CINXE.COM

Search results for: total phenolic

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: total phenolic</title> <meta name="description" content="Search results for: total phenolic"> <meta name="keywords" content="total phenolic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="total phenolic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="total phenolic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9098</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: total phenolic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9098</span> In vitro Bioacessibility of Phenolic Compounds from Fruit Spray Dried and Lyophilized Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Beres">Carolina Beres</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurine%20Da%20Silva"> Laurine Da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Danielle%20Pereira"> Danielle Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Ribeiro"> Ana Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Tonon"> Renata Tonon</a>, <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Mellinger-Silva"> Caroline Mellinger-Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Karina%20Dos%20Santos"> Karina Dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavia%20Gomes"> Flavia Gomes</a>, <a href="https://publications.waset.org/abstracts/search?q=Lourdes%20Cabral"> Lourdes Cabral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The health benefits of bioactive compounds such as phenolics are well known. The main source of these compounds are fruits and derivates. This study had the objective to study the bioacessibility of phenolic compounds from grape pomace and juçara dried extracts. For this purpose both characterized extracts were submitted to a simulated human digestion and the total phenolic content, total anthocyanins and antioxidant scavenging capacity was determinate in digestive fractions (oral, gastric, intestinal and colonic). Juçara had a higher anthocianins bioacessibility (17.16%) when compared to grape pomace (2.08%). The opposite result was found for total phenolic compound, where the higher bioacessibility was for grape (400%). The phenolic compound increase indicates a more accessible compound in the human gut. The lyophilized process had a beneficial impact in the final accessibility of the phenolic compounds being a more promising technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioacessibility" title="bioacessibility">bioacessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=grape" title=" grape"> grape</a>, <a href="https://publications.waset.org/abstracts/search?q=ju%C3%A7ara" title=" juçara"> juçara</a> </p> <a href="https://publications.waset.org/abstracts/95136/in-vitro-bioacessibility-of-phenolic-compounds-from-fruit-spray-dried-and-lyophilized-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9097</span> Determination of Antioxidant Activities of Sumac (Rhus Coriaria) Extracts with Different Solvents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20T.%20Senberber">F. T. Senberber</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tugrul"> N. Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Moroydor%20Derun"> E. Moroydor Derun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a nutraceutical, sumac (Rhus Coriaria) was extracted by using different solvents of methanol, ethanol, and water. The DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) method of free radical scavenging capacity was used to determine the effects of solvent on antioxidant activities of the plant. The total phenolic content was studied by The Folin Ciocalteu Reagent method. The antioxidant activities of extracts exhibit minor changes in different solvents and varied in the range of 84.3–86.4 %. The total phenolic contents are affected by the selected solvent. The highest total phenolic content was determined at the liquid phase of water and it was estimated as 26.3 mg/g in gallic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DPPH" title="DPPH">DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent" title=" solvent"> solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=sumac" title=" sumac"> sumac</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a> </p> <a href="https://publications.waset.org/abstracts/124315/determination-of-antioxidant-activities-of-sumac-rhus-coriaria-extracts-with-different-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9096</span> Variation of Phenolic Compounds in Latvian Apple Juices and Their Suitability for Cider Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Riekstina-Dolge">Rita Riekstina-Dolge</a>, <a href="https://publications.waset.org/abstracts/search?q=Zanda%20Kruma"> Zanda Kruma</a>, <a href="https://publications.waset.org/abstracts/search?q=Fredijs%20Dimins"> Fredijs Dimins</a>, <a href="https://publications.waset.org/abstracts/search?q=Inta%20Krasnova"> Inta Krasnova</a>, <a href="https://publications.waset.org/abstracts/search?q=Daina%20Karklina"> Daina Karklina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Apple juice is the main raw material for cider production. In this study apple juices obtained from 14 dessert and crab apples grown in Latvia were investigated. For all samples total phenolic compounds, tannins and individual phenolic compounds content were determined. The total phenolic content of different variety apple juices ranged from 650mg L-1 to 4265mg L-1. Chlorogenic acid is the predominant phenolic compound in all juice samples and ranged from 143.99mg L-1 in ‘Quaker Beauty’ apple juice to 617.66mg L-1 in ‘Kerr’ juice. Some dessert and crab apple juices have similar phenolic composition, but in several varieties such as ‘Cornelie’, ‘Hyslop’ and ‘Riku’ it was significantly higher. For cider production it is better to blend different kinds of apple juices including apples rich in high phenol content ('Rick', 'Cornelie') and also, for successful fermentation, apples rich in sugars and soluble solids content should be used in blends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apple%20juice" title="apple juice">apple juice</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20cluster%20analysis" title=" hierarchical cluster analysis"> hierarchical cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cider%20production" title=" cider production"> cider production</a> </p> <a href="https://publications.waset.org/abstracts/7885/variation-of-phenolic-compounds-in-latvian-apple-juices-and-their-suitability-for-cider-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9095</span> Olive Oils from Algeria: Phenolic Compounds Composition and Antibacterial Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Firdaousse%20Laincer">Firdaousse Laincer</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahima%20Laribi"> Rahima Laribi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderazak%20Tamendjari"> Abderazak Tamendjari</a>, <a href="https://publications.waset.org/abstracts/search?q=Rovellini%20Venturini"> Rovellini Venturini </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenolic compounds present in olive oil have received much attention in recent years due to their beneficial functional and nutritional effects. Phenolic composition, antibacterial activity of phenolic extracts of olive oil varieties from Algeria were investigated. The analysis of polyphenols was performed by Folin-Ciocalteu and HPLC. As a result, many phenolic compounds were identified and quantified by using HPLC; derivatives of oleuropein and ligstroside, hydroxytyrosol, tyrosol, flavonoids, and lignans reporting unique and characteristic phenolic profile. These phenolic fractions also differentiate the total antibacterial activity. Among the bacteria tested, S. aureus and, to a lesser extent, B. subtilis showed the highest sensitivity; the MIC varied from 0.6 to 1.6 mg•mL-1 and 1.2 to 1.8 mg•mL-1, respectively. The results obtained denote that Algerian olive oils may constitute a good source of healthy compounds, phenolics compounds, in the diet, suggesting that their consumption could be useful in the prevention of diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil" title=" olive oil"> olive oil</a>, <a href="https://publications.waset.org/abstracts/search?q=phenols" title=" phenols"> phenols</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a> </p> <a href="https://publications.waset.org/abstracts/13202/olive-oils-from-algeria-phenolic-compounds-composition-and-antibacterial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9094</span> Effect of Thermal Treatment on Phenolic Content, Antioxidant, and Alpha-Amylase Inhibition Activities of Moringa stenopetala Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Assefa">Daniel Assefa</a>, <a href="https://publications.waset.org/abstracts/search?q=Engeda%20Dessalegn"> Engeda Dessalegn</a>, <a href="https://publications.waset.org/abstracts/search?q=Chetan%20Chauhan"> Chetan Chauhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moringa stenopetala is a socioeconomic valued tree that is widely available and cultivated in the Southern part of Ethiopia. The leaves have been traditionally used as a food source with high nutritional and medicinal values. The present work was carried out to evaluate the effect of thermal treatment on the total phenolic content, antioxidant and alpha-amylase inhibition activities of aqueous leaf extracts during maceration and different decoction time interval (5, 10 and 15 min). The total phenolic content was determined by the Folin-ciocalteu methods whereas antioxidant activities were determined by 2,2-diphenyl-1-picryl-hydrazyl(DPPH) radical scavenging, reducing power and ferrous ion chelating assays and alpha-amylase inhibition activity was determined using 3,5-dinitrosalicylic acid method. Total phenolic content ranged from 34.35 to 39.47 mgGAE/g. Decoction for 10 min extract showed ferrous ion chelating (92.52), DPPH radical scavenging (91.52%), alpha-amylase inhibition (69.06%) and ferric reducing power (0.765), respectively. DPPH, reducing power and alpha-amylase inhibition activities showed positive linear correlation (R2=0.853, R2= 0.857 and R2=0.930), respectively with total phenolic content but ferrous ion chelating activity was found to be weakly correlated (R2=0.481). Based on the present investigation, it could be concluded that major loss of total phenolic content, antioxidant and alpha-amylase inhibition activities of the crude leaf extracts of Moringa stenopetala leaves were observed at decoction time for 15 min. Therefore, to maintain the total phenolic content, antioxidant, and alpha-amylase inhibition activities of leaves, cooking practice should be at the optimum decoction time (5-10 min). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha-amylase%20inhibition" title="alpha-amylase inhibition">alpha-amylase inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa%20stenopetala" title=" Moringa stenopetala"> Moringa stenopetala</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a> </p> <a href="https://publications.waset.org/abstracts/51567/effect-of-thermal-treatment-on-phenolic-content-antioxidant-and-alpha-amylase-inhibition-activities-of-moringa-stenopetala-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9093</span> Improvement in Safety Profile of Semecarpus Anacardium Linn by Shodhana: An Ayurvedic Purification Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umang%20H.%20Gajjar">Umang H. Gajjar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Khambholja"> K. M. Khambholja</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Patel"> R. K. Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semecarpus anacardium shows the presence of bioflavonoids, phenolic compounds, bhilawanols, minerals, vitamins and amino acids. Detoxified S. anacardium and its oils are considered to have anti-inflammatory properties and used in nervous debility, neuritis, rheumatism and leprous modules. S. anacardium if used without purification causes toxic skin inflammation problem because it contains toxic phenolic oil. During this Shodhana Process - An ayurvedic purification method, toxic phenolic oil was removed, have marked effect on the concentration of the phytoconstituent & antioxidant activity of S. anacardium. Total phenolic content decreased up to 70 % (from 28.9 %w/w to 8.94 %w/w), while there is a negligible effect on the concentration of total flavonoid (7.51 %w/w to 7.43 %w/w) and total carbohydrate (0.907 %w/w to 0.853 % w/w) content. IC50& EC50 value of extract of S. anacardium before and after purification are 171.7 & 314.3 while EC50values are 280.μg/ml & 304. μg/ml, shows that antioxidant activity of S. anacardium is decreased but the safety profile of the drug is increased as the toxic phenolic oil was removed during Shodhana - An ayurvedic purification method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semecarpus%20anacardium" title="Semecarpus anacardium">Semecarpus anacardium</a>, <a href="https://publications.waset.org/abstracts/search?q=Shodhana%20process" title=" Shodhana process"> Shodhana process</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20profile" title=" safety profile"> safety profile</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement" title=" improvement"> improvement</a> </p> <a href="https://publications.waset.org/abstracts/46743/improvement-in-safety-profile-of-semecarpus-anacardium-linn-by-shodhana-an-ayurvedic-purification-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9092</span> Bioaccessible Phenolics, Phenolic Bioaccessibilities and Antioxidant Activities of Cookies Supplemented with Pumpkin Flour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emine%20Aydin">Emine Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Gocmen"> Duygu Gocmen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, pumpkin flours (PFs) were used to replace wheat flour in cookie formulation at three different levels (10%, 20% and 30% w/w). For this purpose PFs produced by two different applications (with or without metabisulfite pre-treatment) and then dried in freeze dryer. Control sample included no PFs. The total phenolic contents of the cookies supplemented with PFs were higher than that of control and gradually increased in total phenolic contents of cookies with increasing PF supplementation levels. Phenolic content makes also significant contribution on nutritional excellence of the developed cookies. Pre-treatment with metabisulfite (MS) had a positive effect on free, bound and total phenolics of cookies which are supplemented with various levels of MS-PF. This is due to a protective effect of metabisulfite pretreatment for phenolic compounds in the pumpkin flour. Phenolic antioxidants may act and absorb in a different way in humans and thus their antioxidant and health effects will be changed accordingly. In the present study phenolics’ bioavailability of cookies was investigated in order to assess PF as sources of accessible phenolics. The content of bioaccessible phenolics and phenolic bioaccessibility of cookies supplemented with PFs had higher than those of control sample. Cookies enriched with 30% MS-PF had the highest bioaccessible phenolics (597.86 mg GAE 100g-1) and phenolic bioaccessibility (41.71%). MS application in PF production caused a significant increase in phenolic bioaccessibility of cookies. According to all assay (ABTS, CUPRAC, FRAP and DPPH), antioxidant activities of cookies with PFs higher than that of control cookie. It was also observed that the cookies supplemented with MS-PF had significantly higher antioxidant activities than those of cookies including PF. In presented study, antioxidative bioaccessibilities of cookies were also determined. The cookies with PFs had significantly (p ≤ 0.05) higher antioxidative bioaccessibilities than control ones. Increasing PFs levels enhanced antioxidative bioaccessibilities of cookies. As a result, PFs addition improved the nutritional and functional properties of cookie by causing increase in antioxidant activity, total phenolic content, bioaccessible phenolics and phenolic bioaccessibilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title="phenolic compounds">phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20fiber" title=" dietary fiber"> dietary fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=pumpkin" title=" pumpkin"> pumpkin</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze%20drying" title=" freeze drying"> freeze drying</a>, <a href="https://publications.waset.org/abstracts/search?q=cookie" title=" cookie"> cookie</a> </p> <a href="https://publications.waset.org/abstracts/69024/bioaccessible-phenolics-phenolic-bioaccessibilities-and-antioxidant-activities-of-cookies-supplemented-with-pumpkin-flour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9091</span> In-vitro Antioxidant Activity of Two Selected Herbal Medicines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Vinotha">S. Vinotha</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Thabrew"> I. Thabrew</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sri%20Ranjani"> S. Sri Ranjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hot aqueous and methanol extracts of the two selected herbal medicines such are Vellarugu Chooranam (V.C) and Amukkirai Chooranam (A.C) were examined for total phenolic and flavonoid contents and in-vitro antioxidant activity using four different methods. The total phenolic and flavonoid contents in methanol extract of V.C were found to be higher (44.41±1.26 mg GAE⁄g; 174.44±9.32 mg QE⁄g) than in the methanol extract of A.C (20.56±0.67 mg GAE⁄g;7.21±0.85 mg QE⁄g). Hot methanol and aqueous extracts of both medicines showed low antioxidant activity in DPPH, ABTS, and FRAP methods and Iron chelating activity not found at highest possible concentration. V.C contains higher concentrations of total phenolic and flavonoid contents than A.C and can also exert greater antioxidant activity than A.C, although the activities demonstrated were lower than the positive control Trolox. The in-vitro antioxidant activity was not related with the total phenolic and flavonoid contents of the methanol and aqueous extracts of both herbal medicines (A.C and V.C). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activity" title="activity">activity</a>, <a href="https://publications.waset.org/abstracts/search?q=different%20extracts" title=" different extracts"> different extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20medicines" title=" herbal medicines"> herbal medicines</a>, <a href="https://publications.waset.org/abstracts/search?q=in-vitro%20antioxidant" title=" in-vitro antioxidant"> in-vitro antioxidant</a> </p> <a href="https://publications.waset.org/abstracts/16823/in-vitro-antioxidant-activity-of-two-selected-herbal-medicines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9090</span> Bioactive Compounds and Antioxidant Capacity of Instant Fruit Green Tea Powders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akanit%20Pisalwadcharin">Akanit Pisalwadcharin</a>, <a href="https://publications.waset.org/abstracts/search?q=Komate%20Satayawut"> Komate Satayawut</a>, <a href="https://publications.waset.org/abstracts/search?q=Virachnee%20Lohachoompol"> Virachnee Lohachoompol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green tea, mangosteen and pomegranate contain high levels of bioactive compounds which have antioxidant effects and great potential in food applications. The aim of this study was to produce and determine catechin contents, total phenolic contents, antioxidant activity and phenolic compounds of two instant fruit green tea powders which were green tea fortified with mangosteen juice and green tea fortified with pomegranate juice. Seventy percent of hot water extract of green tea was mixed with 30% of mangosteen juice or pomegranate juice, and then spray-dried using a spray dryer. The results showed that the drying conditions optimized for the highest total phenolic contents, catechin contents and antioxidant activity of both powders were the inlet air temperature of 170°C, outlet air temperatures of 90°C and maltodextrin concentration of 30%. The instant green tea with mangosteen powder had total phenolic contents, catechin contents and antioxidant activity of 19.18 (mg gallic acid/kg), 85.44 (mg/kg) and 4,334 (µmoles TE/100 g), respectively. The instant green tea with pomegranate powder had total phenolic contents, catechin contents and antioxidant activity of 32.72 (mg gallic acid/kg), 156.36 (mg/kg) and 6,283 (µmoles TE/100 g), respectively. The phenolic compounds in instant green tea with mangosteen powder comprised of tannic acid (2,156.87 mg/kg), epigallocatechin-3-gallate (898.23 mg/kg) and rutin (13.74 mg/kg). Also, the phenolic compounds in instant green tea with pomegranate powder comprised of tannic acid (2,275.82 mg/kg), epigallocatechin-3-gallate (981.23 mg/kg), rutin (14.97 mg/kg) and i-quercetin (5.86 mg/kg). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20tea" title="green tea">green tea</a>, <a href="https://publications.waset.org/abstracts/search?q=mangosteen" title=" mangosteen"> mangosteen</a>, <a href="https://publications.waset.org/abstracts/search?q=pomegranate" title=" pomegranate"> pomegranate</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/58736/bioactive-compounds-and-antioxidant-capacity-of-instant-fruit-green-tea-powders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9089</span> Optimization of Extraction Conditions for Phenolic Compounds from Deverra Scoparia Coss and Dur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roukia%20Hammoudi">Roukia Hammoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chabrouk%20Farid"> Chabrouk Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehak%20Karima"> Dehak Karima</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Hadj%20Mahammed"> Mahfoud Hadj Mahammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Didi%20Ouldelhadj"> Mohamed Didi Ouldelhadj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (acetone, ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. The optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deverra%20scoparia" title="Deverra scoparia">Deverra scoparia</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction" title=" ultrasound assisted extraction"> ultrasound assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/23755/optimization-of-extraction-conditions-for-phenolic-compounds-from-deverra-scoparia-coss-and-dur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">603</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9088</span> Optimization of Extraction Conditions for Phenolic Compounds from Deverra scoparia Coss. and Dur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roukia%20Hammoudi">Roukia Hammoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehak%20Karima"> Dehak Karima</a>, <a href="https://publications.waset.org/abstracts/search?q=Chabrouk%20Farid"> Chabrouk Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Hadj%20Mahammed"> Mahfoud Hadj Mahammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Didi%20Ouldelhadj"> Mohamed Didi Ouldelhadj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (Acetone, Ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. the optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deverra%20scoparia" title="Deverra scoparia">Deverra scoparia</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20assisted%20extraction" title=" ultrasound assisted extraction"> ultrasound assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/25874/optimization-of-extraction-conditions-for-phenolic-compounds-from-deverra-scoparia-coss-and-dur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">595</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9087</span> Effect of Initial pH and Fermentation Duration on Total Phenolic Content and Antioxidant Activity of Carob Kibble Fermented with Saccharomyces cerevisiae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Huong%20Vu">Thi Huong Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Haelee%20Fenton"> Haelee Fenton</a>, <a href="https://publications.waset.org/abstracts/search?q=Thi%20Huong%20Tra%20Nguyen"> Thi Huong Tra Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Dykes"> Gary Dykes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a submerged fermentation of carob kibble with Saccharomyces cerevisiae (S. cerevisiae) was performed. The total phenolic content and antioxidant activity in fermented carob kibble were determined by Folin–Ciocalteu method and scavenging capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The study showed that S. cerevisiae improved total phenolic content by 45 % and 50 % in acetone and water extracts respectively. Similarly, the antioxidant capacity of water extracts increased by 25 % and 41%, while acetone extracts indicated by 70% and 80% in DPPH and ABTS respectively. It is also found that initial pH 7.0 was more effective in improvement of total phenolic content and antioxidant activity. The efficiency of treatment was recorded at 15 h. This report suggested that submerged fermentation with S. cerevisiae is a potential and cost effective manner to further increase bioactive compounds in carob kibble, which are in use for food, cosmetic and pharmaceutical industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=carob%20kibble" title=" carob kibble"> carob kibble</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20cerevisiae" title=" saccharomyces cerevisiae"> saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20fermentation" title=" submerged fermentation"> submerged fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolics" title=" total phenolics"> total phenolics</a> </p> <a href="https://publications.waset.org/abstracts/54669/effect-of-initial-ph-and-fermentation-duration-on-total-phenolic-content-and-antioxidant-activity-of-carob-kibble-fermented-with-saccharomyces-cerevisiae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9086</span> Optimisation of Extraction of Phenolic Compounds in Algerian Lavandula multifida, Algeria, NW</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Mahmoud%20Dif">Mustapha Mahmoud Dif</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouzia%20Benali-Toumi"> Fouzia Benali-Toumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benyahia"> Mohamed Benyahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Bouazza"> Sofiane Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbes%20Dellal"> Abbes Dellal</a>, <a href="https://publications.waset.org/abstracts/search?q=Slimane%20Baha"> Slimane Baha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> L. multifida is applied to treat rheumatism and cold and has hypoglycemic and anti-inflammatory properties. The present study is to optimize the extraction of phenolic compounds in Algerian Lavandula multifida. The influences of parameters including temperature (decoction and maceration) and extraction time (15min to 45 min) on the flavonoids concentration are studied. The optimal conditions are determined and the quadratic response surfaces draw from the mathematical models. Total phenols were evaluated using Folin sicaltieu methods, total flavonoids were estimated using the Tri chloral aluminum method. The maximum concentration extracted, for total flavonoids, equal to 0.043 mg/g was achieved with decoction and extraction time of 41.55 min. However, for total phenol compounds highest concentration of 0.218 mg/g, is obtained with 45 min at 49.99°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=L%20multifidi" title="L multifidi">L multifidi</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20content" title=" phenolic content"> phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/46388/optimisation-of-extraction-of-phenolic-compounds-in-algerian-lavandula-multifida-algeria-nw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9085</span> Isolation, Preparation and Biological Properties of Soybean-Flaxseed Protein Co-Precipitates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20H.