CINXE.COM
MOSFET - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>MOSFET - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"d4161184-de91-4dca-a89f-ed87a37254aa","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"MOSFET","wgTitle":"MOSFET","wgCurRevisionId":1252134678,"wgRevisionId":1252134678,"wgArticleId":40345,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["All articles with dead external links","Articles with dead external links from August 2018","Articles with permanently dead external links","Articles with dead external links from June 2015","Articles with short description","Short description matches Wikidata","All articles with unsourced statements","Articles with unsourced statements from July 2023","Articles needing additional references from January 2019","All articles needing additional references", "All Wikipedia articles needing clarification","Wikipedia articles needing clarification from February 2024","All pages needing factual verification","Wikipedia articles needing factual verification from January 2023","Articles with unsourced statements from December 2015","Articles with unsourced statements from March 2023","Wikipedia articles needing clarification from January 2016","All accuracy disputes","Articles with disputed statements from January 2016","Articles needing additional references from September 2016","Wikipedia articles with style issues from September 2016","All articles with style issues","Wikipedia external links cleanup from September 2016","Commons category link is on Wikidata","Transistor types","MOSFETs"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"MOSFET","wgRelevantArticleId":40345,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[ ],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q210793","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/4/4f/D2PAK.JPG"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="876"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4f/D2PAK.JPG/800px-D2PAK.JPG"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="584"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4f/D2PAK.JPG/640px-D2PAK.JPG"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="467"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="MOSFET - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/MOSFET"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=MOSFET&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/MOSFET"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-MOSFET rootpage-MOSFET skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=MOSFET" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=MOSFET" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=MOSFET" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=MOSFET" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Composition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Composition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Composition</span> </div> </a> <ul id="toc-Composition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Operation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Operation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Operation</span> </div> </a> <button aria-controls="toc-Operation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Operation subsection</span> </button> <ul id="toc-Operation-sublist" class="vector-toc-list"> <li id="toc-Metal–oxide–semiconductor_structure" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Metal–oxide–semiconductor_structure"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Metal–oxide–semiconductor structure</span> </div> </a> <ul id="toc-Metal–oxide–semiconductor_structure-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-MOS_capacitors_and_band_diagrams" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#MOS_capacitors_and_band_diagrams"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>MOS capacitors and band diagrams</span> </div> </a> <ul id="toc-MOS_capacitors_and_band_diagrams-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Structure_and_channel_formation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Structure_and_channel_formation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Structure and channel formation</span> </div> </a> <ul id="toc-Structure_and_channel_formation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Modes_of_operation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Modes_of_operation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Modes of operation</span> </div> </a> <ul id="toc-Modes_of_operation-sublist" class="vector-toc-list"> <li id="toc-Cutoff,_subthreshold,_and_weak-inversion_mode" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Cutoff,_subthreshold,_and_weak-inversion_mode"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4.1</span> <span>Cutoff, subthreshold, and weak-inversion mode</span> </div> </a> <ul id="toc-Cutoff,_subthreshold,_and_weak-inversion_mode-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Triode_mode_or_linear_region_(also_known_as_the_ohmic_mode)" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Triode_mode_or_linear_region_(also_known_as_the_ohmic_mode)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4.2</span> <span>Triode mode or linear region (also known as the ohmic mode)</span> </div> </a> <ul id="toc-Triode_mode_or_linear_region_(also_known_as_the_ohmic_mode)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Saturation_or_active_mode" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Saturation_or_active_mode"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4.3</span> <span>Saturation or active mode</span> </div> </a> <ul id="toc-Saturation_or_active_mode-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Body_effect" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Body_effect"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Body effect</span> </div> </a> <ul id="toc-Body_effect-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Circuit_symbols" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Circuit_symbols"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Circuit symbols</span> </div> </a> <ul id="toc-Circuit_symbols-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-MOS_integrated_circuits" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#MOS_integrated_circuits"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>MOS integrated circuits</span> </div> </a> <ul id="toc-MOS_integrated_circuits-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-CMOS_circuits" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#CMOS_circuits"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>CMOS circuits</span> </div> </a> <ul id="toc-CMOS_circuits-sublist" class="vector-toc-list"> <li id="toc-Digital" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Digital"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.1</span> <span>Digital</span> </div> </a> <ul id="toc-Digital-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Analog" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Analog"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.2</span> <span>Analog</span> </div> </a> <ul id="toc-Analog-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Analog_switches" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Analog_switches"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Analog switches</span> </div> </a> <ul id="toc-Analog_switches-sublist" class="vector-toc-list"> <li id="toc-Single-type" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Single-type"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3.1</span> <span>Single-type</span> </div> </a> <ul id="toc-Single-type-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dual-type_(CMOS)" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Dual-type_(CMOS)"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3.2</span> <span>Dual-type (CMOS)</span> </div> </a> <ul id="toc-Dual-type_(CMOS)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Construction" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Construction"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Construction</span> </div> </a> <button aria-controls="toc-Construction-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Construction subsection</span> </button> <ul id="toc-Construction-sublist" class="vector-toc-list"> <li id="toc-Gate_material" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gate_material"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Gate material</span> </div> </a> <ul id="toc-Gate_material-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Insulator" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Insulator"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Insulator</span> </div> </a> <ul id="toc-Insulator-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Junction_design" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Junction_design"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Junction design</span> </div> </a> <ul id="toc-Junction_design-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Scaling" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Scaling"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Scaling</span> </div> </a> <button aria-controls="toc-Scaling-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Scaling subsection</span> </button> <ul id="toc-Scaling-sublist" class="vector-toc-list"> <li id="toc-Higher_subthreshold_conduction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Higher_subthreshold_conduction"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Higher subthreshold conduction</span> </div> </a> <ul id="toc-Higher_subthreshold_conduction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Increased_gate-oxide_leakage" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Increased_gate-oxide_leakage"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Increased gate-oxide leakage</span> </div> </a> <ul id="toc-Increased_gate-oxide_leakage-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Increased_junction_leakage" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Increased_junction_leakage"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Increased junction leakage</span> </div> </a> <ul id="toc-Increased_junction_leakage-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Drain-induced_barrier_lowering_and_VT_roll_off" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Drain-induced_barrier_lowering_and_VT_roll_off"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Drain-induced barrier lowering and <i>V</i><sub>T</sub> roll off</span> </div> </a> <ul id="toc-Drain-induced_barrier_lowering_and_VT_roll_off-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lower_output_resistance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lower_output_resistance"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.5</span> <span>Lower output resistance</span> </div> </a> <ul id="toc-Lower_output_resistance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lower_transconductance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lower_transconductance"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.6</span> <span>Lower transconductance</span> </div> </a> <ul id="toc-Lower_transconductance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Interconnect_capacitance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Interconnect_capacitance"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.7</span> <span>Interconnect capacitance</span> </div> </a> <ul id="toc-Interconnect_capacitance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Heat_production" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Heat_production"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.8</span> <span>Heat production</span> </div> </a> <ul id="toc-Heat_production-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Process_variations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Process_variations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.9</span> <span>Process variations</span> </div> </a> <ul id="toc-Process_variations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Modeling_challenges" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Modeling_challenges"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.10</span> <span>Modeling challenges</span> </div> </a> <ul id="toc-Modeling_challenges-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Other_types" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Other_types"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Other types</span> </div> </a> <button aria-controls="toc-Other_types-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Other types subsection</span> </button> <ul id="toc-Other_types-sublist" class="vector-toc-list"> <li id="toc-Dual-gate" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dual-gate"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Dual-gate</span> </div> </a> <ul id="toc-Dual-gate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Depletion-mode" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Depletion-mode"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Depletion-mode</span> </div> </a> <ul id="toc-Depletion-mode-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Metal–insulator–semiconductor_field-effect_transistor_(MISFET)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Metal–insulator–semiconductor_field-effect_transistor_(MISFET)"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Metal–insulator–semiconductor field-effect transistor (MISFET)</span> </div> </a> <ul id="toc-Metal–insulator–semiconductor_field-effect_transistor_(MISFET)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-NMOS_logic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#NMOS_logic"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.4</span> <span>NMOS logic</span> </div> </a> <ul id="toc-NMOS_logic-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Power_MOSFET" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Power_MOSFET"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.5</span> <span>Power MOSFET</span> </div> </a> <ul id="toc-Power_MOSFET-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Double-diffused_metal–oxide–semiconductor_(DMOS)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Double-diffused_metal–oxide–semiconductor_(DMOS)"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.6</span> <span>Double-diffused metal–oxide–semiconductor (<span><span>DMOS</span></span>)</span> </div> </a> <ul id="toc-Double-diffused_metal–oxide–semiconductor_(DMOS)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Radiation-hardened-by-design_(RHBD)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Radiation-hardened-by-design_(RHBD)"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.7</span> <span>Radiation-hardened-by-design (RHBD)</span> </div> </a> <ul id="toc-Radiation-hardened-by-design_(RHBD)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">MOSFET</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 45 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-45" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">45 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D9%88%D8%B3%D9%81%D8%AA" title="موسفت – Arabic" lang="ar" hreflang="ar" data-title="موسفت" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/MOY-Tranzistorlar" title="MOY-Tranzistorlar – Azerbaijani" lang="az" hreflang="az" data-title="MOY-Tranzistorlar" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AE%E0%A6%B8%E0%A6%AB%E0%A7%87%E0%A6%9F" title="মসফেট – Bangla" lang="bn" hreflang="bn" data-title="মসফেট" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%AE%E0%A5%8B%E0%A4%B8%E0%A5%8D%E0%A4%AB%E0%A5%87%E0%A4%9F" title="मोस्फेट – Bhojpuri" lang="bh" hreflang="bh" data-title="मोस्फेट" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/MOS_%D1%82%D1%80%D0%B0%D0%BD%D0%B7%D0%B8%D1%81%D1%82%D0%BE%D1%80" title="MOS транзистор – Bulgarian" lang="bg" hreflang="bg" data-title="MOS транзистор" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/MOSFET" title="MOSFET – Catalan" lang="ca" hreflang="ca" data-title="MOSFET" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/MOSFET" title="MOSFET – Czech" lang="cs" hreflang="cs" data-title="MOSFET" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/MOSFET" title="MOSFET – Danish" lang="da" hreflang="da" data-title="MOSFET" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Metall-Oxid-Halbleiter-Feldeffekttransistor" title="Metall-Oxid-Halbleiter-Feldeffekttransistor – German" lang="de" hreflang="de" data-title="Metall-Oxid-Halbleiter-Feldeffekttransistor" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Isoleeritud_paisuga_v%C3%A4ljatransistor" title="Isoleeritud paisuga väljatransistor – Estonian" lang="et" hreflang="et" data-title="Isoleeritud paisuga väljatransistor" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Transistor_de_efecto_de_campo_metal-%C3%B3xido-semiconductor" title="Transistor de efecto de campo metal-óxido-semiconductor – Spanish" lang="es" hreflang="es" data-title="Transistor de efecto de campo metal-óxido-semiconductor" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/MOSFET" title="MOSFET – Basque" lang="eu" hreflang="eu" data-title="MOSFET" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%A7%D8%B3%D9%81%D8%AA" title="ماسفت – Persian" lang="fa" hreflang="fa" data-title="ماسفت" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Transistor_%C3%A0_effet_de_champ_%C3%A0_grille_m%C3%A9tal-oxyde" title="Transistor à effet de champ à grille métal-oxyde – French" lang="fr" hreflang="fr" data-title="Transistor à effet de champ à grille métal-oxyde" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/MOSFET" title="MOSFET – Korean" lang="ko" hreflang="ko" data-title="MOSFET" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AE%E0%A5%89%E0%A4%B8%E0%A4%AB%E0%A5%87%E0%A4%9F" title="मॉसफेट – Hindi" lang="hi" hreflang="hi" data-title="मॉसफेट" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/MOSFET" title="MOSFET – Indonesian" lang="id" hreflang="id" data-title="MOSFET" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/MOSFET" title="MOSFET – Italian" lang="it" hreflang="it" data-title="MOSFET" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%98%D7%A8%D7%A0%D7%96%D7%99%D7%A1%D7%98%D7%95%D7%A8_MOSFET" title="טרנזיסטור MOSFET – Hebrew" lang="he" hreflang="he" data-title="טרנזיסטור MOSFET" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Metalo,_oksido_ir_puslaidininkio_lauko_tranzistorius" title="Metalo, oksido ir puslaidininkio lauko tranzistorius – Lithuanian" lang="lt" hreflang="lt" data-title="Metalo, oksido ir puslaidininkio lauko tranzistorius" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9C%D0%BE%D1%81%D1%84%D0%B5%D1%82" title="Мосфет – Macedonian" lang="mk" hreflang="mk" data-title="Мосфет" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/MOSFET" title="MOSFET – Mongolian" lang="mn" hreflang="mn" data-title="MOSFET" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/MOSFET" title="MOSFET – Dutch" lang="nl" hreflang="nl" data-title="MOSFET" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/MOSFET" title="MOSFET – Japanese" lang="ja" hreflang="ja" data-title="MOSFET" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/MOS" title="MOS – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="MOS" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/MOSFET" title="MOSFET – Polish" lang="pl" hreflang="pl" data-title="MOSFET" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/MOSFET" title="MOSFET – Portuguese" lang="pt" hreflang="pt" data-title="MOSFET" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Tranzistor_MOSFET" title="Tranzistor MOSFET – Romanian" lang="ro" hreflang="ro" data-title="Tranzistor MOSFET" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%9E%D0%9F-%D1%82%D1%80%D0%B0%D0%BD%D0%B7%D0%B8%D1%81%D1%82%D0%BE%D1%80" title="МОП-транзистор – Russian" lang="ru" hreflang="ru" data-title="МОП-транзистор" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/MOSFET" title="MOSFET – Albanian" lang="sq" hreflang="sq" data-title="MOSFET" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/MOSFET" title="MOSFET – Simple English" lang="en-simple" hreflang="en-simple" data-title="MOSFET" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Tranzistor_riaden%C3%BD_po%C4%BEom_s_hradlovou_oxidovou_vrstvou" title="Tranzistor riadený poľom s hradlovou oxidovou vrstvou – Slovak" lang="sk" hreflang="sk" data-title="Tranzistor riadený poľom s hradlovou oxidovou vrstvou" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/MOSFET_operacioni_poja%C4%8Dava%C4%8Di" title="MOSFET operacioni pojačavači – Serbian" lang="sr" hreflang="sr" data-title="MOSFET operacioni pojačavači" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/MOSFET" title="MOSFET – Serbo-Croatian" lang="sh" hreflang="sh" data-title="MOSFET" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/MOSFET" title="MOSFET – Finnish" lang="fi" hreflang="fi" data-title="MOSFET" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/MOSFET" title="MOSFET – Swedish" lang="sv" hreflang="sv" data-title="MOSFET" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AE%BE%E0%AE%B4%E0%AF%88-%E0%AE%86%E0%AE%95%E0%AF%8D%E0%AE%9A%E0%AF%88%E0%AE%9F%E0%AF%81-%E0%AE%95%E0%AF%81%E0%AE%B1%E0%AF%88%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AE%9F%E0%AE%A4%E0%AF%8D%E0%AE%A4%E0%AE%BF_%E0%AE%AA%E0%AF%81%E0%AE%B2%E0%AE%B5%E0%AE%BF%E0%AE%B3%E0%AF%88%E0%AE%B5%E0%AF%81%E0%AE%A4%E0%AF%8D_%E0%AE%A4%E0%AE%BF%E0%AE%B0%E0%AE%BF%E0%AE%A4%E0%AE%9F%E0%AF%88%E0%AE%AF%E0%AE%AE%E0%AF%8D" title="மாழை-ஆக்சைடு-குறைக்கடத்தி புலவிளைவுத் திரிதடையம் – Tamil" lang="ta" hreflang="ta" data-title="மாழை-ஆக்சைடு-குறைக்கடத்தி புலவிளைவுத் திரிதடையம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A1%E0%B8%AD%E0%B8%AA%E0%B9%80%E0%B8%9F%E0%B8%95" title="มอสเฟต – Thai" lang="th" hreflang="th" data-title="มอสเฟต" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/MOSFET" title="MOSFET – Turkish" lang="tr" hreflang="tr" data-title="MOSFET" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BD%D0%B7%D0%B8%D1%81%D1%82%D0%BE%D1%80_%D0%BC%D0%B5%D1%82%D0%B0%D0%BB-%D0%B4%D1%96%D0%B5%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D0%BA-%D0%BD%D0%B0%D0%BF%D1%96%D0%B2%D0%BF%D1%80%D0%BE%D0%B2%D1%96%D0%B4%D0%BD%D0%B8%D0%BA" title="Транзистор метал-діелектрик-напівпровідник – Ukrainian" lang="uk" hreflang="uk" data-title="Транзистор метал-діелектрик-напівпровідник" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D9%88%D8%B3%D9%81%D9%B9" title="موسفٹ – Urdu" lang="ur" hreflang="ur" data-title="موسفٹ" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/MOSFET" title="MOSFET – Vietnamese" lang="vi" hreflang="vi" data-title="MOSFET" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E9%87%91%E5%B1%9E%E6%B0%A7%E5%8C%96%E7%89%A9%E5%8D%8A%E5%AF%BC%E4%BD%93%E5%9C%BA%E6%95%88%E5%BA%94%E7%AE%A1" title="金属氧化物半导体场效应管 – Wu" lang="wuu" hreflang="wuu" data-title="金属氧化物半导体场效应管" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/MOSFET" title="MOSFET – Cantonese" lang="yue" hreflang="yue" data-title="MOSFET" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%87%91%E5%B1%AC%E6%B0%A7%E5%8C%96%E7%89%A9%E5%8D%8A%E5%B0%8E%E9%AB%94%E5%A0%B4%E6%95%88%E9%9B%BB%E6%99%B6%E9%AB%94" title="金屬氧化物半導體場效電晶體 – Chinese" lang="zh" hreflang="zh" data-title="金屬氧化物半導體場效電晶體" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q210793#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/MOSFET" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:MOSFET" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/MOSFET"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=MOSFET&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=MOSFET&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/MOSFET"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=MOSFET&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=MOSFET&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/MOSFET" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/MOSFET" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=MOSFET&oldid=1252134678" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=MOSFET&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=MOSFET&id=1252134678&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMOSFET"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMOSFET"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=MOSFET&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=MOSFET&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:MOSFET" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q210793" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Type of field-effect transistor</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:D2PAK.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/D2PAK.JPG/290px-D2PAK.JPG" decoding="async" width="290" height="212" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/D2PAK.JPG/435px-D2PAK.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4f/D2PAK.JPG/580px-D2PAK.JPG 2x" data-file-width="1110" data-file-height="810" /></a><figcaption>Two <a href="/wiki/Power_transistor" class="mw-redirect" title="Power transistor">power MOSFETs</a> in <a href="/wiki/D2PAK" class="mw-redirect" title="D2PAK">D2PAK</a> <a href="/wiki/Surface-mount_package" class="mw-redirect" title="Surface-mount package">surface-mount packages</a>. Operating as switches, each of these components can sustain a blocking voltage of 120<span class="nowrap"> </span><a href="/wiki/Volts" class="mw-redirect" title="Volts">V</a> in the <i>off</i> state, and can conduct a con­ti­nuous current of 30 <a href="/wiki/Amperes" class="mw-redirect" title="Amperes">A</a> in the <i>on</i> state, dissipating up to about 100 <a href="/wiki/Watt" title="Watt">W</a> and controlling a load of over 2000 W. A <a href="/wiki/Matchstick" class="mw-redirect" title="Matchstick">matchstick</a> is pictured for scale.</figcaption></figure> <p>In <a href="/wiki/Electronics" title="Electronics">electronics</a>, the <b>metal–oxide–semiconductor field-effect transistor</b> (<b>MOSFET</b>, <b>MOS-FET</b>, <b>MOS FET</b>, or <b>MOS transistor</b>) is a type of <a href="/wiki/Field-effect_transistor" title="Field-effect transistor">field-effect transistor</a> (FET), most commonly fabricated by the <a href="/wiki/Thermal_oxidation" title="Thermal oxidation">controlled oxidation</a> of <a href="/wiki/Silicon" title="Silicon">silicon</a>. It has an insulated gate, the voltage of which determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic <a href="/wiki/Signal" title="Signal">signals</a>. The term <i>metal–insulator–semiconductor field-effect transistor</i> (<i>MISFET</i>) is almost synonymous with <i>MOSFET</i>. Another near-synonym is <i>insulated-gate field-effect transistor</i> (<i>IGFET</i>). </p><p>The main advantage of a MOSFET is that it requires almost no input current to control the load current, when compared to <a href="/wiki/Bipolar_junction_transistors" class="mw-redirect" title="Bipolar junction transistors">bipolar junction transistors</a> (BJTs). In an <i>enhancement mode</i> MOSFET, voltage applied to the gate terminal increases the conductivity of the device. In <i>depletion mode</i> transistors, voltage applied at the gate reduces the conductivity.<sup id="cite_ref-depletion_1-0" class="reference"><a href="#cite_note-depletion-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>The "metal" in the name MOSFET is sometimes a <a href="/wiki/Misnomer" title="Misnomer">misnomer</a>, because the gate material can be a layer of <a href="/wiki/Polysilicon" class="mw-redirect" title="Polysilicon">polysilicon</a> (polycrystalline silicon). Similarly, "oxide" in the name can also be a misnomer, as different dielectric materials are used with the aim of obtaining strong channels with smaller applied voltages. </p><p>The MOSFET is by far the most common transistor in <a href="/wiki/Digital_circuit" class="mw-redirect" title="Digital circuit">digital</a> circuits, as billions may be included in a memory chip or microprocessor. Since MOSFETs can be made with either p-type or n-type semiconductors, complementary pairs of MOS transistors can be used to make switching circuits with very low power consumption, in the form of <a href="/wiki/CMOS_logic" class="mw-redirect" title="CMOS logic">CMOS logic</a>. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:MOSFET_functioning_body.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/05/MOSFET_functioning_body.svg/290px-MOSFET_functioning_body.svg.png" decoding="async" width="290" height="157" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/05/MOSFET_functioning_body.svg/435px-MOSFET_functioning_body.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/05/MOSFET_functioning_body.svg/580px-MOSFET_functioning_body.svg.png 2x" data-file-width="305" data-file-height="165" /></a><figcaption>A cross-section through an nMOSFET when the gate voltage <i>V</i><sub>GS</sub> is below the threshold for making a conductive channel; there is little or no conduction between the terminals drain and source; the switch is off. When the gate is more positive, it attracts electrons, inducing an <i>n</i>-type conductive channel in the substrate below the oxide (yellow), which allows electrons to flow between the <i>n</i>-doped terminals; the switch is on.</figcaption></figure> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The basic principle of the <a href="/wiki/Field-effect_transistor" title="Field-effect transistor">field-effect transistor</a> was first patented by <a href="/wiki/Julius_Edgar_Lilienfeld" title="Julius Edgar Lilienfeld">Julius Edgar Lilienfeld</a> in 1925.<sup id="cite_ref-p1_2-0" class="reference"><a href="#cite_note-p1-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> In 1934, inventor <a href="/wiki/Oskar_Heil" title="Oskar Heil">Oskar Heil</a> independently patented a similar device in Europe.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>In the 1940s, <a href="/wiki/Bell_Labs" title="Bell Labs">Bell Labs</a> scientists <a href="/wiki/William_Shockley" title="William Shockley">William Shockley</a>, <a href="/wiki/John_Bardeen" title="John Bardeen">John Bardeen</a> and <a href="/wiki/Walter_Houser_Brattain" title="Walter Houser Brattain">Walter Houser Brattain</a> attempted to build a field-effect device, which led to their discovery of the <a href="/wiki/Transistor" title="Transistor">transistor</a> effect. However, the structure failed to show the anticipated effects, due to the problem of <a href="/wiki/Surface_states" title="Surface states">surface states</a>: traps on the semiconductor surface that hold electrons immobile. With no <a href="/wiki/Surface_passivation" class="mw-redirect" title="Surface passivation">surface passivation</a>, they were only able to build the <a href="/wiki/Bipolar_junction_transistor" title="Bipolar junction transistor">BJT</a> and <a href="/wiki/Thyristor" title="Thyristor">thyristor</a> transistors. </p><p>In 1955, <a href="/wiki/Carl_Frosch" title="Carl Frosch">Carl Frosch</a> and Lincoln Derick accidentally grew a layer of silicon dioxide over the silicon wafer, for which they observed surface passivation effects.<sup id="cite_ref-:0_4-0" class="reference"><a href="#cite_note-:0-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> By 1957 Frosch and Derick, using masking and predeposition, were able to manufacture silicon dioxide field effect transistors; the first planar transistors, in which drain and source were adjacent at the same surface.