CINXE.COM

Search results for: soaking temperature

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: soaking temperature</title> <meta name="description" content="Search results for: soaking temperature"> <meta name="keywords" content="soaking temperature"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="soaking temperature" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="soaking temperature"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7078</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: soaking temperature</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6808</span> Numerical Study of Natural Convection Heat Transfer Performance in an Inclined Cavity: Nanofluid and Random Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hicham%20Salhi">Hicham Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Si-Ameur"> Mohamed Si-Ameur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadjib%20Chafai"> Nadjib Chafai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural convection of a nanofluid consisting of water and nanoparticles (Ag or TiO2) in an inclined enclosure cavity, has been studied numerically, heated by a (random temperature, based on the random function). The governing equations are solved numerically using the finite-volume. Results are presented in the form of streamlines, isotherms, and average Nusselt number. In addition, a parametric study is carried out to examine explicitly the volume fraction effects of nanoparticles (Ψ= 0.1, 0.2), the Rayleigh number (Ra=103, 104, 105, 106),the inclination angle of the cavity( égale à 0°, 30°, 45°, 90°, 135°, 180°), types of temperature (constant ,random), types of (NF) (Ag andTiO2). The results reveal that (NPs) addition remarkably enhances heat transfer in the cavity especially for (Ψ= 0.2). Besides, the effect of inclination angle and type of temperature is more pronounced at higher Rayleigh number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20cavity" title=" inclined cavity"> inclined cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20temperature" title=" random temperature"> random temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-volume" title=" finite-volume"> finite-volume</a> </p> <a href="https://publications.waset.org/abstracts/45433/numerical-study-of-natural-convection-heat-transfer-performance-in-an-inclined-cavity-nanofluid-and-random-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6807</span> Preparation of CuAlO2 Thin Films on Si or Sapphire Substrate by Sol-Gel Method Using Metal Acetate or Nitrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Ehara">Takashi Ehara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Nakanishi"> Takayoshi Nakanishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohei%20Sasaki"> Kohei Sasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Abe"> Marina Abe</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Abe"> Hiroshi Abe</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiyoaki%20Abe"> Kiyoaki Abe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryo%20Iizaka"> Ryo Iizaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Takuya%20Sato"> Takuya Sato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CuAlO<sub>2</sub> thin films are prepared on Si or sapphire substrate by sol-gel method using two kinds of sols. One is combination of Cu acetate and Al acetate basic, and the other is Cu nitrate and Al nitrate. In the case of acetate sol, XRD peaks of CuAlO<sub>2</sub> observed at annealing temperature of 800-950 &ordm;C on both Si and sapphire substrates. In contrast, in the case of the films prepared using nitrate on Si substrate, XRD peaks of CuAlO<sub>2</sub> have been observed only at the annealing temperature of 800-850 &ordm;C. At annealing temperature of 850&ordm;C, peaks of other species have been observed beside the CuAlO<sub>2</sub> peaks, then, the CuAlO<sub>2</sub> peaks disappeared at annealing temperature of 900 &deg;C with increasing in intensity of the other peaks. Intensity of the other peaks decreased at annealing temperature of 950 &ordm;C with appearance of broad SiO<sub>2</sub> peak. In the present, we ascribe these peaks as metal silicide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CuAlO2" title="CuAlO2">CuAlO2</a>, <a href="https://publications.waset.org/abstracts/search?q=silicide" title=" silicide"> silicide</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20Films" title=" thin Films"> thin Films</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent%20conducting%20oxide" title=" transparent conducting oxide"> transparent conducting oxide</a> </p> <a href="https://publications.waset.org/abstracts/52540/preparation-of-cualo2-thin-films-on-si-or-sapphire-substrate-by-sol-gel-method-using-metal-acetate-or-nitrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6806</span> Sintering Properties of Mechanically Alloyed Ti-5Al-2.5Fe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ridvan%20Yamanoglu">Ridvan Yamanoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdinc%20Efendi"> Erdinc Efendi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Daoud"> Ismail Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Ti-5Al-2.5Fe alloy was prepared by powder metallurgy. The elemental titanium, aluminum, and iron powders were mechanically alloyed for 10 h in a vacuum atmosphere. A stainless steel jar and stainless steel balls were used for mechanical alloying. The alloyed powders were then sintered by vacuum hot pressing at 950 &deg;C for a soaking time of 30 minutes. Pure titanium was also sintered at the same conditions for comparison of mechanical properties and microstructural behavior. The samples were investigated by scanning electron microscopy, XRD analysis, and optical microscopy. Results showed that, after mechanical alloying, a homogeneous distribution of the elements was obtained, and desired a-b structure was determined. Ti-5Al-2.5Fe alloy was successfully produced, and the alloy showed enhanced mechanical properties compared to the commercial pure titanium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ti5Al-2.5Fe" title="Ti5Al-2.5Fe">Ti5Al-2.5Fe</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20pressing" title=" hot pressing"> hot pressing</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a> </p> <a href="https://publications.waset.org/abstracts/68753/sintering-properties-of-mechanically-alloyed-ti-5al-25fe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6805</span> Determining Design Parameters for Sizing of Hydronic Heating Systems in Concrete Thermally Activated Building Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Ali">Rahmat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Inamullah%20Khan"> Inamullah Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Naseer"> Amjad Naseer</a>, <a href="https://publications.waset.org/abstracts/search?q=Abid%20A.%20Shah"> Abid A. Shah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydronic Heating and Cooling systems in concrete slab based buildings are increasingly becoming a popular substitute to conventional heating and cooling systems. In exploring the materials, techniques employed, and their relative performance measures, a fair bit of uncertainty exists. This research has identified the simplest method of determining the thermal field of a single hydronic pipe when acting as a part of a concrete slab, based on which the spacing and positioning of pipes for a best thermal performance and surface temperature control are determined. The pipe material chosen is the commonly used PEX pipe, which has an all-around performance and thermal characteristics with a thermal conductivity of 0.5W/mK. Concrete Test samples were constructed and their thermal fields tested under varying input conditions. Temperature sensing devices were embedded into the wet concrete at fixed distances from the pipe and other touch sensing temperature devices were employed for determining the extent of the thermal field and validation studies. In the first stage, it was found that the temperature along a specific distance was the same and that heat dissipation occurred in well-defined layers. The temperature obtained in concrete was then related to the different control parameters including water supply temperature. From the results, the temperature of water required for a specific temperature rise in concrete is determined. The thermally