CINXE.COM
Lp空間 - 维基百科,自由的百科全书
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="zh" dir="ltr"> <head> <meta charset="UTF-8"> <title>Lp空間 - 维基百科,自由的百科全书</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )zhwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"zh", "wgMonthNames":["","1月","2月","3月","4月","5月","6月","7月","8月","9月","10月","11月","12月"],"wgRequestId":"71c58eb8-8d61-4f2c-b013-8cf656f19bca","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Lp空间","wgTitle":"Lp空间","wgCurRevisionId":78010488,"wgRevisionId":78010488,"wgArticleId":346712,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["含有哈佛参考文献格式系列模板链接指向错误的页面","含有访问日期但无网址的引用的页面","自2020年6月需要合併的條目","使用ISBN魔术链接的页面","泛函分析","赋范空间","序列"],"wgPageViewLanguage":"zh","wgPageContentLanguage":"zh","wgPageContentModel":"wikitext","wgRelevantPageName":"Lp空间","wgRelevantArticleId":346712,"wgUserVariant":"zh","wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[], "wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"zh","pageLanguageDir":"ltr","pageVariantFallbacks":["zh-hans","zh-hant","zh-cn","zh-tw","zh-hk","zh-sg","zh-mo","zh-my"]},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q305936","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.large-font":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.edit0","ext.gadget.WikiMiniAtlas","ext.gadget.UnihanTooltips","ext.gadget.Difflink","ext.gadget.pseudonamespace-UI","ext.gadget.SpecialWikitext","ext.gadget.switcher","ext.gadget.VariantAlly","ext.gadget.AdvancedSiteNotices", "ext.gadget.hideConversionTab","ext.gadget.internalLinkHelper-altcolor","ext.gadget.noteTA","ext.gadget.NavFrame","ext.gadget.collapsibleTables","ext.gadget.scrollUpButton","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=zh&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=zh&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=zh&modules=ext.gadget.large-font&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=zh&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Lp空間 - 维基百科,自由的百科全书"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//zh.m.wikipedia.org/wiki/Lp%E7%A9%BA%E9%97%B4"> <link rel="alternate" type="application/x-wiki" title="编辑本页" href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (zh)"> <link rel="EditURI" type="application/rsd+xml" href="//zh.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://zh.wikipedia.org/wiki/Lp%E7%A9%BA%E9%97%B4"> <link rel="alternate" hreflang="zh" href="https://zh.wikipedia.org/wiki/Lp%E7%A9%BA%E9%97%B4"> <link rel="alternate" hreflang="zh-Hans" href="https://zh.wikipedia.org/zh-hans/Lp%E7%A9%BA%E9%97%B4"> <link rel="alternate" hreflang="zh-Hans-CN" href="https://zh.wikipedia.org/zh-cn/Lp%E7%A9%BA%E9%97%B4"> <link rel="alternate" hreflang="zh-Hans-MY" href="https://zh.wikipedia.org/zh-my/Lp%E7%A9%BA%E9%97%B4"> <link rel="alternate" hreflang="zh-Hans-SG" href="https://zh.wikipedia.org/zh-sg/Lp%E7%A9%BA%E9%97%B4"> <link rel="alternate" hreflang="zh-Hant" href="https://zh.wikipedia.org/zh-hant/Lp%E7%A9%BA%E9%97%B4"> <link rel="alternate" hreflang="zh-Hant-HK" href="https://zh.wikipedia.org/zh-hk/Lp%E7%A9%BA%E9%97%B4"> <link rel="alternate" hreflang="zh-Hant-MO" href="https://zh.wikipedia.org/zh-mo/Lp%E7%A9%BA%E9%97%B4"> <link rel="alternate" hreflang="zh-Hant-TW" href="https://zh.wikipedia.org/zh-tw/Lp%E7%A9%BA%E9%97%B4"> <link rel="alternate" hreflang="x-default" href="https://zh.wikipedia.org/wiki/Lp%E7%A9%BA%E9%97%B4"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.zh"> <link rel="alternate" type="application/atom+xml" title="Wikipedia的Atom feed" href="/w/index.php?title=Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Lp空间 rootpage-Lp空间 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">跳转到内容</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="主菜单" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">主菜单</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">主菜单</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">隐藏</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 导航 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" title="访问首页[z]" accesskey="z"><span>首页</span></a></li><li id="n-indexpage" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%88%86%E7%B1%BB%E7%B4%A2%E5%BC%95" title="以分类索引搜寻中文维基百科"><span>分类索引</span></a></li><li id="n-Featured_content" class="mw-list-item"><a href="/wiki/Portal:%E7%89%B9%E8%89%B2%E5%85%A7%E5%AE%B9" title="查看中文维基百科的特色内容"><span>特色内容</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:%E6%96%B0%E8%81%9E%E5%8B%95%E6%85%8B" title="提供当前新闻事件的背景资料"><span>新闻动态</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9" title="列出维基百科中的最近修改[r]" accesskey="r"><span>最近更改</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:%E9%9A%8F%E6%9C%BA%E9%A1%B5%E9%9D%A2" title="随机载入一个页面[x]" accesskey="x"><span>随机条目</span></a></li> </ul> </div> </div> <div id="p-help" class="vector-menu mw-portlet mw-portlet-help" > <div class="vector-menu-heading"> 帮助 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:%E7%9B%AE%E5%BD%95" title="寻求帮助"><span>帮助</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%A4%BE%E7%BE%A4%E9%A6%96%E9%A1%B5" title="关于本计划、你可以做什么、应该如何做"><span>维基社群</span></a></li><li id="n-policy" class="mw-list-item"><a href="/wiki/Wikipedia:%E6%96%B9%E9%87%9D%E8%88%87%E6%8C%87%E5%BC%95" title="查看维基百科的方针和指引"><span>方针与指引</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:%E4%BA%92%E5%8A%A9%E5%AE%A2%E6%A0%88" title="参与维基百科社群的讨论"><span>互助客栈</span></a></li><li id="n-Information_desk" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%9F%A5%E8%AF%86%E9%97%AE%E7%AD%94" title="解答任何与维基百科无关的问题的地方"><span>知识问答</span></a></li><li id="n-conversion" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%AD%97%E8%AF%8D%E8%BD%AC%E6%8D%A2" title="提出字词转换请求"><span>字词转换</span></a></li><li id="n-IRC" class="mw-list-item"><a href="/wiki/Wikipedia:IRC%E8%81%8A%E5%A4%A9%E9%A2%91%E9%81%93"><span>IRC即时聊天</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:%E8%81%94%E7%BB%9C%E6%88%91%E4%BB%AC" title="如何联络维基百科"><span>联络我们</span></a></li><li id="n-about" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E" title="查看维基百科的简介"><span>关于维基百科</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="维基百科" src="/static/images/mobile/copyright/wikipedia-wordmark-zh.svg" style="width: 6.5625em; height: 1.375em;"> <img class="mw-logo-tagline" alt="自由的百科全书" src="/static/images/mobile/copyright/wikipedia-tagline-zh.svg" width="103" height="14" style="width: 6.4375em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:%E6%90%9C%E7%B4%A2" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="搜索维基百科[f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>搜索</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="搜索维基百科" aria-label="搜索维基百科" autocapitalize="sentences" title="搜索维基百科[f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:搜索"> </div> <button class="cdx-button cdx-search-input__end-button">搜索</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="个人工具"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="更改页面字体大小、宽度和颜色的外观" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="外观" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">外观</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=zh.wikipedia.org&uselang=zh" class=""><span>资助维基百科</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&returnto=Lp%E7%A9%BA%E9%97%B4" title="我们推荐您创建账号并登录,但这不是强制性的" class=""><span>创建账号</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&returnto=Lp%E7%A9%BA%E9%97%B4" title="建议你登录,尽管并非必须。[o]" accesskey="o" class=""><span>登录</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="更多选项" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="个人工具" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">个人工具</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="用户菜单" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=zh.wikipedia.org&uselang=zh"><span>资助维基百科</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&returnto=Lp%E7%A9%BA%E9%97%B4" title="我们推荐您创建账号并登录,但这不是强制性的"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>创建账号</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&returnto=Lp%E7%A9%BA%E9%97%B4" title="建议你登录,尽管并非必须。[o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>登录</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> 未登录编辑者的页面 <a href="/wiki/Help:%E6%96%B0%E6%89%8B%E5%85%A5%E9%97%A8" aria-label="了解有关编辑的更多信息"><span>了解详情</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%B4%A1%E7%8C%AE" title="来自此IP地址的编辑列表[y]" accesskey="y"><span>贡献</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%AE%A8%E8%AE%BA%E9%A1%B5" title="对于来自此IP地址编辑的讨论[n]" accesskey="n"><span>讨论</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="目录" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">目录</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">隐藏</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">序言</div> </a> </li> <li id="toc-基本知识" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#基本知识"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>基本知识</span> </div> </a> <button aria-controls="toc-基本知识-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关基本知识子章节</span> </button> <ul id="toc-基本知识-sublist" class="vector-toc-list"> <li id="toc-长度、距离与范数" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#长度、距离与范数"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>长度、距离与范数</span> </div> </a> <ul id="toc-长度、距离与范数-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-可数维度空间的p-范数" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#可数维度空间的p-范数"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>可数维度空间的<i>p</i>-范数</span> </div> </a> <ul id="toc-可数维度空间的p-范数-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-L_p空间" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#L_p空间"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span><i>L<sup> p</sup></i>空间</span> </div> </a> <button aria-controls="toc-L_p空间-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关<i>L<sup> p</sup></i>空间子章节</span> </button> <ul id="toc-L_p空间-sublist" class="vector-toc-list"> <li id="toc-特例" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#特例"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>特例</span> </div> </a> <ul id="toc-特例-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Lp空间的性质" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Lp空间的性质"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span><i>L</i><sup><i>p</i></sup>空间的性质</span> </div> </a> <button aria-controls="toc-Lp空间的性质-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关<i>L</i><sup><i>p</i></sup>空间的性质子章节</span> </button> <ul id="toc-Lp空间的性质-sublist" class="vector-toc-list"> <li id="toc-对偶空间" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#对偶空间"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>对偶空间</span> </div> </a> <ul id="toc-对偶空间-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-嵌入" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#嵌入"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>嵌入</span> </div> </a> <ul id="toc-嵌入-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-稠密子空间" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#稠密子空间"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>稠密子空间</span> </div> </a> <ul id="toc-稠密子空间-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-注释" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#注释"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>注释</span> </div> </a> <ul id="toc-注释-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-参见" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#参见"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>参见</span> </div> </a> <ul id="toc-参见-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-参考来源" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#参考来源"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>参考来源</span> </div> </a> <ul id="toc-参考来源-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-外部链接" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#外部链接"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>外部链接</span> </div> </a> <ul id="toc-外部链接-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="目录" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="开关目录" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">开关目录</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><i>L</i><sup><i>p</i></sup>空間</h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="前往另一种语言写成的文章。