%20Alu%E2%80%99datt">Muhammad H. Alu’datt</a>, <a href="https://publications.waset.org/abstracts/search?q=Inteaz%20Alli"> Inteaz Alli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to prepare and evaluate the biological properties of protein co-precipitates from flaxseed and soybean. Protein was prepared by NaOH extraction through the mixing of soybean flour (Sf) and flaxseed flour (Ff) or mixtures of soybean extract (Se) and flaxseed extract (Fe). The protein co-precipitates were precipitated by isoelectric (IEP) and isoelectric-heating (IEPH) co-precipitation techniques. Effects of extraction and co-precipitation techniques on co-precipitate yield were investigated. Native-PAGE, SDS-PAGE were used to study the molecular characterization. Content and antioxidant activity of extracted free and bound phenolic compounds were evaluated for protein co-precipitates. Removal of free and bound phenolic compounds from protein co-precipitates showed little effects on the electrophoretic behavior of the proteins or the protein subunits of protein co-precipitates. Results showed that he highest protein contents and yield were obtained in for Sf-Ff/IEP co-precipitate with values of 53.28 and 25.58% respectively as compared to protein isolates and other co-precipitates. Results revealed that the Sf-Ff/IEP showed a higher content of bound phenolic compounds (53.49% from total phenolic content) as compared to free phenolic compounds (46.51% from total phenolic content). Antioxidant activities of extracted bound phenolic compounds with and without heat treatment from Sf-Ff/IEHP were higher as compared to free phenolic compounds extracted from other protein co-precipitates (29.68 and 22.84%, respectively). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20co-precipitate" title=" protein co-precipitate"> protein co-precipitate</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/47994/isolation-preparation-and-biological-properties-of-soybean-flaxseed-protein-co-precipitates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9084</span> Study of the Effect of Extraction Solvent on the Content of Total Phenolic, Total Flavonoids and the Antioxidant Activity of an Endemic Medicinal Plant Growing in Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aghoutane%20Basma">Aghoutane Basma</a>, <a href="https://publications.waset.org/abstracts/search?q=Naama%20Amal"> Naama Amal</a>, <a href="https://publications.waset.org/abstracts/search?q=Talbi%20Hayat"> Talbi Hayat</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Manfalouti%20Hanae"> El Manfalouti Hanae</a>, <a href="https://publications.waset.org/abstracts/search?q=Kartah%20Badreddine"> Kartah Badreddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aromatic and medicinal plants are used by man for different needs, including food and medicinal needs for their biological properties attributed mainly to phenolic compounds and for their antioxidant capacity. In our study, the aim is to compare three extraction solvents by evaluating the contents of phenolic compounds, the contents of flavonoids, and the antioxidant activities of extracts from different methods of extracting the aerial part of an endemic medicinal plant from Morocco. This activity was also confirmed by three methods (2,2-diphenyl-1-picrylhydrazyl (DPPH), antioxidant reducing power of iron (FRAP), and total antioxidant capacity (CAT)). The results showed that this plant is rich in polyphenols and flavonoids, as well as it has a very important antioxidant capacity in whatever the solvent or the extraction method. This suggests the importance of using extracts from this plant as a new natural source of food additives and potent antioxidants in the food industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endemic%20plant%20of%20Morocco" title="endemic plant of Morocco">endemic plant of Morocco</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compound" title=" phenolic compound"> phenolic compound</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent" title=" solvent"> solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction%20technique" title=" extraction technique"> extraction technique</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/142337/study-of-the-effect-of-extraction-solvent-on-the-content-of-total-phenolic-total-flavonoids-and-the-antioxidant-activity-of-an-endemic-medicinal-plant-growing-in-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9083</span> Evaluation of the Capabilities of Saccharomyces cerevisiae and Lactobacillus plantarum in Improvement of Total Phenolic Content and Antioxidant Activity in Carob Kibble</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Huong%20Vu">Thi Huong Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Jayasena"> Vijay Jayasena</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongxiang%20Fang"> Zhongxiang Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20Dykes"> Gary Dykes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carob kibble has recently received attention due to the presence of high level of polyphenol antioxidants. The capacity of microorganisms to improve antioxidant activities and total phenolics in carob kibble was investigated in the study. Two types of microorganisms including lactic acid bacteria Lactobacillus plantarum (L. plantarum) and yeast Saccharomyces cerevisiae (S. cerevisiae) were used in single and in their combination as starters. The total phenolic content was determined by the Folin–Ciocalteu method. Antioxidant activities were assessed scavenging capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The study found that S. cerevisiae alone considerably improved 55% total phenolics content at 15 h, while L. plantarum caused in a loss of 20% through the process. Antioxidant capacity of the yeast-fermented samples significantly increased by 43 % and 10 % in ABTS and DPPH assays, respectively. However, reduction of 13 % and 32 % inhibition were recorded in the carob treated with L. plantarum. In the combination of S. cerevisiae and L. plantarum (1:1), both total phenolic content and antioxidant activity of carob kibble were a similar trend as these of S. cerevisiae single, but a lower improvement. The antioxidant power of the extracts was linearly correlated to their total phenolic contents (R=0.75). The results suggested that S. cerevisiae alone was the better for enhancement of both total phenolic content and antioxidant activity in carob kibble using submerged fermentation. The efficiency of fermentation reached the highest at 15h. Thus submerged fermentation with S. cerevisiae offers a tool with simple and cost effective to further increase the bioactive potential of carob kibble, which is in use for food, cosmetic and pharmaceutical industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=carob%20kibble" title=" carob kibble"> carob kibble</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus%20plantarum" title=" lactobacillus plantarum"> lactobacillus plantarum</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20cerevisiae" title=" saccharomyces cerevisiae"> saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolics" title=" total phenolics"> total phenolics</a> </p> <a href="https://publications.waset.org/abstracts/54352/evaluation-of-the-capabilities-of-saccharomyces-cerevisiae-and-lactobacillus-plantarum-in-improvement-of-total-phenolic-content-and-antioxidant-activity-in-carob-kibble" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9082</span> Evaluation of Total Phenolic Content and Antioxidant Activity in Amaranth Seeds Grown in Latvia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alla%20Mariseva">Alla