effective area is also determined which is then used to calculate the pipe spacing and positioning for the desired level of thermal comfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermally%20activated%20building%20systems" title="thermally activated building systems">thermally activated building systems</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20slab%20temperature" title=" concrete slab temperature"> concrete slab temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20field" title=" thermal field"> thermal field</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=pipe%20spacing" title=" pipe spacing"> pipe spacing</a> </p> <a href="https://publications.waset.org/abstracts/45802/determining-design-parameters-for-sizing-of-hydronic-heating-systems-in-concrete-thermally-activated-building-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6804</span> Device-integrated Micro-thermocouples for Reliable Temperature Measurement of GaN HEMTs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Irshad%20Bhatti">Hassan Irshad Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Saravanan%20Yuvaraja"> Saravanan Yuvaraja</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohang%20Li"> Xiaohang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GaN-based devices, such as high electron mobility transistors (HEMTs), offer superior characteristics for high-power, high-frequency, and high-temperature applications [1]. However, this exceptional electrical performance is compromised by undesirable self-heating effects under high-power applications [2, 3]. Some of the issues caused by self-heating are current collapse, thermal runway and performance degradation [4, 5]. Therefore, accurate and reliable methods for measuring the temperature of individual devices on a chip are needed to monitor and control the thermal behavior of GaN-based devices [6]. Temperature measurement at the micro/nanoscale is a challenging task that requires specialized techniques such as Infrared microscopy, Raman thermometry, and thermoreflectance. Recently, micro-thermocouples (MTCs) have attracted considerable attention due to their advantages of simplicity, low cost, high sensitivity, and compatibility with standard fabrication processes [7, 8]. A micro-thermocouple is a junction of two different metal thin films, which generates a Seebeck voltage related to the temperature difference between a hot and cold zone. Integrating MTC in a device allows local temperature to be measured with high sensitivity and accuracy [9]. This work involves the fabrication and integration of micro-thermocouples (MTCs) to measure the channel temperature of GaN HEMT. Our fabricated MTC (Platinum-Chromium junction) has shown a sensitivity of 16.98 µV/K and can measure device channel temperature with high precision and accuracy. The temperature information obtained using this sensor can help improve GaN-based devices and provide thermal engineers with useful insights for optimizing their designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Electrical%20Engineering" title="Electrical Engineering">Electrical Engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20engineering" title=" Thermal engineering"> Thermal engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=Power%20Devices" title=" Power Devices"> Power Devices</a>, <a href="https://publications.waset.org/abstracts/search?q=Semiconuctors" title=" Semiconuctors"> Semiconuctors</a> </p> <a href="https://publications.waset.org/abstracts/193207/device-integrated-micro-thermocouples-for-reliable-temperature-measurement-of-gan-hemts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6803</span> A Study on Implementation of Optimal Soldering Temperature Profile through Deformation Analysisin Infrared Lamp Soldering of Photovoltaic Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taejung%20Lho">Taejung Lho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonghwan%20Lee"> Jonghwan Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the photovoltaic (PV) module manufacturers have recently interested in reducing the manufacturing cost. One of available solution is the use of the thin photovoltaic cell because of reducing of raw material cost. Thin PV cells, however, are damaged large deformation which causes possible microcracks inside PV cell, leading to failure problem. In this paper, deformation characteristics by heat conduction in soldering process of PV cells are analyzed through ANSYS software tool. They have been tested for different PV cell thickness and soldering temperature profile. Accordingly optimal soldering process to minimize the deformation of PV cell has been suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20%28PV%29%20cell" title="photovoltaic (PV) cell">photovoltaic (PV) cell</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%28IR%29%20lamp%20soldering" title=" infrared(IR) lamp soldering"> infrared(IR) lamp soldering</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20soldering%20temperature%20profile" title=" optimal soldering temperature profile"> optimal soldering temperature profile</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20scanner" title=" 3D scanner"> 3D scanner</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/1447/a-study-on-implementation-of-optimal-soldering-temperature-profile-through-deformation-analysisin-infrared-lamp-soldering-of-photovoltaic-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6802</span> Chatter Suppression in Boring Process Using Passive Damper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Prasannavenkadesan">V. Prasannavenkadesan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elango"> A. Elango</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chockalingam"> S. Chockalingam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During machining process, chatter is an unavoidable phenomenon. Boring bars possess the cantilever shape and due to this, it is subjected to chatter. The adverse effect of chatter includes the increase in temperature which will leads to excess tool wear. To overcome these problems, in this investigation, Cartridge brass (Cu – 70% and Zn – 30%) is passively fixed on the boring bar and also clearance is provided in order to reduce the displacement, tool wear and cutting temperature. A conventional all geared lathe is attached with vibrometer and pyrometer is used to measure the displacement and temperature. The influence of input parameters such as cutting speed, depth of cut and clearance on temperature, tool wear and displacement are investigated for various cutting conditions. From the result, the optimum conditions to obtain better damping in boring process for chatter reduction is identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boring" title="boring">boring</a>, <a href="https://publications.waset.org/abstracts/search?q=chatter" title=" chatter"> chatter</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20damping" title=" mass damping"> mass damping</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20damping" title=" passive damping"> passive damping</a> </p> <a href="https://publications.waset.org/abstracts/40957/chatter-suppression-in-boring-process-using-passive-damper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6801</span> Emperical Correlation for Measurement of Thermal Diffusivity of Spherical Shaped Food Products under Forced Convection Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Riaz">M. Riaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Inamur%20Rehman"> Inamur Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Sharma"> Abhishek Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is the development of an experimental method for determining the thermal diffusivity variations with temperature of selected regular shaped solid fruits and vegetables subjected to forced convection cooling. Experimental investigations were carried on the sample chosen (potato and brinjal), which is approximately of spherical geometry. The variation of temperature within the food product is measured at several locations from centre to skin, under forced convection environment using a deep freezer, maintained at -10°C.This method uses one dimensional Fourier equation applied to regular shapes. For this, the experimental temperature data obtained from cylindrical and spherical shaped products during pre-cooling was utilised. Such temperature and thermal diffusivity profiles can be readily used with other information such as degradation rate, etc. to evaluate thermal treatments based on cold air cooling methods for storage of perishable food products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20diffusivity" title="thermal diffusivity">thermal diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20temperature" title=" skin temperature"> skin temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=precooling" title=" precooling"> precooling</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=regular%20shaped" title=" regular shaped"> regular shaped</a> </p> <a href="https://publications.waset.org/abstracts/16370/emperical-correlation-for-measurement-of-thermal-diffusivity-of-spherical-shaped-food-products-under-forced-convection-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6800</span> The Influence of the Moving Speeds of DNA Droplet on Polymerase Chain Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh%20Jyh%20Chen">Jyh Jyh Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Fu%20H.