25种语言可用" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-25" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">25种语言</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%D8%A1_%D8%A5%D9%84_%D8%A8%D9%8A" title="فضاء إل بي – 阿拉伯语" lang="ar" hreflang="ar" data-title="فضاء إل بي" data-language-autonym="العربية" data-language-local-name="阿拉伯语" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Espai_Lp" title="Espai Lp – 加泰罗尼亚语" lang="ca" hreflang="ca" data-title="Espai Lp" data-language-autonym="Català" data-language-local-name="加泰罗尼亚语" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Lp_prostor" title="Lp prostor – 捷克语" lang="cs" hreflang="cs" data-title="Lp prostor" data-language-autonym="Čeština" data-language-local-name="捷克语" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Lp_(matematik)" title="Lp (matematik) – 丹麦语" lang="da" hreflang="da" data-title="Lp (matematik)" data-language-autonym="Dansk" data-language-local-name="丹麦语" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Lp-Raum" title="Lp-Raum – 德语" lang="de" hreflang="de" data-title="Lp-Raum" data-language-autonym="Deutsch" data-language-local-name="德语" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Lp_space" title="Lp space – 英语" lang="en" hreflang="en" data-title="Lp space" data-language-autonym="English" data-language-local-name="英语" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Espacios_Lp" title="Espacios Lp – 西班牙语" lang="es" hreflang="es" data-title="Espacios Lp" data-language-autonym="Español" data-language-local-name="西班牙语" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%81%D8%B6%D8%A7%DB%8C_%D9%84%D8%A8%DA%AF" title="فضای لبگ – 波斯语" lang="fa" hreflang="fa" data-title="فضای لبگ" data-language-autonym="فارسی" data-language-local-name="波斯语" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Lp-avaruus" title="Lp-avaruus – 芬兰语" lang="fi" hreflang="fi" data-title="Lp-avaruus" data-language-autonym="Suomi" data-language-local-name="芬兰语" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Espace_Lp" title="Espace Lp – 法语" lang="fr" hreflang="fr" data-title="Espace Lp" data-language-autonym="Français" data-language-local-name="法语" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A8%D7%97%D7%91_Lp" title="מרחב Lp – 希伯来语" lang="he" hreflang="he" data-title="מרחב Lp" data-language-autonym="עברית" data-language-local-name="希伯来语" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Spazio_Lp" title="Spazio Lp – 意大利语" lang="it" hreflang="it" data-title="Spazio Lp" data-language-autonym="Italiano" data-language-local-name="意大利语" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/Lp%E7%A9%BA%E9%96%93" title="Lp空間 – 日语" lang="ja" hreflang="ja" data-title="Lp空間" data-language-autonym="日本語" data-language-local-name="日语" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A5%B4%EB%B2%A0%EA%B7%B8_%EA%B3%B5%EA%B0%84" title="르베그 공간 – 韩语" lang="ko" hreflang="ko" data-title="르베그 공간" data-language-autonym="한국어" data-language-local-name="韩语" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Lebego_erdv%C4%97" title="Lebego erdvė – 立陶宛语" lang="lt" hreflang="lt" data-title="Lebego erdvė" data-language-autonym="Lietuvių" data-language-local-name="立陶宛语" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Lp-ruimte" title="Lp-ruimte – 荷兰语" lang="nl" hreflang="nl" data-title="Lp-ruimte" data-language-autonym="Nederlands" data-language-local-name="荷兰语" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Lp-rom" title="Lp-rom – 书面挪威语" lang="nb" hreflang="nb" data-title="Lp-rom" data-language-autonym="Norsk bokmål" data-language-local-name="书面挪威语" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Przestrze%C5%84_Lp" title="Przestrzeń Lp – 波兰语" lang="pl" hreflang="pl" data-title="Przestrzeń Lp" data-language-autonym="Polski" data-language-local-name="波兰语" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Spassi_Lp" title="Spassi Lp – 皮埃蒙特文" lang="pms" hreflang="pms" data-title="Spassi Lp" data-language-autonym="Piemontèis" data-language-local-name="皮埃蒙特文" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Espa%C3%A7o_Lp" title="Espaço Lp – 葡萄牙语" lang="pt" hreflang="pt" data-title="Espaço Lp" data-language-autonym="Português" data-language-local-name="葡萄牙语" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Spa%C8%9Biu_Lp" title="Spațiu Lp – 罗马尼亚语" lang="ro" hreflang="ro" data-title="Spațiu Lp" data-language-autonym="Română" data-language-local-name="罗马尼亚语" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/Lp_(%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE)" title="Lp (пространство) – 俄语" lang="ru" hreflang="ru" data-title="Lp (пространство)" data-language-autonym="Русский" data-language-local-name="俄语" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Lp-rum" title="Lp-rum – 瑞典语" lang="sv" hreflang="sv" data-title="Lp-rum" data-language-autonym="Svenska" data-language-local-name="瑞典语" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Lp_uzay%C4%B1" title="Lp uzayı – 土耳其语" lang="tr" hreflang="tr" data-title="Lp uzayı" data-language-autonym="Türkçe" data-language-local-name="土耳其语" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D1%96%D1%80_Lp" title="Простір Lp – 乌克兰语" lang="uk" hreflang="uk" data-title="Простір Lp" data-language-autonym="Українська" data-language-local-name="乌克兰语" class="interlanguage-link-target"><span>Українська</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q305936#sitelinks-wikipedia" title="编辑跨语言链接" class="wbc-editpage">编辑链接</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="命名空间"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Lp%E7%A9%BA%E9%97%B4" title="浏览条目正文[c]" accesskey="c"><span>条目</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Lp%E7%A9%BA%E9%97%B4" rel="discussion" title="关于此页面的讨论[t]" accesskey="t"><span>讨论</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown " > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="更改语言变体" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">不转换</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-varlang-0" class="selected ca-variants-zh mw-list-item"><a href="/zh/Lp%E7%A9%BA%E9%97%B4" lang="zh" hreflang="zh"><span>不转换</span></a></li><li id="ca-varlang-1" class="ca-variants-zh-Hans mw-list-item"><a href="/zh-hans/Lp%E7%A9%BA%E9%97%B4" lang="zh-Hans" hreflang="zh-Hans"><span>简体</span></a></li><li id="ca-varlang-2" class="ca-variants-zh-Hant mw-list-item"><a href="/zh-hant/Lp%E7%A9%BA%E9%97%B4" lang="zh-Hant" hreflang="zh-Hant"><span>繁體</span></a></li><li id="ca-varlang-3" class="ca-variants-zh-Hans-CN mw-list-item"><a href="/zh-cn/Lp%E7%A9%BA%E9%97%B4" lang="zh-Hans-CN" hreflang="zh-Hans-CN"><span>大陆简体</span></a></li><li id="ca-varlang-4" class="ca-variants-zh-Hant-HK mw-list-item"><a href="/zh-hk/Lp%E7%A9%BA%E9%97%B4" lang="zh-Hant-HK" hreflang="zh-Hant-HK"><span>香港繁體</span></a></li><li id="ca-varlang-5" class="ca-variants-zh-Hant-MO mw-list-item"><a href="/zh-mo/Lp%E7%A9%BA%E9%97%B4" lang="zh-Hant-MO" hreflang="zh-Hant-MO"><span>澳門繁體</span></a></li><li id="ca-varlang-6" class="ca-variants-zh-Hans-MY mw-list-item"><a href="/zh-my/Lp%E7%A9%BA%E9%97%B4" lang="zh-Hans-MY" hreflang="zh-Hans-MY"><span>大马简体</span></a></li><li id="ca-varlang-7" class="ca-variants-zh-Hans-SG mw-list-item"><a href="/zh-sg/Lp%E7%A9%BA%E9%97%B4" lang="zh-Hans-SG" hreflang="zh-Hans-SG"><span>新加坡简体</span></a></li><li id="ca-varlang-8" class="ca-variants-zh-Hant-TW mw-list-item"><a href="/zh-tw/Lp%E7%A9%BA%E9%97%B4" lang="zh-Hant-TW" hreflang="zh-Hant-TW"><span>臺灣正體</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="查看"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Lp%E7%A9%BA%E9%97%B4"><span>阅读</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit" title="编辑该页面[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=history" title="本页面的早前版本。[h]" accesskey="h"><span>查看历史</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="工具" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">工具</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">工具</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">隐藏</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="更多选项" > <div class="vector-menu-heading"> 操作 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Lp%E7%A9%BA%E9%97%B4"><span>阅读</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit" title="编辑该页面[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=history"><span>查看历史</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 常规 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%85%A5%E9%A1%B5%E9%9D%A2/Lp%E7%A9%BA%E9%97%B4" title="列出所有与本页相链的页面[j]" accesskey="j"><span>链入页面</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%87%BA%E6%9B%B4%E6%94%B9/Lp%E7%A9%BA%E9%97%B4" rel="nofollow" title="页面链出所有页面的更改[k]" accesskey="k"><span>相关更改</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Project:%E4%B8%8A%E4%BC%A0" title="上传图像或多媒体文件[u]" accesskey="u"><span>上传文件</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:%E7%89%B9%E6%AE%8A%E9%A1%B5%E9%9D%A2" title="全部特殊页面的列表[q]" accesskey="q"><span>特殊页面</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&oldid=78010488" title="此页面该修订版本的固定链接"><span>固定链接</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=info" title="关于此页面的更多信息"><span>页面信息</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:%E5%BC%95%E7%94%A8%E6%AD%A4%E9%A1%B5%E9%9D%A2&page=Lp%E7%A9%BA%E9%97%B4&id=78010488&wpFormIdentifier=titleform" title="有关如何引用此页面的信息"><span>引用此页</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:URL%E7%BC%A9%E7%9F%AD%E7%A8%8B%E5%BA%8F&url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2FLp%25E7%25A9%25BA%25E9%2597%25B4"><span>获取短链接</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2FLp%25E7%25A9%25BA%25E9%2597%25B4"><span>下载二维码</span></a></li> </ul> </div> </div> <div id="p-electronpdfservice-sidebar-portlet-heading" class="vector-menu mw-portlet mw-portlet-electronpdfservice-sidebar-portlet-heading" > <div class="vector-menu-heading"> 打印/导出 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="electron-print_pdf" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Lp%E7%A9%BA%E9%97%B4&action=show-download-screen"><span>下载为PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="javascript:print();" rel="alternate" title="本页面的可打印版本[p]" accesskey="p"><span>打印页面</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 在其他项目中 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q305936" title="链接到连接的数据仓库项目[g]" accesskey="g"><span>维基数据项目</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">外观</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">隐藏</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-noteTA-2956dfbb" class="mw-indicator"><div class="mw-parser-output"><span class="skin-invert" typeof="mw:File"><span title="本页使用了标题或全文手工转换"><img alt="本页使用了标题或全文手工转换" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/35px-Zh_conversion_icon_m.svg.png" decoding="async" width="35" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/53px-Zh_conversion_icon_m.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/70px-Zh_conversion_icon_m.svg.png 2x" data-file-width="32" data-file-height="20" /></span></span></div></div> <div id="mw-indicator-noteTA-307af9e9" class="mw-indicator"><div class="mw-parser-output"><span class="skin-invert" typeof="mw:File"><span title="本页使用了标题或全文手工转换"><img alt="本页使用了标题或全文手工转换" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/35px-Zh_conversion_icon_m.svg.png" decoding="async" width="35" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/53px-Zh_conversion_icon_m.