Mariseva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilze%20Beitane"> Ilze Beitane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Daily intake of products rich in antioxidants that scavenge free radicals in cell membranes is an effective way to combat oxidative stress. Last year there was noticed higher interest towards the identification and utilization of plants rich in antioxidant compounds as they may behave as preventive medicine. Amaranth seeds due to polyphenols, anthocyanins, flavonoids, and tocopherols are characterized by high antioxidant activity. The study aimed to evaluate the total phenolic content and radical scavenging activity of amaranth seeds cultivated in 2020 in two farms in Latvia. One sample of amaranth seeds came from an organic farm, the other – from a conventional farm. The total phenol content of amaranth seed extracts was measured with the Folin-Ciocalte spectrophotometric method. The total phenols were expressed as gallic acid equivalents (GAE) per 100 g dry weight (DW) of the samples. The antioxidant activity of amaranth seed extracts was calculated based on scavenging activities of the stable 2.2-diphenyl-1-picrylhydrazyl (DPPH˙) radical, the radical scavenging capacity (ABTS) was demonstrated as Trolox mM equivalents (TE) per 100 g-1 dry weight. Three parallel measurements were performed on all samples. There were significant differences between organic and conventional amaranth seeds in terms of total phenolic content and antioxidant activity. Organic amaranth seeds showed higher total phenolic content compared to conventional amaranth seeds, 65.4±6.0 mg GAE 100 g⁻¹ DW and 43.4±7.8 mg GAE 100 g⁻¹ DW respectively. Organic amaranth seeds were also characterized by higher DPPH radical scavenging activity (7.9±0.4 mM TE 100 g⁻¹ of dry matter) and ABTS radical scavenging capacity (13.2±1.5 mM TE 100 g⁻¹ of dry matter). The results obtained on total phenolic content and antioxidant activity of amaranth seeds grown in Latvia confirmed that the samples have a high biological value; therefore, it would be necessary to promote their consumption by including them in various food products, including vegan products, increasing their nutritional value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABTS" title="ABTS">ABTS</a>, <a href="https://publications.waset.org/abstracts/search?q=amaranth%20seeds" title=" amaranth seeds"> amaranth seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a> </p> <a href="https://publications.waset.org/abstracts/137559/evaluation-of-total-phenolic-content-and-antioxidant-activity-in-amaranth-seeds-grown-in-latvia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9081</span> Natural Antioxidant Changes in Fresh and Dried Spices and Vegetables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liga%20Priecina">Liga Priecina</a>, <a href="https://publications.waset.org/abstracts/search?q=Daina%20Karklina"> Daina Karklina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antioxidants are became the most analyzed substances in last decades. Antioxidants act as in activator for free radicals. Spices and vegetables are one of major antioxidant sources. Most common antioxidants in vegetables and spices are vitamin C, E, phenolic compounds, carotenoids. Therefore, it is important to get some view about antioxidant changes in spices and vegetables during processing. In this article was analyzed nine fresh and dried spices and vegetables- celery (Apium graveolens), parsley (Petroselinum crispum), dill (Anethum graveolens), leek (Allium ampeloprasum L.), garlic (Allium sativum L.), onion (Allium cepa), celery root (Apium graveolens var. rapaceum), pumpkin (Curcubica maxima), carrot (Daucus carota)- grown in Latvia 2013. Total carotenoids and phenolic compounds and their antiradical scavenging activity were determined for all samples. Dry matter content was calculated from moisture content. After drying process carotenoid content significantly decreases in all analyzed samples, except one -carotenoid content increases in parsley. Phenolic composition was different and depends on sample – fresh or dried. Total phenolic, flavonoid and phenolic acid content increases in dried spices. Flavan-3-ol content is not detected in fresh spice samples. For dried vegetables- phenolic acid content decreases significantly, but increases flavan-3-ols content. The higher antiradical scavenging activity was observed in samples with higher flavonoid and phenolic acid content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiradical%20scavenging%20activity" title="antiradical scavenging activity">antiradical scavenging activity</a>, <a href="https://publications.waset.org/abstracts/search?q=carotenoids" title=" carotenoids"> carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=spices" title=" spices"> spices</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetables" title=" vegetables"> vegetables</a> </p> <a href="https://publications.waset.org/abstracts/8667/natural-antioxidant-changes-in-fresh-and-dried-spices-and-vegetables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9080</span> Evaluation of Achillea millefolium L. Biochemical Changes in Iran&#039;s Natural Habitat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghavamaldin%20Asadian">Ghavamaldin Asadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Aptin%20Rahnavard"> Aptin Rahnavard</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariamalsadat%20Taghavi"> Mariamalsadat Taghavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Achillea millefolium L. is one of the most important medicinal plants with antioxidant compounds. The use of compounds derived from plants reduces the incidence of many chronic diseases. The purpose of this investigation is study of total phenolic content and antioxidant activity some of ecotypes yarrow grown in natural habitats in Iran. This experimental study was conducted in 2013 at the Islamic Azad University, Tonekabon Branch. After identifying the natural sites, we have attempted to harvest of aerial part and after drying in lab temperature, essential oil was extracted by steam distillation. In this research for evaluate the antioxidant properties was used of three method, DPPH, Antioxidant capacity ferro revival and phosphomolybdenum, that all mechanism is based on the electron donating. All ecotypes had antioxidant activity and ecotypes grown in Kandovan region were measured with the most total phenolic (89.5 mg GA/g dew) and flavonoid (20.4 µg/g dew) and the lowest in Saveh (71.3 mg GA/g dew, 17.4 µg/g dew). Variation of the antioxidant properties were significant (P≤0.01) in areas and were accounted Kandovan with highest value and the lowest in Save. As a result, yarrow essential oil grown in Kandovan in terms of amount of total phenolic, flavonoid and antioxidant property, it was determined the best natural habitat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=achillea%20millefolium%20L." title="achillea millefolium L.">achillea millefolium L.</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20compounds" title=" antioxidant compounds"> antioxidant compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic" title=" total phenolic"> total phenolic</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid%20natural%20habitats" title=" flavonoid natural habitats"> flavonoid natural habitats</a> </p> <a href="https://publications.waset.org/abstracts/11541/evaluation-of-achillea-millefolium-l-biochemical-changes-in-irans-natural-habitat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9079</span> Antioxidant Activity Of Gracilaria Fisheri Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paam%20Bidaya">Paam Bidaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The red seaweed Gracilaria fisheri, widely distributed along Thailand's southern coastlines, has been discovered to be edible. Sulfated polysaccharides from G. fisheri were extracted in low-temperature (25 °C) water. Seaweed polysaccharides (SPs) have been shown to have various advantageous biological effects. This study aims to investigate total phenolic content and antioxidant capacity of G. fisheri extract. The total phenolic content of G. fisheri extract was determined using Folin-Cioucalteu method and calculated as gallic acid equivalents (GAE). The antioxidant activity of G. fisheri extract was performed via 2, 2-diphenyl-1- picrylhydrazyl (DPPH) free radical scavenging assay and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assays. The findings exhibited a strong correlation between antioxidant activity and the total phenol contents. In addition, DPPH and ABTS assays showed that G. fisheri extract showed antioxidant activities as a concentration-dependent manner. The IC50 values of G. fisheri extract were 902.19 μg/mL ± 0.785 and 727.98 μg/mL ± 0.822 for DPPH and ABTS, respectively. Vitamin C was used as a positive control in DPPH assay, while Trolox was used as a positive control in ABTS assay. To conclude, G. fisheri extract consists of a high amount of total phenolic content, which exhibit a significant antioxidant activity. However, further investigation regarding antioxidant activity should be performed in order to identify the mechanism of Gracilaria fisheri action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABTS%20assay" title="ABTS assay">ABTS assay</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH%20assay" title=" DPPH assay"> DPPH assay</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfated%20polysaccharides" title=" sulfated polysaccharides"> sulfated polysaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a> </p> <a href="https://publications.waset.org/abstracts/140926/antioxidant-activity-of-gracilaria-fisheri-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9078</span> Evaluation of Bioactive Phenols in Blueberries from Different Cultivars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Gon%C3%A7alves">Christophe Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Raquel%20P.