%20Yang"> Fu H. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20W.%20Wang"> Chen W. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20M.%20Lin"> Yu M. Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a reaction chamber is reciprocated among three temperature regions by using an oscillatory thermal cycling machine. Three cartridge heaters are collocated to heat three aluminum blocks in order to achieve PCR requirements in the reaction chamber. The effects of various chamber moving speeds among different temperature regions on the chamber temperature profiles are presented. To solve the evaporation effect of the sample in the PCR experiment, the mineral oil and the cover lid are used. The influences of various extension times on DNA amplification are also demonstrated. The target fragments of the amplification are 385-bp and 420-bp. The results show when the forward speed is set at 6 mm/s and the backward speed is 2.4 mm/s, the temperature required for the experiment can be achieved. It is successful to perform the amplification of DNA fragments in our device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oscillatory" title="oscillatory">oscillatory</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerase%20chain%20reaction" title=" polymerase chain reaction"> polymerase chain reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20chamber" title=" reaction chamber"> reaction chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cycling%20machine" title=" thermal cycling machine"> thermal cycling machine</a> </p> <a href="https://publications.waset.org/abstracts/64588/the-influence-of-the-moving-speeds-of-dna-droplet-on-polymerase-chain-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6799</span> Thermoelectric Blanket for Aiding the Treatment of Cerebral Hypoxia and Other Related Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarayu%20Vanga">Sarayu Vanga</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Galeano-Cabral"> Jorge Galeano-Cabral</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaya%20Wei"> Kaya Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cerebral hypoxia refers to a condition in which there is a decrease in oxygen supply to the brain. Patients suffering from this condition experience a decrease in their body temperature. While there isn't any cure to treat cerebral hypoxia as of date, certain procedures are utilized to help aid in the treatment of the condition. Regulating the body temperature is an example of one of those procedures. Hypoxia is well known to reduce the body temperature of mammals, although the neural origins of this response remain uncertain. In order to speed recovery from this condition, it is necessary to maintain a stable body temperature. In this study, we present an approach to regulating body temperature for patients who suffer from cerebral hypoxia or other similar conditions. After a thorough literature study, we propose the use of thermoelectric blankets, which are temperature-controlled thermal blankets based on thermoelectric devices. These blankets are capable of heating up and cooling down the patient to stabilize body temperature. This feature is possible through the reversible effect that thermoelectric devices offer while behaving as a thermal sensor, and it is an effective way to stabilize temperature. Thermoelectricity is the direct conversion of thermal to electrical energy and vice versa. This effect is now known as the Seebeck effect, and it is characterized by the Seebeck coefficient. In such a configuration, the device has cooling and heating sides with temperatures that can be interchanged by simply switching the direction of the current input in the system. This design integrates various aspects, including a humidifier, ventilation machine, IV-administered medication, air conditioning, circulation device, and a body temperature regulation system. The proposed design includes thermocouples that will trigger the blanket to increase or decrease a set temperature through a medical temperature sensor. Additionally, the proposed design allows an efficient way to control fluctuations in body temperature while being cost-friendly, with an expected cost of 150 dollars. We are currently working on developing a prototype of the design to collect thermal and electrical data under different conditions and also intend to perform an optimization analysis to improve the design even further. While this proposal was developed for treating cerebral hypoxia, it can also aid in the treatment of other related conditions, as fluctuations in body temperature appear to be a common symptom that patients have for many illnesses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20temperature%20regulation" title="body temperature regulation">body temperature regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebral%20hypoxia" title=" cerebral hypoxia"> cerebral hypoxia</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric" title=" thermoelectric"> thermoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=blanket%20design" title=" blanket design"> blanket design</a> </p> <a href="https://publications.waset.org/abstracts/165923/thermoelectric-blanket-for-aiding-the-treatment-of-cerebral-hypoxia-and-other-related-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6798</span> Enhancement of Critical Temperature and Improvement of Mechanical Properties of Yttrium Barium Copper Oxide Superconductor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Rahmati">Hamed Rahmati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, increasing demand for electric energy makes applying high-temperature superconductors inevitable. However, the most important problem of the superconductors is their critical temperature, which necessitates using a cryogenic system for keeping these substances’ temperatures lower than the critical level. Cryogenic systems used for this reason are not efficient enough, and keeping these large systems maintained is costly. Moreover, the low critical temperature of superconductors has delayed using them in electrical equipment. In this article, at first, characteristics of three superconductors, magnesium diboride (MgB2), yttrium barium copper oxide (YBCO), and iron-based superconductors (FeSC), have been analyzed and a new structure of YBCO superconductors is presented. Generally, YBCO (YBa2Cu7O2) has a weak mechanical structure. By introducing some changes in its configuration and adding one silver atom (Ag) to it, its mechanical characteristics improved significantly. Moreover, for each added atom, a star-form structure was introduced in which changing the location of Ag atom led to considerable changes in temperature. In this study, Ag has been added by applying two accurate methods named random and substitute ones. The results of both methods have been examined. It has been shown that adding Ag by applying the substitute method can improve the mechanical properties of the superconductor in addition to increasing its critical temperature. In the mentioned strategy (using the substitute method), the critical temperature of the superconductor was measured up to 99 Kelvin. This new structure is usable in designing superconductors’ rings to be applied in superconducting magnetic energy storage (SMES). It can also lead to a reduction in the cryogenic system size, a decline in conductor wastes, and a decrease in costs of the whole system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20temperature" title="critical temperature">critical temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20system" title=" cryogenic system"> cryogenic system</a>, <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20superconductors" title=" high-temperature superconductors"> high-temperature superconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=YBCO" title=" YBCO"> YBCO</a> </p> <a href="https://publications.waset.org/abstracts/110182/enhancement-of-critical-temperature-and-improvement-of-mechanical-properties-of-yttrium-barium-copper-oxide-superconductor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6797</span> Pulse Method for Investigation of Zr-C Phase Diagram at High Carbon Content Domain under High Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arseniy%20M.