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/70px-Zh_conversion_icon_m.svg.png 2x" data-file-width="32" data-file-height="20" /></span></span></div></div> </div> <div id="siteSub" class="noprint">维基百科,自由的百科全书</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="zh" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r83732972">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .ambox{border-left-color:#36c!important}html.skin-theme-clientpref-night .mw-parser-output .ambox-speedy,html.skin-theme-clientpref-night .mw-parser-output .ambox-delete{border-left-color:#b32424!important}html.skin-theme-clientpref-night .mw-parser-output .ambox-speedy{background-color:#300!important}html.skin-theme-clientpref-night .mw-parser-output .ambox-content{border-left-color:#f28500!important}html.skin-theme-clientpref-night .mw-parser-output .ambox-style{border-left-color:#fc3!important}html.skin-theme-clientpref-night .mw-parser-output .ambox-move{border-left-color:#9932cc!important}html.skin-theme-clientpref-night .mw-parser-output .ambox-protection{border-left-color:#a2a9b1!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .ambox{border-left-color:#36c!important}html.skin-theme-clientpref-os .mw-parser-output .ambox-speedy,html.skin-theme-clientpref-os .mw-parser-output .ambox-delete{border-left-color:#b32424!important}html.skin-theme-clientpref-os .mw-parser-output .ambox-speedy{background-color:#300!important}html.skin-theme-clientpref-os .mw-parser-output .ambox-content{border-left-color:#f28500!important}html.skin-theme-clientpref-os .mw-parser-output .ambox-style{border-left-color:#fc3!important}html.skin-theme-clientpref-os .mw-parser-output .ambox-move{border-left-color:#9932cc!important}html.skin-theme-clientpref-os .mw-parser-output .ambox-protection{border-left-color:#a2a9b1!important}}</style><table class="box-Merge_from plainlinks metadata ambox ambox-move" role="presentation"><tbody><tr><td class="mbox-image"><div style="width:52px"><span typeof="mw:File"><a href="/wiki/File:Mergefrom.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Mergefrom.svg/50px-Mergefrom.svg.png" decoding="async" width="50" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Mergefrom.svg/75px-Mergefrom.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Mergefrom.svg/100px-Mergefrom.svg.png 2x" data-file-width="50" data-file-height="20" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">建議将<b><a href="/wiki/Lp%E8%8C%83%E6%95%B0" title="Lp范数">Lp范数</a></b><a href="/wiki/Wikipedia:%E5%90%88%E5%B9%B6" class="mw-redirect" title="Wikipedia:合并">併入</a>此條目或章節。(<a href="/wiki/Talk:Lp%E7%A9%BA%E9%97%B4" title="Talk:Lp空间">討論</a>)<span class="hide-when-compact"></span><span class="hide-when-compact"></span></div></td></tr></tbody></table> <div id="noteTA-307af9e9" class="noteTA"><div class="noteTA-group"><div data-noteta-group-source="module" data-noteta-group="Math"></div></div></div> <p>在<a href="/wiki/%E6%95%B0%E5%AD%A6" title="数学">数学</a>中,<b><i>L<sup>p</sup></i>空间</b>是由<a href="/wiki/%E5%8F%AF%E7%A7%AF%E5%87%BD%E6%95%B0" title="可积函数">p次可积函数</a>组成的空间;对应的<b>ℓ<sup>p</sup>空间</b>是由<i>p</i>次可和<a href="/wiki/%E5%BA%8F%E5%88%97" title="序列">序列</a>组成的空间。它們有時叫做<b>勒貝格空間</b><span id="noteTag-cite_ref-sup"><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>註 1<span class="cite-bracket">]</span></a></sup></span>。 </p><p>在<a href="/wiki/%E6%B3%9B%E5%87%BD%E5%88%86%E6%9E%90" title="泛函分析">泛函分析</a>和<a href="/wiki/%E6%8B%93%E6%89%91%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" class="mw-redirect" title="拓扑向量空间">拓扑向量空间</a>中,他们构成了<a href="/wiki/%E5%B7%B4%E6%8B%BF%E8%B5%AB%E7%A9%BA%E9%97%B4" title="巴拿赫空间">巴拿赫空间</a>一类重要的例子。<i>L<sup>p</sup></i>空间在<a href="/wiki/%E5%B7%A5%E7%A8%8B%E5%AD%A6" title="工程学">工程学</a>领域的<a href="/wiki/%E6%9C%89%E9%99%90%E5%85%83%E5%88%86%E6%9E%90" class="mw-redirect" title="有限元分析">有限元分析</a>中有应用。 </p> <div id="noteTA-2956dfbb" class="noteTA"><div class="noteTA-local"><div data-noteta-code="zh-cn:空间;zh-tw:空間;"></div></div></div> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="基本知识"><span id=".E5.9F.BA.E6.9C.AC.E7.9F.A5.E8.AF.86"></span>基本知识</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit&section=1" title="编辑章节:基本知识"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Frame"><a href="/wiki/File:Vector_norms.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Vector_norms.svg/140px-Vector_norms.svg.png" decoding="async" width="140" height="460" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Vector_norms.svg/210px-Vector_norms.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Vector_norms.svg/280px-Vector_norms.svg.png 2x" data-file-width="140" data-file-height="460" /></a><figcaption>展示在不同的<i>p</i>-範數下的<a href="/wiki/%E5%8D%95%E4%BD%8D%E5%9C%86" title="单位圆">單位圓</a>。</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="长度、距离与范数"><span id=".E9.95.BF.E5.BA.A6.E3.80.81.E8.B7.9D.E7.A6.BB.E4.B8.8E.E8.8C.83.E6.95.B0"></span>长度、距离与范数</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit&section=2" title="编辑章节:长度、距离与范数"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>泛函分析中,常常会在某类函数的集合上架设<a href="/wiki/%E6%8B%93%E6%89%91%E7%A9%BA%E9%97%B4" title="拓扑空间">拓扑结构</a>乃至更复杂的结构,以便使用拓扑乃至分析学的知识来讨论这些集合的属性。最常见的附加结构是<a href="/wiki/%E8%B5%8B%E8%8C%83%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" class="mw-redirect" title="赋范向量空间">赋范向量空间</a>。将函数集合作为装备了<a href="/wiki/%E8%8C%83%E6%95%B0" title="范数">范数</a><a href="/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" title="向量空间">向量空间</a>来看待,有助于理解函数类的关系和性质。范数是<a href="/wiki/%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%B7%E7%A9%BA%E9%97%B4" class="mw-redirect" title="欧几里德空间">欧几里德空间</a>中长度概念的推广。在平面几何或立体几何中,长度以及距离是最基本的概念之一。对象的形状、位置、大小等性质或关系都是建立在长度和距离的定义上。最直观的长度概念是由平直物理空间中抽象而来,满足<a href="/wiki/%E5%8B%BE%E8%82%A1%E5%AE%9A%E7%90%86" title="勾股定理">勾股定理</a>。例如说在平面上,原点到点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/099c643e67f1973c546d7e001eae4ab0ec7b2415" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.172ex; height:2.843ex;" alt="{\displaystyle P=(x,y)}"></span>的向量长度是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {x^{2}+y^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {x^{2}+y^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bde512f387a0677a158fd76d3f558ed8b55b3ba1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:9.763ex; height:4.843ex;" alt="{\displaystyle {\sqrt {x^{2}+y^{2}}}}"></span>。三维空间中,原点到点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P=(x,y,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P=(x,y,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a1320b61607963c1f2ae3598093f6167d7e0ed6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.294ex; height:2.843ex;" alt="{\displaystyle P=(x,y,z)}"></span>的向量长度<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {x^{2}+y^{2}+z^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {x^{2}+y^{2}+z^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b322c45940093f06277e00b876bcd1afde77171c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:14.748ex; height:4.843ex;" alt="{\displaystyle {\sqrt {x^{2}+y^{2}+z^{2}}}}"></span>。长度函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/829091f745070b9eb97a80244129025440a1cfac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.693ex; height:2.176ex;" alt="{\displaystyle l}"></span>满足如下的基本性质: </p> <ol><li>只有零向量的长度是零:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l(v)=0\iff v=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo stretchy="false">⟺<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>v</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l(v)=0\iff v=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6e67fbc0777e080fa88dc08e9814f31c84098e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.824ex; height:2.843ex;" alt="{\displaystyle l(v)=0\iff v=0,}"></span></li> <li>数乘线性:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall \lambda \in \mathbb {R} ,\;\;l(\lambda v)=\left\vert \lambda \right\vert l(v),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>λ<!-- λ --></mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>l</mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>|</mo> <mi>λ<!-- λ --></mi> <mo>|</mo> </mrow> <mi>l</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall \lambda \in \mathbb {R} ,\;\;l(\lambda v)=\left\vert \lambda \right\vert l(v),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f45e56dd10767bcd64f45461b127c7233b7f83e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.888ex; height:2.843ex;" alt="{\displaystyle \forall \lambda \in \mathbb {R} ,\;\;l(\lambda v)=\left\vert \lambda \right\vert l(v),}"></span></li> <li>满足三角不等式:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l(u)+l(v)\geqslant l(u+v).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>l</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>⩾<!-- ⩾ --></mo> <mi>l</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>+</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l(u)+l(v)\geqslant l(u+v).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e18c05ed26046e32a7cad096a7f3a0f2e9170a9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.848ex; height:2.843ex;" alt="{\displaystyle l(u)+l(v)\geqslant l(u+v).}"></span></li></ol> <p>比如说在更一般的<style data-mw-deduplicate="TemplateStyles:r58896141">.mw-parser-output .serif{font-family:Times,serif}</style><span class="serif"><span class="texhtml"><i>n</i></span></span>维欧几里德空间<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>中,可以定义向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v=(x_{1},x_{2},\cdots x_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>⋯<!-- ⋯ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v=(x_{1},x_{2},\cdots x_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1e59c2a27c055ca5e704417dbeeef25e066c54c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.53ex; height:2.843ex;" alt="{\displaystyle v=(x_{1},x_{2},\cdots x_{n})}"></span>的欧几里德长度是 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l(v)=(x_{1}^{2}+x_{2}^{2}+\cdots +x_{n}^{2})^{\frac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l(v)=(x_{1}^{2}+x_{2}^{2}+\cdots +x_{n}^{2})^{\frac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82f866122cf6775b5f1677027db730ed6d11f656" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.834ex; height:4.176ex;" alt="{\displaystyle l(v)=(x_{1}^{2}+x_{2}^{2}+\cdots +x_{n}^{2})^{\frac {1}{2}}}"></span></dd></dl> <p>这个函数也满足以上的基本性质。更一般地,在向量空间<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>中,满足以上性质的函数:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {N}}:\;V\rightarrow \mathbb {R} _{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">N</mi> </mrow> </mrow> <mo>:</mo> <mspace width="thickmathspace" /> <mi>V</mi> <mo stretchy="false">→<!-- → --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {N}}:\;V\rightarrow \mathbb {R} _{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96877e4ed87491c87eaf7c533df4980cfec308e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.062ex; width:13.509ex; height:2.843ex;" alt="{\displaystyle {\mathcal {N}}:\;V\rightarrow \mathbb {R} _{+}}"></span>称为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>上的“长度”函数或<b><a href="/wiki/%E8%8C%83%E6%95%B0" title="范数">范数</a></b>。比如在欧几里德空间<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>中也可以对给定的实数<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i></span></span> ≥ 1定义范数: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ {\mathcal {N}}_{p}(x)=\|x\|_{p}=\left(|x_{1}|^{p}+|x_{2}|^{p}+\dotsb +|x_{n}|^{p}\right)^{\frac {1}{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">N</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ {\mathcal {N}}_{p}(x)=\|x\|_{p}=\left(|x_{1}|^{p}+|x_{2}|^{p}+\dotsb +|x_{n}|^{p}\right)^{\frac {1}{p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bba300eebefa0c7f5aaa30563b4d1ad516adfd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:46.763ex; height:4.176ex;" alt="{\displaystyle \ {\mathcal {N}}_{p}(x)=\|x\|_{p}=\left(|x_{1}|^{p}+|x_{2}|^{p}+\dotsb +|x_{n}|^{p}\right)^{\frac {1}{p}}}"></span></dd></dl> <p>这个范数称为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>上的<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i>-</span></span>范数。<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i></span></span> = 2的时候,就是常见的欧几里德范数。<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i></span></span> = 1的时候,是所谓的<a href="/wiki/%E6%9B%BC%E5%93%88%E9%A0%93%E8%B7%9D%E9%9B%A2" title="曼哈頓距離">曼哈顿距离</a>。