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> They showed that silicon dioxide insulated, protected silicon wafers and prevented dopants from diffusing into the wafer.<sup id="cite_ref-:0_4-1" class="reference"><a href="#cite_note-:0-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> At Bell Labs, the importance of Frosch and Derick technique and transistors was immediately realized. Results of their work circulated around Bell Labs in the form of BTL memos before being published in 1957. At <a href="/wiki/Shockley_Semiconductor_Laboratory" title="Shockley Semiconductor Laboratory">Shockley Semiconductor</a>, Shockley had circulated the preprint of their article in December 1956 to all his senior staff, including <a href="/wiki/Jean_Hoerni" title="Jean Hoerni">Jean Hoerni</a>,<sup id="cite_ref-Moskowitz_8-0" class="reference"><a href="#cite_note-Moskowitz-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Lojek120_11-0" class="reference"><a href="#cite_note-Lojek120-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> who would later invent the <a href="/wiki/Planar_process" title="Planar process">planar process</a> in 1959 while at <a href="/wiki/Fairchild_Semiconductor" title="Fairchild Semiconductor">Fairchild Semiconductor</a>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:1957(Figure_9)-Gate_oxide_transistor_by_Frosch_and_Derrick.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/1957%28Figure_9%29-Gate_oxide_transistor_by_Frosch_and_Derrick.png/310px-1957%28Figure_9%29-Gate_oxide_transistor_by_Frosch_and_Derrick.png" decoding="async" width="310" height="133" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/1957%28Figure_9%29-Gate_oxide_transistor_by_Frosch_and_Derrick.png/465px-1957%28Figure_9%29-Gate_oxide_transistor_by_Frosch_and_Derrick.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/75/1957%28Figure_9%29-Gate_oxide_transistor_by_Frosch_and_Derrick.png/620px-1957%28Figure_9%29-Gate_oxide_transistor_by_Frosch_and_Derrick.png 2x" data-file-width="841" data-file-height="361" /></a><figcaption>1957, Diagram of one of the SiO2 transistor devices made by Frosch and Derick<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup></figcaption></figure><p>After this, J.R. Ligenza and W.G. Spitzer studied the mechanism of thermally grown oxides, fabricated a high quality Si/<a href="/wiki/Silicon_dioxide" title="Silicon dioxide">SiO<sub>2</sub></a> stack and published their results in 1960.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Deal_16-0" class="reference"><a href="#cite_note-Deal-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup>Following this research, <a href="/wiki/Mohamed_Atalla" class="mw-redirect" title="Mohamed Atalla">Mohamed Atalla</a> and <a href="/wiki/Dawon_Kahng" title="Dawon Kahng">Dawon Kahng</a> proposed a silicon MOS transistor in 1959<sup id="cite_ref-Bassett22_18-0" class="reference"><a href="#cite_note-Bassett22-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> and successfully demonstrated a working MOS device with their Bell Labs team in 1960.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> Their team included E. E. LaBate and E. I. Povilonis who fabricated the device; M. O. Thurston, L. A. D’Asaro, and J. R. Ligenza who developed the diffusion processes, and H. K. Gummel and R. Lindner who characterized the device.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> This was a culmination of decades of field-effect research that began with Lilienfeld. </p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Threshold_formation_nowatermark.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/43/Threshold_formation_nowatermark.gif/290px-Threshold_formation_nowatermark.gif" decoding="async" width="290" height="132" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/43/Threshold_formation_nowatermark.gif/435px-Threshold_formation_nowatermark.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/43/Threshold_formation_nowatermark.gif/580px-Threshold_formation_nowatermark.gif 2x" data-file-width="722" data-file-height="328" /></a><figcaption>Simulation of formation of inversion channel (electron density) and attainment of threshold vol­tage (IV) in a nanowire MOSFET. Note: <a href="/wiki/Threshold_voltage" title="Threshold voltage">Threshold voltage</a> for this device lies around 0.45 V.</figcaption></figure> <p>The first MOS transistor at Bell Labs was about 100 times slower than contemporary <a href="/wiki/Bipolar_transistors" class="mw-redirect" title="Bipolar transistors">bipolar transistors</a> and was initially seen as inferior. Nevertheless, Kahng pointed out several advantages of the device, notably ease of fabrication and its application in <a href="/wiki/Integrated_circuit" title="Integrated circuit">integrated circuits</a>.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Composition">Composition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=2" title="Edit section: Composition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:MOSFETs.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/MOSFETs.jpg/260px-MOSFETs.jpg" decoding="async" width="260" height="169" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/MOSFETs.jpg/390px-MOSFETs.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f8/MOSFETs.jpg/520px-MOSFETs.jpg 2x" data-file-width="664" data-file-height="431" /></a><figcaption>Photomicrograph of two metal-gate MOSFETs in a test pattern. Probe pads for two gates and three source/drain nodes are labeled.</figcaption></figure> <p>Usually the <a href="/wiki/Semiconductor" title="Semiconductor">semiconductor</a> of choice is <a href="/wiki/Silicon" title="Silicon">silicon</a>. Some chip manufacturers, most notably <a href="/wiki/IBM" title="IBM">IBM</a> and <a href="/wiki/Intel" title="Intel">Intel</a>, use an <a href="/wiki/List_of_semiconductor_materials#Table_of_semiconductor_alloy_systems" title="List of semiconductor materials">alloy</a> of silicon and germanium (<a href="/wiki/SiGe" class="mw-redirect" title="SiGe">SiGe</a>) in MOSFET channels.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (July 2023)">citation needed</span></a></i>]</sup> Many semiconductors with better electrical properties than silicon, such as <a href="/wiki/Gallium_arsenide" title="Gallium arsenide">gallium arsenide</a>, do not form good semiconductor-to-insulator interfaces, and thus are not suitable for MOSFETs. Research continues on creating insulators with acceptable electrical characteristics on other semiconductor materials. </p><p>To overcome the increase in power consumption due to gate current leakage, a <a href="/wiki/High-%CE%BA_dielectric" title="High-κ dielectric">high-κ dielectric</a> is used instead of silicon dioxide for the gate insulator, while polysilicon is replaced by metal gates (e.g. <a href="/wiki/Intel" title="Intel">Intel</a>, 2009).<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> </p><p>The gate is separated from the channel by a thin insulating layer, traditionally of silicon dioxide and later of <a href="/wiki/Silicon_oxynitride" title="Silicon oxynitride">silicon oxynitride</a>. Some companies use a high-κ dielectric and metal gate combination in the <a href="/wiki/45_nanometer" class="mw-redirect" title="45 nanometer">45 nanometer</a> node. </p><p>When a voltage is applied between the gate and the source, the electric field generated penetrates through the oxide and creates an <i>inversion layer</i> or <i>channel</i> at the semiconductor-insulator interface. The inversion layer provides a channel through which current can pass between source and drain terminals. Varying the voltage between the gate and body modulates the <a href="/wiki/Electrical_conductivity" class="mw-redirect" title="Electrical conductivity">conductivity</a> of this layer and thereby controls the current flow between drain and source. This is known as enhancement mode. </p> <div class="mw-heading mw-heading2"><h2 id="Operation">Operation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=3" title="Edit section: Operation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:MOS_Capacitor.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/49/MOS_Capacitor.svg/260px-MOS_Capacitor.svg.png" decoding="async" width="260" height="116" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/49/MOS_Capacitor.svg/390px-MOS_Capacitor.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/49/MOS_Capacitor.svg/520px-MOS_Capacitor.svg.png 2x" data-file-width="552" data-file-height="247" /></a><figcaption>Metal–oxide–semiconductor structure on p-type silicon</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Metal–oxide–semiconductor_structure"><span id="Metal.E2.80.93oxide.E2.80.93semiconductor_structure"></span>Metal–oxide–semiconductor structure</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=4" title="Edit section: Metal–oxide–semiconductor structure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The traditional metal–oxide–semiconductor (MOS) structure is obtained by growing a layer of <a href="/wiki/Silicon_dioxide" title="Silicon dioxide">silicon dioxide</a> (<span class="chemf nowrap">SiO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span>) on top of a silicon substrate, commonly by <a href="/wiki/Thermal_oxidation" title="Thermal oxidation">thermal oxidation</a> and depositing a layer of metal or <a href="/wiki/Polycrystalline_silicon" title="Polycrystalline silicon">polycrystalline silicon</a> (the latter is commonly used). As silicon dioxide is a <a href="/wiki/Dielectric" title="Dielectric">dielectric</a> material, its structure is equivalent to a planar <a href="/wiki/Capacitor" title="Capacitor">capacitor</a>, with one of the electrodes replaced by a semiconductor. </p><p>When a voltage is applied across a MOS structure, it modifies the distribution of charges in the semiconductor. If we consider a p-type semiconductor (with <i>N</i><sub>A</sub> the density of <a href="/wiki/Acceptor_(semiconductors)" title="Acceptor (semiconductors)">acceptors</a>, <i>p</i> the density of holes; <i>p = N</i><sub>A</sub> in neutral bulk), a positive voltage, <i>V</i><sub>G</sub>, from gate to body (see figure) creates a <a href="/wiki/Depletion_layer" class="mw-redirect" title="Depletion layer">depletion layer</a> by forcing the positively charged holes away from the gate-insulator/semiconductor interface, leaving exposed a carrier-free region of immobile, negatively charged acceptor ions (see <a href="/wiki/Doping_(semiconductor)" title="Doping (semiconductor)">doping</a>). If <i>V</i><sub>G</sub> is high enough, a high concentration of negative charge carriers forms in an <i>inversion layer</i> located in a thin layer next to the interface between the semiconductor and the insulator. </p><p>Conventionally, the gate voltage at which the volume density of electrons in the inversion layer is the same as the volume density of holes in the body is called the <a href="/wiki/Threshold_voltage" title="Threshold voltage">threshold voltage</a>. When the voltage between transistor gate and source (<i>V</i><sub>G</sub>) exceeds the threshold voltage (<i>V</i><sub>th</sub>), the difference is known as <a href="/wiki/Overdrive_voltage" title="Overdrive voltage">overdrive voltage</a>. </p><p>This structure with p-type body is the basis of the n-type MOSFET, which requires the addition of n-type source and drain regions. </p> <div class="mw-heading mw-heading3"><h3 id="MOS_capacitors_and_band_diagrams">MOS capacitors and band diagrams</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=5" title="Edit section: MOS capacitors and band diagrams"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/MOSFET" title="Special:EditPage/MOSFET">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">January 2019</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>The MOS capacitor structure is the heart of the MOSFET. Consider a MOS capacitor where the silicon base is of p-type. If a positive voltage is applied at the gate, holes which are at the surface of the p-type substrate will be repelled by the electric field generated by the voltage applied. At first, the holes will simply be repelled and what will remain on the surface will be immobile (negative) atoms of the acceptor type, which creates a depletion region on the surface. A hole is created by an acceptor atom, e.g., boron, which has one less electron than a silicon atom. Holes are not actually repelled, being non-entities; electrons are attracted by the positive field, and fill these holes. This creates a depletion region where no charge carriers exist because the electron is now fixed onto the atom and immobile. </p><p>As the voltage at the gate increases, there will be a point at which the surface above the depletion region will be converted from p-type into n-type, as electrons from the bulk area will start to get attracted by the larger electric field. This is known as <i>inversion</i>. The threshold voltage at which this conversion happens is one of the most important parameters in a MOSFET. </p><p>In the case of a p-type MOSFET, bulk inversion happens when the intrinsic energy level at the surface becomes smaller than the <a href="/wiki/Fermi_level" title="Fermi level">Fermi level</a> at the surface. This can be seen on a band diagram. The Fermi level defines the type of semiconductor in discussion. If the Fermi level is equal to the Intrinsic level, the semiconductor is of intrinsic, or pure type. If the Fermi level lies closer to the conduction band (valence band) then the semiconductor type will be of n-type (p-type). </p><p>When the gate voltage is increased in a positive sense <span class="clarify-content" style="padding-left:0.1em; padding-right:0.1em; color:var(--color-subtle, #54595d); border:1px solid var(--border-color-subtle, #c8ccd1);">(for the given example),</span><sup class="noprint Inline-Template Template-Clarify" style="margin-left:0.1em; white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="Unclear which example this is referring to since both types of MOSFET are simultaneously described (February 2024)">clarify</span></a></i>]</sup> this will shift the intrinsic energy level band so that it will curve downwards towards the valence band. If the Fermi level lies closer to the valence band (for p-type), there will be a point when the Intrinsic level will start to cross the Fermi level and when the voltage reaches the threshold voltage, the intrinsic level does cross the Fermi level, and that is what is known as inversion. At that point, the surface of the semiconductor is inverted from p-type into n-type. </p><p>If the Fermi level lies above the intrinsic level, the semiconductor is of n-type, therefore at inversion, when the intrinsic level reaches and crosses the Fermi level (which lies closer to the valence band), the semiconductor type changes at the surface as dictated by the relative positions of the Fermi and Intrinsic energy levels. </p> <div class="mw-heading mw-heading3"><h3 id="Structure_and_channel_formation">Structure and channel formation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=6" title="Edit section: Structure and channel formation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Field_effect_(semiconductor)" title="Field effect (semiconductor)">Field effect (semiconductor)</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Semiconductor_band-bending-en.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Semiconductor_band-bending-en.svg/330px-Semiconductor_band-bending-en.svg.png" decoding="async" width="330" height="239" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Semiconductor_band-bending-en.svg/495px-Semiconductor_band-bending-en.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Semiconductor_band-bending-en.svg/660px-Semiconductor_band-bending-en.svg.png 2x" data-file-width="723" data-file-height="524" /></a><figcaption><i>Channel formation in nMOS MOSFET shown as <a href="/wiki/Band_diagram" title="Band diagram">band diagram</a></i>: Top panels: An applied gate voltage bends bands, depleting holes from surface (left). The charge inducing the bending is balanced by a layer of negative acceptor-ion charge (right). Bottom panel: A larger applied voltage further depletes holes but conduction band lowers enough in energy to populate a conducting channel.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Illustration_of_C-V_measurement.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/7/78/Illustration_of_C-V_measurement.gif" decoding="async" width="322" height="308" class="mw-file-element" data-file-width="322" data-file-height="308" /></a><figcaption>C–V profile for a bulk MOSFET with different oxide thickness. The leftmost part of the curve corresponds to accumulation. The valley in the middle corresponds to depletion. The curve on the right corresponds to inversion.</figcaption></figure> <p>A MOSFET is based on the modulation of charge concentration by a MOS capacitance between a <i>body</i> electrode and a <i>gate</i> electrode located above the body and insulated from all other device regions by a gate dielectric layer. If dielectrics other than an oxide are employed, the device may be referred to as a metal-insulator-semiconductor FET (MISFET). Compared to the MOS capacitor, the MOSFET includes two additional terminals (<i>source</i> and <i>drain</i>), each connected to individual highly doped regions that are separated by the body region. These regions can be either p or n type, but they must both be of the same type, and of opposite type to the body region. The source and drain (unlike the body) are highly doped as signified by a "+" sign after the type of doping. </p><p>If the MOSFET is an n-channel or nMOS FET, then the source and drain are <i>n+</i> regions and the body is a <i>p</i> region. If the MOSFET is a p-channel or pMOS FET, then the source and drain are <i>p+</i> regions and the body is a <i>n</i> region. The source is so named because it is the source of the charge carriers (electrons for n-channel, holes for p-channel) that flow through the channel; similarly, the drain is where the charge carriers leave the channel. </p><p>The occupancy of the energy bands in a semiconductor is set by the position of the <a href="/wiki/Fermi_level" title="Fermi level">Fermi level</a> relative to the semiconductor energy-band edges. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Depletion_region" title="Depletion region">Depletion region</a></div> <p>With sufficient gate voltage, the valence band edge is driven far from the Fermi level, and holes from the body are driven away from the gate. </p><p>At larger gate bias still, near the semiconductor surface the conduction band edge is brought close to the Fermi level, populating the surface with electrons in an <i>inversion layer</i> or <i>n-channel</i> at the interface between the p region and the oxide. This conducting channel extends between the source and the drain, and current is conducted through it when a voltage is applied between the two electrodes. Increasing the voltage on the gate leads to a higher electron density in the inversion layer and therefore increases the current flow between the source and drain. For gate voltages below the threshold value, the channel is lightly populated, and only a very small <a href="/wiki/Subthreshold_leakage" class="mw-redirect" title="Subthreshold leakage">subthreshold leakage</a> current can flow between the source and the drain. </p><p>When a negative gate-source voltage (positive source-gate) is applied, it creates a <i>p-channel</i> at the surface of the n region, analogous to the n-channel case, but with opposite polarities of charges and voltages. When a voltage less negative than the threshold value (a negative voltage for the p-channel) is applied between gate and source, the channel disappears and only a very small subthreshold current can flow between the source and the drain. The device may comprise a <a href="/wiki/Silicon_on_insulator" title="Silicon on insulator">silicon on insulator</a> device in which a buried oxide is formed below a thin semiconductor layer. If the channel region between the gate dielectric and the buried oxide region is very thin, the channel is referred to as an ultrathin channel region with the source and drain regions formed on either side in or above the thin semiconductor layer. Other semiconductor materials may be employed. When the source and drain regions are formed above the channel in whole or in part, they are referred to as raised source/drain regions. </p> <table class="wikitable"> <caption>Comparison of n- and p-type MOSFETs<sup id="cite_ref-memory_25-0" class="reference"><a href="#cite_note-memory-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </caption> <tbody><tr> <th colspan="2">Parameter </th> <th>nMOSFET </th> <th>pMOSFET </th></tr> <tr> <th colspan="2">Source/drain type </th> <td>n-type </td> <td>p-type </td></tr> <tr> <th colspan="2"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><div class="plainlist"><ul><li>Channel type</li><li>(MOS capacitor)</li></ul></div> </th> <td>n-type </td> <td>p-type </td></tr> <tr> <th rowspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist"><ul><li>Gate</li><li>type</li></ul></div> </th> <th>Polysilicon </th> <td>n+ </td> <td>p+ </td></tr> <tr> <th>Metal </th> <td><abbr title="Metal's workfunction">φ<sub>m</sub></abbr> ~ Si conduction band </td> <td>φ<sub>m</sub> ~ Si valence band </td></tr> <tr> <th colspan="2">Well type </th> <td>p-type </td> <td>n-type </td></tr> <tr> <th colspan="2">Threshold voltage, <i>V</i><sub>th</sub> </th> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist"><ul><li>Positive (enhancement)</li><li>Negative (depletion)</li></ul></div> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"><div class="plainlist"><ul><li>Negative (enhancement)</li><li>Positive (depletion)</li></ul></div> </td></tr> <tr> <th colspan="2">Band-bending </th> <td>Downwards </td> <td>Upwards </td></tr> <tr> <th colspan="2">Inversion layer carriers </th> <td>Electrons </td> <td>Holes </td></tr> <tr> <th colspan="2">Substrate type </th> <td>p-type </td> <td>n-type </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Modes_of_operation">Modes of operation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=7" title="Edit section: Modes of operation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:MOSFET_functioning.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/MOSFET_functioning.svg/440px-MOSFET_functioning.svg.png" decoding="async" width="440" height="238" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a9/MOSFET_functioning.svg/660px-MOSFET_functioning.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a9/MOSFET_functioning.svg/880px-MOSFET_functioning.svg.png 2x" data-file-width="613" data-file-height="331" /></a><figcaption>Source tied to the body to ensure no body bias:<span class="avoidwrap" style="display:inline-block;">top left: Subthreshold, top right: Ohmic mode,</span> bottom left: Active mode at onset of pinch-off, bottom right: Active mode well into pinch-off – channel length modulation evident</figcaption></figure> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Mosfet_n-ch_circuit.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Mosfet_n-ch_circuit.svg/260px-Mosfet_n-ch_circuit.svg.png" decoding="async" width="260" height="240" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Mosfet_n-ch_circuit.svg/390px-Mosfet_n-ch_circuit.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Mosfet_n-ch_circuit.svg/520px-Mosfet_n-ch_circuit.svg.png 2x" data-file-width="571" data-file-height="528" /></a><figcaption>Example application of an n-channel MOSFET. When the switch is pushed, the LED lights up.<sup id="cite_ref-brunningsoftware_co_uk-FET_26-0" class="reference"><a href="#cite_note-brunningsoftware_co_uk-FET-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>The operation of a MOSFET can be separated into three different modes, depending on the voltages at the terminals. In the following discussion, a simplified algebraic model is used.<sup id="cite_ref-Hodges_27-0" class="reference"><a href="#cite_note-Hodges-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> Modern MOSFET characteristics are more complex than the algebraic model presented here.<sup id="cite_ref-Hu_28-0" class="reference"><a href="#cite_note-Hu-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p><p>For an <i>enhancement-mode, n-channel MOSFET</i>, the three operational modes are: </p> <div class="mw-heading mw-heading4"><h4 id="Cutoff,_subthreshold,_and_weak-inversion_mode"><span id="Cutoff.2C_subthreshold.2C_and_weak-inversion_mode"></span>Cutoff, subthreshold, and weak-inversion mode</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=8" title="Edit section: Cutoff, subthreshold, and weak-inversion mode"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When <i>V</i><sub>GS</sub> < <i>V</i><sub>th</sub>: </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\text{GS}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>GS</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\text{GS}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1416f99dfb54393e0a4708ad943d93f029a0ff2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.791ex; height:2.509ex;" alt="{\displaystyle V_{\text{GS}}}"></span> is gate-to-source bias and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\text{th}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>th</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\text{th}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43002a5e3bb80d348d2ec4973c199a4c9c13d220" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.141ex; height:2.509ex;" alt="{\displaystyle V_{\text{th}}}"></span> is the <a href="/wiki/Threshold_voltage" title="Threshold voltage">threshold voltage</a> of the device. </p><p>According to the basic threshold model, the transistor is turned off, and there is no conduction between drain and source. A more accurate model considers the effect of thermal energy on the <a href="/wiki/Fermi%E2%80%93Dirac_distribution" class="mw-redirect" title="Fermi–Dirac distribution">Fermi–Dirac distribution</a> of electron energies which allow some of the more energetic electrons at the source to enter the channel and flow to the drain. This results in a subthreshold current that is an exponential function of gate-source voltage. While the current between drain and source should ideally be zero when the transistor is being used as a turned-off switch, there is a weak-inversion current, sometimes called subthreshold leakage. </p><p>In weak inversion where the source is tied to bulk, the current varies exponentially with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\text{GS}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>GS</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\text{GS}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1416f99dfb54393e0a4708ad943d93f029a0ff2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.791ex; height:2.509ex;" alt="{\displaystyle V_{\text{GS}}}"></span> as given approximately by:<sup id="cite_ref-Gray-Meyer_29-0" class="reference"><a href="#cite_note-Gray-Meyer-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-vanRoermund_30-0" class="reference"><a href="#cite_note-vanRoermund-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\text{D}}\approx I_{\text{D0}}e^{\frac {V_{\text{GS}}-V_{\text{th}}}{nV_{\text{T}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>D</mtext> </mrow> </msub> <mo>≈<!-- ≈ --></mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>D0</mtext> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>GS</mtext> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>th</mtext> </mrow> </msub> </mrow> <mrow> <mi>n</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{\text{D}}\approx I_{\text{D0}}e^{\frac {V_{\text{GS}}-V_{\text{th}}}{nV_{\text{T}}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/563dbce0084e6e67231f3bae0d00ff1f9d092958" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.652ex; height:4.843ex;" alt="{\displaystyle I_{\text{D}}\approx I_{\text{D0}}e^{\frac {V_{\text{GS}}-V_{\text{th}}}{nV_{\text{T}}}},}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\text{D0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>D0</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{\text{D0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/543b687d5422f18efbd42376d9067bc68de972c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.333ex; height:2.509ex;" alt="{\displaystyle I_{\text{D0}}}"></span> = current at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\text{GS}}=V_{\text{th}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>GS</mtext> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>th</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\text{GS}}=V_{\text{th}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e20f7ac5d06a788ef5a8d20f244f73f028ee54f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.031ex; height:2.509ex;" alt="{\displaystyle V_{\text{GS}}=V_{\text{th}}}"></span>, the thermal voltage <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\text{T}}=kT/q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </msub> <mo>=</mo> <mi>k</mi> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\text{T}}=kT/q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bbbe59e8cacba5d87c5430274eb4061447c4468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.952ex; height:2.843ex;" alt="{\displaystyle V_{\text{T}}=kT/q}"></span> and the slope factor <i>n</i> is given by: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1+{\frac {C_{\text{dep}}}{C_{\text{ox}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>dep</mtext> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>ox</mtext> </mrow> </msub> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1+{\frac {C_{\text{dep}}}{C_{\text{ox}}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/580b6656192309f51d9a57080f08614dd3bf2063" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:14.431ex; height:6.176ex;" alt="{\displaystyle n=1+{\frac {C_{\text{dep}}}{C_{\text{ox}}}},}"></span> </p><p>with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{\text{dep}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>dep</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{\text{dep}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d1b6876f4d8536d85377bb883bb4052ed02929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.452ex; height:2.843ex;" alt="{\displaystyle C_{\text{dep}}}"></span> = capacitance of the depletion layer and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{\text{ox}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>ox</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{\text{ox}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efed5f3602e07dd428c6048133ce77f620b79c4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.584ex; height:2.509ex;" alt="{\displaystyle C_{\text{ox}}}"></span> = capacitance of the oxide layer. This equation is generally used, but is only an adequate approximation for the source tied to the bulk. For the source not tied to the bulk, the subthreshold equation for drain current in saturation is<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\text{D}}\approx I_{\text{D0}}e^{\frac {V_{\text{G}}-V_{\text{th}}}{nV_{\text{T}}}}e^{-{\frac {V_{\text{S}}}{V_{\text{T}}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>D</mtext> </mrow> </msub> <mo>≈<!