%20Kondratyev">Arseniy M. Kondratyev</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20V.%20Onufriev"> Sergey V. Onufriev</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20I.%20Savvatimskiy"> Alexander I. Savvatimskiy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microsecond electrical pulse heating technique which provides uniform energy input into an investigated specimen is considered. In the present study we investigated ZrC+C carbide specimens in a form of a thin layer (about 5 microns thick) that were produced using a method of magnetron sputtering on insulating substrates. Specimens contained (at. %): Zr–17.88; C–67.69; N–8.13; O–5.98. Current through the specimen, voltage drop across it and radiation at the wavelength of 856 nm were recorded in the experiments. It enabled us to calculate the input energy, specific heat (from 2300 to 4500 K) and resistivity (referred to the initial dimensions of a specimen). To obtain the true temperature a black body specimen was used. Temperature of the beginning and completion of a phase transition (solid–liquid) was measured.Temperature of the onset of melting was 3150 K at the input energy 2.65 kJ/g; temperature of the completion of melting was 3450 K at the input energy 5.2 kJ/g. The specific heat of the solid phase of investigated carbide calculated using our data on temperature and imparted energy, is close to 0.75 J/gК for temperature range 2100–2800 K. Our results are considered together with the equilibrium Zr-C phase diagram. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulse%20heating" title="pulse heating">pulse heating</a>, <a href="https://publications.waset.org/abstracts/search?q=zirconium%20carbide" title=" zirconium carbide"> zirconium carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperatures" title=" high temperatures"> high temperatures</a>, <a href="https://publications.waset.org/abstracts/search?q=melting" title=" melting"> melting</a> </p> <a href="https://publications.waset.org/abstracts/10561/pulse-method-for-investigation-of-zr-c-phase-diagram-at-high-carbon-content-domain-under-high-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6796</span> Experimental investigation on the lithium-Ion Battery Thermal Management System Based on Micro Heat Pipe Array in High Temperature Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruyang%20Ren">Ruyang Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaohua%20Zhao"> Yaohua Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanhua%20Diao"> Yanhua Diao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intermittent and unstable characteristics of renewable energy such as solar energy can be effectively solved through battery energy storage system. Lithium-ion battery is widely used in battery energy storage system because of its advantages of high energy density, small internal resistance, low self-discharge rate, no memory effect and long service life. However, the performance and service life of lithium-ion battery is seriously affected by its operating temperature. Thus, the safety operation of the lithium-ion battery module is inseparable from an effective thermal management system (TMS). In this study, a new type of TMS based on micro heat pipe array (MHPA) for lithium-ion battery is established, and the TMS is applied to a battery energy storage box that needs to operate at a high temperature environment of 40 °C all year round. MHPA is a flat shape metal body with high thermal conductivity and excellent temperature uniformity. The battery energy storage box is composed of four battery modules, with a nominal voltage of 51.2 V, a nominal capacity of 400 Ah. Through the excellent heat transfer characteristics of the MHPA, the heat generated by the charge and discharge process can be quickly transferred out of the battery module. In addition, if only the MHPA cannot meet the heat dissipation requirements of the battery module, the TMS can automatically control the opening of the external fan outside the battery module according to the temperature of the battery, so as to further enhance the heat dissipation of the battery module. The thermal management performance of lithium-ion battery TMS based on MHPA is studied experimentally under different ambient temperatures and the condition to turn on the fan or not. Results show that when the ambient temperature is 40 °C and the fan is not turned on in the whole charge and discharge process, the maximum temperature of the battery in the energy storage box is 53.1 °C and the maximum temperature difference in the battery module is 2.4 °C. After the fan is turned on in the whole charge and discharge process, the maximum temperature is reduced to 50.1 °C, and the maximum temperature difference is reduced to 1.7 °C. Obviously, the lithium-ion battery TMS based on MHPA not only could control the maximum temperature of the battery below 55 °C, but also ensure the excellent temperature uniformity of the battery module. In conclusion, the lithium-ion battery TMS based on MHPA can ensure the safe and stable operation of the battery energy storage box in high temperature environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20dissipation" title="heat dissipation">heat dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery%20thermal%20management" title=" lithium-ion battery thermal management"> lithium-ion battery thermal management</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20heat%20pipe%20array" title=" micro heat pipe array"> micro heat pipe array</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20uniformity" title=" temperature uniformity"> temperature uniformity</a> </p> <a href="https://publications.waset.org/abstracts/148328/experimental-investigation-on-the-lithium-ion-battery-thermal-management-system-based-on-micro-heat-pipe-array-in-high-temperature-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6795</span> Use of Thermosonication to Obtain Minimally Processed Mosambi Juice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruby%20Siwach">Ruby Siwach</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar"> Manish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20Seth"> Raman Seth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extent of inactivation of pectin methylesterase (PME) in mosambi juice during thermal and thermosonication treatments was studied to obtain a minimally processed product. Effect of both treatments on cloud value, pH, titratable acidity, oBrix, and sensory attributes (flavour and taste) was studied. Thermal treatments (HT) were carried out at three temperatures 60, 70, and 80°C in a serological water bath for 5, 10, 15, and 20 min at each temperature. Thermosonication treatments (TS) were also given for same time-temperature combinations in water bath of a thermosonicator. Treated samples were stored in a deep freezer at 18°C for PME assay. PME activity of untreated sample was also assayed and residual PME activity and % loss in PME activity was calculated at each time-temperature combination. The extent of inactivation of PME increased with increase in treatment temperature and duration. Thermosonication treatments were found far more effective than thermal treatments of same time temperature combination in PME inactivation and retention of sensory attributes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pectin%20methylesterase" title="pectin methylesterase">pectin methylesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20inactivation%20kinetics" title=" heat inactivation kinetics"> heat inactivation kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermosonication" title=" thermosonication"> thermosonication</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20treatment" title=" thermal treatment"> thermal treatment</a> </p> <a href="https://publications.waset.org/abstracts/1839/use-of-thermosonication-to-obtain-minimally-processed-mosambi-juice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6794</span> The Effect of Impinging WC-12Co Particles Temperature on Thickness of HVOF Thermally Sprayed Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jalali%20Azizpour">M. Jalali Azizpour </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of WC-12Co particle Temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HVOF" title="HVOF">HVOF</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20thickness" title=" temperature thickness"> temperature thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=WC-12Co" title=" WC-12Co "> WC-12Co </a> </p> <a href="https://publications.waset.org/abstracts/6744/the-effect-of-impinging-wc-12co-particles-temperature-on-thickness-of-hvof-thermally-sprayed-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6793</span> Experimental Investigation to Find Transition Temperature of VG 30 Binder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Latha">D. Latha</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sunitha"> V. Sunitha</a>, <a href="https://publications.waset.org/abstracts/search?q=Samson%20Mathew"> Samson Mathew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In India, most of the pavement is laid by bituminous road and the consumption of binder is high for pavement construction and also modified binders are used to satisfy any specific pavement requirement. Since the binders are visco-elastic material which is having the mechanical properties of binder transition from visco-elastic solid to visco-elastic fluid. In this paper, two different protocols were used to measure the viscosity property of binder using a Brookfield Viscometer and there is a need to find the appropriate mixing and compaction temperatures of various types of binders which can result in complete aggregate coating and adequate field density of HMA mixtures. The aim of this work is to find the transition temperature from Non-Newtonian behavior to Newtonian behavior of the binder by adopting a steady shear protocol and the shear rate ramp protocol. The transition from non-Newtonian to Newtonian can occur through an increase of temperature and shear of the material. The test has been conducted for unmodified binder VG 30. The transition temperature was found in the unmodified binder VG is 120oC. So the application of both modified binder and unmodified binder in the pavement construction needs to be studied properly by considering temperature and traffic loading factors of the respective project site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmodified%20and%20modified%20binders" title="unmodified and modified binders">unmodified and modified binders</a>, <a href="https://publications.waset.org/abstracts/search?q=Brookfield%20viscometer" title=" Brookfield viscometer"> Brookfield viscometer</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20temperature" title=" transition temperature"> transition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20shear%20and%20shear%20rate%20protocol" title=" steady shear and shear rate protocol"> steady shear and shear rate protocol</a> </p> <a href="https://publications.waset.org/abstracts/40594/experimental-investigation-to-find-transition-temperature-of-vg-30-binder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6792</span> Solid Biofuel Production by Hydrothermal Carbonization of Wood Shavings: Effect of Carbonization Temperature and Biomass-to-Water Ratio on Hydrochar’s Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Aliyu">Mohammed Aliyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazunori%20Iwabuchi"> Kazunori Iwabuchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Shaba%20Mohammed"> Ibrahim Shaba Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abubakar%20Sadeeq%20Mohammed"> Abubakar Sadeeq Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Solomon%20Musa%20Dauda"> Solomon Musa Dauda</a>, <a href="https://publications.waset.org/abstracts/search?q=Zinash%20Delebo%20Osunde"> Zinash Delebo Osunde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrothermal carbonization (HTC) is recognised as a low temperature and effective technique for the conversion of biomass to solid biofuel. In this study, the effect of process temperature and biomass-to-water ratio (B/W) on the fuel properties of hydrochar produced from wood shavings was investigated. HTC was conducted in an autoclave using reaction temperature of 230 °C and 260 °C for 20 minutes with B/W ratio of 0.11 to 0.43. The produced hydrochars were characterised by the mass yield (MY), higher heating value (HHV), proximate and ultimate properties. The results showed that the properties of the hydrochars improved with increasing process temperature and B/W ratio. The higher heating value (HHV) increased to 26.74 MJ/kg as the severity of the reaction was increased to the process temperature of 260 °C. Also, the atomic H/C and O/C ratios of hydrochars produced at 230 °C and 260 °C were closed to the regions of a peat and lignite on the plotted van Krevelen diagram. Hence, the produced hydrochar has a promising potential as a sustainable solid biofuel for energy application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wood%20shavings" title="wood shavings">wood shavings</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%2Fwater%20ratio" title=" biomass/water ratio"> biomass/water ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=thermochemical%20conversion" title=" thermochemical conversion"> thermochemical conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20carbonization" title=" hydrothermal carbonization"> hydrothermal carbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrochar" title=" hydrochar"> hydrochar</a> </p> <a href="https://publications.waset.org/abstracts/172680/solid-biofuel-production-by-hydrothermal-carbonization-of-wood-shavings-effect-of-carbonization-temperature-and-biomass-to-water-ratio-on-hydrochars-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6791</span> Behaviour of Lightweight Expanded Clay Aggregate Concrete Exposed to High Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Bodn%C3%A1rov%C3%A1">Lenka Bodnárová</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudolf%20Hela"> Rudolf Hela</a>, <a href="https://publications.waset.org/abstracts/search?q=Michala%20Hubertov%C3%A1"> Michala Hubertová</a>, <a href="https://publications.waset.org/abstracts/search?q=Iveta%20Nov%C3%A1kov%C3%A1"> Iveta Nováková</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerning the issues of behaviour of lightweight expanded clay aggregates concrete exposed to high temperature. Lightweight aggregates from expanded clay are produced by firing of row material up to temperature 1050°C. Lightweight aggregates have suitable properties in terms of volume stability, when exposed to temperatures up to 1050°C, which could indicate their suitability for construction applications with higher risk of fire. The test samples were exposed to heat by using the standard temperature-time curve ISO 834. Negative changes in resulting mechanical properties, such as compressive strength, tensile strength, and flexural strength were evaluated. Also visual evaluation of the specimen was performed. On specimen exposed to excessive heat, an explosive spalling could be observed, due to evaporation of considerable amount of unbounded water from the inner structure of the concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expanded%20clay%20aggregate" title="expanded clay aggregate">expanded clay aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=explosive%20spalling" title=" explosive spalling"> explosive spalling</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20concrete" title=" lightweight concrete"> lightweight concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature-time%20curve%20ISO%20834" title=" temperature-time curve ISO 834"> temperature-time curve ISO 834</a> </p> <a href="https://publications.waset.org/abstracts/20176/behaviour-of-lightweight-expanded-clay-aggregate-concrete-exposed-to-high-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6790</span> RBF Modelling and Optimization Control for Semi-Batch Reactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdi%20M.