%20F.%20Guin%C3%A9"> Raquel P. F. Guiné</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Teixeira"> Daniela Teixeira</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20J.%20Gon%C3%A7alves"> Fernando J. Gonçalves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blueberries are widely valued for their high content in phenolic compounds with antioxidant activity, and hence beneficial for the human health. In this way, a study was done to determine the phenolic composition (total phenols, anthocyanins and tannins) and antioxidant activity of blueberries from three cultivars (Duke, Bluecrop, and Ozarblue) grown in two different Portuguese farms. Initially two successive extractions were done with methanol followed by two extractions with aqueous acetone solutions. These extracts obtained were then used to evaluate the amount of phenolic compounds and the antioxidant activity. The total phenols were observed to vary from 4.9 to 8.2 mg GAE/g fresh weight, with anthocyanin’s contents in the range 1.5-2.8 mg EMv3G/g and tannins contents in the range 1.5- 3.8 mg/g. The results for antioxidant activity ranged from 9.3 to 23.2 mol TE/g, and from 24.7 to 53.4 mol TE/g, when measured, respectively, by DPPH and ABTS methods. In conclusion it was observed that, in general, the cultivar had a visible effect on the phenols present, and furthermore, the geographical origin showed relevance either in the phenols contents or the antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthocyanins" title="anthocyanins">anthocyanins</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=blueberry%20cultivar" title=" blueberry cultivar"> blueberry cultivar</a>, <a href="https://publications.waset.org/abstracts/search?q=geographical%20origin" title=" geographical origin"> geographical origin</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a> </p> <a href="https://publications.waset.org/abstracts/22045/evaluation-of-bioactive-phenols-in-blueberries-from-different-cultivars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9077</span> Assessement of Phytochemicals and Antioxidant Activity of Lavandula antineae Maire from Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumeya%20Krimat">Soumeya Krimat</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Dob"> Tahar Dob</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Toumi"> Mohamed Toumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Kesouri"> Aicha Kesouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafidha%20Metidji"> Hafidha Metidji</a>, <a href="https://publications.waset.org/abstracts/search?q=Chelghoum%20Chabane"> Chelghoum Chabane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lavandula antineae Maire is an endemic medicinal plant of Algeria which is traditionally used for the treatment of chills, bruises, oedema and rheumatism. The present study was designed to investigate the phytochemical screening, total phenolic and antioxidant activity of Lavandula antineae Maire for the first time. Phytochemical screening revealed the presence of different kind of chemical groups (anthraquinones, terpenes, saponins, flavonoids, tannins, O-heterosides, C-heterosides, phenolic acids). The amounts of total phenolics in the extracts (hydromethanolic and ethyl acetate extract) were determined spectrometrically. From the analyses, ethyl acetate extract had the highest total phenolic content (262.35 mg GA/g extract) and antioxidant activity (IC50=7.10 µg/ml) using DPPH method. The ethyl acetate extract was also more potent on reducing power compared to hydromethanolic extract. The results suggested that L. antineae could be considered as a new potential source of natural antioxidant for pharmaceuticals and food preservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lavandula%20antineae" title="Lavandula antineae">Lavandula antineae</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20screening" title=" phytochemical screening"> phytochemical screening</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolics" title=" total phenolics"> total phenolics</a> </p> <a href="https://publications.waset.org/abstracts/18211/assessement-of-phytochemicals-and-antioxidant-activity-of-lavandula-antineae-maire-from-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9076</span> Kinetic Study of Thermal Degradation of a Lignin Nanoparticle-Reinforced Phenolic Foam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20C.%20Dom%C3%ADnguez">Juan C. Domínguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Bel%C3%A9n%20Del%20Saz-Orozco"> Belén Del Saz-Orozco</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20V.%20Alonso"> María V. Alonso</a>, <a href="https://publications.waset.org/abstracts/search?q=Mercedes%20Oliet"> Mercedes Oliet</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Rodr%C3%ADguez"> Francisco Rodríguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the kinetics of thermal degradation of a phenolic and lignin reinforced phenolic foams, and the lignin used as reinforcement were studied and the activation energies of their degradation processes were obtained by a DAEM model. The average values for five heating rates of the mean activation energies obtained were: 99.1, 128.2, and 144.0 kJ.mol-1 for the phenolic foam, 109.5, 113.3, and 153.0 kJ.mol-1 for the lignin reinforcement, and 82.1, 106.9, and 124.4 kJ. mol-1 for the lignin reinforced phenolic foam. The standard deviation ranges calculated for each sample were 1.27-8.85, 2.22-12.82, and 3.17-8.11 kJ.mol-1 for the phenolic foam, lignin and the reinforced foam, respectively. The DAEM model showed low mean square errors (< 1x10-5), proving that is a suitable model to study the kinetics of thermal degradation of the foams and the reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinetics" title="kinetics">kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20foam" title=" phenolic foam"> phenolic foam</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20degradation" title=" thermal degradation"> thermal degradation</a> </p> <a href="https://publications.waset.org/abstracts/25484/kinetic-study-of-thermal-degradation-of-a-lignin-nanoparticle-reinforced-phenolic-foam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9075</span> Effects of Cooking and Drying on the Phenolic Compounds, and Antioxidant Activity of Cleome gynandra (Spider Plant)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Kayitesi">E. Kayitesi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Moyo"> S. Moyo</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Mavumengwana"> V. Mavumengwana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cleome gynandra (spider plant) is an African green leafy vegetable categorized as an indigenous, underutilized and has been reported to contain essential phenolic compounds. Phenolic compounds play a significant role in human diets due to their proposed health benefits. These compounds however may be affected by different processing methods such as cooking and drying. Cleome gynandra was subjected to boiling, steam blanching, and drying processes and analysed for Total Phenolic Content (TPC), Total Flavonoid Content (TFC), antioxidant activity and flavonoid composition. Cooking and drying significantly (p < 0.05) increased the levels of phenolic compounds and antioxidant activity of the vegetable. The boiled sample filtrate exhibited the lowest TPC followed by the raw sample while the steamed sample depicted the highest TPC levels. Antioxidant activity results showed that steamed sample showed the highest DPPH, FRAP and ABTS with mean values of 499.38 ± 2.44, 578.68 ± 5.19, and 214.39 ± 12.33 μM Trolox Equivalent/g respectively. An increase in quercetin-3-rutinoside, quercetin-rhamnoside and kaempferol-3-rutinoside occurred after all the cooking and drying methods employed. Cooking and drying exerted