GQDs, that is, the circular-to-polygonal-shape and corresponding edge-state variations of GQDs at diameter ∼17 nm as the GQD size increases, as demonstrated by high resolution transmission electron microscopy. We believe that such a comprehensive scheme in designing device architecture and the structural formulation of GQDs provides a device for practical realization of environmentally benign, high performance flexible devices in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title=" quantum dot"> quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=size" title=" size"> size</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a> </p> <a href="https://publications.waset.org/abstracts/46330/anomalous-behaviors-of-visible-luminescence-from-graphene-quantum-dots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">531</span> Meditation and Insight Interpretation Using Quantum Circle Based-on Experiment and Quantum Relativity Formalism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somnath%20Bhattachryya">Somnath Bhattachryya</a>, <a href="https://publications.waset.org/abstracts/search?q=Montree%20Bunruangses"> Montree Bunruangses</a>, <a href="https://publications.waset.org/abstracts/search?q=Somchat%20Sonasang"> Somchat Sonasang</a>, <a href="https://publications.waset.org/abstracts/search?q=Preecha%20Yupapin"> Preecha Yupapin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study and research on meditation and insight, the design and experiment with electronic circuits to manipulate the meditators' mental circles that call the chakras to have the same size is proposed. The shape of the circuit is 4-ports, called an add-drop multiplexer, that studies the meditation structure called the four-mindfulness foundation, then uses an AC power signal as an input instead of the meditation time function, where various behaviors with the method of re-filtering the signal (successive filtering), like eight noble paths. Start by inputting a signal at a frequency that causes the velocity of the wave on the perimeter of the circuit to cause particles to have the speed of light in a vacuum. The signal changes from electromagnetic waves and matter waves according to the velocity (frequency) until it reaches the point of the relativistic limit. The electromagnetic waves are transformed into photons with properties of wave-particle overcoming the limits of the speed of light. As for the matter wave, it will travel to the other side and cannot pass through the relativistic limit, called a shadow signal (echo) that can have power from increasing speed but cannot create speed faster than light or insight. In the experiment, the only the side where the velocity is positive, only where the speed above light or the corresponding frequency indicates intelligence. Other side(echo) can be done by changing the input signal to the other side of the circuit to get the same result. But there is no intelligence or speed beyond light. It is also used to study the stretching, contraction of time and wormholes that can be applied for teleporting, Bose-Einstein condensate and teleprinting, quantum telephone. The teleporting can happen throughout the system with wave-particle and echo, which is when the speed of the particle is faster than the stretching or contraction of time, the particle will submerge in the wormhole, when the destination and time are determined, will travel through the wormhole. In a wormhole, time can determine in the future and the past. The experimental results using the microstrip circuit have been found to be by the principle of quantum relativity, which can be further developed for both tools and meditation practitioners for quantum technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantu%20meditation" title="quantu meditation">quantu meditation</a>, <a href="https://publications.waset.org/abstracts/search?q=insight%20picture" title=" insight picture"> insight picture</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20circuit" title=" quantum circuit"> quantum circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=absolute%20time" title=" absolute time"> absolute time</a>, <a href="https://publications.waset.org/abstracts/search?q=teleportation" title=" teleportation"> teleportation</a> </p> <a href="https://publications.waset.org/abstracts/177305/meditation-and-insight-interpretation-using-quantum-circle-based-on-experiment-and-quantum-relativity-formalism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">530</span> Metaphysics of the Unified Field of the Universe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Kaware">Santosh Kaware</a>, <a href="https://publications.waset.org/abstracts/search?q=Dnyandeo%20Patil"> Dnyandeo Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Moninder%20Modgil"> Moninder Modgil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemant%20Bhoir"> Hemant Bhoir</a>, <a href="https://publications.waset.org/abstracts/search?q=Debendra%20Behera"> Debendra Behera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Unified Field Theory has been an area of intensive research since many decades. This paper focuses on philosophy and metaphysics of unified field theory at Planck scale - and its relationship with super string theory and Quantum Vacuum Dynamic Physics. We examined the epistemology of questions such as - (1) what is the Unified Field of universe? (2) can it actually - (a) permeate the complete universe - or (b) be localized in bound regions of the universe - or, (c) extend into the extra dimensions? - -or (d) live only in extra dimensions? (3) What should be the emergent ontological properties of Unified field? (4) How the universe is manifesting through its Quantum Vacuum energies? (5) How is the space time metric coupled to the Unified field? We present a number of ansatz - which we outline below. It is proposed that the unified field possesses consciousness as well as a memory - a recording of past history - analogous to ‘Consistent Histories’ interpretation of quantum mechanics. We proposed Planck scale geometry of Unified Field with circle like topology and having 32 energy points on its periphery which are the connected to each other by 10 dimensional meta-strings which are sources for manifestation of different fundamentals forces and particles of universe through its Quantum Vacuum energies. It is also proposed that the sub energy levels of ‘Conscious Unified Field’ are used for the process of creation, preservation and rejuvenation of the universe over a period of time by means of negentropy. These epochs can be for the complete universe, or for localized regions such as galaxies or cluster of galaxies. It is proposed that Unified field operates through geometric patterns of its Quantum Vacuum energies - manifesting as various elementary particles by giving spins to zero point energy elements. Epistemological relationship between unified field theory and super-string theories is examined. Properties of ‘consciousness’ and 'memory' cascades from universe, into macroscopic objects - and further onto the elementary particles - via a fractal pattern. Other properties of fundamental particles - such as mass, charge, spin, iso-spin also spill out of such a cascade. The manifestations of the unified field can reach into the parallel universes or the ‘multi-verse’ and essentially have an existence independent of the space-time. It is proposed that mass, length, time scales of the unified theory are less than even the Planck scale - and can be called at a level which we call that of 'Super Quantum Gravity (SQG)'. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20string%20theory" title="super string theory">super string theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Planck%20scale%20geometry" title=" Planck scale geometry"> Planck scale geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=negentropy" title=" negentropy"> negentropy</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20quantum%20gravity" title=" super quantum gravity"> super quantum gravity</a> </p> <a href="https://publications.waset.org/abstracts/53809/metaphysics-of-the-unified-field-of-the-universe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">529</span> Topological Dirac Cone and Glassy Magnetism in Mn₂Sb₂Te₅</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankush%20Saxena">Ankush Saxena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intrinsic materials with the simultaneous existence of magnetism and topological states are a crucial frontier of quantum materials research. Very recently, Mn₂(Bi/Sb)₂Te₅ has been studied to have the potential to host topological surface states with an intrinsic magnetic order. Here, we studied the magnetic and topological properties of Mn₂Sb₂Te₅ single crystals. The magnetisation measurements evidenced the presence of a spin glass state with field-induced ferromagnetism. Though the heat capacity measurements show the absence of any long-range order, the observed anomalous Hall effect in transverse magneto-transport measurements evidences the ferromagnetic ordering in Mn₂Sb₂Te₅ single crystals. Angle-resolved photoelectron spectroscopy measurements indicate the presence of the topological Dirac cone. Our work provides valuable insights into the magnetism and topological character of Mn₂Sb₂Te₅ and establishes Mn₂(Bi/Sb)₂Te₅ system as a fertile ground to play with magnetism and topological states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topological%20insulators" title="topological insulators">topological insulators</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20materials" title=" quantum materials"> quantum materials</a>, <a href="https://publications.waset.org/abstracts/search?q=anomalous%20quantum%20hall%20effect" title=" anomalous quantum hall effect"> anomalous quantum hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=ARPES" title=" ARPES"> ARPES</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-transport" title=" magneto-transport"> magneto-transport</a>, <a href="https://publications.waset.org/abstracts/search?q=susceptibility" title=" susceptibility"> susceptibility</a> </p> <a href="https://publications.waset.org/abstracts/197533/topological-dirac-cone-and-glassy-magnetism-in-mn2sb2te5" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/197533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">528</span> Advances in Fiber Optic Technology for High-Speed Data Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salim%20Yusif">Salim Yusif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber optic technology has revolutionized telecommunications and data transmission, providing unmatched speed, bandwidth, and reliability. This paper presents the latest advancements in fiber optic technology, focusing on innovations in fiber materials, transmission techniques, and network architectures that enhance the performance of high-speed data transmission systems. Key advancements include the development of ultra-low-loss optical fibers, multi-core fibers, advanced modulation formats, and the integration of fiber optics into next-generation network architectures such as Software-Defined Networking (SDN) and Network Function Virtualization (NFV). Additionally, recent developments in fiber optic sensors are discussed, extending the utility of optical fibers beyond data transmission. Through comprehensive analysis and experimental validation, this research offers valuable insights into the future directions of fiber optic technology, highlighting its potential to drive innovation across various industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20optics" title="fiber optics">fiber optics</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20data%20transmission" title=" high-speed data transmission"> high-speed data transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-low-loss%20optical%20fibers" title=" ultra-low-loss optical fibers"> ultra-low-loss optical fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-core%20fibers" title=" multi-core fibers"> multi-core fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=modulation%20formats" title=" modulation formats"> modulation formats</a>, <a href="https://publications.waset.org/abstracts/search?q=coherent%20detection" title=" coherent detection"> coherent detection</a>, <a href="https://publications.waset.org/abstracts/search?q=software-defined%20networking" title=" software-defined networking"> software-defined networking</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20function%20virtualization" title=" network function virtualization"> network function virtualization</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20optic%20sensors" title=" fiber optic sensors"> fiber optic sensors</a> </p> <a href="https://publications.waset.org/abstracts/187022/advances-in-fiber-optic-technology-for-high-speed-data-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">527</span> Theoretical Study of the Mechanism of the Oxidation of Linoleic Acid by 1O2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rayenne%20Djemil">Rayenne Djemil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanism of oxidation reaction of linoleic acid C18: 2 (9 cis12) by singlet oxygen 1O2 were theoretically investigated via using quantum chemical methods. We explored the four reaction pathways at PM3, Hartree-Fock HF