当<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i></span></span>趋于无穷大的时候,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i>-</span></span>范数趋于一个“极限”范数,称为<a href="/w/index.php?title=%E4%B8%80%E8%87%B4%E8%8C%83%E6%95%B0&action=edit&redlink=1" class="new" title="一致范数(页面不存在)">一致范数</a>(也记作<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L</i><sup>∞</sup>-</span></span>范数),定义为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ {\mathcal {N}}_{\infty }(x)=\|x\|_{\infty }=\max(|x_{1}|,|x_{2}|\cdots ,|x_{n}|).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">N</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>x</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msub> <mo>=</mo> <mo movablelimits="true" form="prefix">max</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>⋯<!-- ⋯ --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ {\mathcal {N}}_{\infty }(x)=\|x\|_{\infty }=\max(|x_{1}|,|x_{2}|\cdots ,|x_{n}|).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82968ecbb0dcbbed2ead8a4e36985df7856765c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.772ex; height:3.009ex;" alt="{\displaystyle \ {\mathcal {N}}_{\infty }(x)=\|x\|_{\infty }=\max(|x_{1}|,|x_{2}|\cdots ,|x_{n}|).}"></span></dd></dl> <p>对不同的<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i></span></span>来说,等长度点的集合是不一样的。比如右图列出了三种不同范数下<a href="/wiki/%E5%8D%95%E4%BD%8D%E5%9C%86" title="单位圆">单位圆</a>(从原点出发,“长度”等于1的点的集合)形状。 </p> <div class="mw-heading mw-heading3"><h3 id="可数维度空间的p-范数"><span id=".E5.8F.AF.E6.95.B0.E7.BB.B4.E5.BA.A6.E7.A9.BA.E9.97.B4.E7.9A.84p-.E8.8C.83.E6.95.B0"></span>可数维度空间的<i>p</i>-范数</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit&section=3" title="编辑章节:可数维度空间的p-范数"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>有限维空间中的<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i>-</span></span>范数可以如<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span>一般定义。当空间维数是可数无限时,也可以将<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i>-</span></span>范数的定义拓展到其上。这个定义一般适用于由数列或序列构成的空间,称为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9c352341ab7260ca1a9004da44c897d1395203c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.029ex; height:2.343ex;" alt="{\displaystyle \ell ^{p}}"></span>空间。常见的有如下例子: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d1156e1c2220628042b0fc51e0c73deb3b7c6d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.024ex; height:2.676ex;" alt="{\displaystyle \ell ^{1}}"></span>空间,所有<a href="/wiki/%E7%BB%9D%E5%AF%B9%E6%94%B6%E6%95%9B" title="绝对收敛">绝对收敛</a><a href="/wiki/%E7%BA%A7%E6%95%B0" title="级数">级数</a>列构成的空间;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91f1f909abd70bd3d8fff0f7ae1ac23052387e18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.024ex; height:2.676ex;" alt="{\displaystyle \ell ^{2}}"></span>空间,所有平方收敛<a href="/wiki/%E7%BA%A7%E6%95%B0" title="级数">级数</a>列构成的空间;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8348195cf09473662c6f59e6717722a6fc01d0f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.845ex; height:2.343ex;" alt="{\displaystyle \ell ^{\infty }}"></span>空间,所有<a href="/wiki/%E6%9C%89%E7%95%8C%E5%87%BD%E6%95%B0" title="有界函数">有界</a>数列构成的空间。</li></ul> <p>事实上,序列集合上可以自然地按照序列的加法和数乘定义出向量空间。而<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9c352341ab7260ca1a9004da44c897d1395203c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.029ex; height:2.343ex;" alt="{\displaystyle \ell ^{p}}"></span>空间则是在这个向量空间中定义如下的<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i>-</span></span>范数: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|(x_{n})_{n\in \mathbb {N} }\|_{p}=\left(|x_{1}|^{p}+|x_{2}|^{p}+\dotsb +|x_{n}|^{p}+|x_{n+1}|^{p}+\dotsb \right)^{\frac {1}{p}}=\left(\sum _{n\in \mathbb {N} }|x_{n}|^{p}\right)^{\frac {1}{p}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|(x_{n})_{n\in \mathbb {N} }\|_{p}=\left(|x_{1}|^{p}+|x_{2}|^{p}+\dotsb +|x_{n}|^{p}+|x_{n+1}|^{p}+\dotsb \right)^{\frac {1}{p}}=\left(\sum _{n\in \mathbb {N} }|x_{n}|^{p}\right)^{\frac {1}{p}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e55b30a22d5f1d5f40025e79a6982a8f99772c20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:76.724ex; height:8.676ex;" alt="{\displaystyle \|(x_{n})_{n\in \mathbb {N} }\|_{p}=\left(|x_{1}|^{p}+|x_{2}|^{p}+\dotsb +|x_{n}|^{p}+|x_{n+1}|^{p}+\dotsb \right)^{\frac {1}{p}}=\left(\sum _{n\in \mathbb {N} }|x_{n}|^{p}\right)^{\frac {1}{p}}.}"></span></dd></dl> <p>然而,上式中右侧的级数不总是收敛的(有可能其级数和是无穷大)。所以<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9c352341ab7260ca1a9004da44c897d1395203c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.029ex; height:2.343ex;" alt="{\displaystyle \ell ^{p}}"></span>空间实际上是所有序列集合中,令上式右侧的级数能够收敛的元素组成的子集。 </p><p>可以证明,随着<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i></span></span>增大,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9c352341ab7260ca1a9004da44c897d1395203c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.029ex; height:2.343ex;" alt="{\displaystyle \ell ^{p}}"></span>空间包含的元素也越多。实际上,如果<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i> < <i>q</i></span></span>,那么<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9c352341ab7260ca1a9004da44c897d1395203c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.029ex; height:2.343ex;" alt="{\displaystyle \ell ^{p}}"></span>空间是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/174b9ba5de2319a7cca1be35d6262fb300355386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.958ex; height:2.343ex;" alt="{\displaystyle \ell ^{q}}"></span>空间的真子集。比如说,以下的数列: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=({\frac {1}{n}})_{n\in \mathbb {N} ^{*}}=\left(1,{\frac {1}{2}},{\frac {1}{3}},\cdots ,{\frac {1}{n}},\cdots \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>,</mo> <mo>⋯<!-- ⋯ --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo>,</mo> <mo>⋯<!-- ⋯ --></mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=({\frac {1}{n}})_{n\in \mathbb {N} ^{*}}=\left(1,{\frac {1}{2}},{\frac {1}{3}},\cdots ,{\frac {1}{n}},\cdots \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4503bc224adb21930227f9a4e0e2eccb4938fbc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.615ex; height:6.176ex;" alt="{\displaystyle a=({\frac {1}{n}})_{n\in \mathbb {N} ^{*}}=\left(1,{\frac {1}{2}},{\frac {1}{3}},\cdots ,{\frac {1}{n}},\cdots \right)}"></span></dd></dl> <p>不属<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d1156e1c2220628042b0fc51e0c73deb3b7c6d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.024ex; height:2.676ex;" alt="{\displaystyle \ell ^{1}}"></span>,因为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots +{\frac {1}{n}}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots +{\frac {1}{n}}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fca3230444bdd6dfa7c71d0737e6f52ead20824" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.039ex; height:5.176ex;" alt="{\displaystyle 1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots +{\frac {1}{n}}+\cdots }"></span>的和是无穷大。不过,由于 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots +{\frac {1}{n^{2}}}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots +{\frac {1}{n^{2}}}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3914f285fe9bee6e186bbb22911c408981dd56c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:30.202ex; height:5.676ex;" alt="{\displaystyle 1+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots +{\frac {1}{n^{2}}}+\cdots }"></span></dd></dl> <p>的和是有限的,所以数列<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>属于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91f1f909abd70bd3d8fff0f7ae1ac23052387e18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.024ex; height:2.676ex;" alt="{\displaystyle \ell ^{2}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="L_p空间"><span id="L_p.E7.A9.BA.E9.97.B4"></span><i>L<sup> p</sup></i>空间</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit&section=4" title="编辑章节:L p空间"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>当空间维度是无穷而且不可数的时候(没有一个可数的基底),无法运用有限维或可数维度空间的办法来定义范数,但对于可积函数空间,仍然能够定义类似的概念。具体来说,给定<a href="/wiki/%E6%B5%8B%E5%BA%A6%E7%A9%BA%E9%97%B4" title="测度空间">测度空间</a>(<i>S</i>, <i>Σ</i>, <i>μ</i>)以及大于等于1的实数<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i></span></span>,考虑所有从<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>S</i></span></span>到<a href="/wiki/%E4%BD%93_(%E6%95%B0%E5%AD%A6)" class="mw-redirect" title="体 (数学)">域</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1848c435e64864e9ad4efa7e46bd6bc900c35c99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \mathbb {K} }"></span>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {K} =\mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {K} =\mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a1a8ee77fce00b8ddbd288a297dccae8eab7f8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.585ex; height:2.176ex;" alt="{\displaystyle \mathbb {K} =\mathbb {C} }"></span>或<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>)上的<a href="/wiki/%E5%8F%AF%E6%B5%8B%E5%87%BD%E6%95%B0" title="可测函数">可测函数</a>。考虑所有绝对值的<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i></span></span>次幂在<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>S</i></span></span>可积的函数,也就是集合: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}^{p}(S,\mu )=\left\{f;\;\|f\|_{p}=\left({\int _{S}|f|^{p}\;\mathrm {d} \mu }\right)^{\frac {1}{p}}<\infty \right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mi>f</mi> <mo>;</mo> <mspace width="thickmathspace" /> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>μ<!-- μ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <mo><</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}^{p}(S,\mu )=\left\{f;\;\|f\|_{p}=\left({\int _{S}|f|^{p}\;\mathrm {d} \mu }\right)^{\frac {1}{p}}<\infty \right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44d92394b4eafc7873ce735615b81785cedca73a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:46.882ex; height:8.176ex;" alt="{\displaystyle {\mathcal {L}}^{p}(S,\mu )=\left\{f;\;\|f\|_{p}=\left({\int _{S}|f|^{p}\;\mathrm {d} \mu }\right)^{\frac {1}{p}}<\infty \right\}}"></span></dd></dl> <p>集合中的函数可以进行加法和数乘: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f+g)(x)=f(x)+g(x),\quad (\lambda f)(x)=\lambda f(x),\;\;\lambda \in \mathbb {K} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>+</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>λ<!-- λ --></mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>λ<!-- λ --></mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">K</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f+g)(x)=f(x)+g(x),\quad (\lambda f)(x)=\lambda f(x),\;\;\lambda \in \mathbb {K} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ec07f2f09c8bb1153b978f3c9eeeb2f64b0834f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:52.933ex; height:2.843ex;" alt="{\displaystyle (f+g)(x)=f(x)+g(x),\quad (\lambda f)(x)=\lambda f(x),\;\;\lambda \in \mathbb {K} }"></span></dd></dl> <p>从<a href="/wiki/%E9%97%B5%E5%8F%AF%E5%A4%AB%E6%96%AF%E5%9F%BA%E4%B8%8D%E7%AD%89%E5%BC%8F" title="闵可夫斯基不等式">闵可夫斯基不等式</a>可知,两个<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i></span></span>次可积函数的和,也是一个<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i></span></span>次可积函数。另外,容易证明<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\lambda f\|_{p}=|\lambda |\|f\|_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>λ<!-- λ --></mi> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\lambda f\|_{p}=|\lambda |\|f\|_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d392575d6e5815ee69a83f96775b78c9664a00a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.428ex; height:3.009ex;" alt="{\displaystyle \|\lambda f\|_{p}=|\lambda |\|f\|_{p}}"></span>;<a href="/wiki/%E9%97%B5%E5%8F%AF%E5%A4%AB%E6%96%AF%E5%9F%BA%E4%B8%8D%E7%AD%89%E5%BC%8F" title="闵可夫斯基不等式">闵可夫斯基不等式</a>的积分形式说明三角不等式对<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\cdot \|_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>⋅<!-- ⋅ --></mo> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\cdot \|_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a44e951f6e15fdb1bdd7d223bbbe628955251a20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.063ex; height:3.009ex;" alt="{\displaystyle \|\cdot \|_{p}}"></span>成立。