positive effects on the vegetable’s phenolic content, antioxidant activity as a whole, but with varied effects on the individual flavonoid molecules. The results obtained help in defining the importance of African green leafy vegetable and resultant processed products as functional foods and their potential to exert health promoting properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cleome%20gynandra" title="Cleome gynandra">Cleome gynandra</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=cooking" title=" cooking"> cooking</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20promoting%20properties" title=" health promoting properties"> health promoting properties</a> </p> <a href="https://publications.waset.org/abstracts/82511/effects-of-cooking-and-drying-on-the-phenolic-compounds-and-antioxidant-activity-of-cleome-gynandra-spider-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9074</span> Characterization of Caneberry Juices Enriched by Natural Antioxidants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Vuli%C4%87">Jelena Vulić</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasna%20%C4%8Canadanovi%C4%87-Brunet"> Jasna Čanadanović-Brunet</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordana%20%C4%86etkovi%C4%87"> Gordana Ćetković</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonja%20Djilas"> Sonja Djilas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Tumbas%20%C5%A0aponjac"> Vesna Tumbas Šaponjac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Caneberries (raspberries and blackberries) are among the most popular berries in the world, which are consumed as fresh and processed to juice, jams, confitures and other products or as ingredients for different foods. These fruits are known as a rich source of phenolic compounds such as phenolic acids and anthocyanins. Antioxidant activity (AA) of caneberry juices was improved by addition of phenolic compounds which were extracted from two raspberry cultivars (Rubus idaeus, cv. 'Willamette' (RW) and 'Meeker' (RM)) and two blackberry cultivars (Rubus fruticosus, cv. 'Čačanka' (BC) and 'Thornfree' (BT)) pomace, a by-product in juice processing. The total phenolic contents in raspberry and blackberry pomace extracts were determined spectrophotometrically using the Folin-Ciocalteu reagens. The phenolic concentrations in caneberries (RW, RM, BC and BT) pomace extracts were 43.67 ± 2.13 mg GAE/g, 26.25 ± 1.18 mg GAE/g, 46.01 ± 3.26 mg GAE/g and 61.59 ± 1.14 mg GAE/g, respectively. In order to obtain enriched juices, phenolic compounds were applied at concentration of 0.05 mg GAE/ 100 ml. Antioxidant activities of caneberry juices and caneberry enriched juices were measured using stable 1.1-diphenyl-2-picrylhydrazyl (DPPH) radicals. AADPPH of RW, RM, BC and BT juices and enriched juices with addition of 0.01 µg GAE/ml, changed from 37.12% to 93.01%, 23.26% to 91.57%, 53.61% to 95.65% and 52.06% to 93.13%, respectively, while IC50 values of RW, RM, BC and BT juices and enriched juices were diminished 6.33, 19.00, 6.33 and 4.75 times, respectively. Based on the obtained results it can be concluded that phenolic enriched juices were significantly more effective on DPPH radicals. Caneberry juices enriched with waste material are a good source of natural pigments and antioxidants and could be used as functional foods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caneberry" title="caneberry">caneberry</a>, <a href="https://publications.waset.org/abstracts/search?q=enriched%20juice" title=" enriched juice"> enriched juice</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20antioxidant" title=" phenolic antioxidant"> phenolic antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH%20radical" title=" DPPH radical"> DPPH radical</a> </p> <a href="https://publications.waset.org/abstracts/4894/characterization-of-caneberry-juices-enriched-by-natural-antioxidants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9073</span> Substitution of Formaldehyde in Phenolic Resins with Innovative and Bio-Based Vanillin Derived Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Caillol">Sylvain Caillol</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghislain%20David"> Ghislain David</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenolic resins are industrially used in a wide range of applications from commodity and construction materials to high-technology aerospace industry. They are mainly produced from the reaction between phenolic compounds and formaldehyde. Nevertheless, formaldehyde is a highly volatile and hazardous compound, classified as a Carcinogenic, Mutagenic and Reprotoxic chemical (CMR). Vanillin is a bio-based and non-toxic aromatic aldehyde compound obtained from the abundant lignin resources. Also, its aromaticity is very interesting for the synthesis of phenolic resins with high thermal stability. However, because of the relatively low reactivity of its aldehyde function toward phenolic compounds, it has never been used to synthesize phenolic resins. We developed innovative functionalization reactions and designed new bio-based aromatic aldehyde compounds from vanillin. Those innovative compounds present improved reactivity toward phenolic compounds compared to vanillin. Moreover, they have target structures to synthesize highly cross-linked phenolic resins with high aromatic densities. We have obtained phenolic resins from substituted vanillin, thus without the use of any aldehyde compound classified as CMR. The analytical tests of the cured resins confirmed that those bio-based resins exhibit high levels of performance with high thermal stability and high rigidity properties <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenolic%20resins" title="phenolic resins">phenolic resins</a>, <a href="https://publications.waset.org/abstracts/search?q=formaldehyde-free" title=" formaldehyde-free"> formaldehyde-free</a>, <a href="https://publications.waset.org/abstracts/search?q=vanillin" title=" vanillin"> vanillin</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-based" title=" bio-based"> bio-based</a>, <a href="https://publications.waset.org/abstracts/search?q=non-toxic" title=" non-toxic"> non-toxic</a> </p> <a href="https://publications.waset.org/abstracts/40492/substitution-of-formaldehyde-in-phenolic-resins-with-innovative-and-bio-based-vanillin-derived-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9072</span> Identification of Phenolic Compounds with Antibacterial Activity in Raisin Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousef%20M.%20Abouzeed%20A.%20Elfahem">Yousef M. Abouzeed A. Elfahem</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Zgheel"> F. Zgheel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Saad"> M. A. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20O.%20Ahmed"> Mohamed O. Ahmed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bioactive properties of phytochemicals indicate their potential as natural drug products to prevent and treat human disease; in particular, compounds with antioxidant and antimicrobial activities may represent a novel class of safe and effective drugs. Following desiccation, grapes (Vitis vinifera) become more resistant to microbial-based degradation, suggesting that raisins may be a source of antimicrobial compounds. To investigate this hypothesis, total phenolic extracts were obtained from common raisins, local market-sourced. The acetone extract was tested for antibacterial activity against four prevalent bacterial pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella spp. and Escherichia coli). Antibiotic sensitivity and the Minimum Inhibitory Concentration (MIC) were determined for each bacterium. High performance liquid chromatography was used to identify compounds in the total phenolic extract. The raisin phenolic extract inhibited growth of all the tested bacteria; the greatest inhibitive effect (normalized to cefotaxime sodium control antibiotic) occurred against P. aeruginosa, followed by S. aureus > Salmonella spp.= E. coli. The phenolic extracts contained the bioactive compounds catechin, quercetin, and rutin. Thus, phytochemicals in raisin extract have antibacterial properties; this plant-based extract, or its bioactive constituents, may represent a promising natural preservative or antimicrobial agent for the food industry or anti-infective drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vitis%20vinifera%20raisin" title="Vitis vinifera raisin">Vitis vinifera raisin</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity "> antibacterial activity </a> </p> <a href="https://publications.waset.org/abstracts/18882/identification-of-phenolic-compounds-with-antibacterial-activity-in-raisin-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9071</span> Management Prospects of Winery By-Products Based on Phenolic Compounds and Antioxidant Activity of Grape Skins: The Case of Greek Ionian Islands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marinos%20Xagoraris">Marinos Xagoraris</a>, <a href="https://publications.waset.org/abstracts/search?q=Iliada%20K.