-- ≈ --></mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>D0</mtext> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>G</mtext> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>th</mtext> </mrow> </msub> </mrow> <mrow> <mi>n</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>S</mtext> </mrow> </msub> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </msub> </mfrac> </mrow> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{\text{D}}\approx I_{\text{D0}}e^{\frac {V_{\text{G}}-V_{\text{th}}}{nV_{\text{T}}}}e^{-{\frac {V_{\text{S}}}{V_{\text{T}}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/024bb07e606f55da7532b41944cd410916d3e0e2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.215ex; height:4.843ex;" alt="{\displaystyle I_{\text{D}}\approx I_{\text{D0}}e^{\frac {V_{\text{G}}-V_{\text{th}}}{nV_{\text{T}}}}e^{-{\frac {V_{\text{S}}}{V_{\text{T}}}}}.}"></span> </p><p>In a long-channel device, there is no drain voltage dependence of the current once <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\text{DS}}\gg V_{\text{T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>DS</mtext> </mrow> </msub> <mo>≫<!-- ≫ --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\text{DS}}\gg V_{\text{T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96e127ed4da51496c3541adc1d1c18978c1a2112" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.145ex; height:2.509ex;" alt="{\displaystyle V_{\text{DS}}\gg V_{\text{T}}}"></span>, but as channel length is reduced <a href="/wiki/Drain-induced_barrier_lowering" title="Drain-induced barrier lowering">drain-induced barrier lowering</a> introduces drain voltage dependence that depends in a complex way upon the device geometry (for example, the channel doping, the junction doping and so on). Frequently, threshold voltage <i>V</i><sub>th</sub> for this mode is defined as the gate voltage at which a selected value of current <i>I</i><sub>D0</sub> occurs, for example, <i>I</i><sub>D0</sub> = 1<span class="nowrap"> </span>μA, which may not be the same <i>V</i><sub>th</sub>-value used in the equations for the following modes. </p><p>Some micropower analog circuits are designed to take advantage of subthreshold conduction.<sup id="cite_ref-Smith-Hamilton_33-0" class="reference"><a href="#cite_note-Smith-Hamilton-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Kumar_34-0" class="reference"><a href="#cite_note-Kumar-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Conference_35-0" class="reference"><a href="#cite_note-Conference-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> By working in the weak-inversion region, the MOSFETs in these circuits deliver the highest possible transconductance-to-current ratio, namely: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{m}/I_{\text{D}}=1/\left(nV_{\text{T}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>D</mtext> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{m}/I_{\text{D}}=1/\left(nV_{\text{T}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4e48bf416544d5273c34dd1ed9f21ace8ea04aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.246ex; height:2.843ex;" alt="{\displaystyle g_{m}/I_{\text{D}}=1/\left(nV_{\text{T}}\right)}"></span>, almost that of a bipolar transistor.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p><p>The subthreshold <i><a href="/wiki/I%E2%80%93V_curve" class="mw-redirect" title="I–V curve">I–V curve</a></i> depends exponentially upon threshold voltage, introducing a strong dependence on any manufacturing variation that affects threshold voltage; for example: variations in oxide thickness, junction depth, or body doping that change the degree of drain-induced barrier lowering. The resulting sensitivity to fabricational variations complicates optimization for leakage and performance.<sup id="cite_ref-Shukla_37-0" class="reference"><a href="#cite_note-Shukla-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Srivasta_38-0" class="reference"><a href="#cite_note-Srivasta-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:IvsV_mosfet.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/IvsV_mosfet.svg/260px-IvsV_mosfet.svg.png" decoding="async" width="260" height="173" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/IvsV_mosfet.svg/390px-IvsV_mosfet.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/18/IvsV_mosfet.svg/520px-IvsV_mosfet.svg.png 2x" data-file-width="480" data-file-height="320" /></a><figcaption>MOSFET drain current vs. drain-to-source voltage for several values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\text{GS}}-V_{\text{th}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>GS</mtext> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>th</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\text{GS}}-V_{\text{th}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8efafd33df4bb6f87cb84c6f0b728899410701bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.773ex; height:2.509ex;" alt="{\displaystyle V_{\text{GS}}-V_{\text{th}}}"></span>; the boundary between <i>linear</i> (<i>Ohmic</i>) and <i>saturation</i> (<i>active</i>) modes is indicated by the upward curving parabola.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Mosfet_linear.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/Mosfet_linear.svg/260px-Mosfet_linear.svg.png" decoding="async" width="260" height="124" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/Mosfet_linear.svg/390px-Mosfet_linear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/63/Mosfet_linear.svg/520px-Mosfet_linear.svg.png 2x" data-file-width="1052" data-file-height="500" /></a><figcaption>Cross section of a MOSFET operating in the linear (Ohmic) region; strong inversion region present even near drain.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Mosfet_saturation.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Mosfet_saturation.svg/260px-Mosfet_saturation.svg.png" decoding="async" width="260" height="124" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Mosfet_saturation.svg/390px-Mosfet_saturation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/69/Mosfet_saturation.svg/520px-Mosfet_saturation.svg.png 2x" data-file-width="1052" data-file-height="500" /></a><figcaption>Cross section of a MOSFET operating in the saturation (active) region; channel exhibits <a href="/wiki/Channel_length_modulation" title="Channel length modulation">channel pinching</a> near drain.</figcaption></figure> <div class="mw-heading mw-heading4"><h4 id="Triode_mode_or_linear_region_(also_known_as_the_ohmic_mode)"><span id="Triode_mode_or_linear_region_.28also_known_as_the_ohmic_mode.29"></span>Triode mode or linear region (also known as the ohmic mode)<span class="anchor" id="Linear_mode"></span></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=9" title="Edit section: Triode mode or linear region (also known as the ohmic mode)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When <i>V</i><sub>GS</sub> > <i>V</i><sub>th</sub> and <i>V</i><sub>DS</sub> < <i>V</i><sub>GS</sub> − <i>V</i><sub>th</sub>: </p><p>The transistor is turned on, and a channel has been created which allows current between the drain and the source. The MOSFET operates like a resistor, controlled by the gate voltage relative to both the source and drain voltages. The current from drain to source is modeled as: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\text{D}}=\mu _{n}C_{\text{ox}}{\frac {W}{L}}\left(\left(V_{\text{GS}}-V_{\rm {th}}\right)V_{\text{DS}}-{\frac {{V_{\text{DS}}}^{2}}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>D</mtext> </mrow> </msub> <mo>=</mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>ox</mtext> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>W</mi> <mi>L</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>GS</mtext> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">h</mi> </mrow> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>DS</mtext> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>DS</mtext> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{\text{D}}=\mu _{n}C_{\text{ox}}{\frac {W}{L}}\left(\left(V_{\text{GS}}-V_{\rm {th}}\right)V_{\text{DS}}-{\frac {{V_{\text{DS}}}^{2}}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3299fd34b98b3cb79c8930e54930fc688ed856d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:43.107ex; height:6.343ex;" alt="{\displaystyle I_{\text{D}}=\mu _{n}C_{\text{ox}}{\frac {W}{L}}\left(\left(V_{\text{GS}}-V_{\rm {th}}\right)V_{\text{DS}}-{\frac {{V_{\text{DS}}}^{2}}{2}}\right)}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/267d03f9351dcc8d3d3ac7cad59ea3ba4fecbfef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.62ex; height:2.176ex;" alt="{\displaystyle \mu _{n}}"></span> is the charge-carrier effective mobility, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> is the gate width, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> is the gate length and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{\text{ox}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>ox</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{\text{ox}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efed5f3602e07dd428c6048133ce77f620b79c4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.584ex; height:2.509ex;" alt="{\displaystyle C_{\text{ox}}}"></span> is the gate oxide capacitance per unit area. The transition from the exponential subthreshold region to the triode region is not as sharp as the equations suggest.<sup id="cite_ref-Schneider_39-0" class="reference"><a href="#cite_note-Schneider-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Malik_40-0" class="reference"><a href="#cite_note-Malik-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability"><span title="Citations were unhelpfully attached to the heading. Please move to indicate which claims they support, or leave here if the whole section (January 2023)">verification needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading4"><h4 id="Saturation_or_active_mode">Saturation or active mode</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=10" title="Edit section: Saturation or active mode"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When <i>V<sub>GS</sub> > V</i><sub>th</sub> and <i>V<sub>DS</sub></i> ≥ (V<i><sub>GS</sub> – V</i><sub>th</sub>): </p><p>The switch is turned on, and a channel has been created, which allows current between the drain and source. Since the drain voltage is higher than the source voltage, the electrons spread out, and conduction is not through a narrow channel but through a broader, two- or three-dimensional current distribution extending away from the interface and deeper in the substrate. The onset of this region is also known as <a href="/wiki/Channel_length_modulation" title="Channel length modulation">pinch-off</a> to indicate the lack of channel region near the drain. Although the channel does not extend the full length of the device, the electric field between the drain and the channel is very high, and conduction continues. The drain current is now weakly dependent upon drain voltage and controlled primarily by the gate-source voltage, and modeled approximately as: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\text{D}}={\frac {\mu _{n}C_{\text{ox}}}{2}}{\frac {W}{L}}\left[V_{\text{GS}}-V_{\text{th}}\right]^{2}\left[1+\lambda V_{\text{DS}}\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>D</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>ox</mtext> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>W</mi> <mi>L</mi> </mfrac> </mrow> <msup> <mrow> <mo>[</mo> <mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>GS</mtext> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>th</mtext> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>[</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>λ<!-- λ --></mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>DS</mtext> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{\text{D}}={\frac {\mu _{n}C_{\text{ox}}}{2}}{\frac {W}{L}}\left[V_{\text{GS}}-V_{\text{th}}\right]^{2}\left[1+\lambda V_{\text{DS}}\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab6146f7030866326fffec031884078923b27b02" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:39.872ex; height:5.509ex;" alt="{\displaystyle I_{\text{D}}={\frac {\mu _{n}C_{\text{ox}}}{2}}{\frac {W}{L}}\left[V_{\text{GS}}-V_{\text{th}}\right]^{2}\left[1+\lambda V_{\text{DS}}\right].}"></span> </p><p>The additional factor involving λ, the channel-length modulation parameter, models current dependence on drain voltage due to the <a href="/wiki/Early_effect" title="Early effect">Early effect</a>, or <a href="/wiki/Channel_length_modulation" title="Channel length modulation">channel length modulation</a>. According to this equation, a key design parameter, the MOSFET transconductance is: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{m}={\frac {\partial I_{D}}{\partial V_{\text{GS}}}}={\frac {2I_{\text{D}}}{V_{\text{GS}}-V_{\text{th}}}}={\frac {2I_{\text{D}}}{V_{\text{ov}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>GS</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>D</mtext> </mrow> </msub> </mrow> <mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>GS</mtext> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>th</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>D</mtext> </mrow> </msub> </mrow> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>ov</mtext> </mrow> </msub> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{m}={\frac {\partial I_{D}}{\partial V_{\text{GS}}}}={\frac {2I_{\text{D}}}{V_{\text{GS}}-V_{\text{th}}}}={\frac {2I_{\text{D}}}{V_{\text{ov}}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/821e3617623b924bfe2f96cff6206f13e24467ac" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.791ex; height:5.843ex;" alt="{\displaystyle g_{m}={\frac {\partial I_{D}}{\partial V_{\text{GS}}}}={\frac {2I_{\text{D}}}{V_{\text{GS}}-V_{\text{th}}}}={\frac {2I_{\text{D}}}{V_{\text{ov}}}},}"></span> </p><p>where the combination <i>V</i><sub>ov</sub> = <i>V</i><sub>GS</sub> − <i>V</i><sub>th</sub> is called the <a href="/wiki/Overdrive_voltage" title="Overdrive voltage">overdrive voltage</a>,<sup id="cite_ref-Sedra2_41-0" class="reference"><a href="#cite_note-Sedra2-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> and where <i>V</i><sub>DSsat</sub> = <i>V</i><sub>GS</sub> − <i>V</i><sub>th</sub> accounts for a small discontinuity in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\text{D}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>D</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{\text{D}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5333eefaa0cabfb5bb0685facc99ce0db8d18ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.511ex; height:2.509ex;" alt="{\displaystyle I_{\text{D}}}"></span> which would otherwise appear at the transition between the triode and saturation regions. </p><p>Another key design parameter is the MOSFET output resistance <i>r<sub>out</sub></i> given by: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{\text{out}}={\frac {1}{\lambda I_{\text{D}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>out</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>λ<!-- λ --></mi> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>D</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{\text{out}}={\frac {1}{\lambda I_{\text{D}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef2d7c1550d5864d597f96c984af6d991b5a85a0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.457ex; height:5.676ex;" alt="{\displaystyle r_{\text{out}}={\frac {1}{\lambda I_{\text{D}}}}}"></span>. </p><p><i>r</i><sub>out</sub> is the inverse of <i>g</i><sub>DS</sub> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\text{DS}}={\frac {\partial I_{\text{DS}}}{\partial V_{\text{DS}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>DS</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>DS</mtext> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>DS</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\text{DS}}={\frac {\partial I_{\text{DS}}}{\partial V_{\text{DS}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1e4abe78308c5c6ad9b1ee5526627f3ad5e1b99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:12.52ex; height:5.843ex;" alt="{\displaystyle g_{\text{DS}}={\frac {\partial I_{\text{DS}}}{\partial V_{\text{DS}}}}}"></span>. <i>I</i><sub>D</sub> is the expression in saturation region. </p><p>If λ is taken as zero, an infinite output resistance of the device results that leads to unrealistic circuit predictions, particularly in analog circuits. </p><p>As the channel length becomes very short, these equations become quite inaccurate. New physical effects arise. For example, carrier transport in the active mode may become limited by <a href="/wiki/Velocity_saturation" class="mw-redirect" title="Velocity saturation">velocity saturation</a>. When velocity saturation dominates, the saturation drain current is more nearly linear than quadratic in <i>V</i><sub>GS</sub>. At even shorter lengths, carriers transport with near zero scattering, known as quasi-<a href="/wiki/Ballistic_transport" class="mw-redirect" title="Ballistic transport">ballistic transport</a>. In the ballistic regime, the carriers travel at an injection velocity that may exceed the saturation velocity and approaches the <a href="/wiki/Fermi_velocity" class="mw-redirect" title="Fermi velocity">Fermi velocity</a> at high inversion charge density. In addition, drain-induced barrier lowering increases off-state (cutoff) current and requires an increase in threshold voltage to compensate, which in turn reduces the saturation current.<sup id="cite_ref-Gray-Meyer2_42-0" class="reference"><a href="#cite_note-Gray-Meyer2-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Sedra_43-0" class="reference"><a href="#cite_note-Sedra-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability"><span title="Citations were unhelpfully attached to the heading. Please move to indicate which claims they support, or leave here if the whole section (January 2023)">verification needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Body_effect">Body effect</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=11" title="Edit section: Body effect"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Inversion_with_source-body_bias.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Inversion_with_source-body_bias.png/260px-Inversion_with_source-body_bias.png" decoding="async" width="260" height="327" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Inversion_with_source-body_bias.png/390px-Inversion_with_source-body_bias.png 1.5x, //upload.wikimedia.org/wikipedia/commons/2/2a/Inversion_with_source-body_bias.png 2x" data-file-width="455" data-file-height="572" /></a><figcaption><a href="/wiki/Band_diagram" title="Band diagram">Band diagram</a> showing body effect. <i>V</i><sub>SB</sub> splits Fermi levels F<sub>n</sub> for electrons and F<sub>p</sub> for holes, requiring larger <i>V</i><sub>GB</sub> to populate the conduction band in an nMOS MOSFET.</figcaption></figure> <p>The occupancy of the energy bands in a semiconductor is set by the position of the <a href="/wiki/Fermi_level#"Fermi_level"_in_semiconductor_physics" title="Fermi level">Fermi level</a> relative to the semiconductor energy-band edges. Application of a source-to-substrate reverse bias of the source-body pn-junction introduces a split between the Fermi levels for electrons and holes, moving the Fermi level for the channel further from the band edge, lowering the occupancy of the channel. The effect is to increase the gate voltage necessary to establish the channel, as seen in the figure. This change in channel strength by application of reverse bias is called the "body effect." </p><p>Using an nMOS example, the gate-to-body bias <i>V</i><sub>GB</sub> positions the conduction-band energy levels, while the source-to-body bias V<sub>SB</sub> positions the electron Fermi level near the interface, deciding occupancy of these levels near the interface, and hence the strength of the inversion layer or channel. </p><p>The body effect upon the channel can be described using a modification of the threshold voltage, approximated by the following equation: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\text{TB}}=V_{T0}+\gamma \left({\sqrt {V_{\text{SB}}+2\varphi _{B}}}-{\sqrt {2\varphi _{B}}}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>TB</mtext> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>γ<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>SB</mtext> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </msqrt> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\text{TB}}=V_{T0}+\gamma \left({\sqrt {V_{\text{SB}}+2\varphi _{B}}}-{\sqrt {2\varphi _{B}}}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cfc4dbb749671eafd8fac4ce20dfb3942848afc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:40.574ex; height:3.509ex;" alt="{\displaystyle V_{\text{TB}}=V_{T0}+\gamma \left({\sqrt {V_{\text{SB}}+2\varphi _{B}}}-{\sqrt {2\varphi _{B}}}\right),}"></span></dd></dl> <p>where <i>V</i><sub>TB</sub> is the threshold voltage with substrate bias present, and <i>V</i><sub>T0</sub> is the zero-<i>V</i><sub>SB</sub> value of threshold voltage, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> is the body effect parameter, and 2<i>φ</i><sub>B</sub> is the approximate potential drop between surface and bulk across the depletion layer when <span class="nowrap"><i>V</i><sub>SB</sub> = 0</span> and gate bias is sufficient to ensure that a channel is present.<sup id="cite_ref-inversion_44-0" class="reference"><a href="#cite_note-inversion-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> As this equation shows, a reverse bias <span class="nowrap"><i>V</i><sub>SB</sub> > 0</span> causes an increase in threshold voltage <i>V</i><sub>TB</sub> and therefore demands a larger gate voltage before the channel populates. </p><p>The body can be operated as a second gate, and is sometimes referred to as the "back gate"; the body effect is sometimes called the "back-gate effect".<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Circuit_symbols">Circuit symbols</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=12" title="Edit section: Circuit symbols"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A variety of symbols are used for the MOSFET. The basic design is generally a line for the channel with the source and drain leaving it at right angles and then bending back at right angles into the same direction as the channel. Sometimes three line segments are used for <a href="/wiki/Channel_(transistor)" class="mw-redirect" title="Channel (transistor)">enhancement mode</a> and a solid line for depletion mode (see <a href="/wiki/Depletion_and_enhancement_modes" title="Depletion and enhancement modes">depletion and enhancement modes</a>). Another line is drawn parallel to the channel for the gate. </p><p>The <i>bulk</i> or <i>body</i> connection, if shown, is shown connected to the back of the channel with an arrow indicating pMOS or nMOS. Arrows always point from P to N, so an NMOS (N-channel in P-well or P-substrate) has the arrow pointing in (from the bulk to the channel). If the bulk is connected to the source (as is generally the case with discrete devices) it is sometimes angled to meet the source leaving the transistor. If the bulk is not shown (as is often the case in IC design as they are generally common bulk) an inversion symbol is sometimes used to indicate PMOS, alternatively an arrow on the source may be used in the same way as for bipolar transistors (out for nMOS, in for pMOS). </p><p>Comparison of enhancement-mode and depletion-mode MOSFET symbols, along with <a href="/wiki/JFET" title="JFET">JFET</a> symbols. The orientation of the symbols, (most significantly the position of source relative to drain) is such that more positive voltages appear higher on the page than less positive voltages, implying <a href="/wiki/Electric_current#Conventional_current" title="Electric current">conventional current</a> flowing "down" the page:<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable" style="text-align:center;"> <tbody><tr> <th>P-channel </th> <td><span typeof="mw:File"><a href="/wiki/File:JFET_P-Channel_Labelled.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/JFET_P-Channel_Labelled.svg/80px-JFET_P-Channel_Labelled.svg.png" decoding="async" width="80" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/JFET_P-Channel_Labelled.svg/120px-JFET_P-Channel_Labelled.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/09/JFET_P-Channel_Labelled.svg/160px-JFET_P-Channel_Labelled.svg.png 2x" data-file-width="150" data-file-height="150" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:IGFET_P-Ch_Enh_Labelled.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/IGFET_P-Ch_Enh_Labelled.svg/80px-IGFET_P-Ch_Enh_Labelled.svg.png" decoding="async" width="80" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0c/IGFET_P-Ch_Enh_Labelled.svg/120px-IGFET_P-Ch_Enh_Labelled.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0c/IGFET_P-Ch_Enh_Labelled.svg/160px-IGFET_P-Ch_Enh_Labelled.svg.png 2x" data-file-width="150" data-file-height="150" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:IGFET_P-Ch_Enh_Labelled_simplified.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c4/IGFET_P-Ch_Enh_Labelled_simplified.svg/80px-IGFET_P-Ch_Enh_Labelled_simplified.svg.png" decoding="async" width="80" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c4/IGFET_P-Ch_Enh_Labelled_simplified.svg/120px-IGFET_P-Ch_Enh_Labelled_simplified.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c4/IGFET_P-Ch_Enh_Labelled_simplified.svg/160px-IGFET_P-Ch_Enh_Labelled_simplified.svg.png 2x" data-file-width="150" data-file-height="150" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Mosfet_P-Ch_Sedra.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Mosfet_P-Ch_Sedra.svg/80px-Mosfet_P-Ch_Sedra.svg.png" decoding="async" width="80" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Mosfet_P-Ch_Sedra.svg/120px-Mosfet_P-Ch_Sedra.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Mosfet_P-Ch_Sedra.svg/160px-Mosfet_P-Ch_Sedra.svg.png 2x" data-file-width="150" data-file-height="150" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:IGFET_P-Ch_Dep_Labelled.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/IGFET_P-Ch_Dep_Labelled.svg/80px-IGFET_P-Ch_Dep_Labelled.svg.png" decoding="async" width="80" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/IGFET_P-Ch_Dep_Labelled.svg/120px-IGFET_P-Ch_Dep_Labelled.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1b/IGFET_P-Ch_Dep_Labelled.svg/160px-IGFET_P-Ch_Dep_Labelled.svg.png 2x" data-file-width="150" data-file-height="150" /></a></span> </td></tr> <tr> <th>N-channel </th> <td><span typeof="mw:File"><a href="/wiki/File:JFET_N-Channel_Labelled.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/46/JFET_N-Channel_Labelled.svg/80px-JFET_N-Channel_Labelled.svg.png" decoding="async" width="80" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/46/JFET_N-Channel_Labelled.svg/120px-JFET_N-Channel_Labelled.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/46/JFET_N-Channel_Labelled.svg/160px-JFET_N-Channel_Labelled.svg.png 2x" data-file-width="150" data-file-height="150" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:IGFET_N-Ch_Enh_Labelled.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/62/IGFET_N-Ch_Enh_Labelled.svg/80px-IGFET_N-Ch_Enh_Labelled.svg.png" decoding="async" width="80" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/62/IGFET_N-Ch_Enh_Labelled.svg/120px-IGFET_N-Ch_Enh_Labelled.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/62/IGFET_N-Ch_Enh_Labelled.svg/160px-IGFET_N-Ch_Enh_Labelled.svg.png 2x" data-file-width="50" data-file-height="50" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:IGFET_N-Ch_Enh_Labelled_simplified.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/IGFET_N-Ch_Enh_Labelled_simplified.svg/80px-IGFET_N-Ch_Enh_Labelled_simplified.svg.png" decoding="async" width="80" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/IGFET_N-Ch_Enh_Labelled_simplified.svg/120px-IGFET_N-Ch_Enh_Labelled_simplified.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/61/IGFET_N-Ch_Enh_Labelled_simplified.svg/160px-IGFET_N-Ch_Enh_Labelled_simplified.svg.png 2x" data-file-width="150" data-file-height="150" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Mosfet_N-Ch_Sedra.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Mosfet_N-Ch_Sedra.svg/80px-Mosfet_N-Ch_Sedra.svg.png" decoding="async" width="80" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Mosfet_N-Ch_Sedra.svg/120px-Mosfet_N-Ch_Sedra.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Mosfet_N-Ch_Sedra.svg/160px-Mosfet_N-Ch_Sedra.svg.png 2x" data-file-width="150" data-file-height="150" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:IGFET_N-Ch_Dep_Labelled.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/IGFET_N-Ch_Dep_Labelled.svg/80px-IGFET_N-Ch_Dep_Labelled.svg.png" decoding="async" width="80" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/IGFET_N-Ch_Dep_Labelled.svg/120px-IGFET_N-Ch_Dep_Labelled.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e8/IGFET_N-Ch_Dep_Labelled.svg/160px-IGFET_N-Ch_Dep_Labelled.svg.png 2x" data-file-width="150" data-file-height="150" /></a></span> </td></tr> <tr> <th> </th> <th>JFET </th> <th>MOSFET <abbr title="enhancement mode">enh.</abbr> </th> <th colspan="2">MOSFET <abbr title="enhancement mode">enh.</abbr> (no bulk) </th> <th>MOSFET <abbr title="depletion mode">dep.