CINXE.COM

Search results for: frequency control unit

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: frequency control unit</title> <meta name="description" content="Search results for: frequency control unit"> <meta name="keywords" content="frequency control unit"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="frequency control unit" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="frequency control unit"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15963</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: frequency control unit</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15963</span> Determining Efficiency of Frequency Control System of Karkheh Power Plant in Main Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferydon%20Salehifar">Ferydon Salehifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Safarikia"> Hassan Safarikia</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Boromandfar"> Hossein Boromandfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Karkheh plant in Iran's Khuzestan province and is located in the city Andimeshk. The plant has a production capacity of 400 MW units with water and three hours. One of the important parameters of each country's power grid stability is the stability of the power grid is affected by the voltage and frequency In plants, the amount of active power frequency control is done so that when the unit is placed in the frequency control their productivity is a function of frequency and output power varies with frequency. Produced by hydroelectric power plants with the water level behind the dam has a direct relationship And to decrease and increase the water level behind the dam in order to reduce the power output increases But these changes have a different interval is due to some mechanical problems such as turbine cavitation and vibration are limited. In this study, the range of the frequency control can be Karkheh manufacturing plants have been identified and their effectiveness has been determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karkheh%20power" title="Karkheh power">Karkheh power</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20control%20system" title=" frequency control system"> frequency control system</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20power" title=" active power"> active power</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/25787/determining-efficiency-of-frequency-control-system-of-karkheh-power-plant-in-main-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">620</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15962</span> Development of PSS/E Dynamic Model for Controlling Battery Output to Improve Frequency Stability in Power Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dae-Hee%20Son">Dae-Hee Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon-Ryul%20Nam"> Soon-Ryul Nam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The power system frequency falls when disturbance such as rapid increase of system load or loss of a generating unit occurs in power systems. Especially, increase in the number of renewable generating units has a bad influence on the power system because of loss of generating unit depending on the circumstance. Conventional technologies use frequency droop control battery output for the frequency regulation and balance between supply and demand. If power is supplied using the fast output characteristic of the battery, power system stability can be further more improved. To improve the power system stability, we propose battery output control using ROCOF (Rate of Change of Frequency) in this paper. The bigger the power difference between the supply and the demand, the bigger the ROCOF drops. Battery output is controlled proportionally to the magnitude of the ROCOF, allowing for faster response to power imbalances. To simulate the control method of battery output system, we develop the user defined model using PSS/E and confirm that power system stability is improved by comparing with frequency droop control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PSS%2FE%20user%20defined%20model" title="PSS/E user defined model">PSS/E user defined model</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20deviation" title=" power deviation"> power deviation</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20droop%20control" title=" frequency droop control"> frequency droop control</a>, <a href="https://publications.waset.org/abstracts/search?q=ROCOF%20%28rate%20of%20change%20of%20frequency%29" title=" ROCOF (rate of change of frequency)"> ROCOF (rate of change of frequency)</a> </p> <a href="https://publications.waset.org/abstracts/70548/development-of-psse-dynamic-model-for-controlling-battery-output-to-improve-frequency-stability-in-power-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15961</span> Battery Energy Storage System Economic Benefits Assessment on a Network Frequency Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kr%C3%A9hi%20Serge%20Agbli">Kréhi Serge Agbli</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Portebos"> Samuel Portebos</a>, <a href="https://publications.waset.org/abstracts/search?q=Micha%C3%ABl%20Salomon"> Michaël Salomon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Here a methodology is considered aiming at evaluating the economic benefit of the provision of a primary frequency control unit using a Battery Energy Storage System (BESS). In this methodology, two control types (basic and hysteresis) are implemented and the corresponding minimum energy storage system power allowing to maintain the frequency drop inside a given threshold under a given contingency is identified and compared using DigSilent&rsquo;s PowerFactory software. Following this step, the corresponding energy storage capacity (in MWh) is calculated. As PowerFactory is dedicated to dynamic simulation for transient analysis, a first order model related to the IEEE 9 bus grid used for the analysis under PowerFactory is characterized and implemented on MATLAB-Simulink. Primary frequency control is simulated using the two control types over one-month grid&#39;s frequency deviation data on this Simulink model. This simulation results in the energy throughput both basic and hysteresis BESSs. It emerges that the 15 minutes operation band of the battery capacity allocated to frequency control is sufficient under the considered disturbances. A sensitivity analysis on the width of the control deadband is then performed for the two control types. The deadband width variation leads to an identical sizing with the hysteresis control showing a better frequency control at the cost of a higher delivered throughput compared to the basic control. An economic analysis comparing the cost of the sized BESS to the potential revenues is then performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery%20energy%20storage%20system" title="battery energy storage system">battery energy storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20network%20frequency%20stability" title=" electrical network frequency stability"> electrical network frequency stability</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20control%20unit" title=" frequency control unit"> frequency control unit</a>, <a href="https://publications.waset.org/abstracts/search?q=PowerFactor" title=" PowerFactor"> PowerFactor</a> </p> <a href="https://publications.waset.org/abstracts/127919/battery-energy-storage-system-economic-benefits-assessment-on-a-network-frequency-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15960</span> Application of Statistical Linearized Models for Investigations of Digital Dynamic Pulse-Frequency Control Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20H.