%20Nabi">Magdi M. Nabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding-Li%20Yu"> Ding-Li Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a neural network based model predictive control (MPC) strategy to control a strongly exothermic reaction with complicated nonlinear kinetics given by Chylla-Haase polymerization reactor that requires a very precise temperature control to maintain product uniformity. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. Such a process usually controlled by conventional cascade control, it provides a robust operation, but often lacks accuracy concerning the required strict temperature tolerances. The predictive control strategy based on the RBF neural model is applied to solve this problem to achieve set-point tracking of the reactor temperature against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the desired reaction temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20reactor" title="Chylla-Haase reactor">Chylla-Haase reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF%20neural%20network%20modelling" title=" RBF neural network modelling"> RBF neural network modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title=" model predictive control"> model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-batch%20reactors" title=" semi-batch reactors"> semi-batch reactors</a> </p> <a href="https://publications.waset.org/abstracts/11884/rbf-modelling-and-optimization-control-for-semi-batch-reactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6789</span> Modelling Heat Transfer Characteristics in the Pasteurization Process of Medium Long Necked Bottled Beers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Fasogbon">S. K. Fasogbon</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20E.%20Oguegbu"> O. E. Oguegbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pasteurization is one of the most important steps in the preservation of beer products, which improves its shelf life by inactivating almost all the spoilage organisms present in it. However, there is no gain saying the fact that it is always difficult to determine the slowest heating zone, the temperature profile and pasteurization units inside bottled beer during pasteurization, hence there had been significant experimental and ANSYS fluent approaches on the problem. This work now developed Computational fluid dynamics model using COMSOL Multiphysics. The model was simulated to determine the slowest heating zone, temperature profile and pasteurization units inside the bottled beer during the pasteurization process. The results of the simulation were compared with the existing data in the literature. The results showed that, the location and size of the slowest heating zone is dependent on the time-temperature combination of each zone. The results also showed that the temperature profile of the bottled beer was found to be affected by the natural convection resulting from variation in density during pasteurization process and that the pasteurization unit increases with time subject to the temperature reached by the beer. Although the results of this work agreed with literatures in the aspects of slowest heating zone and temperature profiles, the results of pasteurization unit however did not agree. It was suspected that this must have been greatly affected by the bottle geometry, specific heat capacity and density of the beer in question. The work concludes that for effective pasteurization to be achieved, there is a need to optimize the spray water temperature and the time spent by the bottled product in each of the pasteurization zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20profile" title=" temperature profile"> temperature profile</a>, <a href="https://publications.waset.org/abstracts/search?q=pasteurization%20process" title=" pasteurization process"> pasteurization process</a>, <a href="https://publications.waset.org/abstracts/search?q=bottled%20beer" title=" bottled beer"> bottled beer</a> </p> <a href="https://publications.waset.org/abstracts/49248/modelling-heat-transfer-characteristics-in-the-pasteurization-process-of-medium-long-necked-bottled-beers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6788</span> Experimental Studies on the Effect of Rake Angle on Turning Ti-6Al-4V with TiAlN Coated Carbides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyanarayana%20Kosaraju">Satyanarayana Kosaraju</a>, <a href="https://publications.waset.org/abstracts/search?q=Venu%20Gopal%20Anne"> Venu Gopal Anne</a>, <a href="https://publications.waset.org/abstracts/search?q=Sateesh%20Nagari"> Sateesh Nagari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of cutting speed, feedrate and rake angle in tool geometry on cutting forces and temperature generated on the tool tip in turning were investigated. The data used for the investigation derived from experiments conducted on precision lathe according to the full factorial design to observe the effect of each factor level on the process performance. During the tests, depth of cut were kept constant and each test was conducted with a sharp coated tool insert. Ti-6Al-4V was used as the workpiece material. The effects of cutting parameters and tool geometry on cutting forces and tool tip temperature were analyzed. The main cutting force was observed to have a decreasing trend and temperature found to be increasing trend as the rake angle increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20force" title="cutting force">cutting force</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20tip%20temperature" title=" tool tip temperature"> tool tip temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rake%20angle" title=" rake angle"> rake angle</a>, <a href="https://publications.waset.org/abstracts/search?q=machining" title=" machining"> machining</a> </p> <a href="https://publications.waset.org/abstracts/37425/experimental-studies-on-the-effect-of-rake-angle-on-turning-ti-6al-4v-with-tialn-coated-carbides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6787</span> The Comparison of Chromium Ions Release for Stainless Steel between Artificial Saliva and Breadfruit Leaf Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani">Mirna Febriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is the leaves of breadfruit. The method used for this research using Atomic Absorption Spectrophotometric test. The results showed that the difference of chromium ion releases on soaking in saliva and breadfruit leaf extracts on days 1, 3, 7 and 14. Statically calculation with independent T-test with p < 0,05 showed the significant difference. The conclusion of this study shows that breadfruit leaf extract can inhibit the corrosion rate of stainless steel wires. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium%20ion" title="chromium ion">chromium ion</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20saliva" title=" artificial saliva"> artificial saliva</a>, <a href="https://publications.waset.org/abstracts/search?q=breadfruit%20leaf" title=" breadfruit leaf"> breadfruit leaf</a> </p> <a href="https://publications.waset.org/abstracts/87086/the-comparison-of-chromium-ions-release-for-stainless-steel-between-artificial-saliva-and-breadfruit-leaf-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6786</span> Thermodynamic Analysis of Zeotropic Mixture Used in Low Temperature Solar Rankine Cycle with Ejector for Power Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basma%20Hamdi">Basma Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakdar%20Kairouani"> Lakdar Kairouani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezzedine%20Nahdi"> Ezzedine Nahdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to present a thermodynamic analysis of low temperature solar Rankine cycle with ejector for power generation using zeotropic mixtures. Based on theoretical calculation, effects of zeotropic mixtures compositions on the performance of solar Rankine cycle with ejector are discussed and compared with corresponding pure fluids. Variations of net power output, thermal efficiency were calculating