</abbr> </th></tr></tbody></table> <p>In schematics where G, S, D are not labeled, the detailed features of the symbol indicate which terminal is source and which is drain. For enhancement-mode and depletion-mode MOSFET symbols (in columns two and five), the source terminal is the one connected to the triangle. Additionally, in this diagram, the gate is shown as an "L" shape, whose input leg is closer to S than D, also indicating which is which. However, these symbols are often drawn with a T-shaped gate (as elsewhere on this page), so it is the triangle which must be relied upon to indicate the source terminal. </p><p>For the symbols in which the bulk, or body, terminal is shown, it is here shown internally connected to the source (i.e., the black triangles in the diagrams in columns 2 and 5). This is a typical configuration, but by no means the only important configuration. In general, the MOSFET is a four-terminal device, and in integrated circuits many of the MOSFETs share a body connection, not necessarily connected to the source terminals of all the transistors. </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=13" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Digital <a href="/wiki/Integrated_circuit" title="Integrated circuit">integrated circuits</a> such as <a href="/wiki/Microprocessor" title="Microprocessor">microprocessors</a> and memory devices contain thousands to billions of integrated MOSFET transistors on each device, providing the basic switching functions required to implement <a href="/wiki/Logic_gate" title="Logic gate">logic gates</a> and <a href="/wiki/Data_storage" title="Data storage">data storage</a>. Discrete devices are widely used in applications such as <a href="/wiki/Switch_mode_power_supplies" class="mw-redirect" title="Switch mode power supplies">switch mode power supplies</a>, <a href="/wiki/Variable-frequency_drive" title="Variable-frequency drive">variable-frequency drives</a> and other <a href="/wiki/Power_electronics" title="Power electronics">power electronics</a> applications where each device may be switching thousands of watts. Radio-frequency amplifiers up to the <a href="/wiki/UHF" class="mw-redirect" title="UHF">UHF</a> spectrum use MOSFET transistors as analog signal and power amplifiers. Radio systems also use MOSFETs as oscillators, or <a href="/wiki/Frequency_mixer" title="Frequency mixer">mixers</a> to convert frequencies. MOSFET devices are also applied in audio-frequency power amplifiers for public address systems, <a href="/wiki/Sound_reinforcement" class="mw-redirect" title="Sound reinforcement">sound reinforcement</a> and home and automobile sound systems<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (December 2015)">citation needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading3"><h3 id="MOS_integrated_circuits">MOS integrated circuits</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=14" title="Edit section: MOS integrated circuits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Following the development of <a href="/wiki/Clean_room" class="mw-redirect" title="Clean room">clean rooms</a> to reduce contamination to levels never before thought necessary, and of <a href="/wiki/Photolithography" title="Photolithography">photolithography</a><sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> and the <a href="/wiki/Planar_process" title="Planar process">planar process</a> to allow circuits to be made in very few steps, the Si–SiO<sub>2</sub> system possessed the technical attractions of low cost of production (on a per circuit basis) and ease of integration. Largely because of these two factors, the MOSFET has become the most widely used type of transistor in the <a href="/wiki/Institution_of_Engineering_and_Technology" title="Institution of Engineering and Technology">Institution of Engineering and Technology</a> (IET).<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2023)">citation needed</span></a></i>]</sup> </p><p>General Microelectronics introduced the first commercial MOS integrated circuit in 1964.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> Additionally, the method of coupling two complementary MOSFETs (P-channel and N-channel) into one high/low switch, known as CMOS, means that digital circuits dissipate very little power except when actually switched. </p><p>The <a href="/wiki/Microprocessor_chronology" title="Microprocessor chronology">earliest microprocessors</a> starting in 1970 were all <i>MOS microprocessors</i>; i.e., fabricated entirely from <a href="/wiki/PMOS_logic" title="PMOS logic">PMOS logic</a> or fabricated entirely from <a href="/wiki/NMOS_logic" title="NMOS logic">NMOS logic</a>. In the 1970s, <i>MOS microprocessors</i> were often contrasted with <i>CMOS microprocessors</i> and <i>bipolar bit-slice processors</i>.<sup id="cite_ref-cushman_51-0" class="reference"><a href="#cite_note-cushman-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="CMOS_circuits">CMOS circuits</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=15" title="Edit section: CMOS circuits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The MOSFET is used in digital complementary metal–oxide–semiconductor (<a href="/wiki/CMOS" title="CMOS">CMOS</a>) logic,<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> which uses p- and n-channel MOSFETs as building blocks. Overheating is a major concern in <a href="/wiki/Integrated_circuit" title="Integrated circuit">integrated circuits</a> since ever more transistors are packed into ever smaller chips. CMOS logic reduces power consumption because no current flows (ideally), and thus no <a href="/wiki/Power_(physics)" title="Power (physics)">power</a> is consumed, except when the inputs to <a href="/wiki/Logic_gate" title="Logic gate">logic gates</a> are being switched. CMOS accomplishes this current reduction by complementing every nMOSFET with a pMOSFET and connecting both gates and both drains together. A high voltage on the gates will cause the nMOSFET to conduct and the pMOSFET not to conduct and a low voltage on the gates causes the reverse. During the switching time as the voltage goes from one state to another, both MOSFETs will conduct briefly. This arrangement greatly reduces power consumption and heat generation. </p> <div class="mw-heading mw-heading4"><h4 id="Digital">Digital</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=16" title="Edit section: Digital"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The growth of digital technologies like the <a href="/wiki/Microprocessor" title="Microprocessor">microprocessor</a> has provided the motivation to advance MOSFET technology faster than any other type of silicon-based transistor.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> A big advantage of MOSFETs for digital switching is that the oxide layer between the gate and the channel prevents DC current from flowing through the gate, further reducing power consumption and giving a very large input impedance. The insulating oxide between the gate and channel effectively isolates a MOSFET in one logic stage from earlier and later stages, which allows a single MOSFET output to drive a considerable number of MOSFET inputs. Bipolar transistor-based logic (such as <a href="/wiki/Transistor-transistor_logic" class="mw-redirect" title="Transistor-transistor logic">TTL</a>) does not have such a high fanout capacity. This isolation also makes it easier for the designers to ignore to some extent loading effects between logic stages independently. That extent is defined by the operating frequency: as frequencies increase, the input impedance of the MOSFETs decreases. </p> <div class="mw-heading mw-heading4"><h4 id="Analog">Analog</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=17" title="Edit section: Analog"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The MOSFET's advantages in digital circuits do not translate into supremacy in all <a href="/wiki/Analog_circuit" class="mw-redirect" title="Analog circuit">analog circuits</a>. The two types of circuit draw upon different features of transistor behavior. Digital circuits switch, spending most of their time either fully on or fully off. The transition from one to the other is only of concern with regards to speed and charge required. Analog circuits depend on operation in the transition region where small changes to <i>V</i><sub>gs</sub> can modulate the output (drain) current. The JFET and <a href="/wiki/Bipolar_junction_transistor" title="Bipolar junction transistor">bipolar junction transistor</a> (BJT) are preferred for accurate matching (of adjacent devices in integrated circuits), higher <a href="/wiki/Transconductance" title="Transconductance">transconductance</a> and certain temperature characteristics which simplify keeping performance predictable as circuit temperature varies. </p><p>Nevertheless, MOSFETs are widely used in many types of analog circuits because of their own advantages (zero gate current, high and adjustable output impedance and improved robustness vs. BJTs which can be permanently degraded by even lightly breaking down the emitter-base).<sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Vagueness" title="Wikipedia:Vagueness"><span title="This information is too vague. (January 2016)">vague</span></a></i>]</sup> The characteristics and performance of many analog circuits can be scaled up or down by changing the sizes (length and width) of the MOSFETs used. By comparison, in bipolar transistors follow a different <a href="/wiki/Scaling_law" class="mw-redirect" title="Scaling law">scaling law</a>. MOSFETs' ideal characteristics regarding gate current (zero) and drain-source offset voltage (zero) also make them nearly ideal switch elements, and also make <a href="/wiki/Switched_capacitor" title="Switched capacitor">switched capacitor</a> analog circuits practical. In their linear region, MOSFETs can be used as precision resistors, which can have a much higher controlled resistance than BJTs. In high power circuits, MOSFETs sometimes have the advantage of not suffering from <a href="/wiki/Thermal_runaway" title="Thermal runaway">thermal runaway</a> as BJTs do.<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Accuracy_dispute#Disputed_statement" title="Wikipedia:Accuracy dispute"><span title="Depends on circuit topology? (January 2016)">dubious</span></a> – <a href="/wiki/Talk:MOSFET#Dubious" title="Talk:MOSFET">discuss</a></i>]</sup> This means that complete analog circuits can be made on a silicon chip in a much smaller space and with simpler fabrication techniques. MOSFETS are ideally suited to switch inductive loads because of tolerance to <a href="/wiki/Counter-electromotive_force" title="Counter-electromotive force">inductive kickback</a>. </p><p>Some ICs combine analog and digital MOSFET circuitry on a single <a href="/wiki/Mixed-signal_integrated_circuit" title="Mixed-signal integrated circuit">mixed-signal integrated circuit</a>, making the needed board space even smaller. This creates a need to isolate the analog circuits from the digital circuits on a chip level, leading to the use of isolation rings and <a href="/wiki/Silicon_on_insulator" title="Silicon on insulator">silicon on insulator</a> (SOI). Since MOSFETs require more space to handle a given amount of power than a BJT, fabrication processes can incorporate BJTs and MOSFETs into a single device. Mixed-transistor devices are called bi-FETs (bipolar FETs) if they contain just one BJT-FET and <a href="/wiki/BiCMOS" title="BiCMOS">BiCMOS</a> (bipolar-CMOS) if they contain complementary BJT-FETs. Such devices have the advantages of both insulated gates and higher current density. </p> <div class="mw-heading mw-heading3"><h3 id="Analog_switches">Analog switches</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=18" title="Edit section: Analog switches"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/MOSFET" title="Special:EditPage/MOSFET">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">September 2016</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>MOSFET analog switches use the MOSFET to pass analog signals when on, and as a high impedance when off. Signals flow in both directions across a MOSFET switch. In this application, the drain and source of a MOSFET exchange places depending on the relative voltages of the source and drain electrodes. The source is the more negative side for an N-MOS or the more positive side for a P-MOS. All of these switches are limited on what signals they can pass or stop by their gate-source, gate-drain and source–drain voltages; exceeding the voltage, current, or power limits will potentially damage the switch. </p> <div class="mw-heading mw-heading4"><h4 id="Single-type">Single-type</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=19" title="Edit section: Single-type"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This analog switch uses a four-terminal simple MOSFET of either P or N type. </p><p>In the case of an n-type switch, the body is connected to the most negative supply (usually GND) and the gate is used as the switch control. Whenever the gate voltage exceeds the source voltage by at least a threshold voltage, the MOSFET conducts. The higher the voltage, the more the MOSFET can conduct. An N-MOS switch passes all voltages less than <i>V</i><sub>gate</sub> − <i>V</i><sub>tn</sub>. When the switch is conducting, it typically operates in the linear (or ohmic) mode of operation, since the source and drain voltages will typically be nearly equal. </p><p>In the case of a P-MOS, the body is connected to the most positive voltage, and the gate is brought to a lower potential to turn the switch on. The P-MOS switch passes all voltages higher than <i>V</i><sub>gate</sub> − <i>V</i><sub>tp</sub> (threshold voltage <i>V</i><sub>tp</sub> is negative in the case of enhancement-mode P-MOS). </p> <div class="mw-heading mw-heading4"><h4 id="Dual-type_(CMOS)"><span id="Dual-type_.28CMOS.29"></span>Dual-type (CMOS)</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=20" title="Edit section: Dual-type (CMOS)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This "complementary" or CMOS type of switch uses one P-MOS and one N-MOS FET to counteract the limitations of the single-type switch. The FETs have their drains and sources connected in parallel, the body of the P-MOS is connected to the high potential (<i>V</i><sub>DD</sub>) and the body of the N-MOS is connected to the low potential (<i>gnd</i>). To turn the switch on, the gate of the P-MOS is driven to the low potential and the gate of the N-MOS is driven to the high potential. For voltages between <i>V</i><sub>DD</sub> − <i>V</i><sub>tn</sub> and <i>gnd</i> − <i>V</i><sub>tp</sub>, both FETs conduct the signal; for voltages less than <i>gnd</i> − <i>V</i><sub>tp</sub>, the N-MOS conducts alone; and for voltages greater than <i>V</i><sub>DD</sub> − <i>V</i><sub>tn</sub>, the P-MOS conducts alone. </p><p>The voltage limits for this switch are the gate-source, gate-drain and source-drain voltage limits for both FETs. Also, the P-MOS is typically two to three times wider than the N-MOS, so the switch will be balanced for speed in the two directions. </p><p><a href="/wiki/Three-state_logic" title="Three-state logic">Tri-state circuitry</a> sometimes incorporates a CMOS MOSFET switch on its output to provide for a low-ohmic, full-range output when on, and a high-ohmic, mid-level signal when off. </p> <div class="mw-heading mw-heading2"><h2 id="Construction">Construction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=21" title="Edit section: Construction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Gate_material">Gate material</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=22" title="Edit section: Gate material"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The primary criterion for the gate material is that it is a good <a href="/wiki/Conductor_(material)" class="mw-redirect" title="Conductor (material)">conductor</a>. Highly doped <a href="/wiki/Polycrystalline_silicon" title="Polycrystalline silicon">polycrystalline silicon</a> is an acceptable but certainly not ideal conductor, and also suffers from some more technical deficiencies in its role as the standard gate material. Nevertheless, there are several reasons favoring use of polysilicon: </p> <ol><li>The <a href="/wiki/Threshold_voltage" title="Threshold voltage">threshold voltage</a> (and consequently the drain to source on-current) is modified by the <a href="/wiki/Work_function" title="Work function">work function</a> difference between the gate material and channel material. Because polysilicon is a semiconductor, its work function can be modulated by adjusting the type and level of doping. Furthermore, because polysilicon has the same <a href="/wiki/Bandgap" class="mw-redirect" title="Bandgap">bandgap</a> as the underlying silicon channel, it is quite straightforward to tune the work function to achieve low threshold voltages for both NMOS and PMOS devices. By contrast, the work functions of metals are not easily modulated, so tuning the <a href="/wiki/Work_function" title="Work function">work function</a> to obtain <a href="/wiki/Low_threshold_voltage" class="mw-redirect" title="Low threshold voltage">low threshold voltages</a> (LVT) becomes a significant challenge. Additionally, obtaining low-threshold devices on both PMOS and NMOS devices sometimes requires the use of different metals for each device type.</li> <li>The silicon-SiO<sub>2</sub> interface has been well studied and is known to have relatively few defects. By contrast many metal-insulator interfaces contain significant levels of defects which can lead to <a href="/wiki/Fermi_level_pinning" class="mw-redirect" title="Fermi level pinning">Fermi level pinning</a>, charging, or other phenomena that ultimately degrade device performance.</li> <li>In the MOSFET <a href="/wiki/IC_fabrication" class="mw-redirect" title="IC fabrication">IC fabrication</a> process, it is preferable to deposit the gate material prior to certain high-temperature steps in order to make better-performing transistors. Such high temperature steps would melt some metals, limiting the types of metal that can be used in a metal-gate-based process.</li></ol> <p>While polysilicon gates have been the de facto standard for the last twenty years, they do have some disadvantages which have led to their likely future replacement by metal gates. These disadvantages include: </p> <ul><li>Polysilicon is not a great conductor (approximately 1000 times more resistive than metals) which reduces the signal propagation speed through the material. The resistivity can be lowered by increasing the level of doping, but even highly doped polysilicon is not as conductive as most metals. To improve conductivity further, sometimes a high-temperature metal such as <a href="/wiki/Tungsten" title="Tungsten">tungsten</a>, <a href="/wiki/Titanium" title="Titanium">titanium</a>, <a href="/wiki/Cobalt" title="Cobalt">cobalt</a>, and more recently <a href="/wiki/Nickel" title="Nickel">nickel</a> is alloyed with the top layers of the polysilicon. Such a blended material is called <a href="/wiki/Silicide" title="Silicide">silicide</a>. The silicide-polysilicon combination has better electrical properties than polysilicon alone and still does not melt in subsequent processing. Also the threshold voltage is not significantly higher than with polysilicon alone, because the silicide material is not near the channel. The process in which silicide is formed on both the gate electrode and the source and drain regions is sometimes called <a href="/wiki/Salicide" title="Salicide">salicide</a>, self-aligned silicide.</li> <li>When the transistors are extremely scaled down, it is necessary to make the gate dielectric layer very thin, around 1 nm in state-of-the-art technologies. A phenomenon observed here is the so-called <a href="/wiki/Poly_depletion" class="mw-redirect" title="Poly depletion">poly depletion</a>, where a depletion layer is formed in the gate polysilicon layer next to the gate dielectric when the transistor is in the inversion. To avoid this problem, a metal gate is desired. A variety of metal gates such as <a href="/wiki/Tantalum" title="Tantalum">tantalum</a>, tungsten, <a href="/wiki/Tantalum_nitride" title="Tantalum nitride">tantalum nitride</a>, and <a href="/wiki/Titanium_nitride" title="Titanium nitride">titanium nitride</a> are used, usually in conjunction with <a href="/wiki/High-%CE%BA_dielectric" title="High-κ dielectric">high-κ dielectrics</a>. An alternative is to use fully silicided polysilicon gates, a process known as <a href="/w/index.php?title=FUSI&action=edit&redlink=1" class="new" title="FUSI (page does not exist)">FUSI</a>.</li></ul> <p>Present high performance CPUs use metal gate technology, together with <a href="/wiki/High-%CE%BA_dielectric" title="High-κ dielectric">high-κ dielectrics</a>, a combination known as <i>high-κ, metal gate</i> (HKMG). The disadvantages of metal gates are overcome by a few techniques:<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> </p> <ol><li>The threshold voltage is tuned by including a thin "work function metal" layer between the high-κ dielectric and the main metal. This layer is thin enough that the total work function of the gate is influenced by both the main metal and thin metal work functions (either due to alloying during annealing, or simply due to the incomplete screening by the thin metal). The threshold voltage thus can be tuned by the thickness of the thin metal layer.</li> <li>High-κ dielectrics are now well studied, and their defects are understood.</li> <li>HKMG processes exist that do not require the metals to experience high temperature anneals; other processes select metals that can survive the annealing step.</li></ol> <div class="mw-heading mw-heading3"><h3 id="Insulator">Insulator</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=23" title="Edit section: Insulator"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As devices are made smaller, insulating layers are made thinner, often through steps of <a href="/wiki/Thermal_oxidation" title="Thermal oxidation">thermal oxidation</a> or localised oxidation of silicon (<a href="/wiki/LOCOS" title="LOCOS">LOCOS</a>). For nano-scaled devices, at some point <a href="/wiki/Quantum_tunneling" class="mw-redirect" title="Quantum tunneling">tunneling</a> of carriers through the insulator from the channel to the gate electrode takes place. To reduce the resulting <a href="/wiki/Leakage_(semiconductors)" class="mw-redirect" title="Leakage (semiconductors)">leakage</a> current, the insulator can be made thinner by choosing a material with a higher dielectric constant. To see how thickness and dielectric constant are related, note that <a href="/wiki/Gauss%27s_law" title="Gauss's law">Gauss's law</a> connects field to charge as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q=\kappa \epsilon _{0}E,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo>=</mo> <mi>κ<!-- κ --></mi> <msub> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>E</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q=\kappa \epsilon _{0}E,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2f86cf228aeabe346bfd25a71fe2b39628e59b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.697ex; height:2.509ex;" alt="{\displaystyle Q=\kappa \epsilon _{0}E,}"></span></dd></dl> <p>with <i>Q</i> = charge density, κ = dielectric constant, ε<sub>0</sub> = permittivity of empty space and <i>E</i> = electric field. From this law it appears the same charge can be maintained in the channel at a lower field provided κ is increased. The voltage on the gate is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\text{G}}=V_{\text{ch}}+E\,t_{\text{ins}}=V_{\text{ch}}+{\frac {Qt_{\text{ins}}}{\kappa \epsilon _{0}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>G</mtext> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>ch</mtext> </mrow> </msub> <mo>+</mo> <mi>E</mi> <mspace width="thinmathspace" /> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>ins</mtext> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>ch</mtext> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Q</mi> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>ins</mtext> </mrow> </msub> </mrow> <mrow> <mi>κ<!-- κ --></mi> <msub> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\text{G}}=V_{\text{ch}}+E\,t_{\text{ins}}=V_{\text{ch}}+{\frac {Qt_{\text{ins}}}{\kappa \epsilon _{0}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b064c397cb8c3bc5c27533b17cb5b76fe9e47d0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:32.884ex; height:5.676ex;" alt="{\displaystyle V_{\text{G}}=V_{\text{ch}}+E\,t_{\text{ins}}=V_{\text{ch}}+{\frac {Qt_{\text{ins}}}{\kappa \epsilon _{0}}},}"></span></dd></dl> <p>with <i>V</i><sub>G</sub> = gate voltage, <i>V</i><sub>ch</sub> = voltage at channel side of insulator, and <i>t</i><sub>ins</sub> = insulator thickness. This equation shows the gate voltage will not increase when the insulator thickness increases, provided κ increases to keep <i>t</i><sub>ins</sub> / κ = constant (see the article on high-κ dielectrics for more detail, and the section in this article on <a href="#Increased_gate-oxide_leakage">gate-oxide leakage</a>). </p><p>The insulator in a MOSFET is a dielectric which can in any event be silicon oxide, formed by <a href="/wiki/LOCOS" title="LOCOS">LOCOS</a> but many other dielectric materials are employed. The generic term for the dielectric is gate dielectric since the dielectric lies directly below the gate electrode and above the channel of the MOSFET. </p> <div class="mw-heading mw-heading3"><h3 id="Junction_design">Junction design</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=24" title="Edit section: Junction design"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The source-to-body and drain-to-body <a href="/wiki/P-n_junction" class="mw-redirect" title="P-n junction">junctions</a> are the object of much attention because of three major factors: their design affects the <a href="/wiki/Current-voltage_characteristic" class="mw-redirect" title="Current-voltage characteristic">current-voltage (<i>I-V</i>) characteristics</a> of the device, lowering output resistance, and also the speed of the device through the loading effect of the junction <a href="/wiki/Capacitance" title="Capacitance">capacitances</a>, and finally, the component of stand-by power dissipation due to junction leakage. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:MOSFET_junction_structure.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/MOSFET_junction_structure.png/260px-MOSFET_junction_structure.png" decoding="async" width="260" height="142" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/MOSFET_junction_structure.png/390px-MOSFET_junction_structure.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/95/MOSFET_junction_structure.png/520px-MOSFET_junction_structure.png 2x" data-file-width="641" data-file-height="351" /></a><figcaption>MOSFET showing shallow junction extensions, raised source and drain and halo implant. Raised source and drain are separated from gate by oxide spacers.</figcaption></figure> <p>The drain induced barrier lowering of the threshold voltage and <a href="/wiki/Channel_length_modulation" title="Channel length modulation">channel length modulation</a> effects upon <i>I-V</i> curves are reduced by using shallow junction extensions. In addition, <i>halo</i> doping can be used, that is, the addition of very thin heavily doped regions of the same doping type as the body tight against the junction walls to limit the extent of <a href="/wiki/Depletion_region" title="Depletion region">depletion regions</a>.<sup id="cite_ref-Colinge_55-0" class="reference"><a href="#cite_note-Colinge-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> </p><p>The capacitive effects are limited by using raised source and drain geometries that make most of the contact area border thick dielectric instead of silicon.<sup id="cite_ref-Weber_56-0" class="reference"><a href="#cite_note-Weber-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> </p><p>These various features of junction design are shown (with <a href="/wiki/Artistic_license" title="Artistic license">artistic license</a>) in the figure. </p> <div class="mw-heading mw-heading2"><h2 id="Scaling">Scaling</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=25" title="Edit section: Scaling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Essay-like plainlinks metadata ambox ambox-style ambox-essay-like" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>is written like a <a href="/wiki/Wikipedia:What_Wikipedia_is_not#Wikipedia_is_not_a_publisher_of_original_thought" title="Wikipedia:What Wikipedia is not">personal reflection, personal essay, or argumentative essay</a></b> that states a Wikipedia editor's personal feelings or presents an original argument about a topic.<span class="hide-when-compact"> Please <a class="external text" href="https://en.wikipedia.org/w/index.php?title=MOSFET&action=edit">help improve it</a> by rewriting it in an <a href="/wiki/Wikipedia:Writing_better_articles#Information_style_and_tone" title="Wikipedia:Writing better articles">encyclopedic style</a>.</span> <span class="date-container"><i>(<span class="date">September 2016</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Dennard_scaling" title="Dennard scaling">Dennard scaling</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Intel_gate_length_trend.PNG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Intel_gate_length_trend.PNG/260px-Intel_gate_length_trend.PNG" decoding="async" width="260" height="158" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/Intel_gate_length_trend.PNG/390px-Intel_gate_length_trend.PNG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/13/Intel_gate_length_trend.PNG/520px-Intel_gate_length_trend.PNG 2x" data-file-width="563" data-file-height="342" /></a><figcaption>Trend of Intel CPU transistor gate length</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:WIde-swing_MOSFET_mirror.PNG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/WIde-swing_MOSFET_mirror.PNG/260px-WIde-swing_MOSFET_mirror.PNG" decoding="async" width="260" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/WIde-swing_MOSFET_mirror.PNG/390px-WIde-swing_MOSFET_mirror.PNG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8b/WIde-swing_MOSFET_mirror.PNG/520px-WIde-swing_MOSFET_mirror.PNG 2x" data-file-width="943" data-file-height="600" /></a><figcaption>MOSFET version of gain-boosted <a href="/wiki/Current_mirror" title="Current mirror">current mirror</a>; M<sub>1</sub> and M<sub>2</sub> are in active mode, while M<sub>3</sub> and M<sub>4</sub> are in Ohmic mode, and act like resistors. The operational amplifier provides feedback that maintains a high output resistance.</figcaption></figure> <p>Over the past decades, the MOSFET (as used for digital logic) has continually been scaled down in size; typical MOSFET channel lengths were once several <a href="/wiki/Micrometre" title="Micrometre">micrometres</a>, but modern integrated circuits are incorporating MOSFETs with channel lengths of tens of nanometers. <a href="/wiki/Robert_Dennard" class="mw-redirect" title="Robert Dennard">Robert Dennard</a>'s work on <a href="/wiki/Scaling_law" class="mw-redirect" title="Scaling law">scaling theory</a> was pivotal in recognising that this ongoing reduction was possible. Intel began production of a process featuring a 32 nm feature size (with the channel being even shorter) in late 2009. The semiconductor industry maintains a "roadmap", the <a href="/wiki/International_Technology_Roadmap_for_Semiconductors" title="International Technology Roadmap for Semiconductors">ITRS</a>,<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> which sets the pace for MOSFET development. Historically, the difficulties with decreasing the size of the MOSFET have been associated with the semiconductor device fabrication process, the need to use very low voltages, and with poorer electrical performance necessitating circuit redesign and innovation (small MOSFETs exhibit higher leakage currents and lower output resistance). </p><p>Smaller MOSFETs are desirable for several reasons. The main reason to make transistors smaller is to pack more and more devices in a given chip area. This results in a chip with the same functionality in a smaller area, or chips with more functionality in the same area. Since fabrication costs for a <a href="/wiki/Semiconductor_wafer" class="mw-redirect" title="Semiconductor wafer">semiconductor wafer</a> are relatively fixed, the cost per integrated circuits is mainly related to the number of chips that can be produced per wafer. Hence, smaller ICs allow more chips per wafer, reducing the price per chip. In fact, over the past 30 years the number of transistors per chip has been doubled every 2–3 years once a new technology node is introduced. For example, the number of MOSFETs in a microprocessor fabricated in a <a href="/wiki/45_nm" class="mw-redirect" title="45 nm">45 nm</a> technology can well be twice as many as in a <a href="/wiki/65_nm" class="mw-redirect" title="65 nm">65 nm</a> chip. This doubling of transistor density was first observed by <a href="/wiki/Gordon_Moore" title="Gordon Moore">Gordon Moore</a> in 1965 and is commonly referred to as <a href="/wiki/Moore%27s_law" title="Moore's law">Moore's law</a>.