满足这样条件的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\cdot \|_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>⋅<!-- ⋅ --></mo> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\cdot \|_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a44e951f6e15fdb1bdd7d223bbbe628955251a20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.063ex; height:3.009ex;" alt="{\displaystyle \|\cdot \|_{p}}"></span>构成一个<a href="/wiki/%E5%8D%8A%E8%8C%83%E6%95%B0" class="mw-redirect" title="半范数">半范数</a>,令<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}^{p}(S,\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}^{p}(S,\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73bc43da43d62ccc02cd9468456382721b85dbc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.407ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}^{p}(S,\mu )}"></span>成为一个半赋范向量空间。之所以是半范数,是因为满足<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{p}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{p}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40bdbb097cc1abe5e06afde70f65f0de59fa1188" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.924ex; height:3.009ex;" alt="{\displaystyle \|f\|_{p}=0}"></span>的函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>不一定是零函数。然而可以通过一套标准的拓扑方法从这个半赋范空间得到一个赋范空间:考虑<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}^{p}(S,\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}^{p}(S,\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73bc43da43d62ccc02cd9468456382721b85dbc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.407ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}^{p}(S,\mu )}"></span>中所有使得<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{p}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{p}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40bdbb097cc1abe5e06afde70f65f0de59fa1188" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.924ex; height:3.009ex;" alt="{\displaystyle \|f\|_{p}=0}"></span>的函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>的集合: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=\left\{f;\;\|f\|_{p}=0\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mi>f</mi> <mo>;</mo> <mspace width="thickmathspace" /> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=\left\{f;\;\|f\|_{p}=0\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56cd92773f371933f382b337af427b59881b6beb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.402ex; height:3.009ex;" alt="{\displaystyle N=\left\{f;\;\|f\|_{p}=0\right\}.}"></span></dd></dl> <p>集合<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>可以看作是<a href="/wiki/%E6%98%A0%E5%B0%84" title="映射">映射</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\mapsto \|f\|_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\mapsto \|f\|_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10d084b98c7ad12050c1b791c6b5c2610eaf9f69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.555ex; height:3.009ex;" alt="{\displaystyle f\mapsto \|f\|_{p}}"></span>的<a href="/wiki/%E9%9B%B6%E7%A9%BA%E9%97%B4" title="零空间">零空间</a>。对可测函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>来说,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{p}=0\iff \mu (f\neq 0)=0\iff f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo stretchy="false">⟺<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo>≠<!-- ≠ --></mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo stretchy="false">⟺<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{p}=0\iff \mu (f\neq 0)=0\iff f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cfcb04187720c5eb13e8f3a0883aff6acd7acd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:37.008ex; height:3.009ex;" alt="{\displaystyle \|f\|_{p}=0\iff \mu (f\neq 0)=0\iff f}"></span>几乎处处为零(在测度<i>μ</i>意义下)。所以 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N\equiv \mathrm {ker} (\|\cdot \|_{p})=\{f:f\;\;\mu -}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">k</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">r</mi> </mrow> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>⋅<!-- ⋅ --></mo> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>:</mo> <mi>f</mi> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>μ<!-- μ --></mi> <mo>−<!-- − --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N\equiv \mathrm {ker} (\|\cdot \|_{p})=\{f:f\;\;\mu -}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aad0b3d48b89d3e8843b8f8c46ff96d319173e1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.461ex; height:3.009ex;" alt="{\displaystyle N\equiv \mathrm {ker} (\|\cdot \|_{p})=\{f:f\;\;\mu -}"></span>几乎处处为0<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/656af96b6145635f70132969d6c721c6dbe68810" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.809ex; height:2.843ex;" alt="{\displaystyle \}.}"></span></dd></dl> <p>而<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>同时也是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}^{p}(S,\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}^{p}(S,\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73bc43da43d62ccc02cd9468456382721b85dbc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.407ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}^{p}(S,\mu )}"></span>的一个子空间。设<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{p}(S,\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{p}(S,\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d5a4c54613c1c773a1caa81a731c340f546e320" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.386ex; height:2.843ex;" alt="{\displaystyle L^{p}(S,\mu )}"></span>是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}^{p}(S,\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}^{p}(S,\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73bc43da43d62ccc02cd9468456382721b85dbc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.407ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}^{p}(S,\mu )}"></span>关于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>的<a href="/wiki/%E5%95%86%E7%A9%BA%E9%97%B4" title="商空间">商空间</a>。<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{p}(S,\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{p}(S,\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d5a4c54613c1c773a1caa81a731c340f546e320" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.386ex; height:2.843ex;" alt="{\displaystyle L^{p}(S,\mu )}"></span>中的某个元素<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>可以看作是所有和函数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>相差一个<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>中元素的函数构成的等价类。这样定义的空间<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{p}(S,\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{p}(S,\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d5a4c54613c1c773a1caa81a731c340f546e320" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.386ex; height:2.843ex;" alt="{\displaystyle L^{p}(S,\mu )}"></span>是一个赋范向量空间,称为<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>S</i></span></span>上函数关于<a href="/wiki/%E6%B5%8B%E5%BA%A6" title="测度">测度</a><i>μ</i>的<i>L<sup> p</sup></i>空间。<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\cdot \|_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>⋅<!-- ⋅ --></mo> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\cdot \|_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a44e951f6e15fdb1bdd7d223bbbe628955251a20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.063ex; height:3.009ex;" alt="{\displaystyle \|\cdot \|_{p}}"></span>称为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{p}(S,\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{p}(S,\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d5a4c54613c1c773a1caa81a731c340f546e320" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.386ex; height:2.843ex;" alt="{\displaystyle L^{p}(S,\mu )}"></span>函数的<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i></span></span>-范数。 </p><p>需要注意的是,<i>L<sup> p</sup></i>空间中的元素严格来说并不是具体的函数,而是一族函数构成的等价类。而当需要将<i>L<sup> p</sup></i>空间元素当作函数来计算的时候,参与计算的实际是从这一族函数中抽取的一个代表函数。 </p><p>与序列空间一样,在函数空间上也可以定义一致范数。定义的方法和范数一样,首先定义: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{\infty }\equiv \inf\{C\geq 0:|f(x)|\;\;\mu -}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msub> <mo>≡<!-- ≡ --></mo> <mo movablelimits="true" form="prefix">inf</mo> <mo fence="false" stretchy="false">{</mo> <mi>C</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>μ<!-- μ --></mi> <mo>−<!-- − --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{\infty }\equiv \inf\{C\geq 0:|f(x)|\;\;\mu -}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ca11a8960f897ae22c112223a1fc0a60a65d65f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.567ex; height:2.843ex;" alt="{\displaystyle \|f\|_{\infty }\equiv \inf\{C\geq 0:|f(x)|\;\;\mu -}"></span>几乎处处小于等于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a661ccd29e0f8fa45b15b16d65e4c6d5ca0f0be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.576ex; height:2.843ex;" alt="{\displaystyle C\}.}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}^{\infty }(S,\mu )=\left\{f;\;\|f\|_{\infty }<\infty \right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mi>f</mi> <mo>;</mo> <mspace width="thickmathspace" /> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msub> <mo><</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}^{\infty }(S,\mu )=\left\{f;\;\|f\|_{\infty }<\infty \right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e42bf18e89eb914bcc2418102a8cbe9c70b9e3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.505ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}^{\infty }(S,\mu )=\left\{f;\;\|f\|_{\infty }<\infty \right\}}"></span></dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\cdot \|_{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>⋅<!-- ⋅ --></mo> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|\cdot \|_{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b723232adf7317abb1fc1c1326e1e4f79616a7e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.879ex; height:2.843ex;" alt="{\displaystyle \|\cdot \|_{\infty }}"></span>是一个半范数,取<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N\equiv \mathrm {ker} (\|\cdot \|_{\infty })=\{f:f\mu -}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">k</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">r</mi> </mrow> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>⋅<!-- ⋅ --></mo> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>f</mi> <mo>:</mo> <mi>f</mi> <mi>μ<!-- μ --></mi> <mo>−<!-- − --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N\equiv \mathrm {ker} (\|\cdot \|_{\infty })=\{f:f\mu -}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16e571857c9da5c1addb62050d194d6621caf70b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.987ex; height:2.843ex;" alt="{\displaystyle N\equiv \mathrm {ker} (\|\cdot \|_{\infty })=\{f:f\mu -}"></span>几乎处处为0<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/656af96b6145635f70132969d6c721c6dbe68810" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.809ex; height:2.843ex;" alt="{\displaystyle \}.}"></span>,则<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}^{\infty }(S,\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}^{\infty }(S,\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd1b810e06de816204b210dc3fd5c816244de2ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.223ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}^{\infty }(S,\mu )}"></span>关于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>的<a href="/wiki/%E5%95%86%E7%A9%BA%E9%97%B4" title="商空间">商空间</a>是一个赋范向量空间,记作<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\infty }(S,\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\infty }(S,\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e610414bf724085a587ce47a2e5ee7514cf3bdb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.202ex; height:2.843ex;" alt="{\displaystyle L^{\infty }(S,\mu )}"></span>。 </p><p>一致范数与<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i></span></span>-范数之间存在以下关系: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{\infty }=\lim _{p\to \infty }\|f\|_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msub> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{\infty }=\lim _{p\to \infty }\|f\|_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/269077f05bcb7d77acbd808645e912860237bd17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:17.74ex; height:4.176ex;" alt="{\displaystyle \|f\|_{\infty }=\lim _{p\to \infty }\|f\|_{p}}"></span></dd></dl> <p>可以证明,<i>L<sup> p</sup></i>空间是<a href="/wiki/%E5%AE%8C%E5%A4%87%E7%A9%BA%E9%97%B4" title="完备空间">完备的空间</a>,也即是说是一个<a href="/wiki/%E5%B7%B4%E6%8B%BF%E8%B5%AB%E7%A9%BA%E9%97%B4" title="巴拿赫空间">巴拿赫空间</a>(完备赋范向量空间)。<i>L<sup> p</sup></i>空间的完备性通常被称为<a href="/w/index.php?title=%E9%87%8C%E5%85%B9%EF%BC%8D%E8%B4%B9%E8%88%8D%E5%B0%94%E5%AE%9A%E7%90%86&action=edit&redlink=1" class="new" title="里兹-费舍尔定理(页面不存在)">里兹-费舍尔定理</a>。具体的证明可以借助测度上的<a href="/wiki/%E5%8B%92%E8%B4%9D%E6%A0%BC%E7%A7%AF%E5%88%86" class="mw-redirect" title="勒贝格积分">勒贝格积分</a>的相关收敛定理来完成。 </p> <div class="mw-heading mw-heading3"><h3 id="特例"><span id=".E7.89.B9.E4.BE.8B"></span>特例</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit&section=5" title="编辑章节:特例"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>L<sup> p</sup></i>空间都是巴拿赫空间,但只有当<i>p</i> = 2的时候,<i>L</i><sup>2</sup>空间是<a href="/wiki/%E5%B8%8C%E5%B0%94%E4%BC%AF%E7%89%B9%E7%A9%BA%E9%97%B4" title="希尔伯特空间">希尔伯特空间</a>。也就是说,可以为<i>L</i><sup>2</sup>空间中的元素定义<a href="/wiki/%E5%86%85%E7%A7%AF" class="mw-disambig" title="内积">内积</a>。具体形式是: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle =\int _{S}f(x){\overline {g(x)}}\,\mathrm {d} \mu (x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,g\rangle =\int _{S}f(x){\overline {g(x)}}\,\mathrm {d} \mu (x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bda4dd84a9c0fe49dea717be3700ef420be46b48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.963ex; height:5.676ex;" alt="{\displaystyle \langle f,g\rangle =\int _{S}f(x){\overline {g(x)}}\,\mathrm {d} \mu (x).}"></span></dd></dl> <p>其中的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {g(x)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {g(x)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f968b7527fcc59e6aac917588d3d4c81b915828" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.37ex; height:3.676ex;" alt="{\displaystyle {\overline {g(x)}}}"></span>表示复数的<a href="/wiki/%E5%85%B1%E8%BD%AD%E5%A4%8D%E6%95%B0" title="共轭复数">共轭</a>。这个内积是从2-范数自然诱导的内积。<i>L</i><sup>2</sup>空间在<a href="/wiki/%E5%82%85%E7%AB%8B%E5%8F%B6%E7%BA%A7%E6%95%B0" class="mw-redirect" title="傅立叶级数">傅立叶级数</a>和<a href="/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6" title="量子力学">量子力学</a>以及其他领域有着重要的运用。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9c352341ab7260ca1a9004da44c897d1395203c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.029ex; height:2.343ex;" alt="{\displaystyle \ell ^{p}}"></span>空间可以看作是<i>L<sup> p</sup></i>空间的特例。只要取<i>L<sup> p</sup></i>空间中的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=\mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0090da3845ac28c0c7142ed894e7bb0641ebcccc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:2.176ex;" alt="{\displaystyle S=\mathbb {N} }"></span>,测度为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {n} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {n} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d3748b8689919c98c804c7d296652ebf5acb0d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.293ex; height:1.676ex;" alt="{\displaystyle \mathbb {n} }"></span>上的<a href="/wiki/%E8%AE%A1%E6%95%B0%E6%B5%8B%E5%BA%A6" title="计数测度">计数测度</a>,则对应的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{p}(S,\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{p}(S,\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d5a4c54613c1c773a1caa81a731c340f546e320" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.386ex; height:2.843ex;" alt="{\displaystyle L^{p}(S,\mu )}"></span>就是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell ^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ℓ<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell ^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9c352341ab7260ca1a9004da44c897d1395203c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.029ex; height:2.343ex;" alt="{\displaystyle \ell ^{p}}"></span>空间。 </p> <div class="mw-heading mw-heading2"><h2 id="Lp空间的性质"><span id="Lp.E7.A9.BA.E9.97.B4.E7.9A.84.E6.80.A7.E8.B4.A8"></span><i>L</i><sup><i>p</i></sup>空间的性质</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit&section=6" title="编辑章节:Lp空间的性质"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="对偶空间"><span id=".E5.AF.B9.E5.81.B6.E7.A9.BA.E9.97.B4"></span>对偶空间</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit&section=7" title="编辑章节:对偶空间"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>一个拓扑向量空间的<a href="/wiki/%E5%AF%B9%E5%81%B6%E7%A9%BA%E9%97%B4" title="对偶空间">对偶空间</a>是指由这个向量空间上的所有的连续线性<a href="/wiki/%E6%B3%9B%E5%87%BD" title="泛函">泛函</a>构成的<a href="/w/index.php?title=%E6%B3%9B%E5%87%BD%E7%A9%BA%E9%97%B4&action=edit&redlink=1" class="new" title="泛函空间(页面不存在)">泛函空间</a>。对某个大于1的实数<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>p</i></span></span>,设<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>q</i></span></span>是满足<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff66949e963cd56cc66808c26aa25f186ac40c69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.105ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1}"></span>的唯一实数,则空间<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)</span></span>的对偶空间<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)<sup>*</sup></span></span>与<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>q</sup></i>(<i>S</i>, <i>μ</i>)</span></span><a href="/wiki/%E5%90%8C%E6%9E%84" title="同构">同构</a>。这个关系可以通过一个自然的同构映射展现: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{p}:\;\;L^{q}(S,\mu )\longrightarrow L^{p}(S,\mu )^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>:</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">⟶<!-- ⟶ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{p}:\;\;L^{q}(S,\mu )\longrightarrow L^{p}(S,\mu )^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43a62943ed863bcddad48129247a66ab779d63b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.477ex; height:3.009ex;" alt="{\displaystyle \kappa _{p}:\;\;L^{q}(S,\mu )\longrightarrow L^{p}(S,\mu )^{*}}"></span> <dl><dd><dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\qquad \longmapsto \kappa _{p}(f):=\left(g\in L^{p}(S,\mu )\;\mapsto \;\int _{S}fg\;d\mu \right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mspace width="2em" /> <mo stretchy="false">⟼<!-- ⟼ --></mo> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mrow> <mo>(</mo> <mrow> <mi>g</mi> <mo>∈<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo stretchy="false">↦<!-- ↦ --></mo> <mspace width="thickmathspace" /> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>f</mi> <mi>g</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>μ<!-- μ --></mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\qquad \longmapsto \kappa _{p}(f):=\left(g\in L^{p}(S,\mu )\;\mapsto \;\int _{S}fg\;d\mu \right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a7a6fd5294fcc519a269284f5306db309d28b4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:50.583ex; height:6.176ex;" alt="{\displaystyle f\qquad \longmapsto \kappa _{p}(f):=\left(g\in L^{p}(S,\mu )\;\mapsto \;\int _{S}fg\;d\mu \right).}"></span></dd></dl></dd></dl></dd></dl></dd></dl> <p><a href="/wiki/%E8%B5%AB%E5%B0%94%E5%BE%B7%E4%B8%8D%E7%AD%89%E5%BC%8F" title="赫尔德不等式">赫尔德不等式</a>保证了其中的泛函<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{p}(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{p}(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/350ddf0519845dbd85d5f9b7102b40fb1ef94bfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.486ex; height:3.009ex;" alt="{\displaystyle \kappa _{p}(f)}"></span>是良好定义并且是连续的。<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dca34d1a0228682daff98ed2767294435e07cb4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.398ex; height:2.343ex;" alt="{\displaystyle \kappa _{p}}"></span>是一个线性映射,根据赫尔德不等式的极限情况,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{p}(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{p}(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/350ddf0519845dbd85d5f9b7102b40fb1ef94bfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.486ex; height:3.009ex;" alt="{\displaystyle \kappa _{p}(f)}"></span>作为泛函的范数和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>一样,这说明<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dca34d1a0228682daff98ed2767294435e07cb4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.398ex; height:2.343ex;" alt="{\displaystyle \kappa _{p}}"></span>是一个<a href="/wiki/%E7%AD%89%E8%B7%9D%E5%90%8C%E6%9E%84" title="等距同构">等距映射</a>。此外还可以证明,对偶空间<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)<sup>*</sup></span></span>中的任一线性泛函对偶空间<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>G</i></span></span>都能表示成某个<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{p}(g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{p}(g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b549ae6a39b147f309ca056b477219f0a687ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.323ex; height:3.009ex;" alt="{\displaystyle \kappa _{p}(g)}"></span>的形式,所以<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dca34d1a0228682daff98ed2767294435e07cb4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.398ex; height:2.343ex;" alt="{\displaystyle \kappa _{p}}"></span>是一个<a href="/wiki/%E6%BB%A1%E5%B0%84" title="满射">满射</a>。结合以上性质可以推出,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dca34d1a0228682daff98ed2767294435e07cb4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.398ex; height:2.343ex;" alt="{\displaystyle \kappa _{p}}"></span>是一个等距同构。在这个同构的意义下,我们常说<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)</span></span>的对偶空间“是”<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>q</sup></i>(<i>S</i>, <i>μ</i>)</span></span>。 </p><p>以上性质说明,当大于1的时候,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)</span></span>是一个<a href="/wiki/%E8%87%AA%E5%8F%8D%E7%A9%BA%E9%97%B4" title="自反空间">自反空间</a>:<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)</span></span>的二次对偶空间(对偶空间的对偶空间)“是”它自己(在同构的意义下)。具体来说,从<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dca34d1a0228682daff98ed2767294435e07cb4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.398ex; height:2.343ex;" alt="{\displaystyle \kappa _{p}}"></span>出发,可以构造出以下的关系: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j_{p}\colon L^{p}(S,\mu ){\overset {\kappa _{q}}{\to }}L^{q}(S,\mu )^{*}{\overset {\,\,\left(\kappa _{p}^{-1}\right)^{*}}{\longrightarrow }}L^{p}(S,\mu )^{**}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>:<!-- : --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mover> </mrow> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo stretchy="false">⟶<!