and, B3LYP functional associated with the base 6-31G (d) level. The results are in favor of the first and the last reaction ways. The transition states were found by QST3 method. Thus the pathways between the transition state structures and their corresponding minima have been identified by the IRC calculations. The thermodynamic study showed that the four ways of oxidation of linoleic acid are spontaneous, exothermic and, the enthalpy values confirm that conjugate hydroperoxydes are the most favorable products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=echanism" title="echanism">echanism</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=linoleic%20acid%20H" title=" linoleic acid H"> linoleic acid H</a> </p> <a href="https://publications.waset.org/abstracts/35946/theoretical-study-of-the-mechanism-of-the-oxidation-of-linoleic-acid-by-1o2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">526</span> Modeling of Silicon Window Layers for Solar Cells Based SIGE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meriem%20Boukais">Meriem Boukais</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Dennai"> B. Dennai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ould-%20Abbas"> A. Ould- Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of SiGe solar cells might be improved by a wide-band-gap window layer. In this work we were simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the modeling, the thickness of silicon window was varied from 80 to 150 nm. The rest of layer’s thicknesses were kept constant, by varying thickness of window layer the simulated device performance was demonstrate in the form of current-voltage (I-V) characteristics and quantum efficiency (QE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=SiGe" title=" SiGe"> SiGe</a>, <a href="https://publications.waset.org/abstracts/search?q=AMPS-1D" title=" AMPS-1D"> AMPS-1D</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20efficiency" title=" quantum efficiency"> quantum efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=conversion" title=" conversion"> conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/27800/modeling-of-silicon-window-layers-for-solar-cells-based-sige" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">729</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">525</span> Decentralised Edge Authentication in the Industrial Enterprise IoT Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20P.%20Autry">C. P. Autry</a>, <a href="https://publications.waset.org/abstracts/search?q=A.W.%20Roscoe"> A.W. Roscoe </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Authentication protocols based on public key infrastructure (PKI) and trusted third party (TTP) are no longer adequate for industrial scale IoT networks thanks to issues such as low compute and power availability, the use of widely distributed and commercial off-the-shelf (COTS) systems, and the increasingly sophisticated attackers and attacks we now have to counter. For example, there is increasing concern about nation-state-based interference and future quantum computing capability. We have examined this space from first principles and have developed several approaches to group and point-to-point authentication for IoT that do not depend on the use of a centralised client-server model. We emphasise the use of quantum resistant primitives such as strong cryptographic hashing and the use multi-factor authentication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authentication" title="authentication">authentication</a>, <a href="https://publications.waset.org/abstracts/search?q=enterprise%20IoT%20cybersecurity" title=" enterprise IoT cybersecurity"> enterprise IoT cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=PKI%2FTTP" title=" PKI/TTP"> PKI/TTP</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT%20space" title=" IoT space"> IoT space</a> </p> <a href="https://publications.waset.org/abstracts/93630/decentralised-edge-authentication-in-the-industrial-enterprise-iot-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">524</span> Simulation Of Silicon Window Layers For Solar Cells Based Sige </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukais%20Meriem">Boukais Meriem</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Dennai"> B. Dennai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ould-Abbas"> A. Ould-Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of SiGe solar cells might be improved by a wide-band-gap window layer. In this work we were simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the simulation, the thickness of silicon window was varied from 80 to 150 nm. The rest of layer’s thicknesses were kept constant, by varying thickness of window layer the simulated device performance was demonstrate in the form of current-voltage (I-V) characteristics and quantum efficiency (QE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SiGe" title="SiGe">SiGe</a>, <a href="https://publications.waset.org/abstracts/search?q=AMPS-1D" title=" AMPS-1D"> AMPS-1D</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=conversion" title=" conversion"> conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20efficiency" title=" quantum efficiency"> quantum efficiency</a> </p> <a href="https://publications.waset.org/abstracts/19153/simulation-of-silicon-window-layers-for-solar-cells-based-sige" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">812</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">523</span> Selective Circular Dichroism Sensor Based on the Generation of Quantum Dots for Cadmium Ion Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradthana%20Sianglam">Pradthana Sianglam</a>, <a href="https://publications.waset.org/abstracts/search?q=Wittaya%20Ngeontae"> Wittaya Ngeontae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new approach for the fabrication of cadmium ion (Cd2+) sensor is demonstrated. The detection principle is based on the in-situ generation of cadmium sulfide quantum dots (CdS QDs) in the presence of chiral thiol containing compound and detection by the circular dichroism spectroscopy (CD). Basically, the generation of CdS QDs can be done in the presence of Cd2+, sulfide ion and suitable capping compounds. In addition, the strong CD signal can be recorded if the generated QDs possess chiral property (from chiral capping molecule). Thus, the degree of CD signal change depends on the number of the generated CdS QDs which can be related to the concentration of Cd2+ (excess of other components). In this work, we use the mixture of cysteamine (Cys) and L-Penicillamine (LPA) as the capping molecules. The strong CD signal can be observed when the solution