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> It is also expected that smaller transistors switch faster. For example, one approach to size reduction is a scaling of the MOSFET that requires all device dimensions to reduce proportionally. The main device dimensions are the channel length, channel width, and oxide thickness. When they are scaled down by equal factors, the transistor channel resistance does not change, while gate capacitance is cut by that factor. Hence, the <a href="/wiki/RC_delay" class="mw-redirect" title="RC delay">RC delay</a> of the transistor scales with a similar factor. While this has been traditionally the case for the older technologies, for the state-of-the-art MOSFETs reduction of the transistor dimensions does not necessarily translate to higher chip speed because the delay due to interconnections is more significant. </p><p>Producing MOSFETs with channel lengths much smaller than a <a href="/wiki/Micrometre" title="Micrometre">micrometre</a> is a challenge, and the difficulties of semiconductor device fabrication are always a limiting factor in advancing integrated circuit technology. Though processes such as <a href="/wiki/Atomic_layer_deposition" title="Atomic layer deposition">ALD</a> have improved fabrication for small components, the small size of the MOSFET (less than a few tens of nanometers) has created operational problems: </p> <div class="mw-heading mw-heading3"><h3 id="Higher_subthreshold_conduction">Higher subthreshold conduction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=26" title="Edit section: Higher subthreshold conduction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As MOSFET geometries shrink, the voltage that can be applied to the gate must be reduced to maintain reliability. To maintain performance, the threshold voltage of the MOSFET has to be reduced as well. As threshold voltage is reduced, the transistor cannot be switched from complete turn-off to complete turn-on with the limited voltage swing available; the circuit design is a compromise between strong current in the <i>on</i> case and low current in the <i>off</i> case, and the application determines whether to favor one over the other. Subthreshold leakage (including subthreshold conduction, gate-oxide leakage and reverse-biased junction leakage), which was ignored in the past, now can consume upwards of half of the total power consumption of modern high-performance VLSI chips.<sup id="cite_ref-Roy_59-0" class="reference"><a href="#cite_note-Roy-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Goodnick_60-0" class="reference"><a href="#cite_note-Goodnick-60"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Increased_gate-oxide_leakage">Increased gate-oxide leakage</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=27" title="Edit section: Increased gate-oxide leakage"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The gate oxide, which serves as insulator between the gate and channel, should be made as thin as possible to increase the channel conductivity and performance when the transistor is on and to reduce subthreshold leakage when the transistor is off. However, with current gate oxides with a thickness of around 1.2 <a href="/wiki/Nanometer" class="mw-redirect" title="Nanometer">nm</a> (which in silicon is ~5 <a href="/wiki/Atom" title="Atom">atoms</a> thick) the <a href="/wiki/Quantum_mechanical" class="mw-redirect" title="Quantum mechanical">quantum mechanical</a> phenomenon of <a href="/wiki/Electron_tunneling" class="mw-redirect" title="Electron tunneling">electron tunneling</a> occurs between the gate and channel, leading to increased power consumption. <a href="/wiki/Silicon_dioxide" title="Silicon dioxide">Silicon dioxide</a> has traditionally been used as the gate insulator. Silicon dioxide however has a modest dielectric constant. Increasing the dielectric constant of the gate dielectric allows a thicker layer while maintaining a high capacitance (capacitance is proportional to dielectric constant and inversely proportional to dielectric thickness). All else equal, a higher dielectric thickness reduces the <a href="/wiki/Quantum_tunneling" class="mw-redirect" title="Quantum tunneling">quantum tunneling</a> current through the dielectric between the gate and the channel. </p><p>Insulators that have a larger <a href="/wiki/Dielectric_constant" class="mw-redirect" title="Dielectric constant">dielectric constant</a> than silicon dioxide (referred to as <a href="/wiki/High-%CE%BA_dielectric" title="High-κ dielectric">high-κ dielectrics</a>), such as group IVb metal silicates e.g. <a href="/wiki/Hafnium" title="Hafnium">hafnium</a> and <a href="/wiki/Zirconium" title="Zirconium">zirconium</a> silicates and oxides are being used to reduce the gate leakage from the 45 nanometer technology node onwards. On the other hand, the barrier height of the new gate insulator is an important consideration; the difference in <a href="/wiki/Conduction_band" class="mw-redirect" title="Conduction band">conduction band</a> energy between the semiconductor and the dielectric (and the corresponding difference in <a href="/wiki/Valence_band" class="mw-redirect" title="Valence band">valence band</a> energy) also affects leakage current level. For the traditional gate oxide, silicon dioxide, the former barrier is approximately 8 <a href="/wiki/Electronvolt" title="Electronvolt">eV</a>. For many alternative dielectrics the value is significantly lower, tending to increase the tunneling current, somewhat negating the advantage of higher dielectric constant. The maximum gate-source voltage is determined by the strength of the electric field able to be sustained by the gate dielectric before significant leakage occurs. As the insulating dielectric is made thinner, the electric field strength within it goes up for a fixed voltage. This necessitates using lower voltages with the thinner dielectric. </p> <div class="mw-heading mw-heading3"><h3 id="Increased_junction_leakage">Increased junction leakage</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=28" title="Edit section: Increased junction leakage"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>To make devices smaller, junction design has become more complex, leading to higher <a href="/wiki/Doping_(semiconductors)" class="mw-redirect" title="Doping (semiconductors)">doping</a> levels, shallower junctions, "halo" doping and so forth,<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Chen_62-0" class="reference"><a href="#cite_note-Chen-62"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> all to decrease drain-induced barrier lowering (see the section on <a href="#Junction_design">junction design</a>). To keep these complex junctions in place, the annealing steps formerly used to remove damage and electrically active defects must be curtailed<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> increasing junction leakage. Heavier doping is also associated with thinner depletion layers and more recombination centers that result in increased leakage current, even without lattice damage. </p> <div class="mw-heading mw-heading3"><h3 id="Drain-induced_barrier_lowering_and_VT_roll_off">Drain-induced barrier lowering and <i>V</i><sub>T</sub> roll off</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=29" title="Edit section: Drain-induced barrier lowering and VT roll off"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Drain-induced_barrier_lowering" title="Drain-induced barrier lowering">Drain-induced barrier lowering</a> (DIBL) and <i>V</i><sub>T</sub> roll off: Because of the <a href="/wiki/Short-channel_effect" title="Short-channel effect">short-channel effect</a>, channel formation is not entirely done by the gate, but now the drain and source also affect the channel formation. As the channel length decreases, the depletion regions of the source and drain come closer together and make the threshold voltage (<i>V</i><sub>T</sub>) a function of the length of the channel. This is called <i>V</i><sub>T</sub> roll-off. <i>V</i><sub>T</sub> also becomes function of drain to source voltage <i>V</i><sub>DS</sub>. As we increase the <i>V</i><sub>DS</sub>, the depletion regions increase in size, and a considerable amount of charge is depleted by the <i>V</i><sub>DS</sub>. The gate voltage required to form the channel is then lowered, and thus, the <i>V</i><sub>T</sub> decreases with an increase in <i>V</i><sub>DS</sub>. This effect is called drain induced barrier lowering (DIBL). </p> <div class="mw-heading mw-heading3"><h3 id="Lower_output_resistance">Lower output resistance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=30" title="Edit section: Lower output resistance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For analog operation, good gain requires a high MOSFET output impedance, which is to say, the MOSFET current should vary only slightly with the applied drain-to-source voltage. As devices are made smaller, the influence of the drain competes more successfully with that of the gate due to the growing proximity of these two electrodes, increasing the sensitivity of the MOSFET current to the drain voltage. To counteract the resulting decrease in output resistance, circuits are made more complex, either by requiring more devices, for example the <a href="/wiki/Cascode" title="Cascode">cascode</a> and <a href="/wiki/Cascade_amplifier" class="mw-redirect" title="Cascade amplifier">cascade amplifiers</a>, or by feedback circuitry using <a href="/wiki/Operational_amplifiers" class="mw-redirect" title="Operational amplifiers">operational amplifiers</a>, for example a circuit like that in the adjacent figure. </p> <div class="mw-heading mw-heading3"><h3 id="Lower_transconductance">Lower transconductance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=31" title="Edit section: Lower transconductance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Transconductance" title="Transconductance">transconductance</a> of the MOSFET decides its gain and is proportional to hole or <a href="/wiki/Electron_mobility" title="Electron mobility">electron mobility</a> (depending on device type), at least for low drain voltages. As MOSFET size is reduced, the fields in the channel increase and the dopant impurity levels increase. Both changes reduce the carrier mobility, and hence the transconductance. As channel lengths are reduced without proportional reduction in drain voltage, raising the electric field in the channel, the result is velocity saturation of the carriers, limiting the current and the transconductance. </p> <div class="mw-heading mw-heading3"><h3 id="Interconnect_capacitance">Interconnect capacitance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=32" title="Edit section: Interconnect capacitance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Traditionally, switching time was roughly proportional to the gate capacitance of gates. However, with transistors becoming smaller and more transistors being placed on the chip, <a href="/wiki/Capacitance" title="Capacitance">interconnect capacitance</a> (the capacitance of the metal-layer connections between different parts of the chip) is becoming a large percentage of capacitance.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Soudris_65-0" class="reference"><a href="#cite_note-Soudris-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> Signals have to travel through the interconnect, which leads to increased delay and lower performance. </p> <div class="mw-heading mw-heading3"><h3 id="Heat_production">Heat production</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=33" title="Edit section: Heat production"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The ever-increasing density of MOSFETs on an integrated circuit creates problems of substantial localized heat generation that can impair circuit operation. Circuits operate more slowly at high temperatures, and have reduced reliability and shorter lifetimes. Heat sinks and other cooling devices and methods are now required for many integrated circuits including microprocessors. <a href="/wiki/Power_MOSFET" title="Power MOSFET">Power MOSFETs</a> are at risk of <a href="/wiki/Thermal_runaway" title="Thermal runaway">thermal runaway</a>. As their on-state resistance rises with temperature, if the load is approximately a constant-current load then the power loss rises correspondingly, generating further heat. When the <a href="/wiki/Heatsink" class="mw-redirect" title="Heatsink">heatsink</a> is not able to keep the temperature low enough, the junction temperature may rise quickly and uncontrollably, resulting in destruction of the device. </p> <div class="mw-heading mw-heading3"><h3 id="Process_variations">Process variations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=34" title="Edit section: Process variations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>With MOSFETs becoming smaller, the number of atoms in the silicon that produce many of the transistor's properties is becoming fewer, with the result that control of dopant numbers and placement is more erratic. During chip manufacturing, random process variations affect all transistor dimensions: length, width, junction depths, oxide thickness <i>etc.</i>, and become a greater percentage of overall transistor size as the transistor shrinks. The transistor characteristics become less certain, more statistical. The random nature of manufacture means we do not know which particular example MOSFETs actually will end up in a particular instance of the circuit. This uncertainty forces a less optimal design because the design must work for a great variety of possible component MOSFETs. See <a href="/wiki/Process_variation_(semiconductor)" title="Process variation (semiconductor)">process variation</a>, <a href="/wiki/Design_for_manufacturability" title="Design for manufacturability">design for manufacturability</a>, <a href="/wiki/Reliability_engineering" title="Reliability engineering">reliability engineering</a>, and <a href="/wiki/Statistical_process_control" title="Statistical process control">statistical process control</a>.<sup id="cite_ref-Boning_66-0" class="reference"><a href="#cite_note-Boning-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Modeling_challenges">Modeling challenges</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=35" title="Edit section: Modeling challenges"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Modern ICs are computer-simulated with the goal of obtaining working circuits from the first manufactured lot. As devices are miniaturized, the complexity of the processing makes it difficult to predict exactly what the final devices look like, and modeling of physical processes becomes more challenging as well. In addition, microscopic variations in structure due simply to the probabilistic nature of atomic processes require statistical (not just deterministic) predictions. These factors combine to make adequate simulation and "right the first time" manufacture difficult. </p> <div class="mw-heading mw-heading2"><h2 id="Other_types">Other types</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=36" title="Edit section: Other types"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Dual-gate">Dual-gate</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=37" title="Edit section: Dual-gate"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:FINFET_MOSFET.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/FINFET_MOSFET.png/260px-FINFET_MOSFET.png" decoding="async" width="260" height="242" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/FINFET_MOSFET.png/390px-FINFET_MOSFET.png 1.5x, //upload.wikimedia.org/wikipedia/commons/9/9d/FINFET_MOSFET.png 2x" data-file-width="504" data-file-height="470" /></a><figcaption>A <a href="/wiki/FinFET" class="mw-redirect" title="FinFET">FinFET</a></figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Multigate_device" title="Multigate device">Multigate device</a></div> <p>The dual-gate MOSFET has a <a href="/wiki/Tetrode" title="Tetrode">tetrode</a> configuration, where both gates control the current in the device. It is commonly used for small-signal devices in radio frequency applications where biasing the drain-side gate at constant potential reduces the gain loss caused by <a href="/wiki/Miller_effect" title="Miller effect">Miller effect</a>, replacing two separate transistors in <a href="/wiki/Cascode" title="Cascode">cascode</a> configuration. Other common uses in RF circuits include gain control and mixing (frequency conversion). The <i>tetrode</i> description, though accurate, does not replicate the vacuum-tube tetrode. Vacuum-tube tetrodes, using a screen grid, exhibit much lower grid-plate capacitance and much higher output impedance and voltage gains than triode vacuum tubes. These improvements are commonly an order of magnitude (10 times) or considerably more. Tetrode transistors (whether bipolar junction or field-effect) do not exhibit improvements of such a great degree. </p><p>The <a href="/wiki/FinFET" class="mw-redirect" title="FinFET">FinFET</a> is a double-gate <a href="/wiki/Silicon-on-insulator" class="mw-redirect" title="Silicon-on-insulator">silicon-on-insulator</a> device, one of a number of geometries being introduced to mitigate the effects of short channels and reduce drain-induced barrier lowering. The <i>fin</i> refers to the narrow channel between source and drain. A thin insulating oxide layer on either side of the fin separates it from the gate. SOI FinFETs with a thick oxide on top of the fin are called <i>double-gate</i> and those with a thin oxide on top as well as on the sides are called <i>triple-gate</i> FinFETs.<sup id="cite_ref-SOI_67-0" class="reference"><a href="#cite_note-SOI-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Depletion-mode">Depletion-mode</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=38" title="Edit section: Depletion-mode"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are <i>depletion-mode</i> MOSFET devices, which are less commonly used than the standard <i>enhancement-mode</i> devices already described. These are MOSFET devices that are doped so that a channel exists even with zero voltage from gate to source. To control the channel, a negative voltage is applied to the gate (for an n-channel device), depleting the channel, which reduces the current flow through the device. In essence, the depletion-mode device is equivalent to a <a href="/wiki/Normally_closed" class="mw-redirect" title="Normally closed">normally closed</a> (on) switch, while the enhancement-mode device is equivalent to a <a href="/wiki/Normally_open" class="mw-redirect" title="Normally open">normally open</a> (off) switch.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> </p><p>Due to their low <a href="/wiki/Noise_figure" title="Noise figure">noise figure</a> in the <a href="/wiki/RF" class="mw-redirect" title="RF">RF</a> region, and better <a href="/wiki/Gain_(electronics)#Power_gain" title="Gain (electronics)">gain</a>, these devices are often preferred to <a href="/wiki/Bipolar_junction_transistors" class="mw-redirect" title="Bipolar junction transistors">bipolars</a> in <a href="/wiki/RF_front_end" title="RF front end">RF front-ends</a> such as in <a href="/wiki/TV" class="mw-redirect" title="TV">TV</a> sets. </p><p>Depletion-mode MOSFET families include the BF960 by <a href="/wiki/Siemens" title="Siemens">Siemens</a> and <a href="/wiki/Telefunken" title="Telefunken">Telefunken</a>, and the BF980 in the 1980s by <a href="/wiki/Philips" title="Philips">Philips</a> (later to become <a href="/wiki/NXP_Semiconductors" title="NXP Semiconductors">NXP Semiconductors</a>), whose derivatives are still used in <a href="/wiki/Automatic_gain_control" title="Automatic gain control">AGC</a> and RF <a href="/wiki/Frequency_mixer" title="Frequency mixer">mixer</a> front-ends. </p> <div class="mw-heading mw-heading3"><h3 id="Metal–insulator–semiconductor_field-effect_transistor_(MISFET)"><span id="Metal.E2.80.93insulator.E2.80.93semiconductor_field-effect_transistor_.28MISFET.29"></span>Metal–insulator–semiconductor field-effect transistor (MISFET)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=39" title="Edit section: Metal–insulator–semiconductor field-effect transistor (MISFET)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Metal–insulator–semiconductor field-effect-transistor,<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Jones_72-0" class="reference"><a href="#cite_note-Jones-72"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup> or <i>MISFET</i>, is a more general term than <i>MOSFET</i> and a synonym to <i>insulated-gate field-effect transistor</i> (IGFET). All MOSFETs are MISFETs, but not all MISFETs are MOSFETs. </p><p>The gate dielectric insulator in a MISFET is a substrate oxide (hence typically <a href="/wiki/Silicon_dioxide" title="Silicon dioxide">silicon dioxide</a>) in a MOSFET, but other materials can also be employed. The <a href="/wiki/Gate_dielectric" title="Gate dielectric">gate dielectric</a> lies directly below the <a href="/wiki/Gate_electrode" class="mw-redirect" title="Gate electrode">gate electrode</a> and above the <a href="/wiki/Channel_(semiconductor)" class="mw-redirect" title="Channel (semiconductor)">channel</a> of the MISFET. The term <i>metal</i> is historically used for the gate material, even though now it is usually <a href="/wiki/Doping_(semiconductor)" title="Doping (semiconductor)">highly doped</a> <a href="/wiki/Polysilicon" class="mw-redirect" title="Polysilicon">polysilicon</a> or some other <a href="/wiki/Non-metal" class="mw-redirect" title="Non-metal">non-metal</a>. </p><p>Insulator types may be: </p> <ul><li>Silicon dioxide, in silicon MOSFETs</li> <li>Organic insulators (e.g., undoped trans-<a href="/wiki/Polyacetylene" title="Polyacetylene">polyacetylene</a>; <a href="/w/index.php?title=Cyanoethyl&action=edit&redlink=1" class="new" title="Cyanoethyl (page does not exist)">cyanoethyl</a> <a href="/wiki/Pullulan" title="Pullulan">pullulan</a>, CEP<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup>), for organic-based FETs.<sup id="cite_ref-Jones_72-1" class="reference"><a href="#cite_note-Jones-72"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="NMOS_logic">NMOS logic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=40" title="Edit section: NMOS logic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For devices of equal current driving capability, n-channel MOSFETs can be made smaller than p-channel MOSFETs, due to p-channel charge carriers (<a href="/wiki/Electron_hole" title="Electron hole">holes</a>) having lower <a href="/wiki/Electron_mobility" title="Electron mobility">mobility</a> than do n-channel charge carriers (<a href="/wiki/Electrons" class="mw-redirect" title="Electrons">electrons</a>), and producing only one type of MOSFET on a silicon substrate is cheaper and technically simpler. These were the driving principles in the design of <a href="/wiki/NMOS_logic" title="NMOS logic">NMOS logic</a> which uses n-channel MOSFETs exclusively. However, neglecting <a href="/wiki/Leakage_current" class="mw-redirect" title="Leakage current">leakage current</a>, unlike CMOS logic, NMOS logic consumes power even when no switching is taking place. With advances in technology, CMOS logic displaced NMOS logic in the mid-1980s to become the preferred process for digital chips. </p> <div class="mw-heading mw-heading3"><h3 id="Power_MOSFET">Power MOSFET</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=41" title="Edit section: Power MOSFET"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Power_mos_cell_layout.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Power_mos_cell_layout.svg/260px-Power_mos_cell_layout.svg.png" decoding="async" width="260" height="184" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Power_mos_cell_layout.svg/390px-Power_mos_cell_layout.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9f/Power_mos_cell_layout.svg/520px-Power_mos_cell_layout.svg.png 2x" data-file-width="1052" data-file-height="744" /></a><figcaption>Cross section of a power MOSFET, with square cells. A typical transistor is constituted of several thousand cells.</figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Power_MOSFET" title="Power MOSFET">Power MOSFET</a></div> <p><a href="/wiki/Power_MOSFET" title="Power MOSFET">Power MOSFETs</a> have a different structure.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup> As with most power devices, the structure is vertical and not planar. Using a vertical structure, it is possible for the transistor to sustain both high blocking voltage and high current. The voltage rating of the transistor is a function of the doping and thickness of the N-<a href="/wiki/Epitaxial" class="mw-redirect" title="Epitaxial">epitaxial</a> layer (see cross section), while the current rating is a function of the channel width (the wider the channel, the higher the current). In a planar structure, the current and breakdown voltage ratings are both a function of the channel dimensions (respectively width and length of the channel), resulting in inefficient use of the "silicon estate". With the vertical structure, the component area is roughly proportional to the current it can sustain, and the component thickness (actually the N-epitaxial layer thickness) is proportional to the breakdown voltage.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> </p><p>Power MOSFETs with lateral structure are mainly used in high-end audio amplifiers and high-power PA systems. Their advantage is a better behaviour in the saturated region (corresponding to the linear region of a bipolar transistor) than the vertical MOSFETs. Vertical MOSFETs are designed for switching applications.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Double-diffused_metal–oxide–semiconductor_(DMOS)"><span id="Double-diffused_metal.E2.80.93oxide.E2.80.93semiconductor_.28DMOS.29"></span>Double-diffused metal–oxide–semiconductor (<style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="DMOS"></span><span class="vanchor-text">DMOS</span></span>)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=42" title="Edit section: Double-diffused metal–oxide–semiconductor (DMOS)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are <i><a href="/wiki/LDMOS" title="LDMOS">LDMOS</a></i> (lateral double-diffused metal oxide semiconductor) and <i>VDMOS</i> (vertical double-diffused metal oxide semiconductor). Most power MOSFETs are made using this technology. </p> <div class="mw-heading mw-heading3"><h3 id="Radiation-hardened-by-design_(RHBD)"><span id="Radiation-hardened-by-design_.28RHBD.29"></span>Radiation-hardened-by-design (RHBD)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=43" title="Edit section: Radiation-hardened-by-design (RHBD)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Semiconductor sub-micrometer and nanometer electronic circuits are the primary concern for operating within the normal tolerance in harsh <a href="/wiki/Radiation" title="Radiation">radiation</a> environments like <a href="/wiki/Outer_space" title="Outer space">outer space</a>. One of the design approaches for making a <a href="/wiki/Radiation_hardening" title="Radiation hardening">radiation-hardened-by-design</a> (RHBD) device is enclosed-layout-transistor (ELT). Normally, the gate of the MOSFET surrounds the drain, which is placed in the center of the ELT. The source of the MOSFET surrounds the gate. Another RHBD MOSFET is called H-Gate. Both of these transistors have very low leakage currents with respect to radiation. However, they are large in size and take up more space on silicon than a standard MOSFET. In older STI (shallow trench isolation) designs, radiation strikes near the silicon oxide region cause the channel inversion at the corners of the standard MOSFET due to accumulation of radiation induced trapped charges. If the charges are large enough, the accumulated charges affect STI surface edges along the channel near the channel interface (gate) of the standard MOSFET. This causes a device channel inversion to occur along the channel edges, creating an off-state leakage path. Subsequently, the device turns on; this process severely degrades the reliability of circuits. The ELT offers many advantages, including an improvement of <a href="/wiki/Reliability_(semiconductor)" title="Reliability (semiconductor)">reliability</a> by reducing unwanted surface inversion at the gate edges which occurs in the standard MOSFET. Since the gate edges are enclosed in ELT, there is no gate oxide edge (STI at gate interface), and thus the transistor off-state leakage is reduced very much. Low-power microelectronic circuits including computers, communication devices, and monitoring systems in space shuttles and satellites are very different from what is used on earth. They are radiation (high-speed atomic particles like <a href="/wiki/Proton" title="Proton">proton</a> and <a href="/wiki/Neutron" title="Neutron">neutron</a>, <a href="/wiki/Solar_flare" title="Solar flare">solar flare</a> magnetic energy dissipation in Earth's space, energetic <a href="/wiki/Cosmic_rays" class="mw-redirect" title="Cosmic rays">cosmic rays</a> like <a href="/wiki/X-ray" title="X-ray">X-ray</a>, <a href="/wiki/Gamma_ray" title="Gamma ray">gamma ray</a> etc.) tolerant circuits. These special electronics are designed by applying different techniques using RHBD MOSFETs to ensure safe space journeys and safe space-walks of astronauts. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=44" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239009302">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_ksim.png" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Nuvola_apps_ksim.png/28px-Nuvola_apps_ksim.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Nuvola_apps_ksim.png/42px-Nuvola_apps_ksim.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Nuvola_apps_ksim.png/56px-Nuvola_apps_ksim.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Electronics" title="Portal:Electronics">Electronics portal</a></span></li></ul> <ul><li><a href="/wiki/Floating-gate_MOSFET" title="Floating-gate MOSFET">Floating-gate MOSFET</a> – Type of MOSFET where the gate is electrically isolated</li> <li><a href="/wiki/BSIM" title="BSIM">BSIM</a> – Family of MOSFET transistor models for integrated circuit design</li> <li><a href="/wiki/GgNMOS" title="GgNMOS">ggNMOS</a> – Electrostatic discharge (ESD) protection device</li> <li><a href="/wiki/High-electron-mobility_transistor" title="High-electron-mobility transistor">High-electron-mobility transistor</a> – Type of field-effect transistor</li> <li><a href="/wiki/Polysilicon_depletion_effect" title="Polysilicon depletion effect">Polysilicon depletion effect</a> – Variation of threshold voltage in polycrystalline silicon materials</li> <li><a href="/wiki/Transistor_model" title="Transistor model">Transistor model</a> – Simulation of physical processes taking place in an electronic device</li> <li><a href="/wiki/Power_MOSFET#Body_diode" title="Power MOSFET">Intrinsic diode</a> – MOSFET that can handle significant power levels</li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=45" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-depletion-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-depletion_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://massless.info/images/CLASS%2025.pdf">"D-MOSFET OPERATION AND BIASING"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20221022122055/https://massless.info/images/CLASS%2025.