%20Aitchanov">B. H. Aitchanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20K.%20Aitchanova"> Sh. K. Aitchanova</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Baimuratov"> O. A. Baimuratov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is focused on dynamic pulse-frequency modulation (DPFM) control systems. Currently, the control law based on DPFM control signals is widely used in direct digital control subsystems introduced in the automated control systems of technological processes. Statistical analysis of automatic control systems is reduced to its construction of functional relationships between the statistical characteristics of the errors processes and input processes. Structural and dynamic Volterra models of digital pulse-frequency control systems can be used to develop methods for generating the dependencies, differing accuracy, requiring the amount of information about the statistical characteristics of input processes and computing labor intensity of their use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20dynamic%20pulse-frequency%20control%20systems" title="digital dynamic pulse-frequency control systems">digital dynamic pulse-frequency control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20pulse-frequency%20modulation" title=" dynamic pulse-frequency modulation"> dynamic pulse-frequency modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20object" title=" control object"> control object</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20filter" title=" discrete filter"> discrete filter</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20device" title=" impulse device"> impulse device</a>, <a href="https://publications.waset.org/abstracts/search?q=microcontroller" title=" microcontroller"> microcontroller</a> </p> <a href="https://publications.waset.org/abstracts/13825/application-of-statistical-linearized-models-for-investigations-of-digital-dynamic-pulse-frequency-control-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15959</span> Optimal Voltage and Frequency Control of a Microgrid Using the Harmony Search Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Abbasi">Hossein Abbasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stability is an important topic to plan and manage the energy in the microgrids as the same as the conventional power systems. The voltage and frequency stability is one of the most important issues recently studied in microgrids. The objectives of this paper are the modelling and designing of the components and optimal controllers for the voltage and frequency control of the AC/DC hybrid microgrid under the different disturbances. Since the PI controllers have the advantages of simple structure and easy implementation, so they are designed and modeled in this paper. The harmony search (HS) algorithm is used to optimize the controllers’ parameters. According to the achieved results, the PI controllers have a good performance in voltage and frequency control of the microgrid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20control" title="frequency control">frequency control</a>, <a href="https://publications.waset.org/abstracts/search?q=HS%20algorithm" title=" HS algorithm"> HS algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrid" title=" microgrid"> microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=PI%20controller" title=" PI controller"> PI controller</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20control" title=" voltage control"> voltage control</a> </p> <a href="https://publications.waset.org/abstracts/42762/optimal-voltage-and-frequency-control-of-a-microgrid-using-the-harmony-search-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15958</span> A Study on the Functional Safety Analysis of Stage Control System Based on International Electronical Committee 61508-2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youn-Sung%20Kim">Youn-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hye-Mi%20Kim"> Hye-Mi Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Hoon%20Seo"> Sang-Hoon Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaden%20Cha"> Jaden Cha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This International standard IEC 61508 sets out a generic approach for all safety lifecycle activities for systems comprised of electrical/electronic/programmable electronic (E/E/PE) elements that are used to perform safety functions. The control unit in stage control system is safety related facilities to control state and speed for stage system running, and it performs safety-critical function by stage control system. The controller unit is part of safety loops corresponding to the IEC 61508 and classified as logic part in the safety loop. In this paper, we analyze using FMEDA (Failure Mode Effect and Diagnostic Analysis) to verification for fault tolerance methods and functional safety of control unit. Moreover, we determined SIL (Safety Integrity Level) for control unit according to the safety requirements defined in IEC 61508-2 based on an analyzed functional safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety%20function" title="safety function">safety function</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20mode%20effect" title=" failure mode effect"> failure mode effect</a>, <a href="https://publications.waset.org/abstracts/search?q=IEC%2061508-2" title=" IEC 61508-2"> IEC 61508-2</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic%20analysis" title=" diagnostic analysis"> diagnostic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stage%20control%20system" title=" stage control system"> stage control system</a> </p> <a href="https://publications.waset.org/abstracts/78147/a-study-on-the-functional-safety-analysis-of-stage-control-system-based-on-international-electronical-committee-61508-2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15957</span> Inverterless Grid Compatible Micro Turbine Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ozeri">S. Ozeri</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Shmilovitz"> D. Shmilovitz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro‐Turbine Generators (MTG) are small size power plants that consist of a high speed, gas turbine driving an electrical generator. MTGs may be fueled by either natural gas or kerosene and may also use sustainable and recycled green fuels such as biomass, landfill or digester gas. The typical ratings of MTGs start from 20 kW up to 200 kW. The primary use of MTGs is for backup for sensitive load sites such as hospitals, and they are also considered a feasible power source for Distributed Generation (DG) providing on-site generation in proximity to remote loads. The MTGs have the compressor, the turbine, and the electrical generator mounted on a single shaft. For this reason, the electrical energy is generated at high frequency and is incompatible with the power grid. Therefore, MTGs must contain, in addition, a power conditioning unit to generate an AC voltage at the grid frequency. Presently, this power conditioning unit consists of a rectifier followed by a DC/AC inverter, both rated at the full MTG’s power. The losses of the power conditioning unit account to some 3-5%. Moreover, the full-power processing stage is a bulky and costly piece of equipment that also lowers the overall system reliability. In this study, we propose a new type of power conditioning stage in which only a small fraction of the power is processed. A low power converter is used only to program the rotor current (i.e. the excitation current which is substantially lower). Thus, the MTG's output voltage is shaped to the desired amplitude and frequency by proper programming of the excitation current. The control is realized by causing the rotor