with changing evaporation temperature. The ejector coefficient had analyzed as independent variable. The result show that (R245fa/R152a) has a higher thermal efficiency than using pure fluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zeotropic%20mixture" title="zeotropic mixture">zeotropic mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20analysis" title=" thermodynamic analysis"> thermodynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ejector" title=" ejector"> ejector</a>, <a href="https://publications.waset.org/abstracts/search?q=low-temperature%20solar%20rankine%20cycle" title=" low-temperature solar rankine cycle"> low-temperature solar rankine cycle</a> </p> <a href="https://publications.waset.org/abstracts/58827/thermodynamic-analysis-of-zeotropic-mixture-used-in-low-temperature-solar-rankine-cycle-with-ejector-for-power-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6785</span> Temperature and Substrate Orientation Effects on the Thermal Stability of Graphene Sheet Attached on the Si Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Jay%20Lee">Wen-Jay Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Ning%20Chiang"> Kuo-Ning Chiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The graphene binding with silicon substrate has apparently Schottky barriers property, which can be used in the application of solar cell and light source. Because graphene has only one atom layer, the atomistic structure of graphene binding with the silicon surface plays an important role to affect the properties of graphene. In this work, temperature effect on the morphology of graphene sheet attached on different crystal planes of silicon substrates are investigated by Molecular dynamics (MD) (LAMMPS, developed by Sandia National Laboratories). The results show that the covered graphene sheet would cause the structural deformation of the surface Si atoms of stubtrate. To achieve a stable state in the binding process, the surface Si atoms would adjust their position and fit the honeycomb structure of graphene after the graphene attaches to the Si surface. The height contour of graphene on different plane of silicon surfaces presents different pattern, leading the local residual stress at the interface. Due to the high density of dangling bond on the Si (111)7x7 surface, the surface of Si(111)7x7 is not matching with the graphene so well in contrast with Si(100)2x1and Si(111)2x1. Si(111)7x7 is found that only partial silicon adatoms are rearranged on surface after the attachment when the temperature is lower than 200K, As the temperature gradually increases, the deformation of surface structure becomes significant, as well as the residue stress. With increasing temperature till the 815K, the graphene sheet begins to destroy and mixes with the silicon atoms. For the Si(100)2x1 and Si(111)2x1, the silicon surface structure keep its structural arrangement with a higher temperature. With increasing temperature, the residual stress gradually decrease till a critical temperatures. When the temperature is higher than the critical temperature, the residual stress gradually increases and the structural deformation is found on the surface of the Si substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title="molecular dynamics">molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=Schottky%20barriers" title=" Schottky barriers"> Schottky barriers</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a> </p> <a href="https://publications.waset.org/abstracts/16574/temperature-and-substrate-orientation-effects-on-the-thermal-stability-of-graphene-sheet-attached-on-the-si-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6784</span> Empirical Investigation into Climate Change and Climate-Smart Agriculture for Food Security in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Julius%20Adebayo">J. Julius Adebayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to assess the agro-climatic condition of Ibadan in the rain forest ecological zone of Nigeria, using rainfall pattern and temperature between 1978-2018. Data on rainfall and temperature in Ibadan, Oyo State for a period of 40 years were obtained from Meteorological Section of Forestry Research Institute of Nigeria, Ibadan and Oyo State Meteorology Centre. Time series analysis was employed to analyze the data. The trend revealed that rainfall is decreasing slowly and temperature is averagely increasing year after year. The model for rainfall and temperature are Yₜ = 1454.11-8*t and Yₜ = 31.5995 + 2.54 E-02*t respectively, where t is the time. On this basis, a forecast of 20 years (2019-2038) was generated, and the results showed a further downward trend on rainfall and upward trend in temperature, this indicates persistence rainfall shortage and very hot weather for agricultural practices in the southwest rain forest ecological zone. Suggestions on possible solutions to avert climate change crisis and also promote climate-smart agriculture for sustainable food and nutrition security were also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20pattern" title=" rainfall pattern"> rainfall pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20analysis" title=" time series analysis"> time series analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20and%20nutrition%20security" title=" food and nutrition security"> food and nutrition security</a> </p> <a href="https://publications.waset.org/abstracts/110921/empirical-investigation-into-climate-change-and-climate-smart-agriculture-for-food-security-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6783</span> Thermal Fatigue Behavior of Austenitic Stainless Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon">Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Continually increasing working temperature and growing need for greater efficiency and reliability of automotive exhaust require systematic investigation into the thermal fatigue properties especially of high temperature stainless steels. In this study, thermal fatigue properties of 300 series austenitic stainless steels have been evaluated in the temperature ranges of 200-800°C and 200-900°C. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. Load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title="austenitic stainless steel">austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20exhaust" title=" automotive exhaust"> automotive exhaust</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20fatigue" title=" thermal fatigue"> thermal fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20relaxation" title=" load relaxation"> load relaxation</a> </p> <a href="https://publications.waset.org/abstracts/9692/thermal-fatigue-behavior-of-austenitic-stainless-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6782</span> Evidence of Climate Change from Statistical Analysis of Temperature and Rainfall Data of Kaduna State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iliya%20Bitrus%20Abaje">Iliya Bitrus Abaje</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the evidence of climate change scenario in Kaduna State from the analysis of temperature and rainfall data (1976-2015) from three meteorological stations along a geographic transect from the southern part to the northern part of the State. Different statistical methods were used in determining the changes in both the temperature and rainfall series. The result of the linear trend lines revealed a mean increase in average temperature of 0.73oC for the 40 years period of study in the State. The plotted standard deviation for the temperature anomalies generally revealed that years of temperatures above the mean standard deviation (hotter than the normal conditions) in the last two decades (1996-2005 and 2006-2015) were more than those below (colder than the normal condition). The Cramer’s test and student’s t-test generally revealed an increasing temperature trend in the recent decades. The increased in temperature is an evidence that the earth’s atmosphere is getting warmer in recent years. The linear trend line equation of the annual rainfall for the period of study showed a mean increase of 316.25 mm for the State. Findings also revealed that the plotted standard deviation for the rainfall anomalies, and the 10-year non-overlapping and 30-year overlapping sub-periods analysis in all the three stations generally showed an increasing trend from the beginning of the data to the recent years. This is an evidence that the study area is now experiencing wetter conditions in recent years and hence climate change. The study recommends diversification of the economic base of the populace with emphasis on moving away from activities that are sensitive to temperature and rainfall extremes Also, appropriate strategies to ameliorate the scourge of climate change at all levels/sectors should always take into account the recent changes in temperature and rainfall amount in the area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomalies" title="anomalies">anomalies</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20trend" title=" linear trend"> linear trend</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/75389/evidence-of-climate-change-from-statistical-analysis-of-temperature-and-rainfall-data-of-kaduna-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6781</span> Correlation of Building Density toward Land Surface Temperature 2018 in Medan City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andi%20Syahputra">Andi Syahputra</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20H.