%20Lappa"> Iliada K. Lappa</a>, <a href="https://publications.waset.org/abstracts/search?q=Charalambos%20Kanakis"> Charalambos Kanakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitra%20Daferera"> Dimitra Daferera</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20Papadopoulou"> Christina Papadopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Sourounis"> Georgios Sourounis</a>, <a href="https://publications.waset.org/abstracts/search?q=Charilaos%20Giotis"> Charilaos Giotis</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavlos%20Bouchagier"> Pavlos Bouchagier</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20S.%20Pappas"> Christos S. Pappas</a>, <a href="https://publications.waset.org/abstracts/search?q=Petros%20A.%20Tarantilis"> Petros A. Tarantilis</a>, <a href="https://publications.waset.org/abstracts/search?q=Efstathia%20Skotti"> Efstathia Skotti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work was to recover phenolic compounds from grape skins produced in Greek varieties of the Ionian Islands in order to form the basis of calculations for their further utilization in the context of the circular economy. Isolation and further utilization of phenolic compounds is an important issue in winery by-products. For this purpose, 37 samples were collected, extracted, and analyzed in an attempt to provide the appropriate basis for their sustainable exploitation. Extraction of the bioactive compounds was held using an eco-friendly, non-toxic, and highly effective water-glycerol solvent system. Then, extracts were analyzed using UV-Vis, liquid chromatography-mass spectrometry (LC-MS), FTIR, and Raman spectroscopy. Also, total phenolic content and antioxidant activity were measured. LC-MS chromatography showed qualitative differences between different varieties. Peaks were attributed to monomeric 3-flavanols as well as monomeric, dimeric, and trimeric proanthocyanidins. The FT-IR and Raman spectra agreed with the chromatographic data and contributed to identifying phenolic compounds. Grape skins exhibited high total phenolic content (TPC), and it was proved that during vinification, a large number of polyphenols remained in the pomace. This study confirmed that grape skins from Ionian Islands are a promising source of bioactive compounds, suggesting their utilization under a bio-economic and environmental strategic framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=grape%20skin" title=" grape skin"> grape skin</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20recovery" title=" waste recovery"> waste recovery</a> </p> <a href="https://publications.waset.org/abstracts/134702/management-prospects-of-winery-by-products-based-on-phenolic-compounds-and-antioxidant-activity-of-grape-skins-the-case-of-greek-ionian-islands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9070</span> Antimicrobial Activity of Olive Mill Wastewater Fractions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chahinez%20Ait%20Si%20Said">Chahinez Ait Si Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouassila%20Touafek"> Ouassila Touafek</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Reda%20Zahi"> Mohamed Reda Zahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Smain%20Sabour"> Smain Sabour</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8EMohamed%20El%20Hattab%20%E2%80%8E"> ‎Mohamed El Hattab ‎</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil mill wastewater (OMW) is a major effluent of the olive industry resulting from olive ‎oil extraction which is a great source for the development of new drugs. The present ‎study aimed to evaluate the antimicrobial activity of seven different fractions separated ‎from OMW extract. The sample was recovered from an oil mill in the Blida region ‎‎(Algeria). A crude ethyl acetate extract was prepared from OMW according to a well-‎established protocol; the yield of the extract obtained was 4%. From the extract, ‎different fractions were prepared by fractionating the total extract with an open column ‎chromatography. The obtained fractions were submitted to antimicrobial activity ‎screening in a comparative purpose. All the fractions obtained show great antimicrobial ‎potential. ‎Phytochemical study of the different fractions was assessed by evaluating the total ‎phenolic compounds for all fractions studied as the main compounds found in OMW ‎were phenols like hydroxytyrosol, tyrosol, phenolic acids like caffeic, quinic and ferulic ‎acids which show great therapeutic activities. ‎ <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive%20mill%20wastewater" title="olive mill wastewater">olive mill wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=fractionation" title=" fractionation"> fractionation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20compound" title=" total phenolic compound"> total phenolic compound</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/167613/antimicrobial-activity-of-olive-mill-wastewater-fractions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9069</span> Comparison of Oven and Microwave Drying on Phenolic Contents and Antioxidant Activities of Red Delicious and Golden Delicious Apples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulcin%20Yildiz">Gulcin Yildiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokcen%20Izli"> Gokcen Izli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drying (dehydration) is the process of removing water from food in order to preserve the food. Drying is one of the oldest methods known for the preservation of agricultural products such as fruits and vegetables. Drying of agricultural products enhances their storage life, minimizes losses during storage, and save shipping and transportation costs. Apples are considered excellent candidates for drying. The objective of this research was to investigate the effects of microwave and oven processing on the quality of selected apple products. Red delicious and golden delicious apples were washed, peeled, and sliced. Drying experiments were performed in an oven at 50, 75 and 100 °C and in a microwave at 140 W and 210 W. Quality attributes such as color, total phenolic content and antioxidant capacity of dried samples with different methods were compared with the fresh sample. A Minolta CR-300 Chroma Meter was used to examine color changes in the apples. Total phenolic content was determined using the Folin-Ciocalteu reagent. The free radical scavenging activity of the extract was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH). It was found that the phenolic contents and antioxidant capacities of dried samples under all drying conditions were decreased compared to the fresh samples. The phenolic contents of microwave dried samples at 140 W and 210 W for both red and golden delicious apples were higher than those of the oven drying at 50, 75 and 100 °C. Similarly, the antioxidant activities of microwave dried samples at 140 W and 210 W were higher than those of the oven drying at 50, 75 and 100 °C for both types of apples. All color parameters (L*, a*, b*) were changed significantly depending on the drying methods and temperatures. The closest color values to the fresh sample were found for the microwave dried samples at 140 W. Microwave drying was proven to be more effective than oven drying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20capacity" title="antioxidant capacity">antioxidant capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=color" title=" color"> color</a>, <a href="https://publications.waset.org/abstracts/search?q=golden%20delicious" title=" golden delicious"> golden delicious</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20delicious" title=" red delicious"> red delicious</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a> </p> <a href="https://publications.waset.org/abstracts/56807/comparison-of-oven-and-microwave-drying-on-phenolic-contents-and-antioxidant-activities-of-red-delicious-and-golden-delicious-apples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenolic&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenolic&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenolic&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenolic&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenolic&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenolic&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenolic&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenolic&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenolic&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenolic&amp;page=303">303</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenolic&amp;page=304">304</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20phenolic&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10