current to track the electrical frequency (which is related to the shaft frequency) with a difference that is exactly equal to the line frequency. Since the phasor of the rotation speed and the phasor of the rotor magnetic field are multiplied, the spectrum of the MTG generator voltage contains the sum and the difference components. The desired difference component is at the line frequency (50/60 Hz), whereas the unwanted sum component is at about twice the electrical frequency of the stator. The unwanted high frequency component can be filtered out by a low-pass filter leaving only the low-frequency output. This approach allows elimination of the large power conditioning unit incorporated in conventional MTGs. Instead, a much smaller and cheaper fractional power stage can be used. The proposed technology is also applicable to other high rotation generator sets such as aircraft power units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=inverter" title=" inverter"> inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20multiplier" title=" power multiplier"> power multiplier</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title=" distributed generation"> distributed generation</a> </p> <a href="https://publications.waset.org/abstracts/52165/inverterless-grid-compatible-micro-turbine-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15956</span> Frequency Controller Design for Distributed Generation by Load Shedding: Multi-Agent Systems Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Vaezi">M. R. Vaezi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ghasemi"> R. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Akramizadeh"> A. Akramizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequency stability of microgrids under islanded operation attracts particular attention recently. A new cooperative frequency control strategy based on centralized multi-agent system (CMAS) is proposed in this study. On this strategy, agents sent data and furthermore each component has its own to center operating decisions (MGCC). After deciding on the information, they are returned. Frequency control strategies include primary and secondary frequency control and disposal of multi-stage load in which this study will also provide a method and algorithm for load shedding. This could also be a big problem for the performance of micro-grid in times of disaster. The simulation results show the promising performance of the proposed structure of the controller based on multi agent systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20control" title="frequency control">frequency control</a>, <a href="https://publications.waset.org/abstracts/search?q=islanded%20microgrid" title=" islanded microgrid"> islanded microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20shedding" title=" load shedding "> load shedding </a> </p> <a href="https://publications.waset.org/abstracts/15787/frequency-controller-design-for-distributed-generation-by-load-shedding-multi-agent-systems-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15955</span> 150 KVA Multifunction Laboratory Test Unit Based on Power-Frequency Converter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bartosz%20Kedra">Bartosz Kedra</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Malkowski"> Robert Malkowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides description and presentation of laboratory test unit built basing on 150 kVA power frequency converter and Simulink RealTime platform. Assumptions, based on criteria which load and generator types may be simulated using discussed device, are presented, as well as control algorithm structure. As laboratory setup contains transformer with thyristor controlled tap changer, a wider scope of setup capabilities is presented. Information about used communication interface, data maintenance, and storage solution as well as used Simulink real-time features is presented. List and description of all measurements are provided. Potential of laboratory setup modifications is evaluated. For purposes of Rapid Control Prototyping, a dedicated environment was used Simulink RealTime. Therefore, load model Functional Unit Controller is based on a PC computer with I/O cards and Simulink RealTime software. Simulink RealTime was used to create real-time applications directly from Simulink models. In the next step, applications were loaded on a target computer connected to physical devices that provided opportunity to perform Hardware in the Loop (HIL) tests, as well as the mentioned Rapid Control Prototyping process. With Simulink RealTime, Simulink models were extended with I/O cards driver blocks that made automatic generation of real-time applications and performing interactive or automated runs on a dedicated target computer equipped with a real-time kernel, multicore CPU, and I/O cards possible. Results of performed laboratory tests are presented. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title="MATLAB">MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20converter" title=" power converter"> power converter</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulink%20Real-Time" title=" Simulink Real-Time"> Simulink Real-Time</a>, <a href="https://publications.waset.org/abstracts/search?q=thyristor-controlled%20tap%20changer" title=" thyristor-controlled tap changer"> thyristor-controlled tap changer</a> </p> <a href="https://publications.waset.org/abstracts/50924/150-kva-multifunction-laboratory-test-unit-based-on-power-frequency-converter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15954</span> Phase Shifter with Frequency Adaptive Control Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Shaman">Hussein Shaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study introduces an innovative design for an RF phase shifter that can maintain a consistent phase shift across a broad spectrum of frequencies. The proposed design integrates an adaptive control system into a reflective-type phase shifter, typically showing frequency-related variations. Adjusting the DC voltage according to the frequency ensures a more reliable phase shift across the frequency span of operation. In contrast, conventional frequency-dependent reflective-type phase shifters may exhibit significant fluctuations in phase shifts exceeding 60 degrees in the same bandwidth. The proposed phase shifter is configured to deliver a 90-degree operation with an expected deviation of around 15 degrees. The fabrication of the phase shifter and adaptive control circuit has been verified through experimentation, with the measured outcomes aligning with the simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phase%20shifter" title="phase shifter">phase shifter</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title=" adaptive control"> adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=varactors" title=" varactors"> varactors</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20circuits." title=" electronic circuits."> electronic circuits.