-- ⟶ --></mo> <mrow> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <msup> <mrow> <mo>(</mo> <msubsup> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mrow> </mover> </mrow> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j_{p}\colon L^{p}(S,\mu ){\overset {\kappa _{q}}{\to }}L^{q}(S,\mu )^{*}{\overset {\,\,\left(\kappa _{p}^{-1}\right)^{*}}{\longrightarrow }}L^{p}(S,\mu )^{**}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cd7d44f6935e5263bf848fd5aa07b8d26e902e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.027ex; width:39.805ex; height:6.009ex;" alt="{\displaystyle j_{p}\colon L^{p}(S,\mu ){\overset {\kappa _{q}}{\to }}L^{q}(S,\mu )^{*}{\overset {\,\,\left(\kappa _{p}^{-1}\right)^{*}}{\longrightarrow }}L^{p}(S,\mu )^{**}}"></span></dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e650eaa361bfbafc4c9497577fa603b852aeb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.328ex; height:2.343ex;" alt="{\displaystyle \kappa _{q}}"></span>与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\kappa _{p}^{-1}\right)^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <msubsup> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\kappa _{p}^{-1}\right)^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44e40b927f407d70e94bcd2f3f8440ce1b8aa5f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.856ex; height:3.343ex;" alt="{\displaystyle \left(\kappa _{p}^{-1}\right)^{*}}"></span>的<a href="/wiki/%E5%A4%8D%E5%90%88%E5%87%BD%E6%95%B0" title="复合函数">复合映射</a><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>j<sub>p</sub></i></span></span>是从<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)</span></span>映射到其二次对偶空间的赋值嵌入映射: </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall f\in L^{p}(S,\mu ),\;\;G\in L^{p}(S,\mu )^{*},\;\;\exists g\in L^{q}(S,\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>f</mi> <mo>∈<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>G</mi> <mo>∈<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>g</mi> <mo>∈<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall f\in L^{p}(S,\mu ),\;\;G\in L^{p}(S,\mu )^{*},\;\;\exists g\in L^{q}(S,\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c708623609d44988986461057dc24a522d1f8d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:46.119ex; height:2.843ex;" alt="{\displaystyle \forall f\in L^{p}(S,\mu ),\;\;G\in L^{p}(S,\mu )^{*},\;\;\exists g\in L^{q}(S,\mu )}"></span> 使得<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=\kappa _{p}(g).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=\kappa _{p}(g).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0cf1cf90597b00183b35f6f25fe0ca26b714963" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.895ex; height:3.009ex;" alt="{\displaystyle G=\kappa _{p}(g).}"></span></dd></dl></dd></dl> <p>从而 </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \;\;\left[j_{p}(f)\right](G)=\left[\left(\left(\kappa _{p}^{-1}\right)^{*}\circ \kappa _{q}\right)(f)\right](G)=\left[\left(\kappa _{p}^{-1}\right)^{*}\left(\kappa _{q}(f)\right)\right](G)=\left[\kappa _{q}(f)\right]\left(\kappa _{p}^{-1}(G)\right)=\left[\kappa _{q}(f)\right](g)=\int _{S}fg\;d\mu =G(f).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mrow> <mo>[</mo> <mrow> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mrow> <mo>(</mo> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo>∘<!-- ∘ --></mo> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>f</mi> <mi>g</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>μ<!-- μ --></mi> <mo>=</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \;\;\left[j_{p}(f)\right](G)=\left[\left(\left(\kappa _{p}^{-1}\right)^{*}\circ \kappa _{q}\right)(f)\right](G)=\left[\left(\kappa _{p}^{-1}\right)^{*}\left(\kappa _{q}(f)\right)\right](G)=\left[\kappa _{q}(f)\right]\left(\kappa _{p}^{-1}(G)\right)=\left[\kappa _{q}(f)\right](g)=\int _{S}fg\;d\mu =G(f).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57db24574d63a7cafa390bca3d4b3db43be41f19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:115.581ex; height:5.676ex;" alt="{\displaystyle \;\;\left[j_{p}(f)\right](G)=\left[\left(\left(\kappa _{p}^{-1}\right)^{*}\circ \kappa _{q}\right)(f)\right](G)=\left[\left(\kappa _{p}^{-1}\right)^{*}\left(\kappa _{q}(f)\right)\right](G)=\left[\kappa _{q}(f)\right]\left(\kappa _{p}^{-1}(G)\right)=\left[\kappa _{q}(f)\right](g)=\int _{S}fg\;d\mu =G(f).}"></span></dd></dl></dd></dl> <p>作为两个等距同构的复合映射,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>j<sub>p</sub></i></span></span>也是等距同构。这说明<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)</span></span>和<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)<sup>**</sup></span></span>也是同构关系。 </p><p>如果测度<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>μ</i></span></span>是<a href="/wiki/%CE%A3-%E6%9C%89%E9%99%90%E6%B5%8B%E5%BA%A6" title="Σ-有限测度">σ-有限测度</a>,那么<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>1</sup></i>(<i>S</i>, <i>μ</i>)<sup>*</sup></span></span>和<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>∞</sup></i>(<i>S</i>, <i>μ</i>)</span></span>也是等距同构。可以证明, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{1}:\;\;f\in L^{\infty }(S,\mu )\longmapsto \left(g\in L^{1}(S,\mu )\;\mapsto \;\int _{S}fg\;d\mu \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>κ<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>:</mo> <mspace width="thickmathspace" /> <mspace width="thickmathspace" /> <mi>f</mi> <mo>∈<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">⟼<!-- ⟼ --></mo> <mrow> <mo>(</mo> <mrow> <mi>g</mi> <mo>∈<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo stretchy="false">↦<!-- ↦ --></mo> <mspace width="thickmathspace" /> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>f</mi> <mi>g</mi> <mspace width="thickmathspace" /> <mi>d</mi> <mi>μ<!-- μ --></mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{1}:\;\;f\in L^{\infty }(S,\mu )\longmapsto \left(g\in L^{1}(S,\mu )\;\mapsto \;\int _{S}fg\;d\mu \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d95f95e742bee6733d7a497bcaf14aa77938dd5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:53.331ex; height:6.176ex;" alt="{\displaystyle \kappa _{1}:\;\;f\in L^{\infty }(S,\mu )\longmapsto \left(g\in L^{1}(S,\mu )\;\mapsto \;\int _{S}fg\;d\mu \right)}"></span></dd></dl> <p>是<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>∞</sup></i>(<i>S</i>, <i>μ</i>)</span></span>到<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>1</sup></i>(<i>S</i>, <i>μ</i>)<sup>*</sup></span></span>上的一个同构。 </p><p><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>∞</sup></i>(<i>S</i>, <i>μ</i>)</span></span>则更为复杂。<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>∞</sup></i>(<i>S</i>, <i>μ</i>)<sup>*</sup></span></span>可以被刻画为所有关于测度<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>μ</i></span></span><a href="/wiki/%E7%BB%9D%E5%AF%B9%E8%BF%9E%E7%BB%AD" title="绝对连续">绝对连续</a>的有界带号有限可加测度的集合。如果承认<a href="/wiki/%E9%80%89%E6%8B%A9%E5%85%AC%E7%90%86" title="选择公理">选择公理</a>,那么一般来说,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>∞</sup></i>(<i>S</i>, <i>μ</i>)<sup>*</sup></span></span>这个集合要比<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>1</sup></i>(<i>S</i>, <i>μ</i>)</span></span>“大得多”。只有对某些简单的测度<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>μ</i></span></span>,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>∞</sup></i>(<i>S</i>, <i>μ</i>)<sup>*</sup></span></span>会和<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>1</sup></i>(<i>S</i>, <i>μ</i>)</span></span>同构。 </p> <div class="mw-heading mw-heading3"><h3 id="嵌入"><span id=".E5.B5.8C.E5.85.A5"></span>嵌入</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit&section=8" title="编辑章节:嵌入"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>给定两个实数:1 ≤ <i>p</i> < <i>q</i> ≤ ∞,当比较<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)</span></span>和<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>q</sup></i>(<i>S</i>, <i>μ</i>)</span></span>的时候会发现,前者中包含一些局部行为更加不规则的函数,而后者中则包含了“尾巴更粗”的函数。举例来说,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{1}(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{1}(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9a86223fba658a5daf612b39d3e25495d548bdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.124ex; height:3.176ex;" alt="{\displaystyle L^{1}(\mathbb {R} )}"></span>中的连续函数(也就是实数域上的勒贝格可积函数)可以在0的附近取很大的值,但当自变量趋于无穷大的时候,函数的值必须趋于0. 而对于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\infty }(\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\infty }(\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/016b7dd68f0a209dfb882c9779e5b1c4e690c46a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.946ex; height:2.843ex;" alt="{\displaystyle L^{\infty }(\mathbb {R} )}"></span>中的连续函数(有界连续函数),无论自变量多大,函数值都可以不在0附近,但反过来说,无论自变量取多少,函数的值也不能超过上界和下界。 </p><p>假设全集<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>S</i></span></span>在<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>μ</i></span></span>中的测度有限,以及1 ≤ <i>p</i> < <i>q</i> ≤ ∞。那么由<a href="/wiki/%E8%B5%AB%E5%B0%94%E5%BE%B7%E4%B8%8D%E7%AD%89%E5%BC%8F" title="赫尔德不等式">赫尔德不等式</a>有如下限制: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{p}\leq \mu (S)^{(1/p)-(1/q)}\|f\|_{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{p}\leq \mu (S)^{(1/p)-(1/q)}\|f\|_{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39703f88fc59118e406de9c7c24c609407c8ce15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.004ex; height:3.509ex;" alt="{\displaystyle \|f\|_{p}\leq \mu (S)^{(1/p)-(1/q)}\|f\|_{q}}"></span></dd></dl> <p>这说明空间<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>q</sup></i>(<i>S</i>, <i>μ</i>)</span></span>可以被连续地嵌入到<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)</span></span>里面。换句话说,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>q</sup></i>(<i>S</i>, <i>μ</i>)</span></span>到<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)</span></span>上的<a href="/wiki/%E6%81%92%E7%AD%89%E5%87%BD%E6%95%B0" class="mw-redirect" title="恒等函数">恒等映射</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{p,q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{p,q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fcd6aeacc73966ca237bffd79be3533a9b4544a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.296ex; height:2.843ex;" alt="{\displaystyle I_{p,q}}"></span>是有界连续映射。<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{p,q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{p,q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fcd6aeacc73966ca237bffd79be3533a9b4544a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.296ex; height:2.843ex;" alt="{\displaystyle I_{p,q}}"></span>的<a href="/wiki/%E7%AE%97%E5%AD%90%E8%8C%83%E6%95%B0" title="算子范数">算子范数</a>就是由以上不等式取等号的情形确定的: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|I_{p,q}\|=\mu (S)^{(1/p)-(1/q)}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mo fence="false" stretchy="false">‖<!-- ‖ --></mo> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>p</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|I_{p,q}\|=\mu (S)^{(1/p)-(1/q)}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e437511d2a098cfb4dc9758116835b76076a1f62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.017ex; height:3.509ex;" alt="{\displaystyle \|I_{p,q}\|=\mu (S)^{(1/p)-(1/q)}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="稠密子空间"><span id=".E7.A8.A0.E5.AF.86.E5.AD.90.E7.A9.BA.E9.97.B4"></span>稠密子空间</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit&section=9" title="编辑章节:稠密子空间"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>研究某个复杂的无穷维赋范空间的时候,常常会使用一个由空间中比较“简单”的元素构成的<a href="/wiki/%E7%A8%A0%E5%AF%86" class="mw-redirect" title="稠密">稠密</a>子集来逼近空间中的一个元素。假设1 ≤ <i>p</i> < ∞,则空间<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)</span></span>中的元素可以用<a href="/wiki/%E6%B5%8B%E5%BA%A6%E7%A9%BA%E9%97%B4" title="测度空间">测度空间</a> (<i>S</i>, <i>Σ</i>, <i>μ</i>) 上的<b>简单可积函数</b>逼近。给定测度空间(<i>S</i>, <i>Σ</i>, <i>μ</i>),其上的一个简单可积函数指的是形同: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=\sum _{j=1}^{n}a_{j}\mathbf {1} _{A_{j}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=\sum _{j=1}^{n}a_{j}\mathbf {1} _{A_{j}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae17268584cb3aa6d80dcd4142a500ecac2f4647" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:13.774ex; height:7.176ex;" alt="{\displaystyle f=\sum _{j=1}^{n}a_{j}\mathbf {1} _{A_{j}}}"></span></dd></dl> <p>的函数。其中的<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>a<sub>j</sub></i></span></span>是实数或复数系数,<i>A<sub>j</sub></i> ∈ <i>Σ</i> 是测度有限的可测集合。由<a href="/wiki/%E5%8B%92%E8%B4%9D%E6%A0%BC%E7%A7%AF%E5%88%86" class="mw-redirect" title="勒贝格积分">勒贝格积分</a>的构造方法可知,简单可积函数的集合在<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)</span></span>中稠密。 </p><p>如果<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>S</i></span></span>本身也是测度空间,而<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>μ</i></span></span>是<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>S</i></span></span>上的<a href="/wiki/%E5%8D%9A%E9%9B%B7%E5%B0%94%E6%B5%8B%E5%BA%A6" title="博雷尔测度">博雷尔测度</a>,那么可以通过<a href="/wiki/%E4%B9%8C%E9%9B%B7%E6%9D%BE%E5%BC%95%E7%90%86" title="乌雷松引理">乌雷松引理</a>证明,所有<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>S</i></span></span>可测而且测度有限的子集对应的<a href="/wiki/%E6%8C%87%E7%A4%BA%E5%87%BD%E6%95%B0" title="指示函数">指示函数</a>都可以通过连续函数逼近。