contains sodium sulfide, Cys, LPA, and Cd2+. Moreover, the CD signal is linearly related to the concentration of Cd2+. This approach shows excellence selectivity towards the detection of Cd2+ when comparing to other cation. The proposed CD sensor provides low limit detection limits around 70 µM and can be used with real water samples with satisfactory results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20dichroism%20sensor" title="circular dichroism sensor">circular dichroism sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=enaniomer" title=" enaniomer"> enaniomer</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20generation" title=" in-situ generation"> in-situ generation</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20sensor" title=" chemical sensor"> chemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20ion" title=" heavy metal ion"> heavy metal ion</a> </p> <a href="https://publications.waset.org/abstracts/48121/selective-circular-dichroism-sensor-based-on-the-generation-of-quantum-dots-for-cadmium-ion-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">522</span> Influence of Confined Acoustic Phonons on the Shubnikov – de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pham%20Ngoc%20Thang">Pham Ngoc Thang</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Thai%20Hung"> Le Thai Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Quang%20Bau"> Nguyen Quang Bau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of confined acoustic phonons on the Shubnikov &ndash; de Haas magnetoresistance oscillations in a doped semiconductor superlattice (DSSL), subjected in a magnetic field, DC electric field, and a laser radiation, has been theoretically studied based on quantum kinetic equation method. The analytical expression for the magnetoresistance in a DSSL has been obtained as a function of external fields, DSSL parameters, and especially the quantum number <em>m</em> characterizing the effect of confined acoustic phonons. When <em>m</em> goes to zero, the results for bulk phonons in a DSSL could be achieved. Numerical calculations are also achieved for the <em>GaAs:Si/GaAs:Be </em>DSSL and compared with other studies. Results show that the Shubnikov &ndash; de Haas magnetoresistance oscillations amplitude decrease as the increasing of phonon confinement effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubnikov%E2%80%93de%20Haas%20magnetoresistance%20oscillations" title="Shubnikov–de Haas magnetoresistance oscillations">Shubnikov–de Haas magnetoresistance oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20kinetic%20equation" title=" quantum kinetic equation"> quantum kinetic equation</a>, <a href="https://publications.waset.org/abstracts/search?q=confined%20acoustic%20phonons" title=" confined acoustic phonons"> confined acoustic phonons</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20radiation" title=" laser radiation"> laser radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=doped%20semiconductor%20superlattices" title=" doped semiconductor superlattices"> doped semiconductor superlattices</a> </p> <a href="https://publications.waset.org/abstracts/74969/influence-of-confined-acoustic-phonons-on-the-shubnikov-de-haas-magnetoresistance-oscillations-in-a-doped-semiconductor-superlattice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">521</span> Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdikian">A. Abdikian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bifurcation%20theory" title="bifurcation theory">bifurcation theory</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20portrait" title=" phase portrait"> phase portrait</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetized%20electron-positron%20plasma" title=" magnetized electron-positron plasma"> magnetized electron-positron plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20Zakharov-Kuznetsov%20equation" title=" the Zakharov-Kuznetsov equation"> the Zakharov-Kuznetsov equation</a> </p> <a href="https://publications.waset.org/abstracts/72076/nonlinear-propagation-of-acoustic-soliton-waves-in-dense-quantum-electron-positron-magnetoplasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">520</span> Quantum Chemical Calculations Synthesis and Corrosion Inhibition Efficiency of Nonionic Surfactants on API X65 Steel Surface under H2s Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20G.%20Zaki">E. G. Zaki</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Migahed"> M. A. Migahed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Al-Sabagh"> A. M. Al-Sabagh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Khamis"> E. A. Khamis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inhibition effect of four novel nonionic surfactants based on sulphonamide, of linear alkyl benzene sulphonic acid (LABS), was reacted with 1 mole triethylenetetramine, tetraethylenepentamine then Ethoxylation of amide X 65 type carbon steel in oil wells formation water under H2S environment was investigated by electrochemical measurements. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) were used to characterize the steel surface. The results showed that these surfactants act as a corrosion inhibitor in and their inhibition efficiencies depend on the ethylene oxide content in the system. The obtained results showed that the percentage inhibition efficiency (η%) was increased by increasing the inhibitor concentration until the critical micelle concentration (CMC) reached The quantum chemistry calculations were carried out to study the molecular geometry and electronic structure of obtained derivatives. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital has been calculated using the theoretical computations to reflect the chemical reactivity and kinetic stability of compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20surface" title=" steel surface"> steel surface</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum" title=" quantum"> quantum</a> </p> <a href="https://publications.waset.org/abstracts/38587/quantum-chemical-calculations-synthesis-and-corrosion-inhibition-efficiency-of-nonionic-surfactants-on-api-x65-steel-surface-under-h2s-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">519</span> Water Vapor Oxidization of NiO for a Hole Transport Layer in All Inorganic QD-LED</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaeun%20Park">Jaeun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Daekyoung%20Kim"> Daekyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho%20Kyoon%20Chung"> Ho Kyoon Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Heeyeop%20Chae"> Heeyeop Chae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum dots light-emitting diodes (QD-LEDs) have been considered as the next generation display and lighting devices due to their excellent color purity, photo-stability solution process possibility and good device stability. Currently typical quantum dot light emitting diodes contain organic layers such as PEDOT:PSS and PVK for charge transport layers. To make quantum dot light emitting diodes (QD-LED) more stable, it is required to replace those acidic and relatively unstable organic charge transport layers with inorganic materials. Therefore all inorganic and solution processed quantum dot light emitting diodes can potentially be a solution to stable and cost-effective display devices. We studied solution processed NiO films to replace organic charge transport layers that are required for stable all-inorganic based light emitting diodes. The transition metal oxides can be made by various vacuum and solution processes, but the solution processes are considered more cost-effective than vacuum processes. In this work we investigated solution processed NiOx for a hole transport layer (HTL). NiOx, has valence band energy levels of 5.3eV and they are easy to make sol-gel solutions. Water vapor oxidation process was developed and applied to solution processed all-inorganic QD-LED. Turn-on voltage, luminance and current efficiency of QD in this work were 5V, 1800Cd/m2 and 0.5Cd/A, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=QD-LED" title="QD-LED">QD-LED</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide%20solution" title=" metal oxide solution"> metal oxide solution</a>, <a href="https://publications.waset.org/abstracts/search?q=NiO" title=" NiO"> NiO</a>, <a href="https://publications.waset.org/abstracts/search?q=all-inorganic%20QD-LED%20device" title=" all-inorganic QD-LED device"> all-inorganic QD-LED device</a> </p> <a href="https://publications.waset.org/abstracts/17283/water-vapor-oxidization-of-nio-for-a-hole-transport-layer-in-all-inorganic-qd-led" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">757</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">518</span> Quantum Engine Proposal using Two-level Atom Like Manipulation and Relativistic Motoring Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Montree%20Bunruangses">Montree Bunruangses</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonath%20Bhattacharyya"> Sonath Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Somchat%20Sonasang"> Somchat Sonasang</a>, <a href="https://publications.waset.org/abstracts/search?q=Preecha%20Yupapin"> Preecha Yupapin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A two-level system is manipulated by a microstrip add-drop circuit configured as an atom like system for wave-particle behavior investigation when its traveling speed along the circuit perimeter is the speed of light. The entangled pair formed by the upper and lower sideband peaks is bound by the angular displacement, which is given by 0≤θ≤π/2. The control signals associated with 3-peak signal frequencies are applied by the external inputs via the microstrip add-drop multiplexer ports, where they are time functions without the space term involved. When a system satisfies the speed of light conditions, the mass term has been changed to energy based on the relativistic limit described by the Lorentz factor and Einstein equation. The different applied frequencies can be utilized to form the 3-phase torques that can be applied for quantum engines. The experiment will use the two-level system circuit and be conducted in the laboratory. The 3-phase torques will be recorded and investigated for quantum engine driving purpose. The obtained results will be compared to the simulation. The optimum amplification of torque can be obtained by the resonant successive filtering operation. Torque will be vanished when the system is balanced at the stopped position, where |Time|=0, which is required to be a system stability condition. It will be discussed for future applications. A larger device may be tested in the future for realistic use. A synchronous and asynchronous driven motor is also discussed for the warp drive use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20engine" title="quantum engine">quantum engine</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20motor" title=" relativistic motor"> relativistic motor</a>, <a href="https://publications.waset.org/abstracts/search?q=3-phase%20torque" title=" 3-phase torque"> 3-phase torque</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20engine" title=" atomic engine"> atomic engine</a> </p> <a href="https://publications.waset.org/abstracts/176101/quantum-engine-proposal-using-two-level-atom-like-manipulation-and-relativistic-motoring-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">517</span> Reliable and Error-Free Transmission through Multimode Polymer Optical Fibers in House Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Ahamad">Tariq Ahamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20S.%20Al-Kahtani"> Mohammed S. Al-Kahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Taisir%20Eldos"> Taisir Eldos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical communications technology has made enormous and steady progress for several decades, providing the key resource in our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data carrying capacity of a single optical fiber. In this research article we have explored basic issues in terms of security and reliability for secure and reliable information transfer through the fiber infrastructure. Conspicuously, one potentially enormous source of improvement has however been left untapped in these systems: fibers can easily support hundreds of spatial modes, but today’s commercial systems (single-mode or multi-mode) make no attempt to use these as parallel channels for independent signals. Bandwidth, performance, reliability, cost efficiency, resiliency, redundancy, and security are some of the demands placed on telecommunications today. Since its initial development, fiber optic systems have had the advantage of most of these requirements over copper-based and wireless telecommunications solutions. The largest obstacle preventing most businesses from implementing fiber optic systems was cost. With the recent advancements in fiber optic technology and the ever-growing demand for more bandwidth, the cost of installing and maintaining fiber optic systems has been reduced dramatically. With so many advantages, including cost efficiency, there will continue to be an increase of fiber optic systems replacing copper-based communications. This will also lead to an increase in the expertise and the technology