</a> </p> <a href="https://publications.waset.org/abstracts/182584/phase-shifter-with-frequency-adaptive-control-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15953</span> Examining the Modular End of Line Control Unit Design Criteria for Vehicle Sliding Door System Slide Profile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orhan%20Kurtulu%C5%9F">Orhan Kurtuluş</a>, <a href="https://publications.waset.org/abstracts/search?q=C%C3%BCneyt%20Yavuz"> Cüneyt Yavuz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The end of the line controls of the finished products in the automotive industry is important. The control that has been conducted with the manual methods for the sliding doors tracks is not sufficient and faulty products cannot be identified. As a result, the customer has the faulty products. In the scope of this study, the design criteria of the PLC integrated modular end of line control unit has been examined, designed and manufactured to make the control of the 10 different track profile to 2 different vehicles with an objective to minimize the salvage costs by obtaining more sensitive, certain and accurate measurement results. In the study that started with literature and patent review, the design inputs have been specified, the technical concept has been developed, computer supported mechanic design, control system and automation design, design review and design improvement have been made. Laser analog sensors at high sensitivity, probes and modular blocks have been used in the unit. The measurement has been conducted in the system and it is observed that measurement results are more sensitive than the previous methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20unit%20design" title="control unit design">control unit design</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20of%20line" title=" end of line"> end of line</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20design" title=" modular design"> modular design</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20door%20system" title=" sliding door system"> sliding door system</a> </p> <a href="https://publications.waset.org/abstracts/35415/examining-the-modular-end-of-line-control-unit-design-criteria-for-vehicle-sliding-door-system-slide-profile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15952</span> Comparison of Two Maintenance Policies for a Two-Unit Series System Considering General Repair</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedvahid%20Najafi">Seyedvahid Najafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Viliam%20Makis"> Viliam Makis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, maintenance optimization has attracted special attention due to the growth of industrial systems complexity. Maintenance costs are high for many systems, and preventive maintenance is effective when it increases operations&#39; reliability and safety at a reduced cost. The novelty of this research is to consider general repair in the modeling of multi-unit series systems and solve the maintenance problem for such systems using the semi-Markov decision process (SMDP) framework. We propose an opportunistic maintenance policy for a series system composed of two main units. Unit 1, which is more expensive than unit 2, is subjected to condition monitoring, and its deterioration is modeled using a gamma process. Unit 1 hazard rate is estimated by the proportional hazards model (PHM), and two hazard rate control limits are considered as the thresholds of maintenance interventions for unit 1. Maintenance is performed on unit 2, considering an age control limit. The objective is to find the optimal control limits and minimize the long-run expected average cost per unit time. The proposed algorithm is applied to a numerical example to compare the effectiveness of the proposed policy (policy Ⅰ) with policy Ⅱ, which is similar to policy Ⅰ, but instead of general repair, replacement is performed. Results show that policy Ⅰ leads to lower average cost compared with policy Ⅱ.&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition-based%20maintenance" title="condition-based maintenance">condition-based maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=proportional%20hazards%20model" title=" proportional hazards model"> proportional hazards model</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-Markov%20decision%20process" title=" semi-Markov decision process"> semi-Markov decision process</a>, <a href="https://publications.waset.org/abstracts/search?q=two-unit%20series%20systems" title=" two-unit series systems"> two-unit series systems</a> </p> <a href="https://publications.waset.org/abstracts/122252/comparison-of-two-maintenance-policies-for-a-two-unit-series-system-considering-general-repair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15951</span> Unit Root Tests Based On the Robust Estimator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wararit%20Panichkitkosolkul">Wararit Panichkitkosolkul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract" style="text-indent:10.2pt">The unit root tests based on the robust estimator for the first-order autoregressive process are proposed and compared with the unit root tests based on the ordinary least squares (OLS) estimator. The percentiles of the null distributions of the unit root test are also reported. The empirical probabilities of Type I error and powers of the unit root tests are estimated via Monte Carlo simulation. Simulation results show that all unit root tests can control the probability of Type I error for all situations. The empirical power of the unit root tests based on the robust estimator are higher than the unit root tests based on the OLS estimator.<o:p></o:p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoregressive" title="autoregressive">autoregressive</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20least%20squares" title=" ordinary least squares"> ordinary least squares</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20i%20error" title=" type i error"> type i error</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20of%20the%20test" title=" power of the test"> power of the test</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/3693/unit-root-tests-based-on-the-robust-estimator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15950</span> Modal Dynamic Analysis of a Mechanism with Deformable Elements from an Oil Pump Unit Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Dumitru">N. Dumitru</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dumitru"> S. Dumitru</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Copilusi"> C. Copilusi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ploscaru"> N. Ploscaru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On this research, experimental analyses have been performed in order to determine the oil pump mechanism dynamics and stability from an oil unit mechanical structure. The experimental tests were focused on the vibrations which occur inside of the rod element during functionality of the oil pump unit. The oil pump mechanism dynamic parameters were measured and also determined through numerical computations. Entire research is based on the oil pump unit mechanical system virtual prototyping. For a complete analysis of the mechanism, the frequency dynamic response was identified, mainly for the mechanism driven element, based on two methods: processing and virtual simulations with MSC Adams aid and experimental analysis. In fact, through this research, a complete methodology is presented where numerical simulations of a mechanism with deformed elements are developed on a dynamic mode and these can be correlated with experimental tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20dynamic%20analysis" title="modal dynamic analysis">modal dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20pump" title=" oil pump"> oil pump</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20elements" title=" flexible elements"> flexible elements</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20response" title=" frequency response"> frequency response</a> </p> <a href="https://publications.waset.org/abstracts/47941/modal-dynamic-analysis-of-a-mechanism-with-deformable-elements-from-an-oil-pump-unit-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15949</span> CDM-Based Controller Design for High-Frequency Induction Heating System with LLC Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Helaimi">M. Helaimi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Taleb"> R. Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Benyoucef"> D. Benyoucef</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Belmadani"> B. Belmadani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design of a polynomial controller with coefficient diagram method (CDM). This controller is used to control the output power of high frequency resonant inverter with LLC tank. One of the most important problems associated with the proposed inverter is achieving ZVS operating during the induction heating process. To overcome this problem, asymmetrical voltage cancellation (AVC) control technique is proposed. The phased look loop (PLL) is used to track the natural frequency of the system. The small signal model of the system with the proposed control is obtained using extending describing function method (EDM). The validity of the proposed control is verified by simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20heating" title="induction heating">induction heating</a>, <a href="https://publications.waset.org/abstracts/search?q=AVC%20control" title=" AVC control"> AVC control</a>, <a href="https://publications.waset.org/abstracts/search?q=CDM" title=" CDM"> CDM</a>, <a href="https://publications.waset.org/abstracts/search?q=PLL" title=" PLL"> PLL</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20inverter" title=" resonant inverter "> resonant inverter </a> </p> <a href="https://publications.waset.org/abstracts/18666/cdm-based-controller-design-for-high-frequency-induction-heating-system-with-llc-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">664</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15948</span> A Robust PID Load Frequency Controller of Interconnected Power System Using SDO Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pasala%20Gopi">Pasala Gopi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Linga%20Reddy"> P. Linga Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The response of the load frequency control problem in an multi-area interconnected electrical power system is much more complex with increasing size, changing structure and increasing load. This paper deals with Load Frequency Control of three area interconnected Power system incorporating Reheat, Non-reheat and Reheat turbines in all areas respectively. The response of the load frequency control problem in an multi-area interconnected power system is improved by designing PID controller using different tuning techniques and proved that the PID controller which was designed by Simulink Design Optimization (SDO) Software gives the superior performance than other controllers for step perturbations. Finally the robustness of controller was checked against system parameter variations <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20frequency%20control" title="load frequency control">load frequency control</a>, <a href="https://publications.waset.org/abstracts/search?q=pid%20controller%20tuning" title=" pid controller tuning"> pid controller tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=step%20load%20perturbations" title=" step load perturbations"> step load perturbations</a>, <a href="https://publications.waset.org/abstracts/search?q=inter%20connected%20power%20system" title=" inter connected power system"> inter connected power system</a> </p> <a href="https://publications.waset.org/abstracts/30053/a-robust-pid-load-frequency-controller-of-interconnected-power-system-using-sdo-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">644</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15947</span> A Simple and Efficient Method for Accurate Measurement and Control of Power Frequency Deviation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Arif">S. J. Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the presented technique, a simple method is given for accurate measurement and control of power frequency deviation. The sinusoidal signal for which the frequency deviation measurement is required is transformed to a low voltage level and passed through a zero crossing detector to convert it into a pulse train. Another stable square wave signal of 10 KHz is obtained using a crystal oscillator and decade dividing assemblies (DDA). These signals are combined digitally and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded to make them equally suitable for both control applications and display units. The developed circuit using discrete components has a resolution of 0.5 Hz and completes measurement within 20 ms. The realized circuit is simulated and synthesized using Verilog HDL and subsequently implemented on FPGA. The results of measurement on FPGA are observed on a very high resolution logic analyzer. These results accurately match the simulation results as well as the results of same circuit implemented with discrete components. The proposed system is suitable for accurate measurement and control of power frequency deviation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20encoder%20for%20frequency%20measurement" title="digital encoder for frequency measurement">digital encoder for frequency measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20deviation%20measurement" title=" frequency deviation measurement"> frequency deviation measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20and%20control%20systems" title=" measurement and control systems"> measurement and control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20systems" title=" power systems"> power systems</a> </p> <a href="https://publications.waset.org/abstracts/44000/a-simple-and-efficient-method-for-accurate-measurement-and-control-of-power-frequency-deviation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15946</span> Testing of Electronic Control Unit Communication Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petr%20%C5%A0imek">Petr Šimek</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Kostruk"> Kamil Kostruk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the problem of testing the Electronic Control Unit (ECU) for the specified function validation. Modern ECUs have many functions which need to be tested. This process requires tracking between the test and the specification. The technique discussed in this paper explores the system for automating this process. The paper focuses in its chapter IV on the introduction to the problem in general, then it describes the proposed test system concept and its principle. It looks at how the process of the ECU interface specification file for automated interface testing and test tracking works. In the end, the future possible development of the project is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20control%20unit%20testing" title="electronic control unit testing">electronic control unit testing</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20system" title=" embedded system"> embedded system</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20generate" title=" test generate"> test generate</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20automation" title=" test automation"> test automation</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20automation" title=" process automation"> process automation</a>, <a href="https://publications.waset.org/abstracts/search?q=CAN%20bus" title=" CAN bus"> CAN bus</a>, <a href="https://publications.waset.org/abstracts/search?q=ethernet" title=" ethernet"> ethernet</a> </p> <a href="https://publications.waset.org/abstracts/152660/testing-of-electronic-control-unit-communication-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15945</span> Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babesse%20Saad">Babesse Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameddah%20Djemeleddine"> Ameddah Djemeleddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rollover" title="rollover">rollover</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20unit%20heavy%20vehicle" title=" single unit heavy vehicle"> single unit heavy vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20side%20force" title=" nonlinear side force "> nonlinear side force </a> </p> <a href="https://publications.waset.org/abstracts/13730/comparison-between-lqr-and-ann-active-anti-roll-control-of-a-single-unit-heavy-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15944</span> Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Ismail">M. Y. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Inam"> M. Inam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflect array antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflect array antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180 MHz to 200 MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10 GHz resonant frequency with a patch volume of 2.71 mm3 as compared to 3.47 mm3 required for rectangular patch without slot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystal" title="liquid crystal">liquid crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable%20reflect%20array" title=" tunable reflect array"> tunable reflect array</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20tunability" title=" frequency tunability"> frequency tunability</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20phase%20range" title=" dynamic phase range "> dynamic phase range </a> </p> <a href="https://publications.waset.org/abstracts/13628/design-of-liquid-crystal-based-tunable-reflectarray-antenna-using-slot-embedded-patch-element-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15943</span> Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Du">W. Du</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Wang"> X. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Cao"> Jun Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20F.%20Wang"> H. F. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20regulation" title="frequency regulation">frequency regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20inertia%20control" title=" virtual inertia control"> virtual inertia control</a>, <a href="https://publications.waset.org/abstracts/search?q=installation%20locations" title=" installation locations"> installation locations</a>, <a href="https://publications.waset.org/abstracts/search?q=observability" title=" observability"> observability</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20farms" title=" wind farms"> wind farms</a> </p> <a href="https://publications.waset.org/abstracts/44872/selection-of-wind-farms-to-add-virtual-inertia-control-to-assist-the-power-system-frequency-regulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15942</span> ESS Control Strategy for Primary Frequency Response in Microgrid Considering Ramp Rate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho-Jun%20Jo">Ho-Jun Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wook-Won%20Kim"> Wook-Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Sung%20Kim"> Yong-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-O%20Kim"> Jin-O Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of ESS (Energy Storage Systems) in the future grids has been the solution of the microgrid. However, high investment costs necessitate accurate modeling and control strategy of ESS to justify its economic viability and further underutilization. Therefore, the reasonable control strategy for ESS which is subjected to generator and usage helps to curtail the cost of investment and operation costs. The rated frequency in power system is decreased when the load is increasing unexpectedly; hence the thermal power is operated at the capacity of only its 95% for the Governor Free (GF) to adjust the frequency as reserve (5%) in practice. The ESS can be utilized with governor at the same time for the frequency response due to characteristic of its fast response speed and moreover, the cost of ESS is declined rapidly to the reasonable price. This paper presents the ESS control strategy to extend usage of the ESS taken account into governor’s ramp rate and reduce the governor’s intervention as well. All results in this paper are simulated by MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20grid" title="micro grid">micro grid</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20systems" title=" energy storage systems"> energy storage systems</a>, <a href="https://publications.waset.org/abstracts/search?q=ramp%20rate" title=" ramp rate"> ramp rate</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20strategy" title=" control strategy"> control strategy</a> </p> <a href="https://publications.waset.org/abstracts/39143/ess-control-strategy-for-primary-frequency-response-in-microgrid-considering-ramp-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15941</span> T-S Fuzzy Modeling Based on Power Coefficient Limit Nonlinearity Applied to an Isolated Single Machine Load Frequency Deviation Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Sheu">R. S. Sheu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Usman"> H. Usman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Lawal"> M. S. Lawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Takagi-Sugeno (T-S) fuzzy model based control of a load frequency deviation in a single machine with limit nonlinearity on power coefficient is presented in the paper. Two T-S fuzzy rules with only rotor angle variable as input in the premise part, and linear state space models in the consequent part involving characteristic matrices determined from limits set on the power coefficient constant are formulated, state feedback control gains for closed loop control was determined from the formulated Linear Matrix Inequality (LMI) with eigenvalue optimization scheme for asymptotic and exponential stability (speed of esponse). Numerical evaluation of the closed loop object was carried out in Matlab. Simulation results generated of both the open and closed loop system showed the effectiveness of the control scheme in maintaining load frequency stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=T-S%20fuzzy%20model" title="T-S fuzzy model">T-S fuzzy model</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20feedback%20control" title=" state feedback control"> state feedback control</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequality%20%28LMI%29" title=" linear matrix inequality (LMI)"> linear matrix inequality (LMI)</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20deviation%20control" title=" frequency deviation control"> frequency deviation control</a> </p> <a href="https://publications.waset.org/abstracts/11563/t-s-fuzzy-modeling-based-on-power-coefficient-limit-nonlinearity-applied-to-an-isolated-single-machine-load-frequency-deviation-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15940</span> Development of a Sequential Multimodal Biometric System for Web-Based Physical Access Control into a Security Safe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babatunde%20Olumide%20Olawale">Babatunde Olumide Olawale</a>, <a href="https://publications.waset.org/abstracts/search?q=Oyebode%20Olumide%20Oyediran"> Oyebode Olumide Oyediran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The security safe is a place or building where classified document and precious items are kept. To prevent unauthorised persons from gaining access to this safe a lot of technologies had been used. But frequent reports of an unauthorised person gaining access into security safes with the aim of removing document and