所以所有的简单可积函数可以用连续函数逼近。因而可以证明,<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)</span></span>中的连续函数构成的集合在<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)</span></span>中稠密<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference" style="white-space:nowrap;">:84</sup>。对于更具体的空间,可以证明更加强的结果。比如说当<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>S</i></span></span>是<i>n</i>维欧几里德空间,而<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>μ</i></span></span>是<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>S</i></span></span>上的正则<a href="/wiki/%E5%8D%9A%E9%9B%B7%E5%B0%94%E6%B5%8B%E5%BA%A6" title="博雷尔测度">博雷尔测度</a>的时候,可以证明,所有<a href="/wiki/%E6%94%AF%E6%92%91%E9%9B%86" title="支撑集">紧支撑</a>的<a href="/wiki/%E5%85%89%E6%BB%91%E5%87%BD%E6%95%B0" title="光滑函数">光滑函数</a>的集合在<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r58896141"><span class="serif"><span class="texhtml"><i>L<sup>p</sup></i>(<i>S</i>, <i>μ</i>)</span></span>中稠密。 </p> <div class="mw-heading mw-heading2"><h2 id="注释"><span id=".E6.B3.A8.E9.87.8A"></span>注释</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit&section=10" title="编辑章节:注释"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div id="references-NoteFoot"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">以<a href="/wiki/%E6%98%82%E5%88%A9%C2%B7%E5%8B%92%E8%B2%9D%E6%A0%BC" class="mw-redirect" title="昂利·勒貝格">昂利·勒貝格</a>命名(<a href="#CITEREFDunfordSchwartz1958">Dunford & Schwartz 1958</a>,III.3)<span class="error harv-error" style="display: none; font-size:100%"> harv模板錯誤: 無指向目標: CITEREFDunfordSchwartz1958 (<a href="/wiki/Category:%E5%90%AB%E6%9C%89%E5%93%88%E4%BD%9B%E5%8F%82%E8%80%83%E6%96%87%E7%8C%AE%E6%A0%BC%E5%BC%8F%E7%B3%BB%E5%88%97%E6%A8%A1%E6%9D%BF%E9%93%BE%E6%8E%A5%E6%8C%87%E5%90%91%E9%94%99%E8%AF%AF%E7%9A%84%E9%A1%B5%E9%9D%A2" title="Category:含有哈佛参考文献格式系列模板链接指向错误的页面">幫助</a>)</span>,儘管依據<a href="#CITEREFBourbaki1987">Bourbaki (1987)</a><span class="error harv-error" style="display: none; font-size:100%"> harvtxt模板錯誤: 無指向目標: CITEREFBourbaki1987 (<a href="/wiki/Category:%E5%90%AB%E6%9C%89%E5%93%88%E4%BD%9B%E5%8F%82%E8%80%83%E6%96%87%E7%8C%AE%E6%A0%BC%E5%BC%8F%E7%B3%BB%E5%88%97%E6%A8%A1%E6%9D%BF%E9%93%BE%E6%8E%A5%E6%8C%87%E5%90%91%E9%94%99%E8%AF%AF%E7%9A%84%E9%A1%B5%E9%9D%A2" title="Category:含有哈佛参考文献格式系列模板链接指向错误的页面">幫助</a>)</span>它們是<a href="#CITEREFRiesz1910">Riesz (1910)</a><span class="error harv-error" style="display: none; font-size:100%"> harvtxt模板錯誤: 無指向目標: CITEREFRiesz1910 (<a href="/wiki/Category:%E5%90%AB%E6%9C%89%E5%93%88%E4%BD%9B%E5%8F%82%E8%80%83%E6%96%87%E7%8C%AE%E6%A0%BC%E5%BC%8F%E7%B3%BB%E5%88%97%E6%A8%A1%E6%9D%BF%E9%93%BE%E6%8E%A5%E6%8C%87%E5%90%91%E9%94%99%E8%AF%AF%E7%9A%84%E9%A1%B5%E9%9D%A2" title="Category:含有哈佛参考文献格式系列模板链接指向错误的页面">幫助</a>)</span>首先介入</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="参见"><span id=".E5.8F.82.E8.A7.81"></span>参见</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit&section=11" title="编辑章节:参见"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%E5%93%88%E4%BB%A3%E7%A9%BA%E9%96%93" title="哈代空間">哈代空间</a></li> <li><a href="/wiki/%E8%B5%AB%E5%B0%94%E5%BE%B7%E5%B9%B3%E5%9D%87" class="mw-redirect" title="赫尔德平均">赫尔德平均</a></li> <li><a href="/w/index.php?title=%E8%B5%AB%E5%B0%94%E5%BE%B7%E7%A9%BA%E9%97%B4&action=edit&redlink=1" class="new" title="赫尔德空间(页面不存在)">赫尔德空间</a></li> <li><a href="/wiki/%E6%96%B9%E5%9D%87%E6%A0%B9" class="mw-redirect" title="方均根">方均根</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="参考来源"><span id=".E5.8F.82.E8.80.83.E6.9D.A5.E6.BA.90"></span>参考来源</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit&section=12" title="编辑章节:参考来源"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist" style="list-style-type: decimal;"> <ol class="references"> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><cite class="citation journal">Piotr Hajłasz, Pekka Koskela. Sobolev Met Poincaré. American Mathematical Society: Memoirs of the American Mathematical Society. 2000, (688).</cite><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fzh.wikipedia.org%3ALp%E7%A9%BA%E9%97%B4&rft.atitle=Sobolev+Met+Poincar%C3%A9&rft.au=Piotr+Haj%C5%82asz%2C+Pekka+Koskela&rft.date=2000&rft.genre=article&rft.issue=688&rft.jtitle=American+Mathematical+Society%3A+Memoirs+of+the+American+Mathematical+Society&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;"> </span></span> <span style="display:none;font-size:100%" class="error citation-comment">使用<code style="color:inherit; border:inherit; padding:inherit;">|accessdate=</code>需要含有<code style="color:inherit; border:inherit; padding:inherit;">|url=</code> (<a href="/wiki/Help:%E5%BC%95%E6%96%87%E6%A0%BC%E5%BC%8F1%E9%94%99%E8%AF%AF#accessdate_missing_url" title="Help:引文格式1错误">帮助</a>)</span></span> </li> </ol></div> <ul><li><cite class="citation book">Adams, Robert A. Sobolev Spaces. New York: Academic Press. 1975. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/9780120441501" class="internal mw-magiclink-isbn">ISBN 978-0-12-044150-1</a>.</cite><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fzh.wikipedia.org%3ALp%E7%A9%BA%E9%97%B4&rft.aufirst=Robert+A.&rft.aulast=Adams&rft.btitle=Sobolev+Spaces&rft.date=1975&rft.genre=book&rft.place=New+York&rft.pub=Academic+Press&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="外部链接"><span id=".E5.A4.96.E9.83.A8.E9.93.BE.E6.8E.A5"></span>外部链接</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&action=edit&section=13" title="编辑章节:外部链接"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite class="citation web"><a rel="nofollow" class="external text" href="https://planetmath.org/proofthatlpspacesarecomplete">Proof that <i>L</i><sup><i>p</i></sup> spaces are complete</a>. <a href="/wiki/PlanetMath" title="PlanetMath">PlanetMath</a>.</cite><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fzh.wikipedia.org%3ALp%E7%A9%BA%E9%97%B4&rft.atitle=Proof+that+L%3Csup%3Ep%3C%2Fsup%3E+spaces+are+complete&rft.genre=unknown&rft.jtitle=PlanetMath&rft_id=http%3A%2F%2Fplanetmath.org%2Fproofthatlpspacesarecomplete&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;"> </span></span></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐66695f89d8‐j2ksg Cached time: 20241119184431 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.457 seconds Real time usage: 0.902 seconds Preprocessor visited node count: 2967/1000000 Post‐expand include size: 63402/2097152 bytes Template argument size: 6533/2097152 bytes Highest expansion depth: 18/100 Expensive parser function count: 1/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 20634/5000000 bytes Lua time usage: 0.107/10.000 seconds Lua memory usage: 3637192/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 384.927 1 -total 36.66% 141.128 1 Template:Merge_from 34.79% 133.925 1 Template:Mbox 20.26% 77.981 1 Template:Namespace_detect 17.51% 67.388 1 Template:Reflist 16.70% 64.298 1 Template:Notetag 16.62% 63.973 1 Template:Cite_journal 10.18% 39.183 2 Template:NoteTA 9.13% 35.157 1 Template:Harv 9.06% 34.892 73 Template:Math --> <!-- Saved in parser cache with key zhwiki:pcache:346712:|#|:idhash:canonical!zh and timestamp 20241119184431 and revision id 78010488. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">检索自“<a dir="ltr" href="https://zh.wikipedia.org/w/index.php?title=Lp空间&oldid=78010488">https://zh.wikipedia.org/w/index.php?title=Lp空间&oldid=78010488</a>”</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Special:%E9%A1%B5%E9%9D%A2%E5%88%86%E7%B1%BB" title="Special:页面分类">分类</a>:<ul><li><a href="/wiki/Category:%E6%B3%9B%E5%87%BD%E5%88%86%E6%9E%90" title="Category:泛函分析">泛函分析</a></li><li><a href="/wiki/Category:%E8%B5%8B%E8%8C%83%E7%A9%BA%E9%97%B4" title="Category:赋范空间">赋范空间</a></li><li><a href="/wiki/Category:%E5%BA%8F%E5%88%97" title="Category:序列">序列</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">隐藏分类:<ul><li><a href="/wiki/Category:%E5%90%AB%E6%9C%89%E5%93%88%E4%BD%9B%E5%8F%82%E8%80%83%E6%96%87%E7%8C%AE%E6%A0%BC%E5%BC%8F%E7%B3%BB%E5%88%97%E6%A8%A1%E6%9D%BF%E9%93%BE%E6%8E%A5%E6%8C%87%E5%90%91%E9%94%99%E8%AF%AF%E7%9A%84%E9%A1%B5%E9%9D%A2" title="Category:含有哈佛参考文献格式系列模板链接指向错误的页面">含有哈佛参考文献格式系列模板链接指向错误的页面</a></li><li><a href="/wiki/Category:%E5%90%AB%E6%9C%89%E8%AE%BF%E9%97%AE%E6%97%A5%E6%9C%9F%E4%BD%86%E6%97%A0%E7%BD%91%E5%9D%80%E7%9A%84%E5%BC%95%E7%94%A8%E7%9A%84%E9%A1%B5%E9%9D%A2" title="Category:含有访问日期但无网址的引用的页面">含有访问日期但无网址的引用的页面</a></li><li><a href="/wiki/Category:%E8%87%AA2020%E5%B9%B46%E6%9C%88%E9%9C%80%E8%A6%81%E5%90%88%E4%BD%B5%E7%9A%84%E6%A2%9D%E7%9B%AE" title="Category:自2020年6月需要合併的條目">自2020年6月需要合併的條目</a></li><li><a href="/wiki/Category:%E4%BD%BF%E7%94%A8ISBN%E9%AD%94%E6%9C%AF%E9%93%BE%E6%8E%A5%E7%9A%84%E9%A1%B5%E9%9D%A2" title="Category:使用ISBN魔术链接的页面">使用ISBN魔术链接的页面</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 本页面最后修订于2023年7月9日 (星期日) 07:37。</li> <li id="footer-info-copyright">本站的全部文字在<a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.zh">知识共享 署名-相同方式共享 4.0协议</a>之条款下提供,附加条款亦可能应用。(请参阅<a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">使用条款</a>)<br /> Wikipedia®和维基百科标志是<a rel="nofollow" class="external text" href="https://wikimediafoundation.org/zh">维基媒体基金会</a>的注册商标;维基™是维基媒体基金会的商标。<br /> 维基媒体基金会是按美国国內稅收法501(c)(3)登记的<a class="external text" href="https://donate.wikimedia.org/wiki/Special:MyLanguage/Tax_deductibility">非营利慈善机构</a>。<br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">隐私政策</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E">关于维基百科</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:%E5%85%8D%E8%B4%A3%E5%A3%B0%E6%98%8E">免责声明</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">行为准则</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">开发者</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/zh.wikipedia.org">统计</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie声明</a></li> <li id="footer-places-mobileview"><a href="//zh.m.wikipedia.org/w/index.php?title=Lp%E7%A9%BA%E9%97%B4&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">手机版视图</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6dfcdd5ff5-465ng","wgBackendResponseTime":187,"wgPageParseReport":{"limitreport":{"cputime":"0.457","walltime":"0.902","ppvisitednodes":{"value":2967,"limit":1000000},"postexpandincludesize":{"value":63402,"limit":2097152},"templateargumentsize":{"value":6533,"limit":2097152},"expansiondepth":{"value":18,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":20634,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 384.927 1 -total"," 36.66% 141.128 1 Template:Merge_from"," 34.79% 133.925 1 Template:Mbox"," 20.26% 77.981 1 Template:Namespace_detect"," 17.51% 67.388 1 Template:Reflist"," 16.70% 64.298 1 Template:Notetag"," 16.62% 63.973 1 Template:Cite_journal"," 10.18% 39.183 2 Template:NoteTA"," 9.13% 35.157 1 Template:Harv"," 9.06% 34.892 73 Template:Math"]},"scribunto":{"limitreport-timeusage":{"value":"0.107","limit":"10.000"},"limitreport-memusage":{"value":3637192,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAdams1975\"] = 1,\n [\"CITEREFPiotr_Hajłasz,_Pekka_Koskela2000\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Cite book\"] = 1,\n [\"Cite journal\"] = 1,\n [\"DISPLAYTITLE:''L''\u003Csup\u003E''p''\u003C/sup\u003E空間\"] = 1,\n [\"Harv\"] = 1,\n [\"Harvtxt\"] = 2,\n [\"Math\"] = 73,\n [\"Merge from\"] = 1,\n [\"NoteTA\"] = 2,\n [\"Notefoot\"] = 1,\n [\"Notetag\"] = 1,\n [\"Planetmath reference\"] = 1,\n [\"Reflist\"] = 1,\n [\"Rp\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-66695f89d8-j2ksg","timestamp":"20241119184431","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Lp\u7a7a\u95f4","url":"https:\/\/zh.wikipedia.org\/wiki\/Lp%E7%A9%BA%E9%97%B4","sameAs":"http:\/\/www.wikidata.org\/entity\/Q305936","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q305936","author":{"@type":"Organization","name":"\u7ef4\u57fa\u5a92\u4f53\u9879\u76ee\u8d21\u732e\u8005"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-08-08T11:01:56Z","dateModified":"2023-07-09T07:37:15Z","headline":"\u51fd\u6578\u7d44\u6210\u7684\u8ce6\u7bc4\u7a7a\u9593\uff0c\u662f\u6709\u9650\u7dadp\u7bc4\u6578\u7a7a\u9593\u7684\u63a8\u5ee3"}</script> </body> </html>