needed to tap into fiber optic networks by intruders. As ever before, all technologies have been subject to hacking and criminal manipulation, fiber optics is no exception. Researching fiber optic security vulnerabilities suggests that not everyone who is responsible for their networks security is aware of the different methods that intruders use to hack virtually undetected into fiber optic cables. With millions of miles of fiber optic cables stretching across the globe and carrying information including but certainly not limited to government, military, and personal information, such as, medical records, banking information, driving records, and credit card information; being aware of fiber optic security vulnerabilities is essential and critical. Many articles and research still suggest that fiber optics is expensive, impractical and hard to tap. Others argue that it is not only easily done, but also inexpensive. This paper will briefly discuss the history of fiber optics, explain the basics of fiber optic technologies and then discuss the vulnerabilities in fiber optic systems and how they can be better protected. Knowing the security risks and knowing the options available may save a company a lot embarrassment, time, and most importantly money. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in-house%20networks" title="in-house networks">in-house networks</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20optics" title=" fiber optics"> fiber optics</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20risk" title=" security risk"> security risk</a>, <a href="https://publications.waset.org/abstracts/search?q=money" title=" money"> money</a> </p> <a href="https://publications.waset.org/abstracts/18874/reliable-and-error-free-transmission-through-multimode-polymer-optical-fibers-in-house-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">516</span> Abnormal Features of Two Quasiparticle Rotational Bands in Rare Earths</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kawalpreet%20Kalra">Kawalpreet Kalra</a>, <a href="https://publications.waset.org/abstracts/search?q=Alpana%20Goel"> Alpana Goel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The behaviour of the rotational bands should be smooth but due to large amount of inertia and decreased pairing it is not so. Many experiments have been done in the last few decades, and a large amount of data is available for comprehensive study in this region. Peculiar features like signature dependence, signature inversion, and signature reversal are observed in many two quasiparticle rotational bands of doubly odd and doubly even nuclei. At high rotational frequencies, signature and parity are the only two good quantum numbers available to label a state. Signature quantum number is denoted by α. Even-angular momentum states of a rotational band have α =0, and the odd-angular momentum states have α =1. It has been observed that the odd-spin members lie lower in energy up to a certain spin Ic; the normal signature dependence is restored afterwards. This anomalous feature is termed as signature inversion. The systematic of signature inversion in high-j orbitals for doubly odd rare earth nuclei have been done. Many unusual features like signature dependence, signature inversion and signature reversal are observed in rotational bands of even-even/odd-odd nuclei. Attempts have been made to understand these phenomena using several models. These features have been analyzed within the framework of the Two Quasiparticle Plus Rotor Model (TQPRM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotational%20bands" title="rotational bands">rotational bands</a>, <a href="https://publications.waset.org/abstracts/search?q=signature%20dependence" title=" signature dependence"> signature dependence</a>, <a href="https://publications.waset.org/abstracts/search?q=signature%20quantum%20number" title=" signature quantum number"> signature quantum number</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20quasiparticle" title=" two quasiparticle"> two quasiparticle</a> </p> <a href="https://publications.waset.org/abstracts/84944/abnormal-features-of-two-quasiparticle-rotational-bands-in-rare-earths" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">515</span> Cadmium Filter Cake of a Hydrometallurgical Zinc Smelter as a New Source for the Biological Synthesis of CdS Quantum Dots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehran%20Bakhshi">Mehran Bakhshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Raouf%20Hosseini"> Mohammad Raouf Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadhosein%20Rahimi"> Mohammadhosein Rahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cadmium sulfide nanoparticles were synthesized from the nickel-cadmium cake of a hydrometallurgical zinc producing plant and sodium sulfide as Cd<sup>2+</sup> and S<sup>-2</sup> sources, respectively. Also, the synthesis process was performed by using the secretions of <em>Bacillus licheniformis</em> as bio-surfactant. Initially, in order to obtain a cadmium rich solution, two following steps were carried out: 1) Alkaline leaching for the removal of zinc oxide from the cake, and 2) acidic leaching to dissolve cadmium from the remained solid residue. Afterward, the obtained CdSO<sub>4</sub> solution was used for the nanoparticle biosynthesis. Nanoparticles were characterized by the energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) to confirm the formation of CdS crystals with cubic structure. Also, transmission electron microscopy (TEM) was applied to determine the particle sizes which were in 2-10 nm range. Moreover, the presence of the protein containing bio-surfactants was approved by using infrared analysis (FTIR). In addition, the absorbance below 400 nm confirms quantum particles&rsquo; size. Finally, it was shown that valuable CdS quantum dots could be obtained from the industrial waste products via environment-friendly biological approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosynthesis" title="biosynthesis">biosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium%20cake" title=" cadmium cake"> cadmium cake</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium%20sulfide" title=" cadmium sulfide"> cadmium sulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20smelter" title=" zinc smelter"> zinc smelter</a> </p> <a href="https://publications.waset.org/abstracts/57442/cadmium-filter-cake-of-a-hydrometallurgical-zinc-smelter-as-a-new-source-for-the-biological-synthesis-of-cds-quantum-dots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">514</span> Path-Spin to Spin-Spin Hybrid Quantum Entanglement: A Conversion Protocol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indranil%20Bayal">Indranil Bayal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradipta%20Panchadhyayee"> Pradipta Panchadhyayee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Path-spin hybrid entanglement generated and confined in a single spin-1/2 particle is converted to spin-spin hybrid interparticle entanglement, which finds its important applications in quantum information processing. This protocol uses beam splitter, spin flipper, spin measurement, classical channel, unitary transformations, etc., and requires no collective operation on the pair of particles whose spin variables share complete entanglement after the accomplishment of the protocol. The specialty of the protocol lies in the fact that the path-spin entanglement is transferred between spin degrees of freedom of two separate particles initially possessed by a single party. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entanglement" title="entanglement">entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=path-spin%20entanglement" title=" path-spin entanglement"> path-spin entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-spin%20entanglement" title=" spin-spin entanglement"> spin-spin entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=CNOT%20operation" title=" CNOT operation"> CNOT operation</a> </p> <a href="https://publications.waset.org/abstracts/142538/path-spin-to-spin-spin-hybrid-quantum-entanglement-a-conversion-protocol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">513</span> Acoustic Emission Monitoring of Surface Roughness in Ultra High Precision Grinding of Borosilicate-Crown Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goodness%20Onwuka">Goodness Onwuka</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Abou-El-Hossein"> Khaled Abou-El-Hossein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in the demand for precision optics, coupled with the absence of much research output in the ultra high precision grinding of precision optics as compared to the ultrahigh precision diamond turning of optical metals has fostered the need for more research in the ultra high precision grinding of an optical lens. Furthermore, the increase in the stringent demands for nanometric surface finishes through lapping, polishing and grinding processes necessary for the use of borosilicate-crown glass in the automotive and optics industries has created the demand to effectively monitor the surface roughness during the production process. Acoustic emission phenomenon has been proven as useful monitoring technique in several manufacturing processes ranging from monitoring of bearing production to tool wear estimation. This paper introduces a rare and unique approach with the application of acoustic emission technique to monitor the surface roughness of borosilicate-crown glass during an ultra high precision grinding process. This research was carried out on a 4-axes Nanoform 250 ultrahigh precision lathe machine using an ultra high precision grinding spindle to machine the flat surface of the borosilicate-crown glass with the tip of the grinding wheel. A careful selection of parameters and design of experiment was implemented using Box-Behnken method to vary the wheel speed, feed rate and depth of cut at three levels with a 3-center point design. Furthermore, the average surface roughness was measured using Taylor Hobson PGI Dimension XL optical profilometer, and an acoustic emission data acquisition device from National Instruments was utilized to acquire the signals while the data acquisition codes were designed with National Instrument LabVIEW software for acquisition at a sampling rate of 2 million samples per second. The results show that the raw and root mean square amplitude values of the acoustic signals increased with a corresponding increase in the measured average surface roughness values for the different parameter combinations. Therefore, this research concludes that acoustic emission monitoring technique is a potential technique for monitoring the surface roughness in the ultra high precision grinding of borosilicate-crown glass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission" title="acoustic emission">acoustic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=borosilicate-crown%20glass" title=" borosilicate-crown glass"> borosilicate-crown glass</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20high%20precision%20grinding" title=" ultra high precision grinding"> ultra high precision grinding</a> </p> <a href="https://publications.waset.org/abstracts/71595/acoustic-emission-monitoring-of-surface-roughness-in-ultra-high-precision-grinding-of-borosilicate-crown-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">512</span> Design of Parity-Preserving Reversible Logic Signed Array Multipliers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Valinataj">Mojtaba Valinataj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4&times;4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for <em>n</em>&times;<em>n</em> multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=array%20multipliers" title="array multipliers">array multipliers</a>, <a href="https://publications.waset.org/abstracts/search?q=Baugh-Wooley%20method" title=" Baugh-Wooley method"> Baugh-Wooley method</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20detection" title=" error detection"> error detection</a>, <a href="https://publications.waset.org/abstracts/search?q=parity-preserving%20gates" title=" parity-preserving gates"> parity-preserving gates</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20computers" title=" quantum computers"> quantum computers</a>, <a href="https://publications.waset.org/abstracts/search?q=reversible%20logic" title=" reversible logic"> reversible logic</a> </p> <a href="https://publications.waset.org/abstracts/68835/design-of-parity-preserving-reversible-logic-signed-array-multipliers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">511</span> Optimization of Highly Oriented Pyrolytic Graphite Crystals for Neutron Optics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao%20Qu">Hao Qu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Liu"> Xiang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Crosby"> Michael Crosby</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20Kozak"> Brian Kozak</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20K.