items from the safes are pointers to the fact that there is still security gap in the recent technologies used as access control for the security safe. In this paper we try to solve this problem by developing a multimodal biometric system for physical access control into a security safe using face and voice recognition. The safe is accessed by the combination of face and speech pattern recognition and also in that sequential order. User authentication is achieved through the use of camera/sensor unit and a microphone unit both attached to the door of the safe. The user face was captured by the camera/sensor while the speech was captured by the use of the microphone unit. The Scale Invariance Feature Transform (SIFT) algorithm was used to train images to form templates for the face recognition system while the Mel-Frequency Cepitral Coefficients (MFCC) algorithm was used to train the speech recognition system to recognise authorise user’s speech. Both algorithms were hosted in two separate web based servers and for automatic analysis of our work; our developed system was simulated in a MATLAB environment. The results obtained shows that the developed system was able to give access to authorise users while declining unauthorised person access to the security safe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=access%20control" title="access control">access control</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20biometrics" title=" multimodal biometrics"> multimodal biometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20safe" title=" security safe"> security safe</a> </p> <a href="https://publications.waset.org/abstracts/73150/development-of-a-sequential-multimodal-biometric-system-for-web-based-physical-access-control-into-a-security-safe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15939</span> Small Scale Stationary and Mobile Production of Biodiesel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Yusuf%20Abduh">Muhammad Yusuf Abduh</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Manurung"> Robert Manurung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hero%20Jan%20Heeres"> Hero Jan Heeres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel can be produced in small scale mobile units which are designed with local input and demand. Unlike the typical biodiesel production plants, mobile biodiesel unit consiss of a biodiesel production facility placed inside a standard cargo container and mounted on a truck so that it can be transported to a region near the location of raw materials. In this paper, we review the existing concept and unit for the development of community-scale and mobile production of biodiesel. This includes the main reactor technology to produce biodiesel as well as the pre-treatment prior to the reaction unit. The pre-treatment includes the oil-expeller unit to obtain oil from the oilseeds as well as the quality control of the oil before it enters the reaction unit. This paper also discusses the post-treatment after the production of biodiesel. It includes the refining and purification of biodiesel to meet the product specification set by the biodiesel industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20scale" title=" community scale"> community scale</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20biodiesel%20unit" title=" mobile biodiesel unit"> mobile biodiesel unit</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor%20technology" title=" reactor technology"> reactor technology</a> </p> <a href="https://publications.waset.org/abstracts/85377/small-scale-stationary-and-mobile-production-of-biodiesel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15938</span> Analysis of the Interventions Performed in Pediatric Cardiology Unit Based on Nursing Interventions Classification (NIC-6th): A Pilot Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Wen%20Sun">Ji Wen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Nan%20Ping%20Shen"> Nan Ping Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Bei%20Wu"> Yi Bei Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study used Nursing Interventions Classification (NIC-6th) to identify the interventions performed in a pediatric cardiology unit, and then to analysis its frequency, time and difficulty, so as to give a brief review on what our nurses have done. The research team selected a 35 beds pediatric cardiology unit, and drawn all the nursing interventions in the nursing record from our hospital information system (HIS) from 1 October 2015 to 30 November 2015, using NIC-6th to do the matching and then counting their frequencies. Then giving each intervention its own time and difficulty code according to NIC-6th. The results showed that nurses in pediatric cardiology unit performed totally 43 interventions from 5394 statements, and most of them were in RN(basic) education level needed and less than 15 minutes time needed. There still had some interventions just needed by a nursing assistant but done by nurses, which should call for nurse managers to think about the suitable staffing. Thus, counting the summary of the product of frequency, time and difficulty for each intervention of each nurse can know one's performance. Acknowledgement Clinical Management Optimization Project of Shanghai Shen Kang Hospital Development Center (SHDC2014615); Hundred-Talent Program of Construction of Nursing Plateau Discipline (hlgy16073qnhb). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nursing%20interventions" title="nursing interventions">nursing interventions</a>, <a href="https://publications.waset.org/abstracts/search?q=nursing%20interventions%20classification" title=" nursing interventions classification"> nursing interventions classification</a>, <a href="https://publications.waset.org/abstracts/search?q=nursing%20record" title=" nursing record"> nursing record</a>, <a href="https://publications.waset.org/abstracts/search?q=pediatric%20cardiology" title=" pediatric cardiology"> pediatric cardiology</a> </p> <a href="https://publications.waset.org/abstracts/65111/analysis-of-the-interventions-performed-in-pediatric-cardiology-unit-based-on-nursing-interventions-classification-nic-6th-a-pilot-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15937</span> Performences of Type-2 Fuzzy Logic Control and Neuro-Fuzzy Control Based on DPC for Grid Connected DFIG with Fixed Switching Frequency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fayssal%20Amrane">Fayssal Amrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Azeddine%20Chaiba"> Azeddine Chaiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, type-2 fuzzy logic control (T2FLC) and neuro-fuzzy control (NFC) for a doubly fed induction generator (DFIG) based on direct power control (DPC) with a fixed switching frequency is proposed for wind generation application. First, a mathematical model of the doubly-fed induction generator implemented in d-q reference frame is achieved. Then, a DPC algorithm approach for controlling active and reactive power of DFIG via fixed switching frequency is incorporated using PID. The performance of T2FLC and NFC, which is based on the DPC algorithm, are investigated and compared to those obtained from the PID controller. Finally, simulation results demonstrate that the NFC is more robust, superior dynamic performance for wind power generation system applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doubly%20fed%20induction%20generator%20%28DFIG%29" title="doubly fed induction generator (DFIG)">doubly fed induction generator (DFIG)</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20power%20control%20%28DPC%29" title=" direct power control (DPC)"> direct power control (DPC)</a>, <a