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2022-10-22.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=D-MOSFET+OPERATION+AND+BIASING&rft_id=https%3A%2F%2Fmassless.info%2Fimages%2FCLASS%252025.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-p1-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-p1_2-0">^</a></b></span> <span class="reference-text">Lilienfeld, Julius Edgar (1926-10-08) "Method and apparatus for controlling electric currents" <span><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US1745175A">U.S. patent 1745175A</a></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://v3.espacenet.com/publicationDetails/biblio?CC=GB&NR=439457&KC=&FT=E">Heil, Oskar, "Improvements in or relating to electrical amplifiers and other control arrangements and devices"</a>, Patent No. GB439457, European Patent Office, filed in Great Britain 1934-03-02, published December 6, 1935 (originally filed in Germany March 2, 1934).</span> </li> <li id="cite_note-:0-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuffRiordan2007" class="citation journal cs1">Huff, Howard; Riordan, Michael (2007-09-01). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1149/2.F02073IF">"Frosch and Derick: Fifty Years Later (Foreword)"</a>. <i>The Electrochemical Society Interface</i>. <b>16</b> (3): 29. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F2.F02073IF">10.1149/2.F02073IF</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1064-8208">1064-8208</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Electrochemical+Society+Interface&rft.atitle=Frosch+and+Derick%3A+Fifty+Years+Later+%28Foreword%29&rft.volume=16&rft.issue=3&rft.pages=29&rft.date=2007-09-01&rft_id=info%3Adoi%2F10.1149%2F2.F02073IF&rft.issn=1064-8208&rft.aulast=Huff&rft.aufirst=Howard&rft.au=Riordan%2C+Michael&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1149%2F2.F02073IF&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1041539562">.mw-parser-output .citation{word-wrap:break-word}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}</style><span class="citation patent" id="CITEREFLincolnFrosch1957"><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US2802760A">US2802760A</a>, Lincoln, Derick & Frosch, Carl J., "Oxidation of semiconductive surfaces for controlled diffusion", issued 1957-08-13</span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.number=US2802760A&rft.cc=&rft.title=Oxidation+of+semiconductive+surfaces+for+controlled+diffusion&rft.inventor=Lincoln&rft.date=1957-08-13"><span style="display: none;"> </span></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFroschDerick1957" class="citation journal cs1">Frosch, C. J.; Derick, L (1957). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1149/1.2428650">"Surface Protection and Selective Masking during Diffusion in Silicon"</a>. <i>Journal of the Electrochemical Society</i>. <b>104</b> (9): 547. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.2428650">10.1149/1.2428650</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Electrochemical+Society&rft.atitle=Surface+Protection+and+Selective+Masking+during+Diffusion+in+Silicon&rft.volume=104&rft.issue=9&rft.pages=547&rft.date=1957&rft_id=info%3Adoi%2F10.1149%2F1.2428650&rft.aulast=Frosch&rft.aufirst=C.+J.&rft.au=Derick%2C+L&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1149%2F1.2428650&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFroschDerick1957" class="citation journal cs1">Frosch, C. J.; Derick, L (1957). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1149/1.2428650">"Surface Protection and Selective Masking during Diffusion in Silicon"</a>. <i>Journal of the Electrochemical Society</i>. <b>104</b> (9): 547. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.2428650">10.1149/1.2428650</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Electrochemical+Society&rft.atitle=Surface+Protection+and+Selective+Masking+during+Diffusion+in+Silicon&rft.volume=104&rft.issue=9&rft.pages=547&rft.date=1957&rft_id=info%3Adoi%2F10.1149%2F1.2428650&rft.aulast=Frosch&rft.aufirst=C.+J.&rft.au=Derick%2C+L&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1149%2F1.2428650&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Moskowitz-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-Moskowitz_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoskowitz2016" class="citation book cs1">Moskowitz, Sanford L. (2016). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=2STRDAAAQBAJ&pg=PA168"><i>Advanced Materials Innovation: Managing Global Technology in the 21st century</i></a>. <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">John Wiley & Sons</a>. p. 168. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-470-50892-3" title="Special:BookSources/978-0-470-50892-3"><bdi>978-0-470-50892-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Advanced+Materials+Innovation%3A+Managing+Global+Technology+in+the+21st+century&rft.pages=168&rft.pub=John+Wiley+%26+Sons&rft.date=2016&rft.isbn=978-0-470-50892-3&rft.aulast=Moskowitz&rft.aufirst=Sanford+L.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D2STRDAAAQBAJ%26pg%3DPA168&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChristophe_LécuyerDavid_C._BrookJay_Last2010" class="citation book cs1">Christophe Lécuyer; David C. Brook; Jay Last (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=LaZpUpkG70QC&pg=PA62"><i>Makers of the Microchip: A Documentary History of Fairchild Semiconductor</i></a>. MIT Press. pp. 62–63. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-262-01424-3" title="Special:BookSources/978-0-262-01424-3"><bdi>978-0-262-01424-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Makers+of+the+Microchip%3A+A+Documentary+History+of+Fairchild+Semiconductor&rft.pages=62-63&rft.pub=MIT+Press&rft.date=2010&rft.isbn=978-0-262-01424-3&rft.au=Christophe+L%C3%A9cuyer&rft.au=David+C.+Brook&rft.au=Jay+Last&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DLaZpUpkG70QC%26pg%3DPA62&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClaeys2003" class="citation book cs1">Claeys, Cor L. (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=bu22JNYbE5MC&pg=PA27"><i>ULSI Process Integration III: Proceedings of the International Symposium</i></a>. <a href="/wiki/The_Electrochemical_Society" class="mw-redirect" title="The Electrochemical Society">The Electrochemical Society</a>. pp. 27–30. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-56677-376-8" title="Special:BookSources/978-1-56677-376-8"><bdi>978-1-56677-376-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=ULSI+Process+Integration+III%3A+Proceedings+of+the+International+Symposium&rft.pages=27-30&rft.pub=The+Electrochemical+Society&rft.date=2003&rft.isbn=978-1-56677-376-8&rft.aulast=Claeys&rft.aufirst=Cor+L.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dbu22JNYbE5MC%26pg%3DPA27&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Lojek120-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lojek120_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLojek2007" class="citation book cs1">Lojek, Bo (2007). <i>History of Semiconductor Engineering</i>. <a href="/wiki/Springer_Science_%26_Business_Media" class="mw-redirect" title="Springer Science & Business Media">Springer Science & Business Media</a>. p. 120. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9783540342588" title="Special:BookSources/9783540342588"><bdi>9783540342588</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=History+of+Semiconductor+Engineering&rft.pages=120&rft.pub=Springer+Science+%26+Business+Media&rft.date=2007&rft.isbn=9783540342588&rft.aulast=Lojek&rft.aufirst=Bo&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><span class="citation patent"><a rel="nofollow" class="external text" href="https://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US3025589">US 3025589</a></span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.number=3025589&rft.cc=US&rft.title="><span style="display: none;"> </span></span> Hoerni, J. A.: "Method of Manufacturing Semiconductor Devices” filed May 1, 1959</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1041539562"><span class="citation patent"><a rel="nofollow" class="external text" href="https://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US3064167">US 3064167</a></span><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.number=3064167&rft.cc=US&rft.title="><span style="display: none;"> </span></span> Hoerni, J. A.: "Semiconductor device" filed May 15, 1960</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFroschDerick1957" class="citation journal cs1">Frosch, C. J.; Derick, L (1957). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1149/1.2428650">"Surface Protection and Selective Masking during Diffusion in Silicon"</a>. <i>Journal of the Electrochemical Society</i>. <b>104</b> (9): 547. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.2428650">10.1149/1.2428650</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Electrochemical+Society&rft.atitle=Surface+Protection+and+Selective+Masking+during+Diffusion+in+Silicon&rft.volume=104&rft.issue=9&rft.pages=547&rft.date=1957&rft_id=info%3Adoi%2F10.1149%2F1.2428650&rft.aulast=Frosch&rft.aufirst=C.+J.&rft.au=Derick%2C+L&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1149%2F1.2428650&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLigenzaSpitzer1960" class="citation journal cs1">Ligenza, J. R.; Spitzer, W. G. (1960-07-01). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/0022369760902195">"The mechanisms for silicon oxidation in steam and oxygen"</a>. <i>Journal of Physics and Chemistry of Solids</i>. <b>14</b>: 131–136. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1960JPCS...14..131L">1960JPCS...14..131L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0022-3697%2860%2990219-5">10.1016/0022-3697(60)90219-5</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-3697">0022-3697</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Physics+and+Chemistry+of+Solids&rft.atitle=The+mechanisms+for+silicon+oxidation+in+steam+and+oxygen&rft.volume=14&rft.pages=131-136&rft.date=1960-07-01&rft.issn=0022-3697&rft_id=info%3Adoi%2F10.1016%2F0022-3697%2860%2990219-5&rft_id=info%3Abibcode%2F1960JPCS...14..131L&rft.aulast=Ligenza&rft.aufirst=J.+R.&rft.au=Spitzer%2C+W.+G.&rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2F0022369760902195&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Deal-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-Deal_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeal1998" class="citation book cs1">Deal, Bruce E. (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=cr8FPGkiRS0C&pg=PA183">"Highlights Of Silicon Thermal Oxidation Technology"</a>. <i>Silicon materials science and technology</i>. <a href="/wiki/The_Electrochemical_Society" class="mw-redirect" title="The Electrochemical Society">The Electrochemical Society</a>. p. 183. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1566771931" title="Special:BookSources/978-1566771931"><bdi>978-1566771931</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Highlights+Of+Silicon+Thermal+Oxidation+Technology&rft.btitle=Silicon+materials+science+and+technology&rft.pages=183&rft.pub=The+Electrochemical+Society&rft.date=1998&rft.isbn=978-1566771931&rft.aulast=Deal&rft.aufirst=Bruce+E.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dcr8FPGkiRS0C%26pg%3DPA183&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLojek2007" class="citation book cs1">Lojek, Bo (2007). <i>History of Semiconductor Engineering</i>. Springer Science & Business Media. p. 322. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3540342588" title="Special:BookSources/978-3540342588"><bdi>978-3540342588</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=History+of+Semiconductor+Engineering&rft.pages=322&rft.pub=Springer+Science+%26+Business+Media&rft.date=2007&rft.isbn=978-3540342588&rft.aulast=Lojek&rft.aufirst=Bo&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Bassett22-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bassett22_18-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBassett2007" class="citation book cs1">Bassett, Ross Knox (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=UUbB3d2UnaAC&pg=PA22"><i>To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology</i></a>. <a href="/wiki/Johns_Hopkins_University_Press" title="Johns Hopkins University Press">Johns Hopkins University Press</a>. pp. 22–23. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8018-8639-3" title="Special:BookSources/978-0-8018-8639-3"><bdi>978-0-8018-8639-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=To+the+Digital+Age%3A+Research+Labs%2C+Start-up+Companies%2C+and+the+Rise+of+MOS+Technology&rft.pages=22-23&rft.pub=Johns+Hopkins+University+Press&rft.date=2007&rft.isbn=978-0-8018-8639-3&rft.aulast=Bassett&rft.aufirst=Ross+Knox&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DUUbB3d2UnaAC%26pg%3DPA22&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtallaKahng1960" class="citation journal cs1"><a href="/wiki/Mohamed_Atalla" class="mw-redirect" title="Mohamed Atalla">Atalla, M.</a>; <a href="/wiki/Dawon_Kahng" title="Dawon Kahng">Kahng, D.</a> (1960). "Silicon-silicon dioxide field induced surface devices". <i>IRE-AIEE Solid State Device Research Conference</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IRE-AIEE+Solid+State+Device+Research+Conference&rft.atitle=Silicon-silicon+dioxide+field+induced+surface+devices&rft.date=1960&rft.aulast=Atalla&rft.aufirst=M.&rft.au=Kahng%2C+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1"><a rel="nofollow" class="external text" href="https://www.computerhistory.org/siliconengine/metal-oxide-semiconductor-mos-transistor-demonstrated/">"1960 – Metal Oxide Semiconductor (MOS) Transistor Demonstrated"</a>. <i>The Silicon Engine</i>. <a href="/wiki/Computer_History_Museum" title="Computer History Museum">Computer History Museum</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2023-01-16</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Silicon+Engine&rft.atitle=1960+%E2%80%93+Metal+Oxide+Semiconductor+%28MOS%29+Transistor+Demonstrated&rft_id=https%3A%2F%2Fwww.computerhistory.org%2Fsiliconengine%2Fmetal-oxide-semiconductor-mos-transistor-demonstrated%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKAHNG1961" class="citation journal cs1">KAHNG, D. (1961). <a rel="nofollow" class="external text" href="https://doi.org/10.1142/9789814503464_0076">"Silicon-Silicon Dioxide Surface Device"</a>. <i>Technical Memorandum of Bell Laboratories</i>: 583–596. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F9789814503464_0076">10.1142/9789814503464_0076</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-02-0209-5" title="Special:BookSources/978-981-02-0209-5"><bdi>978-981-02-0209-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Technical+Memorandum+of+Bell+Laboratories&rft.atitle=Silicon-Silicon+Dioxide+Surface+Device&rft.pages=583-596&rft.date=1961&rft_id=info%3Adoi%2F10.1142%2F9789814503464_0076&rft.isbn=978-981-02-0209-5&rft.aulast=KAHNG&rft.aufirst=D.&rft_id=https%3A%2F%2Fdoi.org%2F10.1142%2F9789814503464_0076&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLojek2007" class="citation book cs1">Lojek, Bo (2007). <i>History of Semiconductor Engineering</i>. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. p. 321. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-34258-8" title="Special:BookSources/978-3-540-34258-8"><bdi>978-3-540-34258-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=History+of+Semiconductor+Engineering&rft.place=Berlin%2C+Heidelberg&rft.pages=321&rft.pub=Springer-Verlag+Berlin+Heidelberg&rft.date=2007&rft.isbn=978-3-540-34258-8&rft.aulast=Lojek&rft.aufirst=Bo&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoss2002" class="citation book cs1">Ross, Bassett (2002). <i>To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology</i>. JHU Press. pp. 12–28.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=To+the+Digital+Age%3A+Research+Labs%2C+Start-up+Companies%2C+and+the+Rise+of+MOS+Technology&rft.pages=12-28&rft.pub=JHU+Press&rft.date=2002&rft.aulast=Ross&rft.aufirst=Bassett&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20070705085953/http://www.intel.com/technology/architecture-silicon/45nm-core2/index.htm">"Intel 45nm Hi-k Silicon Technology"</a>. Intel. Archived from <a rel="nofollow" class="external text" href="http://www.intel.com/technology/architecture-silicon/45nm-core2/index.htm">the original</a> on July 5, 2007.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Intel+45nm+Hi-k+Silicon+Technology&rft.pub=Intel&rft_id=http%3A%2F%2Fwww.intel.com%2Ftechnology%2Farchitecture-silicon%2F45nm-core2%2Findex.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-memory-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-memory_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304090142/http://bitsavers.trailing-edge.com/pdf/intel/_dataBooks/1984_Intel_Memory_Components_Handbook.pdf">"memory components data book"</a> <span class="cs1-format">(PDF)</span>. <i>memory components data book</i>. Intel. pp. 2–1. Archived from <a rel="nofollow" class="external text" href="http://bitsavers.trailing-edge.com/pdf/intel/_dataBooks/1984_Intel_Memory_Components_Handbook.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 4 March 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">30 August</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=memory+components+data+book&rft.atitle=memory+components+data+book&rft.pages=2-1&rft_id=http%3A%2F%2Fbitsavers.trailing-edge.com%2Fpdf%2Fintel%2F_dataBooks%2F1984_Intel_Memory_Components_Handbook.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-brunningsoftware_co_uk-FET-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-brunningsoftware_co_uk-FET_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180411173010/http://brunningsoftware.co.uk/FET.htm">"Using a MOSFET as a Switch"</a>. Archived from <a rel="nofollow" class="external text" href="http://brunningsoftware.co.uk/FET.htm">the original</a> on 2018-04-11.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Using+a+MOSFET+as+a+Switch&rft_id=http%3A%2F%2Fbrunningsoftware.co.uk%2FFET.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span> 090507 brunningsoftware.co.uk</span> </li> <li id="cite_note-Hodges-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hodges_27-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShichmanHodges1968" class="citation journal cs1">Shichman, H. & Hodges, D. A. (1968). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130610140024/http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1049902">"Modeling and simulation of insulated-gate field-effect transistor switching circuits"</a>. <i>IEEE Journal of Solid-State Circuits</i>. <b>SC-3</b> (3): 285–289. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1968IJSSC...3..285S">1968IJSSC...3..285S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FJSSC.1968.1049902">10.1109/JSSC.1968.1049902</a>. Archived from <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/1049902">the original</a> on June 10, 2013.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Journal+of+Solid-State+Circuits&rft.atitle=Modeling+and+simulation+of+insulated-gate+field-effect+transistor+switching+circuits&rft.volume=SC-3&rft.issue=3&rft.pages=285-289&rft.date=1968&rft_id=info%3Adoi%2F10.1109%2FJSSC.1968.1049902&rft_id=info%3Abibcode%2F1968IJSSC...3..285S&rft.aulast=Shichman&rft.aufirst=H.&rft.au=Hodges%2C+D.+A.&rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F1049902&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Hu-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hu_28-0">^</a></b></span> <span class="reference-text">For example, see <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChengHu1999" class="citation book cs1">Cheng, Yuhua; Hu, Chenming (1999). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=R5DP56qUql4C"><i>MOSFET modeling & BSIM3 user's guide</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7923-8575-2" title="Special:BookSources/978-0-7923-8575-2"><bdi>978-0-7923-8575-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=MOSFET+modeling+%26+BSIM3+user%27s+guide&rft.pub=Springer&rft.date=1999&rft.isbn=978-0-7923-8575-2&rft.aulast=Cheng&rft.aufirst=Yuhua&rft.au=Hu%2C+Chenming&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DR5DP56qUql4C&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span> The most recent version of the <a href="/wiki/BSIM" title="BSIM">BSIM</a> model is described in <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFV.PaydavosiLuLin2012" class="citation web cs1">V., Sriramkumar; Paydavosi, Navid; Lu, Darsen; Lin, Chung-Hsun; Dunga, Mohan; Yao, Shijing; Morshed, Tanvir; Niknejad, Ali & Hu, Chenming (2012). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140727084407/http://www-device.eecs.berkeley.edu/bsim/Files/BSIMCMG/BSIMCMG106.0.0/BSIMCMG106.0.0_TechnicalManual_20120313.pdf">"BSIM-CMG 106.1.0beta Multi-Gate MOSFET Compact Model"</a> <span class="cs1-format">(PDF)</span>. Department of Electronic Engineering and Computer Science, University of California Berkeley. Archived from <a rel="nofollow" class="external text" href="http://www-device.eecs.berkeley.edu/bsim/Files/BSIMCMG/BSIMCMG106.0.0/BSIMCMG106.0.0_TechnicalManual_20120313.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2014-07-27<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-04-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=BSIM-CMG+106.1.0beta+Multi-Gate+MOSFET+Compact+Model&rft.pub=Department+of+Electronic+Engineering+and+Computer+Science%2C+University+of+California+Berkeley&rft.date=2012&rft.aulast=V.&rft.aufirst=Sriramkumar&rft.au=Paydavosi%2C+Navid&rft.au=Lu%2C+Darsen&rft.au=Lin%2C+Chung-Hsun&rft.au=Dunga%2C+Mohan&rft.au=Yao%2C+Shijing&rft.au=Morshed%2C+Tanvir&rft.au=Niknejad%2C+Ali&rft.au=Hu%2C+Chenming&rft_id=http%3A%2F%2Fwww-device.eecs.berkeley.edu%2Fbsim%2FFiles%2FBSIMCMG%2FBSIMCMG106.0.0%2FBSIMCMG106.0.0_TechnicalManual_20120313.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Gray-Meyer-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gray-Meyer_29-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrayHurstLewisMeyer2001" class="citation book cs1">Gray, P. R.; Hurst, P. J.; Lewis, S. H. & Meyer, R. G. (2001). <a rel="nofollow" class="external text" href="http://worldcat.org/isbn/0471321680"><i>Analysis and Design of Analog Integrated Circuits</i></a> (4th ed.). New York: Wiley. pp. 66–67. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-32168-2" title="Special:BookSources/978-0-471-32168-2"><bdi>978-0-471-32168-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Analysis+and+Design+of+Analog+Integrated+Circuits&rft.place=New+York&rft.pages=66-67&rft.edition=4th&rft.pub=Wiley&rft.date=2001&rft.isbn=978-0-471-32168-2&rft.aulast=Gray&rft.aufirst=P.+R.&rft.au=Hurst%2C+P.+J.&rft.au=Lewis%2C+S.+H.&rft.au=Meyer%2C+R.+G.&rft_id=http%3A%2F%2Fworldcat.org%2Fisbn%2F0471321680&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-vanRoermund-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-vanRoermund_30-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_der_Meervan_Staverenvan_Roermund2004" class="citation book cs1">van der Meer, P. R.; van Staveren, A.; van Roermund, A. H. M. (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nyken8ivkb8C&pg=PA78"><i>Low-Power Deep Sub-Micron CMOS Logic: Subthreshold Current Reduction</i></a>. Dordrecht: Springer. p. 78. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4020-2848-9" title="Special:BookSources/978-1-4020-2848-9"><bdi>978-1-4020-2848-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Low-Power+Deep+Sub-Micron+CMOS+Logic%3A+Subthreshold+Current+Reduction&rft.place=Dordrecht&rft.pages=78&rft.pub=Springer&rft.date=2004&rft.isbn=978-1-4020-2848-9&rft.aulast=van+der+Meer&rft.aufirst=P.+R.&rft.au=van+Staveren%2C+A.&rft.au=van+Roermund%2C+A.+H.+M.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dnyken8ivkb8C%26pg%3DPA78&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDegnan" class="citation web cs1">Degnan, Brian. <a rel="nofollow" class="external text" href="https://sites.google.com/site/degnan68k/semiconductors/wikipedia-fails-subvt">"Wikipedia fails subvt"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Wikipedia+fails+subvt&rft.aulast=Degnan&rft.aufirst=Brian&rft_id=https%3A%2F%2Fsites.google.com%2Fsite%2Fdegnan68k%2Fsemiconductors%2Fwikipedia-fails-subvt&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMead1989" class="citation book cs1">Mead, Carver (1989). <i>Analog VLSI and Neural Systems</i>. Reading, Massachusetts: Addison-Wesley. p. 370. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780201059922" title="Special:BookSources/9780201059922"><bdi>9780201059922</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Analog+VLSI+and+Neural+Systems&rft.place=Reading%2C+Massachusetts&rft.pages=370&rft.pub=Addison-Wesley&rft.date=1989&rft.isbn=9780201059922&rft.aulast=Mead&rft.aufirst=Carver&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Smith-Hamilton-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-Smith-Hamilton_33-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmithHamilton1998" class="citation book cs1">Smith, Leslie S.; Hamilton, Alister (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=kWSXEHyQL9sC&pg=PA55"><i>Neuromorphic Systems: Engineering Silicon from Neurobiology</i></a>. World Scientific. pp. 52–56. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-02-3377-8" title="Special:BookSources/978-981-02-3377-8"><bdi>978-981-02-3377-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Neuromorphic+Systems%3A+Engineering+Silicon+from+Neurobiology&rft.pages=52-56&rft.pub=World+Scientific&rft.date=1998&rft.isbn=978-981-02-3377-8&rft.aulast=Smith&rft.aufirst=Leslie+S.&rft.au=Hamilton%2C+Alister&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DkWSXEHyQL9sC%26pg%3DPA55&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Kumar-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kumar_34-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKumar2004" class="citation book cs1">Kumar, Satish (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=GJQh-2p6TvgC&pg=PA688"><i>Neural Networks: A Classroom Approach</i></a>. Tata McGraw-Hill. p. 688. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-048292-0" title="Special:BookSources/978-0-07-048292-0"><bdi>978-0-07-048292-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Neural+Networks%3A+A+Classroom+Approach&rft.pages=688&rft.pub=Tata+McGraw-Hill&rft.date=2004&rft.isbn=978-0-07-048292-0&rft.aulast=Kumar&rft.aufirst=Satish&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DGJQh-2p6TvgC%26pg%3DPA688&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Conference-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-Conference_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGlesnerZipfRenovell2002" class="citation book cs1">Glesner, Manfred; Zipf, Peter; Renovell, Michel (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=fneXs6IY2-oC&pg=PA425"><i>Field-programmable Logic and Applications: 12th International Conference</i></a>. Dordrecht: Springer. p. 425. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-44108-3" title="Special:BookSources/978-3-540-44108-3"><bdi>978-3-540-44108-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Field-programmable+Logic+and+Applications%3A+12th+International+Conference&rft.place=Dordrecht&rft.pages=425&rft.pub=Springer&rft.date=2002&rft.isbn=978-3-540-44108-3&rft.aulast=Glesner&rft.aufirst=Manfred&rft.au=Zipf%2C+Peter&rft.au=Renovell%2C+Michel&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DfneXs6IY2-oC%26pg%3DPA425&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVittoz1996" class="citation book cs1">Vittoz, Eric A. (1996). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=WTInL9njOKAC&pg=PA367">"The Fundamentals of Analog Micropower Design"</a>. In Toumazou, Chris; Battersby, Nicholas C.; Porta, Sonia (eds.). <i>Circuits and systems tutorials</i>. John Wiley and Sons. pp. 365–372. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7803-1170-1" title="Special:BookSources/978-0-7803-1170-1"><bdi>978-0-7803-1170-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+Fundamentals+of+Analog+Micropower+Design&rft.btitle=Circuits+and+systems+tutorials&rft.pages=365-372&rft.pub=John+Wiley+and+Sons&rft.date=1996&rft.isbn=978-0-7803-1170-1&rft.aulast=Vittoz&rft.aufirst=Eric+A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DWTInL9njOKAC%26pg%3DPA367&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Shukla-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-Shukla_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShuklaBahar2004" class="citation book cs1">Shukla, Sandeep K.; <a href="/wiki/R._Iris_Bahar" title="R. Iris Bahar">Bahar, R. Iris</a> (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=lLvo1iMGhJgC&pg=PA10"><i>Nano, Quantum and Molecular Computing</i></a>. Springer. p. 10 and Fig. 1.4, p. 11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4020-8067-8" title="Special:BookSources/978-1-4020-8067-8"><bdi>978-1-4020-8067-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Nano%2C+Quantum+and+Molecular+Computing&rft.pages=p.+10+and+Fig.+1.4%2C+p.+11&rft.pub=Springer&rft.date=2004&rft.isbn=978-1-4020-8067-8&rft.aulast=Shukla&rft.aufirst=Sandeep+K.&rft.au=Bahar%2C+R.+Iris&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DlLvo1iMGhJgC%26pg%3DPA10&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Srivasta-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-Srivasta_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSrivastavaSylvesterBlaauw2005" class="citation book cs1">Srivastava, Ashish; Sylvester, Dennis; Blaauw, David (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=WqsQTyOu5jwC&pg=PA9"><i>Statistical Analysis and Optimization For VLSI: Timing and Power</i></a>. Springer. p. 135. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-25738-9" title="Special:BookSources/978-0-387-25738-9"><bdi>978-0-387-25738-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Statistical+Analysis+and+Optimization+For+VLSI%3A+Timing+and+Power&rft.pages=135&rft.pub=Springer&rft.date=2005&rft.isbn=978-0-387-25738-9&rft.aulast=Srivastava&rft.aufirst=Ashish&rft.au=Sylvester%2C+Dennis&rft.au=Blaauw%2C+David&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DWqsQTyOu5jwC%26pg%3DPA9&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Schneider-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-Schneider_39-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGalup-MontoroSchneider2007" class="citation book cs1">Galup-Montoro, C. & Schneider, M. C. (2007). <a rel="nofollow" class="external text" href="http://worldcat.org/isbn/981-256-810-7"><i>MOSFET modeling for circuit analysis and design</i></a>. London/Singapore: World Scientific. p. 83. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-256-810-6" title="Special:BookSources/978-981-256-810-6"><bdi>978-981-256-810-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=MOSFET+modeling+for+circuit+analysis+and+design&rft.place=London%2FSingapore&rft.pages=83&rft.pub=World+Scientific&rft.date=2007&rft.isbn=978-981-256-810-6&rft.aulast=Galup-Montoro&rft.aufirst=C.