%20Freund"> Andreas K. Freund</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The outstanding performance of highly oriented pyrolytic graphite (HOPG) as an optical element for neutron beam conditioning is unequaled by any other crystalline material in the applications of monochromator, analyzer, and filter. This superiority stems from the favorable nuclear properties of carbon (small absorption and incoherent scattering cross-sections, big coherent scattering length) and the specific crystalline structure (small thermal diffuse scattering cross-section, layered crystal structure). The real crystal defect structure revealed by imaging techniques is correlated with the parameters used in the mosaic model (mosaic spread, mosaic block size, uniformity). The diffraction properties (rocking curve width as determined by both the intrinsic mosaic spread and the diffraction process, peak and integrated reflectivity, filter transmission) as a function of neutron wavelength or energy can be predicted with high accuracy and reliability by diffraction theory using empirical primary extinction coefficients extracted from a great amount of existing experimental data. The results of these calculations are given as graphs and tables permitting to optimize HOPG characteristics (mosaic spread, thickness, curvature) for any given experimental situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20optics" title="neutron optics">neutron optics</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolytic%20graphite" title=" pyrolytic graphite"> pyrolytic graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=mosaic%20spread" title=" mosaic spread"> mosaic spread</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20scattering" title=" neutron scattering"> neutron scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=monochromator" title=" monochromator"> monochromator</a>, <a href="https://publications.waset.org/abstracts/search?q=analyzer" title=" analyzer"> analyzer</a> </p> <a href="https://publications.waset.org/abstracts/131609/optimization-of-highly-oriented-pyrolytic-graphite-crystals-for-neutron-optics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">510</span> Functional Poly(Hedral Oligomeric Silsesquioxane) Nano-Spacer to Boost Quantum Resistive Vapour Sensors’ Sensitivity and Selectivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean-Francois%20Feller">Jean-Francois Feller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analysis of the volatolome emitted by the human body with a sensor array (e-nose) is a method for clinical applications full of promises to make an olfactive fingerprint characteristic of people's health state. But the amount of volatile organic compounds (VOC) to detect, being in the range of parts per billion (ppb), and their diversity (several hundred) justifies developing ever more sensitive and selective vapor sensors to improve the discrimination ability of the e-nose, is still of interest. Quantum resistive vapour sensors (vQRS) made with nanostructured conductive polymer nanocomposite transducers have shown a great versatility in both their fabrication and operation to detect volatiles of interest such as cancer biomarkers. However, it has been shown that their chemo-resistive response was highly dependent on the quality of the inter-particular junctions in the percolated architecture. The present work investigates the effectiveness of poly(hedral oligomeric silsesquioxane) acting as a nanospacer to amplify the disconnectability of the conducting network and thus maximize the vQRS's sensitivity to VOC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=volatolome" title="volatolome">volatolome</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20resistive%20vapour%20sensor" title=" quantum resistive vapour sensor"> quantum resistive vapour sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20conductive%20polymer%20nanocomposites" title=" nanostructured conductive polymer nanocomposites"> nanostructured conductive polymer nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=olfactive%20diagnosis" title=" olfactive diagnosis"> olfactive diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/192210/functional-polyhedral-oligomeric-silsesquioxane-nano-spacer-to-boost-quantum-resistive-vapour-sensors-sensitivity-and-selectivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">509</span> A Physical Theory of Information vs. a Mathematical Theory of Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manouchehr%20Amiri">Manouchehr Amiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article introduces a general notion of physical bit information that is compatible with the basics of quantum mechanics and incorporates the Shannon entropy as a special case. This notion of physical information leads to the Binary data matrix model (BDM), which predicts the basic results of quantum mechanics, general relativity, and black hole thermodynamics. The compatibility of the model with holographic, information conservation, and Landauer’s principles are investigated. After deriving the “Bit Information principle” as a consequence of BDM, the fundamental equations of Planck, De Broglie, Beckenstein, and mass-energy equivalence are derived. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20theory%20of%20information" title="physical theory of information">physical theory of information</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20data%20matrix%20model" title=" binary data matrix model"> binary data matrix model</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon%20information%20theory" title=" Shannon information theory"> Shannon information theory</a>, <a href="https://publications.waset.org/abstracts/search?q=bit%20information%20principle" title=" bit information principle"> bit information principle</a> </p> <a href="https://publications.waset.org/abstracts/166010/a-physical-theory-of-information-vs-a-mathematical-theory-of-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20optics&amp;page=6" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20optics&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20optics&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20optics&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20optics&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20optics&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20optics&amp;page=6">6</a></li> <li class="page-item active"><span class="page-link">7</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20optics&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20optics&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20optics&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20optics&amp;page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20optics&amp;page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20optics&amp;page=8" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10