href="https://publications.waset.org/abstracts/search?q=neuro-fuzzy%20control%20%28NFC%29" title=" neuro-fuzzy control (NFC)"> neuro-fuzzy control (NFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power%20point%20tracking%20%28MPPT%29" title=" maximum power point tracking (MPPT)"> maximum power point tracking (MPPT)</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20vector%20modulation%20%28SVM%29" title=" space vector modulation (SVM)"> space vector modulation (SVM)</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20fuzzy%20logic%20control%20%28T2FLC%29" title=" type 2 fuzzy logic control (T2FLC)"> type 2 fuzzy logic control (T2FLC)</a> </p> <a href="https://publications.waset.org/abstracts/48773/performences-of-type-2-fuzzy-logic-control-and-neuro-fuzzy-control-based-on-dpc-for-grid-connected-dfig-with-fixed-switching-frequency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15936</span> Fixed-Frequency Pulse Width Modulation-Based Sliding Mode Controller for Switching Multicellular Converter </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rihab%20Hamdi">Rihab Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Hadri%20Hamida"> Amel Hadri Hamida</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouafae%20%20Bennis"> Ouafae Bennis</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Babaa"> Fatima Babaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakina%20Zerouali"> Sakina Zerouali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper features a sliding mode controller (SMC) for closed-loop voltage control of DC-DC three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM). To maintain the switching frequency, the approach is to incorporate a pulse-width modulation that utilizes an equivalent control, inferred by applying the SM control method, to produce a control sign to be contrasted and the fixed-frequency within the modulator. Detailed stability and transient performance analysis have been conducted using Lyapunov stability criteria to restrict the switching frequency variation facing wide variations in output load, input changes, and set-point changes. The results obtained confirm the effectiveness of the proposed control scheme in achieving an enhanced output transient performance while faithfully realizing its control objective in the event of abrupt and uncertain parameter variations. Simulations studies in MATLAB/Simulink environment are performed to confirm the idea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DC-DC%20converter" title="DC-DC converter">DC-DC converter</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20width%20modulation" title=" pulse width modulation"> pulse width modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20electronics" title=" power electronics"> power electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a> </p> <a href="https://publications.waset.org/abstracts/130515/fixed-frequency-pulse-width-modulation-based-sliding-mode-controller-for-switching-multicellular-converter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15935</span> Investigation of the Effects of Sampling Frequency on the THD of 3-Phase Inverters Using Space Vector Modulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khattab%20Al%20Qaisi">Khattab Al Qaisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Bowring"> Nicholas Bowring</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the simulation results of the effects of sampling frequency on the total harmonic distortion (THD) of three-phase inverters using the space vector pulse width modulation (SVPWM) and space vector control (SVC) algorithms. The relationship between the variables was studied using curve fitting techniques, and it has been shown that, for 50 Hz inverters, there is an exponential relation between the sampling frequency and THD up to around 8500 Hz, beyond which the performance of the model becomes irregular, and there is an negative exponential relation between the sampling frequency and the marginal improvement to the THD. It has also been found that the performance of SVPWM is better than that of SVC with the same sampling frequency in most frequency range, including the range where the performance of the former is irregular. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSI" title="DSI">DSI</a>, <a href="https://publications.waset.org/abstracts/search?q=SVPWM" title=" SVPWM"> SVPWM</a>, <a href="https://publications.waset.org/abstracts/search?q=THD" title=" THD"> THD</a>, <a href="https://publications.waset.org/abstracts/search?q=DC-AC%20converter" title=" DC-AC converter"> DC-AC converter</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20frequency" title=" sampling frequency"> sampling frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/17856/investigation-of-the-effects-of-sampling-frequency-on-the-thd-of-3-phase-inverters-using-space-vector-modulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15934</span> Optimal Bayesian Chart for Controlling Expected Number of Defects in Production Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Makis">V. Makis</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Jafari"> L. Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we develop an optimal Bayesian chart to control the expected number of defects per inspection unit in production processes with long production runs. We formulate this control problem in the optimal stopping framework. The objective is to determine the optimal stopping rule minimizing the long-run expected average cost per unit time considering partial information obtained from the process sampling at regular epochs. We prove the optimality of the control limit policy, i.e., the process is stopped and the search for assignable causes is initiated when the posterior probability that the process is out of control exceeds a control limit. An algorithm in the semi-Markov decision process framework is developed to calculate the optimal control limit and the corresponding average cost. Numerical examples are presented to illustrate the developed optimal control chart and to compare it with the traditional u-chart. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20u-chart" title="Bayesian u-chart">Bayesian u-chart</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20design" title=" economic design"> economic design</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20stopping" title=" optimal stopping"> optimal stopping</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-Markov%20decision%20process" title=" semi-Markov decision process"> semi-Markov decision process</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20process%20control" title=" statistical process control"> statistical process control</a> </p> <a href="https://publications.waset.org/abstracts/62841/optimal-bayesian-chart-for-controlling-expected-number-of-defects-in-production-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20control%20unit&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20control%20unit&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20control%20unit&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20control%20unit&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20control%20unit&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20control%20unit&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20control%20unit&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20control%20unit&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20control%20unit&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20control%20unit&amp;page=532">532</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20control%20unit&amp;page=533">533</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20control%20unit&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10