&rft.au=Schneider%2C+M.+C.&rft_id=http%3A%2F%2Fworldcat.org%2Fisbn%2F981-256-810-7&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Malik-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-Malik_40-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMalik1995" class="citation book cs1">Malik, Norbert R. (1995). <a rel="nofollow" class="external text" href="http://worldcat.org/isbn/0-02-374910-5"><i>Electronic circuits: analysis, simulation, and design</i></a>. Englewood Cliffs, New Jersey: Prentice Hall. pp. 315–316. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-02-374910-0" title="Special:BookSources/978-0-02-374910-0"><bdi>978-0-02-374910-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Electronic+circuits%3A+analysis%2C+simulation%2C+and+design&rft.place=Englewood+Cliffs%2C+New+Jersey&rft.pages=315-316&rft.pub=Prentice+Hall&rft.date=1995&rft.isbn=978-0-02-374910-0&rft.aulast=Malik&rft.aufirst=Norbert+R.&rft_id=http%3A%2F%2Fworldcat.org%2Fisbn%2F0-02-374910-5&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Sedra2-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sedra2_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSedraSmith2004" class="citation book cs1">Sedra, A. S. & Smith, K. C. (2004). <a rel="nofollow" class="external text" href="http://worldcat.org/isbn/0-19-514251-9"><i>Microelectronic Circuits</i></a> (5th ed.). Oxford University Press. p. 250, Eq. 4.14. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-514251-8" title="Special:BookSources/978-0-19-514251-8"><bdi>978-0-19-514251-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Microelectronic+Circuits&rft.pages=p.+250%2C+Eq.+4.14&rft.edition=5th&rft.pub=Oxford+University+Press&rft.date=2004&rft.isbn=978-0-19-514251-8&rft.aulast=Sedra&rft.aufirst=A.+S.&rft.au=Smith%2C+K.+C.&rft_id=http%3A%2F%2Fworldcat.org%2Fisbn%2F0-19-514251-9&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Gray-Meyer2-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gray-Meyer2_42-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrayHurstLewisMeyer2001" class="citation book cs1">Gray, P. R.; Hurst, P. J.; Lewis, S. H.; Meyer, R. G. (2001). <a rel="nofollow" class="external text" href="http://worldcat.org/isbn/0-471-32168-0"><i>Analysis and design of analog integrated circuits</i></a> (4th ed.). New York: Wiley. §1.5.2 p. 45. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-32168-2" title="Special:BookSources/978-0-471-32168-2"><bdi>978-0-471-32168-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Analysis+and+design+of+analog+integrated+circuits&rft.place=New+York&rft.pages=%C2%A71.5.2+p.+45&rft.edition=4th&rft.pub=Wiley&rft.date=2001&rft.isbn=978-0-471-32168-2&rft.aulast=Gray&rft.aufirst=P.+R.&rft.au=Hurst%2C+P.+J.&rft.au=Lewis%2C+S.+H.&rft.au=Meyer%2C+R.+G.&rft_id=http%3A%2F%2Fworldcat.org%2Fisbn%2F0-471-32168-0&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Sedra-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sedra_43-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSedraSmith2004" class="citation book cs1">Sedra, A. S. & Smith, K. C. (2004). <a rel="nofollow" class="external text" href="http://worldcat.org/isbn/0-19-514251-9"><i>Microelectronic circuits</i></a> (5th ed.). New York: Oxford University Press. p. 552. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-514251-8" title="Special:BookSources/978-0-19-514251-8"><bdi>978-0-19-514251-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Microelectronic+circuits&rft.place=New+York&rft.pages=552&rft.edition=5th&rft.pub=Oxford+University+Press&rft.date=2004&rft.isbn=978-0-19-514251-8&rft.aulast=Sedra&rft.aufirst=A.+S.&rft.au=Smith%2C+K.+C.&rft_id=http%3A%2F%2Fworldcat.org%2Fisbn%2F0-19-514251-9&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-inversion-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-inversion_44-0">^</a></b></span> <span class="reference-text"> For a uniformly doped p-type substrate with bulk acceptor doping of <i>N<sub>A</sub></i> per unit volume, <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{B}={\frac {k_{B}T}{q}}\ln \left({\frac {N_{A}}{n_{i}}}\right)\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mi>T</mi> </mrow> <mi>q</mi> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> <mtext> </mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{B}={\frac {k_{B}T}{q}}\ln \left({\frac {N_{A}}{n_{i}}}\right)\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83a672158df976d299058d61b7085c288177cc04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.404ex; height:6.176ex;" alt="{\displaystyle \varphi _{B}={\frac {k_{B}T}{q}}\ln \left({\frac {N_{A}}{n_{i}}}\right)\ ,}"></span></dd></dl> with <i>n<sub>i</sub></i> the intrinsic mobile carrier density per unit volume in the bulk. See, for example, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArora2007" class="citation book cs1">Arora, Narain (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=SkT2xOuvpuYC&pg=PA173">"Equation 5.12"</a>. <i>Mosfet modeling for VLSI simulation: theory and practice</i>. World Scientific. p. 173. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9789812707581" title="Special:BookSources/9789812707581"><bdi>9789812707581</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Equation+5.12&rft.btitle=Mosfet+modeling+for+VLSI+simulation%3A+theory+and+practice&rft.pages=173&rft.pub=World+Scientific&rft.date=2007&rft.isbn=9789812707581&rft.aulast=Arora&rft.aufirst=Narain&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSkT2xOuvpuYC%26pg%3DPA173&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20141110225738/http://equars.com/~marco/poli/phd/node20.html">"Body effect"</a>. Equars.com. Archived from <a rel="nofollow" class="external text" href="http://equars.com/~marco/poli/phd/node20.html">the original</a> on 2014-11-10<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-06-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Body+effect&rft.pub=Equars.com&rft_id=http%3A%2F%2Fequars.com%2F~marco%2Fpoli%2Fphd%2Fnode20.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20141013185140/http://www.circuitstoday.com/electronic-circuit-symbols">"Electronic Circuit Symbols"</a>. <i>circuitstoday.com</i>. 9 November 2011. Archived from <a rel="nofollow" class="external text" href="http://www.circuitstoday.com/electronic-circuit-symbols">the original</a> on 13 October 2014.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=circuitstoday.com&rft.atitle=Electronic+Circuit+Symbols&rft.date=2011-11-09&rft_id=http%3A%2F%2Fwww.circuitstoday.com%2Felectronic-circuit-symbols&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><i>IEEE Std 315-1975 — Graphic Symbols for Electrical and Electronics Diagrams (Including Reference Designation Letters)</i></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=IEEE+Std+315-1975+%E2%80%94+Graphic+Symbols+for+Electrical+and+Electronics+Diagrams+%28Including+Reference+Designation+Letters%29&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJaegerBlalock" class="citation book cs1">Jaeger, Richard C.; Blalock, Travis N. "Figure 4.15 IEEE Standard MOS transistor circuit symbols". <a rel="nofollow" class="external text" href="http://highered.mcgraw-hill.com/sites/dl/free/0073191639/366537/Chapter_4.pdf#page=19"><i>Microelectronic Circuit Design</i></a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20221009/http://highered.mcgraw-hill.com/sites/dl/free/0073191639/366537/Chapter_4.pdf#page=19">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2022-10-09.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Figure+4.15+IEEE+Standard+MOS+transistor+circuit+symbols&rft.btitle=Microelectronic+Circuit+Design&rft.aulast=Jaeger&rft.aufirst=Richard+C.&rft.au=Blalock%2C+Travis+N.&rft_id=http%3A%2F%2Fhighered.mcgraw-hill.com%2Fsites%2Fdl%2Ffree%2F0073191639%2F366537%2FChapter_4.pdf%23page%3D19&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.computerhistory.org/semiconductor/timeline/1955-Photolithography.html">"1955 – Photolithography Techniques Are Used to Make Silicon Devices"</a>. Computer History Museum<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-06-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=1955+%E2%80%93+Photolithography+Techniques+Are+Used+to+Make+Silicon+Devices&rft.pub=Computer+History+Museum&rft_id=http%3A%2F%2Fwww.computerhistory.org%2Fsemiconductor%2Ftimeline%2F1955-Photolithography.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.computerhistory.org/semiconductor/timeline/1964-Commecial.htm">"1964 – First Commercial MOS IC Introduced"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=1964+%E2%80%93+First+Commercial+MOS+IC+Introduced&rft_id=http%3A%2F%2Fwww.computerhistory.org%2Fsemiconductor%2Ftimeline%2F1964-Commecial.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title=" Dead link tagged August 2018">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">‍</span>]</span></sup></span> </li> <li id="cite_note-cushman-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-cushman_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCushman1975" class="citation web cs1">Cushman, Robert H. (20 September 1975). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160424050556/http://www.swtpc.com/mholley/Microprocessors/EDN_Sep_20_1975_6502.pdf">"2-1/2-generation μP's-$10 parts that perform like low-end mini's"</a> <span class="cs1-format">(PDF)</span>. EDN. Archived from <a rel="nofollow" class="external text" href="http://www.swtpc.com/mholley/Microprocessors/EDN_Sep_20_1975_6502.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 24 April 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">8 August</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=2-1%2F2-generation+%CE%BCP%27s-%2410+parts+that+perform+like+low-end+mini%27s&rft.pub=EDN&rft.date=1975-09-20&rft.aulast=Cushman&rft.aufirst=Robert+H.&rft_id=http%3A%2F%2Fwww.swtpc.com%2Fmholley%2FMicroprocessors%2FEDN_Sep_20_1975_6502.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.computerhistory.org/semiconductor/timeline/1963-CMOS.html">"Computer History Museum – The Silicon Engine | 1963 – Complementary MOS Circuit Configuration is Invented"</a>. Computerhistory.org<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-06-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Computer+History+Museum+%E2%80%93+The+Silicon+Engine+%26%23124%3B+1963+%E2%80%93+Complementary+MOS+Circuit+Configuration+is+Invented&rft.pub=Computerhistory.org&rft_id=http%3A%2F%2Fwww.computerhistory.org%2Fsemiconductor%2Ftimeline%2F1963-CMOS.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.computerhistory.org/microprocessors/">"Computer History Museum – Exhibits – Microprocessors"</a>. Computerhistory.org<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-06-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Computer+History+Museum+%E2%80%93+Exhibits+%E2%80%93+Microprocessors&rft.pub=Computerhistory.org&rft_id=http%3A%2F%2Fwww.computerhistory.org%2Fmicroprocessors%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20100919004000/http://www.revera.com/VeraFlex/hkmg_approaches.htm">"ReVera's FinFET Control"</a>. <i>revera.com</i>. Archived from <a rel="nofollow" class="external text" href="http://www.revera.com/VeraFlex/hkmg_approaches.htm">the original</a> on 19 September 2010.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=revera.com&rft.atitle=ReVera%27s+FinFET+Control&rft_id=http%3A%2F%2Fwww.revera.com%2FVeraFlex%2Fhkmg_approaches.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Colinge-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-Colinge_55-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFColingeColinge2002" class="citation book cs1">Colinge, Jean-Pierre; Colinge, Cynthia A. (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ZcDE-ENKh2gC&pg=PA233"><i>Physics of Semiconductor Devices</i></a>. Dordrecht: Springer. p. 233, Figure 7.46. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4020-7018-1" title="Special:BookSources/978-1-4020-7018-1"><bdi>978-1-4020-7018-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Physics+of+Semiconductor+Devices&rft.place=Dordrecht&rft.pages=233%2C+Figure+7.46&rft.pub=Springer&rft.date=2002&rft.isbn=978-1-4020-7018-1&rft.aulast=Colinge&rft.aufirst=Jean-Pierre&rft.au=Colinge%2C+Cynthia+A.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DZcDE-ENKh2gC%26pg%3DPA233&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Weber-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-Weber_56-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeberDabrowski2004" class="citation book cs1">Weber, Eicke R.; Dabrowski, Jarek, eds. (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=oCH9tiY7VeoC&pg=PA5"><i>Predictive Simulation of Semiconductor Processing: Status and Challenges</i></a>. Dordrecht: Springer. p. 5, Figure 1.2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-20481-7" title="Special:BookSources/978-3-540-20481-7"><bdi>978-3-540-20481-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Predictive+Simulation+of+Semiconductor+Processing%3A+Status+and+Challenges&rft.place=Dordrecht&rft.pages=5%2C+Figure+1.2&rft.pub=Springer&rft.date=2004&rft.isbn=978-3-540-20481-7&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DoCH9tiY7VeoC%26pg%3DPA5&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20151228041321/http://www.itrs.net/">"International Technology Roadmap for Semiconductors"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.itrs.net">the original</a> on 2015-12-28.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=International+Technology+Roadmap+for+Semiconductors&rft_id=http%3A%2F%2Fwww.itrs.net&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.computerhistory.org/semiconductor/timeline/1965-Moore.html">"1965 – "Moore's Law" Predicts the Future of Integrated Circuits"</a>. <i>Computer History Museum</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Computer+History+Museum&rft.atitle=1965+%E2%80%93+%22Moore%27s+Law%22+Predicts+the+Future+of+Integrated+Circuits&rft_id=http%3A%2F%2Fwww.computerhistory.org%2Fsemiconductor%2Ftimeline%2F1965-Moore.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Roy-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-Roy_59-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoyYeo2004" class="citation book cs1">Roy, Kaushik; Yeo, Kiat Seng (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jXm4pNxCSCYC&pg=PA4"><i>Low Voltage, Low Power VLSI Subsystems</i></a>. McGraw-Hill Professional. Fig. 2.1, p. 44, Fig. 1.1, p. 4. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-143786-8" title="Special:BookSources/978-0-07-143786-8"><bdi>978-0-07-143786-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Low+Voltage%2C+Low+Power+VLSI+Subsystems&rft.pages=Fig.+2.1%2C+p.+44%2C+Fig.+1.1%2C+p.+4&rft.pub=McGraw-Hill+Professional&rft.date=2004&rft.isbn=978-0-07-143786-8&rft.aulast=Roy&rft.aufirst=Kaushik&rft.au=Yeo%2C+Kiat+Seng&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjXm4pNxCSCYC%26pg%3DPA4&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Goodnick-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-Goodnick_60-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVasileskaGoodnick2006" class="citation book cs1"><a href="/wiki/Dragica_Vasileska" title="Dragica Vasileska">Vasileska, Dragica</a>; Goodnick, Stephen (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=DBPnzqy5Fd8C&pg=PA103"><i>Computational Electronics</i></a>. Morgan & Claypool. p. 103. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-59829-056-1" title="Special:BookSources/978-1-59829-056-1"><bdi>978-1-59829-056-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computational+Electronics&rft.pages=103&rft.pub=Morgan+%26+Claypool&rft.date=2006&rft.isbn=978-1-59829-056-1&rft.aulast=Vasileska&rft.aufirst=Dragica&rft.au=Goodnick%2C+Stephen&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DDBPnzqy5Fd8C%26pg%3DPA103&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120227064415/http://frontiersemi.com/pdf/papers/RsLransist.pdf">"Frontier Semiconductor Paper"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://frontiersemi.com/pdf/papers/RsLransist.pdf">the original</a> <span class="cs1-format">(PDF)</span> on February 27, 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-06-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Frontier+Semiconductor+Paper&rft_id=http%3A%2F%2Ffrontiersemi.com%2Fpdf%2Fpapers%2FRsLransist.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Chen-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-Chen_62-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChen2006" class="citation book cs1">Chen, Wai-Kai (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NDdsjtTLTd0C&pg=PT49"><i>The VLSI Handbook</i></a>. CRC Press. Fig. 2.28, p. 2–22. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8493-4199-1" title="Special:BookSources/978-0-8493-4199-1"><bdi>978-0-8493-4199-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+VLSI+Handbook&rft.pages=Fig.+2.28%2C+p.+2-22&rft.pub=CRC+Press&rft.date=2006&rft.isbn=978-0-8493-4199-1&rft.aulast=Chen&rft.aufirst=Wai-Kai&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNDdsjtTLTd0C%26pg%3DPT49&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLindsayPawlakKittlHenson2011" class="citation journal cs1">Lindsay, R.; Pawlak; Kittl; Henson; Torregiani; Giangrandi; Surdeanu; Vandervorst; Mayur; Ross; McCoy; Gelpey; Elliott; Pages; Satta; Lauwers; Stolk; Maex (2011). "A Comparison of Spike, Flash, SPER and Laser Annealing for 45nm CMOS". <i>MRS Proceedings</i>. <b>765</b>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1557%2FPROC-765-D7.4">10.1557/PROC-765-D7.4</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=MRS+Proceedings&rft.atitle=A+Comparison+of+Spike%2C+Flash%2C+SPER+and+Laser+Annealing+for+45nm+CMOS&rft.volume=765&rft.date=2011&rft_id=info%3Adoi%2F10.1557%2FPROC-765-D7.4&rft.aulast=Lindsay&rft.aufirst=R.&rft.au=Pawlak&rft.au=Kittl&rft.au=Henson&rft.au=Torregiani&rft.au=Giangrandi&rft.au=Surdeanu&rft.au=Vandervorst&rft.au=Mayur&rft.au=Ross&rft.au=McCoy&rft.au=Gelpey&rft.au=Elliott&rft.au=Pages&rft.au=Satta&rft.au=Lauwers&rft.au=Stolk&rft.au=Maex&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.research.ibm.com/journal/rd/293/ibmrd2903G.pdf">"VLSI wiring capacitance"</a> <span class="cs1-format">(PDF)</span>. IBM Journal of Research and Development. 9 February 2021. <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20221009/http://www.research.ibm.com/journal/rd/293/ibmrd2903G.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2022-10-09.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=VLSI+wiring+capacitance&rft.pub=IBM+Journal+of+Research+and+Development&rft.date=2021-02-09&rft_id=http%3A%2F%2Fwww.research.ibm.com%2Fjournal%2Frd%2F293%2Fibmrd2903G.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title=" Dead link tagged June 2015">dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">‍</span>]</span></sup></span> </li> <li id="cite_note-Soudris-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-Soudris_65-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSoudrisPirschBarke2000" class="citation book cs1">Soudris, D.; Pirsch, P.; Barke, E., eds. (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=TGQxMLsGzVUC&pg=PA38"><i>Integrated Circuit Design: Power and Timing Modeling, Optimization, and Simulation (10th Int. Workshop)</i></a>. Springer. p. 38. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-41068-3" title="Special:BookSources/978-3-540-41068-3"><bdi>978-3-540-41068-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Integrated+Circuit+Design%3A+Power+and+Timing+Modeling%2C+Optimization%2C+and+Simulation+%2810th+Int.+Workshop%29&rft.pages=38&rft.pub=Springer&rft.date=2000&rft.isbn=978-3-540-41068-3&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DTGQxMLsGzVUC%26pg%3DPA38&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Boning-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boning_66-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOrshanskyNassifBoning2007" class="citation book cs1">Orshansky, Michael; Nassif, Sani; Boning, Duane (2007). <a rel="nofollow" class="external text" href="https://www.amazon.com/gp/reader/0387309284/ref=sib_dp_pt/002-1766819-0058402#reader-link"><i>Design for Manufacturability And Statistical Design: A Constructive Approach</i></a>. New York: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780387309286" title="Special:BookSources/9780387309286"><bdi>9780387309286</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Design+for+Manufacturability+And+Statistical+Design%3A+A+Constructive+Approach&rft.place=New+York&rft.pub=Springer&rft.date=2007&rft.isbn=9780387309286&rft.aulast=Orshansky&rft.aufirst=Michael&rft.au=Nassif%2C+Sani&rft.au=Boning%2C+Duane&rft_id=https%3A%2F%2Fwww.amazon.com%2Fgp%2Freader%2F0387309284%2Fref%3Dsib_dp_pt%2F002-1766819-0058402%23reader-link&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-SOI-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-SOI_67-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZeitzoffHutchbyHuff2002" class="citation book cs1">Zeitzoff, P. M.; Hutchby, J. A.; Huff, H. R. (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=uC6h4-OEWsMC&pg=PA82">"Figure 12: Simplified cross section of FinFET double-gate MOSFET"</a>. In Park, Yoon-Soo; Shur, Michael; Tang, William (eds.). <i>Frontiers in electronics: future chips : proceedings of the 2002 Workshop on Frontiers in Electronics (WOFE-02), St Croix, Virgin Islands, USA, 6–11 January 2002</i>. World Scientific. p. 82. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-238-222-1" title="Special:BookSources/978-981-238-222-1"><bdi>978-981-238-222-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Figure+12%3A+Simplified+cross+section+of+FinFET+double-gate+MOSFET&rft.btitle=Frontiers+in+electronics%3A+future+chips+%3A+proceedings+of+the+2002+Workshop+on+Frontiers+in+Electronics+%28WOFE-02%29%2C+St+Croix%2C+Virgin+Islands%2C+USA%2C+6%E2%80%9311+January+2002&rft.pages=82&rft.pub=World+Scientific&rft.date=2002&rft.isbn=978-981-238-222-1&rft.aulast=Zeitzoff&rft.aufirst=P.+M.&rft.au=Hutchby%2C+J.+A.&rft.au=Huff%2C+H.+R.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DuC6h4-OEWsMC%26pg%3DPA82&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeeLeeJungChoi2009" class="citation book cs1">Lee, J.-H.; Lee, J.-W.; Jung, H.-A.-R.; Choi, B.-K. (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=OVbb42PwZysC&pg=PA102">"Comparison of SOI FinFETs and bulk FinFETs: Figure 2"</a>. <i>Silicon-on-Insulator Technology and Devices</i>. The Electrochemical Society. p. 102. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-56677-712-4" title="Special:BookSources/978-1-56677-712-4"><bdi>978-1-56677-712-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Comparison+of+SOI+FinFETs+and+bulk+FinFETs%3A+Figure+2&rft.btitle=Silicon-on-Insulator+Technology+and+Devices&rft.pages=102&rft.pub=The+Electrochemical+Society&rft.date=2009&rft.isbn=978-1-56677-712-4&rft.aulast=Lee&rft.aufirst=J.-H.&rft.au=Lee%2C+J.-W.&rft.au=Jung%2C+H.-A.-R.&rft.au=Choi%2C+B.-K.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DOVbb42PwZysC%26pg%3DPA102&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation encyclopaedia cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20101031061941/http://www.techweb.com/encyclopedia/imageFriendly.jhtml;?term=depletion+mode">"Depletion Mode"</a>. <i>Techweb</i>. 29 January 2010. Archived from <a rel="nofollow" class="external text" href="http://www.techweb.com/encyclopedia/imageFriendly.jhtml;?term=depletion+mode">the original</a> on 31 October 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">27 November</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Depletion+Mode&rft.btitle=Techweb&rft.date=2010-01-29&rft_id=http%3A%2F%2Fwww.techweb.com%2Fencyclopedia%2FimageFriendly.jhtml%3B%3Fterm%3Ddepletion%2Bmode&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20170122153452/http://www.semi1source.com/glossary/default.asp?searchterm=MIS">"MIS"</a>. <i>Semiconductor Glossary</i>. Archived from <a rel="nofollow" class="external text" href="http://www.semi1source.com/glossary/default.asp?searchterm=MIS">the original</a> on 2017-01-22<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-05-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Semiconductor+Glossary&rft.atitle=MIS&rft_id=http%3A%2F%2Fwww.semi1source.com%2Fglossary%2Fdefault.asp%3Fsearchterm%3DMIS&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHadziioannouMalliaras2007" class="citation book cs1">Hadziioannou, Georges; Malliaras, George G. (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=D37RykvobWwC&dq=misfet+metal-insulator-semiconductor-field-effect-transistor&pg=PA532"><i>Semiconducting polymers: chemistry, physics and engineering</i></a>. Wiley-VCH. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-527-31271-9" title="Special:BookSources/978-3-527-31271-9"><bdi>978-3-527-31271-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Semiconducting+polymers%3A+chemistry%2C+physics+and+engineering&rft.pub=Wiley-VCH&rft.date=2007&rft.isbn=978-3-527-31271-9&rft.aulast=Hadziioannou&rft.aufirst=Georges&rft.au=Malliaras%2C+George+G.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DD37RykvobWwC%26dq%3Dmisfet%2Bmetal-insulator-semiconductor-field-effect-transistor%26pg%3DPA532&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-Jones-72"><span class="mw-cite-backlink">^ <a href="#cite_ref-Jones_72-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Jones_72-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJones1997" class="citation book cs1">Jones, William (1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=8sb1kwH6EgIC&dq=misfet+metal-insulator-semiconductor-field-effect-transistor&pg=PA350"><i>Organic Molecular Solids: Properties and Applications</i></a>. CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8493-9428-7" title="Special:BookSources/978-0-8493-9428-7"><bdi>978-0-8493-9428-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Organic+Molecular+Solids%3A+Properties+and+Applications&rft.pub=CRC+Press&rft.date=1997&rft.isbn=978-0-8493-9428-7&rft.aulast=Jones&rft.aufirst=William&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8sb1kwH6EgIC%26dq%3Dmisfet%2Bmetal-insulator-semiconductor-field-effect-transistor%26pg%3DPA350&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXuGuoRhee2013" class="citation journal cs1">Xu, Wentao; Guo, Chang; Rhee, Shi-Woo (2013). <a rel="nofollow" class="external text" href="https://pubs.rsc.org/en/Content/ArticleLanding/2013/TC/C3TC30134F">"High performance organic field-effect transistors using cyanoethyl pullulan (CEP) high-k polymer cross-linked with trimethylolpropane triglycidyl ether (TTE) at low temperatures"</a>. <i>Journal of Materials Chemistry C</i>. <b>1</b> (25): 3955. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC3TC30134F">10.1039/C3TC30134F</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Materials+Chemistry+C&rft.atitle=High+performance+organic+field-effect+transistors+using+cyanoethyl+pullulan+%28CEP%29+high-k+polymer+cross-linked+with+trimethylolpropane+triglycidyl+ether+%28TTE%29+at+low+temperatures&rft.volume=1&rft.issue=25&rft.pages=3955&rft.date=2013&rft_id=info%3Adoi%2F10.1039%2FC3TC30134F&rft.aulast=Xu&rft.aufirst=Wentao&rft.au=Guo%2C+Chang&rft.au=Rhee%2C+Shi-Woo&rft_id=https%3A%2F%2Fpubs.rsc.org%2Fen%2FContent%2FArticleLanding%2F2013%2FTC%2FC3TC30134F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaliga1996" class="citation book cs1">Baliga, B. Jayant (1996). <i>Power Semiconductor Devices</i>. Boston: PWS publishing Company. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-534-94098-0" title="Special:BookSources/978-0-534-94098-0"><bdi>978-0-534-94098-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Power+Semiconductor+Devices&rft.place=Boston&rft.pub=PWS+publishing+Company&rft.date=1996&rft.isbn=978-0-534-94098-0&rft.aulast=Baliga&rft.aufirst=B.+Jayant&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20150405142659/http://www.element-14.com/community/docs/DOC-18273/l/power-mosfet-basics-understanding-mosfet-characteristics-associated-with-the-figure-of-merit">"Power MOSFET Basics: Understanding MOSFET Characteristics Associated With The Figure of Merit"</a>. <i>element14</i>. Archived from <a rel="nofollow" class="external text" href="http://www.element-14.com/community/docs/DOC-18273/l/power-mosfet-basics-understanding-mosfet-characteristics-associated-with-the-figure-of-merit">the original</a> on 5 April 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">27 November</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=element14&rft.atitle=Power+MOSFET+Basics%3A+Understanding+MOSFET+Characteristics+Associated+With+The+Figure+of+Merit&rft_id=http%3A%2F%2Fwww.element-14.com%2Fcommunity%2Fdocs%2FDOC-18273%2Fl%2Fpower-mosfet-basics-understanding-mosfet-characteristics-associated-with-the-figure-of-merit&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20140630044120/http://www.element-14.com/community/docs/DOC-18275/l/power-mosfet-basics-understanding-gate-charge-and-using-it-to-assess-switching-performance">"Power MOSFET Basics: Understanding Gate Charge and Using It To Assess Switching Performance"</a>. <i>element14</i>. Archived from <a rel="nofollow" class="external text" href="http://www.element-14.com/community/docs/DOC-18275/l/power-mosfet-basics-understanding-gate-charge-and-using-it-to-assess-switching-performance">the original</a> on 30 June 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">27 November</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=element14&rft.atitle=Power+MOSFET+Basics%3A+Understanding+Gate+Charge+and+Using+It+To+Assess+Switching+Performance&rft_id=http%3A%2F%2Fwww.element-14.com%2Fcommunity%2Fdocs%2FDOC-18275%2Fl%2Fpower-mosfet-basics-understanding-gate-charge-and-using-it-to-assess-switching-performance&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=MOSFET&action=edit&section=46" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-External_links plainlinks metadata ambox ambox-style ambox-external_links" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article's <b>use of <a href="/wiki/Wikipedia:External_links" title="Wikipedia:External links">external links</a> may not follow Wikipedia's policies or guidelines</b>.<span class="hide-when-compact"> Please <a class="external text" href="https://en.wikipedia.org/w/index.php?title=MOSFET&action=edit">improve this article</a> by removing <a href="/wiki/Wikipedia:What_Wikipedia_is_not#Wikipedia_is_not_a_mirror_or_a_repository_of_links,_images,_or_media_files" title="Wikipedia:What Wikipedia is not">excessive</a> or <a href="/wiki/Wikipedia:External_links" title="Wikipedia:External links">inappropriate</a> external links, and converting useful links where appropriate into <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">footnote references</a>.</span> <span class="date-container"><i>(<span class="date">September 2016</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:MOSFET" class="extiw" title="commons:Category:MOSFET">MOSFET</a></span>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="https://www.wecanfigurethisout.org/VL/MOS_kit.htm">How Semiconductors and Transistors Work (MOSFETs)</a> WeCanFigureThisOut.org</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://assets.nexperia.com/documents/application-note/AN11158.pdf">"Understanding power MOSFET data sheet parameters – Nexperia PDF Application Note AN11158"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20221009/http://assets.nexperia.com/documents/application-note/AN11158.