%20Jatmiko"> R. H. Jatmiko</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Hizbaron"> D. R. Hizbaron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land surface temperature (LST) in an area is influenced by conditions of vegetation density, building density, and the number of inhabitants who live in the area. Medan City is one of the largest cities in Indonesia, with a high rate of change from vegetation to developed land. This study aims to identify the relationship between the percentage of building density and land surface temperature in Medan City. Pixel image analysis method is carried out to obtain the value of building density in pixel images of Landsat 8 images with the help of WorldView-2 satellite imagery. The results showed the highest land surface temperature in 2018 of 35, 4°C was found in Medan Perjuangan District, and the lowest was 22.5°C in Medan Belawan District. Building density samples with a density level of 889.17 m were also found in Medan Perjuangan District, while the lowest building density sample was found in Medan Timur District. Linear regression analysis of the effect of building density with land surface temperature obtained a correlation (R) was 0.64, and a coefficient of determination (R²) was 0.411 and modeling of building density based on the LST has a correlation (R), and a coefficient of determination (R²) was 0.72 with The RMSE obtained 0.853. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20surface%20temperature" title="land surface temperature">land surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat" title=" Landsat"> Landsat</a>, <a href="https://publications.waset.org/abstracts/search?q=imagery" title=" imagery"> imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20density" title=" building density"> building density</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation" title=" vegetation"> vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a> </p> <a href="https://publications.waset.org/abstracts/118783/correlation-of-building-density-toward-land-surface-temperature-2018-in-medan-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6780</span> Preparation and Characterization of Organic Silver Precursors for Conductive Ink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wendong%20Yang">Wendong Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Changhai%20Wang"> Changhai Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Valeria%20Arrighi"> Valeria Arrighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low ink sintering temperature is desired for flexible electronics, as it would widen the application of the ink on temperature-sensitive substrates where the selection of silver precursor is very critical. In this paper, four types of organic silver precursors, silver carbonate, silver oxalate, silver tartrate and silver itaconate, were synthesized using an ion exchange method, firstly. Various characterization methods were employed to investigate their physical phase, chemical composition, morphologies and thermal decomposition behavior. It was found that silver oxalate had the ideal thermal property and showed the lowest decomposition temperature. An ink was then formulated by complexing the as-prepared silver oxalate with ethylenediamine in organic solvents. Results show that a favorable conductive film with a uniform surface structure consisting of silver nanoparticles and few voids could be produced from the ink at a sintering temperature of 150 &deg;C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20ink" title="conductive ink">conductive ink</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20property" title=" electrical property"> electrical property</a>, <a href="https://publications.waset.org/abstracts/search?q=film" title=" film"> film</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20silver" title=" organic silver"> organic silver</a> </p> <a href="https://publications.waset.org/abstracts/86164/preparation-and-characterization-of-organic-silver-precursors-for-conductive-ink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6779</span> Rainfall and Temperature Characteristics of the Middle and Lower Awash Areas of Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melese%20Tadesse%20Morebo">Melese Tadesse Morebo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pastoral and agro-pastoral communities in East Africa, particularly in Ethiopia, are vulnerable to climate-related risks. The aim of this study is to characterize the annual, seasonal, and monthly rainfall and temperature of the middle and lower awash areas of Ethiopia. Start of season (SOS), end of season (EOS), length of growing season (LGS), number of rainy days, and probability of dry spell occurrences were analyzed using INSTAT Plus (v3.7) software. Daily rainfall and temperature data for 33 years (1990–2022) from six stations were analyzed. The result of the study revealed that the annual rainfall in the study area as a whole showed an increasing trend, but its trend was statistically non-significant. During the study period, the Kiremt rainfall at Amibara station showed statistically significant increasing trends. The trend analysis of SOS, EOS, and LGS shows up and down trends at all stations. The mean lengths of growing seasons in the study area ranged from 20 to 61 days during the study period. In the study area, the annual mean maximum temperature ranged between 34.1°C and 38.3°C over the last three decades. All stations within the research area during the study period, the annual minimum temperature exhibited a substantial impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annual%20rainfall" title="annual rainfall">annual rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=LGS" title=" LGS"> LGS</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20temperature" title=" minimum temperature"> minimum temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=Mann-Kendall%20test" title=" Mann-Kendall test"> Mann-Kendall test</a> </p> <a href="https://publications.waset.org/abstracts/190225/rainfall-and-temperature-characteristics-of-the-middle-and-lower-awash-areas-of-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soaking%20temperature&amp;page=9" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soaking%20temperature&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soaking%20temperature&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soaking%20temperature&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soaking%20temperature&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soaking%20temperature&amp;page=9">9</a></li> <li class="page-item active"><span class="page-link">10</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soaking%20temperature&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soaking%20temperature&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soaking%20temperature&amp;page=13">13</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soaking%20temperature&amp;page=235">235</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soaking%20temperature&amp;page=236">236</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soaking%20temperature&amp;page=11" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10