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2022-10-09.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Understanding+power+MOSFET+data+sheet+parameters+%E2%80%93+Nexperia+PDF+Application+Note+AN11158&rft_id=http%3A%2F%2Fassets.nexperia.com%2Fdocuments%2Fapplication-note%2FAN11158.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080928200323/http://www.automotivedesignline.com/showArticle.jhtml%3B?articleID=191900470">"An introduction to depletion-mode MOSFETs"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.automotivedesignline.com/showArticle.jhtml%3B?articleID=191900470">the original</a> on 28 September 2008.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=An+introduction+to+depletion-mode+MOSFETs&rft_id=http%3A%2F%2Fwww.automotivedesignline.com%2FshowArticle.jhtml%253B%3FarticleID%3D191900470&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120706010707/http://www.alpha-europe.de/microelectronics-products/dmos-transistors/">"Power MOSFETs"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.alpha-europe.de/microelectronics-products/dmos-transistors/">the original</a> on 2012-07-06<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-03-04</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Power+MOSFETs&rft_id=http%3A%2F%2Fwww.alpha-europe.de%2Fmicroelectronics-products%2Fdmos-transistors%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20121112152008/http://www.powerguru.org/2012/04/15/criteria-for-a-successful-selection-of-igbt-and-mosfet-modules/">"Criteria for Successful Selection of IGBT and MOSFET Modules"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.powerguru.org/2012/04/15/criteria-for-a-successful-selection-of-igbt-and-mosfet-modules/">the original</a> on 2012-11-12<span class="reference-accessdate">. Retrieved <span class="nowrap">2018-12-16</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Criteria+for+Successful+Selection+of+IGBT+and+MOSFET+Modules&rft_id=http%3A%2F%2Fwww.powerguru.org%2F2012%2F04%2F15%2Fcriteria-for-a-successful-selection-of-igbt-and-mosfet-modules%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090822214640/http://www.ece.byu.edu/cleanroom/virtual_cleanroom.parts/MOSFETProcess.html">"MOSFET Process Step by Step"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.ece.byu.edu/cleanroom/virtual_cleanroom.parts/MOSFETProcess.html">the original</a> on 2009-08-22<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-02-06</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=MOSFET+Process+Step+by+Step&rft_id=http%3A%2F%2Fwww.ece.byu.edu%2Fcleanroom%2Fvirtual_cleanroom.parts%2FMOSFETProcess.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span> A Flash slide showing the fabricating process of a MOSFET in detail</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080527192452/http://www.ece.byu.edu/cleanroom/MOSFET_calc.phtml">"MOSFET Calculator"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.ece.byu.edu/cleanroom/MOSFET_calc.phtml">the original</a> on 2008-05-27<span class="reference-accessdate">. Retrieved <span class="nowrap">2008-06-03</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=MOSFET+Calculator&rft_id=http%3A%2F%2Fwww.ece.byu.edu%2Fcleanroom%2FMOSFET_calc.phtml&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://ecee.colorado.edu/~bart/book/book/chapter7/ch7_7.htm#7_7_7">"Advanced MOSFET issues"</a>. <i>ecee.colorado.edu</i>. 27 November 2010.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ecee.colorado.edu&rft.atitle=Advanced+MOSFET+issues&rft.date=2010-11-27&rft_id=http%3A%2F%2Fecee.colorado.edu%2F~bart%2Fbook%2Fbook%2Fchapter7%2Fch7_7.htm%237_7_7&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www-g.eng.cam.ac.uk/mmg/teaching/linearcircuits/mosfet.html">"MOSFET applet"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=MOSFET+applet&rft_id=http%3A%2F%2Fwww-g.eng.cam.ac.uk%2Fmmg%2Fteaching%2Flinearcircuits%2Fmosfet.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNicolaiReimannPetzoldtLutz1998" class="citation book cs1">Nicolai, Ulrich; Reimann, Tobias; Petzoldt, Jürgen; Lutz, Josef (1998). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120302072616/http://www.semikron.com/skcompub/en/application_manual-193.htm"><i>Application Manual IGBT and MOSFET Power Modules</i></a> (1st ed.). ISLE Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-932633-24-9" title="Special:BookSources/978-3-932633-24-9"><bdi>978-3-932633-24-9</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://www.semikron.com/skcompub/en/application_manual-193.htm">the original</a> on 2 March 2012.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Application+Manual+IGBT+and+MOSFET+Power+Modules&rft.edition=1st&rft.pub=ISLE+Verlag&rft.date=1998&rft.isbn=978-3-932633-24-9&rft.aulast=Nicolai&rft.aufirst=Ulrich&rft.au=Reimann%2C+Tobias&rft.au=Petzoldt%2C+J%C3%BCrgen&rft.au=Lutz%2C+Josef&rft_id=http%3A%2F%2Fwww.semikron.com%2Fskcompub%2Fen%2Fapplication_manual-193.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWintrichNicolaiTurskyReimann2011" class="citation book cs1">Wintrich, Arendt; Nicolai, Ulrich; Tursky, Werner; Reimann, Tobias (2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130903030232/http://www.powerguru.org/wordpress/wp-content/uploads/2012/12/SEMIKRON_application_manual_power_semiconductors.pdf"><i>PDF-Version</i></a> <span class="cs1-format">(PDF)</span> (2nd ed.). Nuremberg: Semikron. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-938843-66-6" title="Special:BookSources/978-3-938843-66-6"><bdi>978-3-938843-66-6</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://www.powerguru.org/wordpress/wp-content/uploads/2012/12/SEMIKRON_application_manual_power_semiconductors.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 3 September 2013.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=PDF-Version&rft.place=Nuremberg&rft.edition=2nd&rft.pub=Semikron&rft.date=2011&rft.isbn=978-3-938843-66-6&rft.aulast=Wintrich&rft.aufirst=Arendt&rft.au=Nicolai%2C+Ulrich&rft.au=Tursky%2C+Werner&rft.au=Reimann%2C+Tobias&rft_id=http%3A%2F%2Fwww.powerguru.org%2Fwordpress%2Fwp-content%2Fuploads%2F2012%2F12%2FSEMIKRON_application_manual_power_semiconductors.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-002Spring-2007/CourseHome/index.htm">"MIT Open Courseware 6.002 – Spring 2007"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=MIT+Open+Courseware+6.002+%E2%80%93+Spring+2007&rft_id=http%3A%2F%2Focw.mit.edu%2FOcwWeb%2FElectrical-Engineering-and-Computer-Science%2F6-002Spring-2007%2FCourseHome%2Findex.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-012-microelectronic-devices-and-circuits-fall-2009/">"MIT Open Courseware 6.012 – Fall 2009"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=MIT+Open+Courseware+6.012+%E2%80%93+Fall+2009&rft_id=http%3A%2F%2Focw.mit.edu%2Fcourses%2Felectrical-engineering-and-computer-science%2F6-012-microelectronic-devices-and-circuits-fall-2009%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://users.ece.gatech.edu/~alan/index_files/ECE3040Lecture.htm">"Georgia Tech BJT and FET Slides"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Georgia+Tech+BJT+and+FET+Slides&rft_id=http%3A%2F%2Fusers.ece.gatech.edu%2F~alan%2Findex_files%2FECE3040Lecture.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.circuitdesign.info/blog/2008/12/mos-diffusion-parasitics/">"CircuitDesign: MOS Diffusion Parasitics"</a>. 14 December 2008.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=CircuitDesign%3A+MOS+Diffusion+Parasitics&rft.date=2008-12-14&rft_id=http%3A%2F%2Fwww.circuitdesign.info%2Fblog%2F2008%2F12%2Fmos-diffusion-parasitics%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLundstrom2008" class="citation journal cs1">Lundstrom, Mark (2008). <a rel="nofollow" class="external text" href="http://nanohub.org/resources/5306">"Course on <i>Physics of Nanoscale Transistors</i>"</a>. <i>nanoHUB Papers</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=nanoHUB+Papers&rft.atitle=Course+on+Physics+of+Nanoscale+Transistors&rft.date=2008&rft.aulast=Lundstrom&rft.aufirst=Mark&rft_id=http%3A%2F%2Fnanohub.org%2Fresources%2F5306&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLundstrom2005" class="citation journal cs1">Lundstrom, Mark (2005). <a rel="nofollow" class="external text" href="http://nanohub.org/resources/489">"Notes on Ballistic MOSFETs"</a>. <i>nanoHUB Papers</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=nanoHUB+Papers&rft.atitle=Notes+on+Ballistic+MOSFETs&rft.date=2005&rft.aulast=Lundstrom&rft.aufirst=Mark&rft_id=http%3A%2F%2Fnanohub.org%2Fresources%2F489&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMOSFET" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Electronic_components" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Electronic_components" title="Template:Electronic components"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Electronic_components" title="Template talk:Electronic components"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Electronic_components" title="Special:EditPage/Template:Electronic components"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Electronic_components" style="font-size:114%;margin:0 4em"><a href="/wiki/Electronic_component" title="Electronic component">Electronic components</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Semiconductor_device" title="Semiconductor device">Semiconductor<br />devices</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink selflink">MOS <br />transistors</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Transistor" title="Transistor">Transistor</a></li> <li><a href="/wiki/NMOS_logic" title="NMOS logic">NMOS</a></li> <li><a href="/wiki/PMOS_logic" title="PMOS logic">PMOS</a></li> <li><a href="/wiki/BiCMOS" title="BiCMOS">BiCMOS</a></li> <li><a href="/wiki/Bio-FET" title="Bio-FET">BioFET</a></li> <li><a href="/wiki/Chemical_field-effect_transistor" title="Chemical field-effect transistor">Chemical field-effect transistor</a> (ChemFET)</li> <li><a href="/wiki/CMOS" title="CMOS">Complementary MOS</a> (CMOS)</li> <li><a href="/wiki/Depletion-load_NMOS_logic" title="Depletion-load NMOS logic">Depletion-load NMOS</a></li> <li><a href="/wiki/FinFET" class="mw-redirect" title="FinFET">Fin field-effect transistor</a> (FinFET)</li> <li><a href="/wiki/Floating-gate_MOSFET" title="Floating-gate MOSFET">Floating-gate MOSFET</a> (FGMOS)</li> <li><a href="/wiki/Insulated-gate_bipolar_transistor" title="Insulated-gate bipolar transistor">Insulated-gate bipolar transistor</a> (IGBT)</li> <li><a href="/wiki/ISFET" title="ISFET">ISFET</a></li> <li><a href="/wiki/LDMOS" title="LDMOS">LDMOS</a></li> <li><a class="mw-selflink selflink">MOS field-effect transistor</a> (MOSFET)</li> <li><a href="/wiki/Multigate_device" title="Multigate device">Multi-gate field-effect transistor</a> (MuGFET)</li> <li><a href="/wiki/Power_MOSFET" title="Power MOSFET">Power MOSFET</a></li> <li><a href="/wiki/Thin-film_transistor" title="Thin-film transistor">Thin-film transistor</a> (TFT)</li> <li><a href="/wiki/VMOS" title="VMOS">VMOS</a></li> <li><a href="/wiki/Power_MOSFET#UMOS" title="Power MOSFET">UMOS</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Transistor" title="Transistor">Other <br />transistors</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bipolar_junction_transistor" title="Bipolar junction transistor">Bipolar junction transistor</a> (BJT)</li> <li><a href="/wiki/Darlington_transistor" title="Darlington transistor">Darlington transistor</a></li> <li><a href="/wiki/Diffused_junction_transistor" title="Diffused junction transistor">Diffused junction transistor</a></li> <li><a href="/wiki/Field-effect_transistor" title="Field-effect transistor">Field-effect transistor</a> (FET) <ul><li><a href="/wiki/JFET" title="JFET">Junction Gate FET (JFET)</a></li> <li><a href="/wiki/Organic_field-effect_transistor" title="Organic field-effect transistor">Organic FET (OFET)</a></li></ul></li> <li><a href="/wiki/Light-emitting_transistor" title="Light-emitting transistor">Light-emitting transistor</a> (LET) <ul><li><a href="/wiki/Organic_light-emitting_transistor" title="Organic light-emitting transistor">Organic LET (OLET)</a></li></ul></li> <li><a href="/wiki/Pentode_transistor" title="Pentode transistor">Pentode transistor</a></li> <li><a href="/wiki/Point-contact_transistor" title="Point-contact transistor">Point-contact transistor</a></li> <li><a href="/wiki/Programmable_unijunction_transistor" title="Programmable unijunction transistor">Programmable unijunction transistor</a> (PUT)</li> <li><a href="/wiki/Static_induction_transistor" title="Static induction transistor">Static induction transistor</a> (SIT)</li> <li><a href="/wiki/Tetrode_transistor" title="Tetrode transistor">Tetrode transistor</a></li> <li><a href="/wiki/Unijunction_transistor" title="Unijunction transistor">Unijunction transistor</a> (UJT)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Diode" title="Diode">Diodes</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Avalanche_diode" title="Avalanche diode">Avalanche diode</a></li> <li><a href="/wiki/Constant-current_diode" title="Constant-current diode">Constant-current diode</a> (CLD, CRD)</li> <li><a href="/wiki/Gunn_diode" title="Gunn diode">Gunn diode</a></li> <li><a href="/wiki/Laser_diode" title="Laser diode">Laser diode</a> (LD)</li> <li><a href="/wiki/Light-emitting_diode" title="Light-emitting diode">Light-emitting diode</a> (LED)</li> <li><a href="/wiki/OLED" title="OLED">Organic light-emitting diode</a> (OLED)</li> <li><a href="/wiki/Photodiode" title="Photodiode">Photodiode</a></li> <li><a href="/wiki/PIN_diode" title="PIN diode">PIN diode</a></li> <li><a href="/wiki/Schottky_diode" title="Schottky diode">Schottky diode</a></li> <li><a href="/wiki/Step_recovery_diode" title="Step recovery diode">Step recovery diode</a></li> <li><a href="/wiki/Zener_diode" title="Zener diode">Zener diode</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other <br />devices</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Printed_electronics" title="Printed electronics">Printed electronics</a></li> <li><a href="/wiki/Printed_circuit_board" title="Printed circuit board">Printed circuit board</a></li> <li><a href="/wiki/DIAC" title="DIAC">DIAC</a></li> <li><a href="/wiki/Heterostructure_barrier_varactor" title="Heterostructure barrier varactor">Heterostructure barrier varactor</a></li> <li><a href="/wiki/Integrated_circuit" title="Integrated circuit">Integrated circuit</a> (IC)</li> <li><a href="/wiki/Hybrid_integrated_circuit" title="Hybrid integrated circuit">Hybrid integrated circuit</a></li> <li><a href="/wiki/Light_emitting_capacitor" class="mw-redirect" title="Light emitting capacitor">Light emitting capacitor</a> (LEC)</li> <li><a href="/wiki/Memistor" title="Memistor">Memistor</a></li> <li><a href="/wiki/Memristor" title="Memristor">Memristor</a></li> <li><a href="/wiki/Memtransistor" title="Memtransistor">Memtransistor</a></li> <li><a href="/wiki/Memory_cell_(computing)" title="Memory cell (computing)">Memory cell</a></li> <li><a href="/wiki/Metal-oxide_varistor" class="mw-redirect" title="Metal-oxide varistor">Metal-oxide varistor</a> (MOV)</li> <li><a href="/wiki/Mixed-signal_integrated_circuit" title="Mixed-signal integrated circuit">Mixed-signal integrated circuit</a></li> <li><a href="/wiki/MOS_integrated_circuit" class="mw-redirect" title="MOS integrated circuit">MOS integrated circuit</a> (MOS IC)</li> <li><a href="/wiki/Organic_semiconductor" title="Organic semiconductor">Organic semiconductor</a></li> <li><a href="/wiki/Photodetector" title="Photodetector">Photodetector</a></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a></li> <li><a href="/wiki/RF_CMOS" title="RF CMOS">RF CMOS</a></li> <li><a href="/wiki/Silicon_controlled_rectifier" title="Silicon controlled rectifier">Silicon controlled rectifier</a> (SCR)</li> <li><a href="/wiki/Solaristor" title="Solaristor">Solaristor</a></li> <li><a href="/wiki/Static_induction_thyristor" title="Static induction thyristor">Static induction thyristor</a> (SITh)</li> <li><a href="/wiki/Three-dimensional_integrated_circuit" title="Three-dimensional integrated circuit">Three-dimensional integrated circuit</a> (3D IC)</li> <li><a href="/wiki/Thyristor" title="Thyristor">Thyristor</a></li> <li><a href="/wiki/Trancitor" title="Trancitor">Trancitor</a></li> <li><a href="/wiki/TRIAC" title="TRIAC">TRIAC</a></li> <li><a href="/wiki/Varicap" title="Varicap">Varicap</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Voltage_regulator" title="Voltage regulator">Voltage regulators</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Linear_regulator" title="Linear regulator">Linear regulator</a></li> <li><a href="/wiki/Low-dropout_regulator" title="Low-dropout regulator">Low-dropout regulator</a></li> <li><a href="/wiki/Switching_regulator" class="mw-redirect" title="Switching regulator">Switching regulator</a></li> <li><a href="/wiki/Buck_converter" title="Buck converter">Buck</a></li> <li><a href="/wiki/Boost_converter" title="Boost converter">Boost</a></li> <li><a href="/wiki/Buck%E2%80%93boost_converter" title="Buck–boost converter">Buck–boost</a></li> <li><a href="/wiki/Split-pi_topology" title="Split-pi topology">Split-pi</a></li> <li><a href="/wiki/%C4%86uk_converter" title="Ćuk converter">Ćuk</a></li> <li><a href="/wiki/Single-ended_primary-inductor_converter" title="Single-ended primary-inductor converter">SEPIC</a></li> <li><a href="/wiki/Charge_pump" title="Charge pump">Charge pump</a></li> <li><a href="/wiki/Switched_capacitor" title="Switched capacitor">Switched capacitor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Vacuum_tube" title="Vacuum tube">Vacuum tubes</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Acorn_tube" title="Acorn tube">Acorn tube</a></li> <li><a href="/wiki/Audion" title="Audion">Audion</a></li> <li><a href="/wiki/Beam_tetrode" title="Beam tetrode">Beam tetrode</a></li> <li><a href="/wiki/Hot-wire_barretter" title="Hot-wire barretter">Barretter</a></li> <li><a href="/wiki/Compactron" title="Compactron">Compactron</a></li> <li><a href="/wiki/Vacuum_diode" class="mw-redirect" title="Vacuum diode">Diode</a></li> <li><a href="/wiki/Fleming_valve" title="Fleming valve">Fleming valve</a></li> <li><a href="/wiki/Neutron_generator" title="Neutron generator">Neutron tube</a></li> <li><a href="/wiki/Nonode" title="Nonode">Nonode</a></li> <li><a href="/wiki/Nuvistor" title="Nuvistor">Nuvistor</a></li> <li><a href="/wiki/Pentagrid_converter" title="Pentagrid converter">Pentagrid</a> (Hexode, Heptode, Octode)</li> <li><a href="/wiki/Pentode" title="Pentode">Pentode</a></li> <li><a href="/wiki/Photomultiplier_tube" title="Photomultiplier tube">Photomultiplier</a></li> <li><a href="/wiki/Phototube" title="Phototube">Phototube</a></li> <li><a href="/wiki/Tetrode" title="Tetrode">Tetrode</a></li> <li><a href="/wiki/Triode" title="Triode">Triode</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Vacuum_tube" title="Vacuum tube">Vacuum tubes</a> (<a href="/wiki/Electromagnetic_radiation" title="Electromagnetic radiation">RF</a>)</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Backward-wave_oscillator" title="Backward-wave oscillator">Backward-wave oscillator</a> (BWO)</li> <li><a href="/wiki/Cavity_magnetron" title="Cavity magnetron">Cavity magnetron</a></li> <li><a href="/wiki/Crossed-field_amplifier" title="Crossed-field amplifier">Crossed-field amplifier</a> (CFA)</li> <li><a href="/wiki/Gyrotron" title="Gyrotron">Gyrotron</a></li> <li><a href="/wiki/Inductive_output_tube" title="Inductive output tube">Inductive output tube</a> (IOT)</li> <li><a href="/wiki/Klystron" title="Klystron">Klystron</a></li> <li><a href="/wiki/Maser" title="Maser">Maser</a></li> <li><a href="/wiki/Sutton_tube" title="Sutton tube">Sutton tube</a></li> <li><a href="/wiki/Traveling-wave_tube" title="Traveling-wave tube">Traveling-wave tube</a> (TWT)</li> <li><a href="/wiki/X-ray_tube" title="X-ray tube">X-ray tube</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Cathode-ray_tube" title="Cathode-ray tube">Cathode-ray tubes</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Beam_deflection_tube" title="Beam deflection tube">Beam deflection tube</a></li> <li><a href="/wiki/Charactron" title="Charactron">Charactron</a></li> <li><a href="/wiki/Iconoscope" title="Iconoscope">Iconoscope</a></li> <li><a href="/wiki/Magic_eye_tube" title="Magic eye tube">Magic eye tube</a></li> <li><a href="/wiki/Monoscope" title="Monoscope">Monoscope</a></li> <li><a href="/wiki/Selectron_tube" title="Selectron tube">Selectron tube</a></li> <li><a href="/wiki/Storage_tube" title="Storage tube">Storage tube</a></li> <li><a href="/wiki/Trochotron" class="mw-redirect" title="Trochotron">Trochotron</a></li> <li><a href="/wiki/Video_camera_tube" title="Video camera tube">Video camera tube</a></li> <li><a href="/wiki/Williams_tube" title="Williams tube">Williams tube</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Gas-filled_tube" title="Gas-filled tube">Gas-filled tubes</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cold_cathode" title="Cold cathode">Cold cathode</a></li> <li><a href="/wiki/Crossatron" title="Crossatron">Crossatron</a></li> <li><a href="/wiki/Dekatron" title="Dekatron">Dekatron</a></li> <li><a href="/wiki/Ignitron" title="Ignitron">Ignitron</a></li> <li><a href="/wiki/Krytron" title="Krytron">Krytron</a></li> <li><a href="/wiki/Mercury-arc_valve" title="Mercury-arc valve">Mercury-arc valve</a></li> <li><a href="/wiki/Neon_lamp" title="Neon lamp">Neon lamp</a></li> <li><a href="/wiki/Nixie_tube" title="Nixie tube">Nixie tube</a></li> <li><a href="/wiki/Thyratron" title="Thyratron">Thyratron</a></li> <li><a href="/wiki/Trigatron" title="Trigatron">Trigatron</a></li> <li><a href="/wiki/Voltage-regulator_tube" title="Voltage-regulator tube">Voltage-regulator tube</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;">Adjustable</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Potentiometer" title="Potentiometer">Potentiometer</a> <ul><li><a href="/wiki/Digital_potentiometer" title="Digital potentiometer">digital</a></li></ul></li> <li><a href="/wiki/Variable_capacitor" title="Variable capacitor">Variable capacitor</a></li> <li><a href="/wiki/Varicap" title="Varicap">Varicap</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;">Passive</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Connector <ul><li><a href="/wiki/Audio_and_video_interfaces_and_connectors" title="Audio and video interfaces and connectors">audio and video</a></li> <li><a href="/wiki/AC_power_plugs_and_sockets" title="AC power plugs and sockets">electrical power</a></li> <li><a href="/wiki/RF_connector" title="RF connector">RF</a></li></ul></li> <li><a href="/wiki/Electrolytic_detector" title="Electrolytic detector">Electrolytic detector</a></li> <li><a href="/wiki/Ferrite_core" title="Ferrite core">Ferrite</a></li> <li><a href="/wiki/Antifuse" title="Antifuse">Antifuse</a></li> <li><a href="/wiki/Fuse_(electrical)" title="Fuse (electrical)">Fuse</a> <ul><li><a href="/wiki/Resettable_fuse" title="Resettable fuse">resettable</a></li> <li><a href="/wiki/EFUSE" class="mw-redirect" title="EFUSE">eFUSE</a></li></ul></li> <li><a href="/wiki/Resistor" title="Resistor">Resistor</a></li> <li><a href="/wiki/Switch" title="Switch">Switch</a></li> <li><a href="/wiki/Thermistor" title="Thermistor">Thermistor</a></li> <li><a href="/wiki/Transformer" title="Transformer">Transformer</a></li> <li><a href="/wiki/Varistor" title="Varistor">Varistor</a></li> <li><a href="/wiki/Wire" title="Wire">Wire</a> <ul><li><a href="/wiki/Wollaston_wire" title="Wollaston wire">Wollaston wire</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Electrical_reactance" title="Electrical reactance">Reactive</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Capacitor" title="Capacitor">Capacitor</a> <ul><li><a href="/wiki/Capacitor_types" title="Capacitor types">types</a></li></ul></li> <li><a href="/wiki/Ceramic_resonator" title="Ceramic resonator">Ceramic resonator</a></li> <li><a href="/wiki/Crystal_oscillator" title="Crystal oscillator">Crystal oscillator</a></li> <li><a href="/wiki/Inductor" title="Inductor">Inductor</a></li> <li><a href="/wiki/Parametron" title="Parametron">Parametron</a></li> <li><a href="/wiki/Relay" title="Relay">Relay</a> <ul><li><a href="/wiki/Reed_relay" title="Reed relay">reed relay</a></li> <li><a href="/wiki/Mercury_relay" title="Mercury relay">mercury relay</a></li></ul></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q210793#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4207266-9">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85084065">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb12423223g">France</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb12423223g">BnF data</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/01142304">Japan</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007565647505171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐q4llr Cached time: 20241122140656 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.164 seconds Real time usage: 1.466 seconds Preprocessor visited node count: 9379/1000000 Post‐expand include size: 248780/2097152 bytes Template argument size: 10434/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 20/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 321034/5000000 bytes Lua time usage: 0.712/10.000 seconds Lua memory usage: 24206782/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1180.012 1 -total 39.83% 470.020 1 Template:Reflist 15.69% 185.100 33 Template:Cite_web 14.72% 173.733 40 Template:Cite_book 9.83% 115.967 7 Template:Annotated_link 8.34% 98.378 2 Template:Navbox 8.33% 98.245 1 Template:Electronic_components 6.41% 75.590 8 Template:Fix 6.03% 71.127 1 Template:Commons_category 5.92% 69.799 1 Template:Sister_project --> <!-- Saved in parser cache with key enwiki:pcache:idhash:40345-0!canonical and timestamp 20241122140656 and revision id 1252134678. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=MOSFET&oldid=1252134678">https://en.wikipedia.org/w/index.php?title=MOSFET&oldid=1252134678</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Transistor_types" title="Category:Transistor types">Transistor types</a></li><li><a href="/wiki/Category:MOSFETs" title="Category:MOSFETs">MOSFETs</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_August_2018" title="Category:Articles with dead external links from August 2018">Articles with dead external links from August 2018</a></li><li><a href="/wiki/Category:Articles_with_permanently_dead_external_links" title="Category:Articles with permanently dead external links">Articles with permanently dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_June_2015" title="Category:Articles with dead external links from June 2015">Articles with dead external links from June 2015</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_July_2023" title="Category:Articles with unsourced statements from July 2023">Articles with unsourced statements from July 2023</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_January_2019" title="Category:Articles needing additional references from January 2019">Articles needing additional references from January 2019</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_needing_clarification" title="Category:All Wikipedia articles needing clarification">All Wikipedia articles needing clarification</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_February_2024" title="Category:Wikipedia articles needing clarification from February 2024">Wikipedia articles needing clarification from February 2024</a></li><li><a href="/wiki/Category:All_pages_needing_factual_verification" title="Category:All pages needing factual verification">All pages needing factual verification</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_factual_verification_from_January_2023" title="Category:Wikipedia articles needing factual verification from January 2023">Wikipedia articles needing factual verification from January 2023</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_December_2015" title="Category:Articles with unsourced statements from December 2015">Articles with unsourced statements from December 2015</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_March_2023" title="Category:Articles with unsourced statements from March 2023">Articles with unsourced statements from March 2023</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_January_2016" title="Category:Wikipedia articles needing clarification from January 2016">Wikipedia articles needing clarification from January 2016</a></li><li><a href="/wiki/Category:All_accuracy_disputes" title="Category:All accuracy disputes">All accuracy disputes</a></li><li><a href="/wiki/Category:Articles_with_disputed_statements_from_January_2016" title="Category:Articles with disputed statements from January 2016">Articles with disputed statements from January 2016</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_September_2016" title="Category:Articles needing additional references from September 2016">Articles needing additional references from September 2016</a></li><li><a href="/wiki/Category:Wikipedia_articles_with_style_issues_from_September_2016" title="Category:Wikipedia articles with style issues from September 2016">Wikipedia articles with style issues from September 2016</a></li><li><a href="/wiki/Category:All_articles_with_style_issues" title="Category:All articles with style issues">All articles with style issues</a></li><li><a href="/wiki/Category:Wikipedia_external_links_cleanup_from_September_2016" title="Category:Wikipedia external links cleanup from September 2016">Wikipedia external links cleanup from September 2016</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 19 October 2024, at 23:36<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=MOSFET&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-vthpd","wgBackendResponseTime":145,"wgPageParseReport":{"limitreport":{"cputime":"1.164","walltime":"1.466","ppvisitednodes":{"value":9379,"limit":1000000},"postexpandincludesize":{"value":248780,"limit":2097152},"templateargumentsize":{"value":10434,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":20,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":321034,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1180.012 1 -total"," 39.83% 470.020 1 Template:Reflist"," 15.69% 185.100 33 Template:Cite_web"," 14.72% 173.733 40 Template:Cite_book"," 9.83% 115.967 7 Template:Annotated_link"," 8.34% 98.378 2 Template:Navbox"," 8.33% 98.245 1 Template:Electronic_components"," 6.41% 75.590 8 Template:Fix"," 6.03% 71.127 1 Template:Commons_category"," 5.92% 69.799 1 Template:Sister_project"]},"scribunto":{"limitreport-timeusage":{"value":"0.712","limit":"10.000"},"limitreport-memusage":{"value":24206782,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-q4llr","timestamp":"20241122140656","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"MOSFET","url":"https:\/\/en.wikipedia.org\/wiki\/MOSFET","sameAs":"http:\/\/www.wikidata.org\/entity\/Q210793","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q210793","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-02-25T15:43:11Z","dateModified":"2024-10-19T23:36:34Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/4\/4f\/D2PAK.JPG","headline":"type of field-effect transistor"}</script> </body> </html>