CINXE.COM
Multiparametric MRI Texture Analysis in Prediction of Glioma Biomarker Status: Added Value of MR Diffusion
<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes"> <title>Multiparametric MRI Texture Analysis in Prediction of Glioma Biomarker Status: Added Value of MR Diffusion</title> <meta id="meta-title" property="citation_title" content="Multiparametric MRI Texture Analysis in Prediction of Glioma Biomarker Status: Added Value of MR Diffusion"/> <meta id="og-title" property="og:title" content="Multiparametric MRI Texture Analysis in Prediction of Glioma Biomarker Status: Added Value of MR Diffusion"/> <meta name="twitter:widgets:autoload" content="off"/> <meta name="twitter:dnt" content="on"/> <meta name="twitter:widgets:csp" content="on"/> <meta name="google-site-verification" content="lQbRRf0vgPqMbnbCsgELjAjIIyJjiIWo917M7hBshvI"/> <meta id="meta-abstract" name="citation_abstract" content="BackgroundEarly identification of glioma molecular phenotypes can lead to understanding of patient prognosis and treatment guidance. We aimed to develop a multiparametric MRI texture analysis model using a combination of conventional and diffusion MRI to predict a wide range of biomarkers in patients with glioma.MethodsIn this retrospective study, patients were included if they (1) had diagnosis of gliomas with known IDH1, EGFR, MGMT, ATRX, TP53, and PTEN status from surgical pathology and (2) had preoperative MRI including FLAIR, T1c+ and diffusion for radiomic texture analysis. Statistical analysis included logistic regression and receiver-operating characteristic (ROC) curve analysis to determine the optimal model for predicting glioma biomarkers. A comparative analysis between ROCs (conventional only vs conventional + diffusion) was performed.ResultsFrom a total of 111 patients included, 91 (82%) were categorized to training and 20 (18%) to test datasets. Constructed cross-validated model using a combination of texture features from conventional and diffusion MRI resulted in overall AUC/accuracy of 1/79% for IDH1, 0.99/80% for ATRX, 0.79/67% for MGMT, and 0.77/66% for EGFR. The addition of diffusion data to conventional MRI features significantly (P &lt; .05) increased predictive performance for IDH1, MGMT, and ATRX. The overall accuracy of the final model in predicting biomarkers in the test group was 80% (IDH1), 70% (ATRX), 70% (MGMT), and 75% (EGFR).ConclusionAddition of MR diffusion to conventional MRI features provides added diagnostic value in preoperative determination of IDH1, MGMT, and ATRX in patients with glioma."/> <meta id="meta-description" name="description" content="Author(s): Kihira, Shingo; Tsankova, Nadejda; Bauer, Adam; Sakai, Yu; Mahmoudi, Keon; Zubizarreta, Nicole; Houldsworth, Jane; Khan, Fahad; Salamon, Noriko; Hormigo, Adilia; Nael, Kambiz | Abstract: BackgroundEarly identification of glioma molecular phenotypes can lead to understanding of patient prognosis and treatment guidance. We aimed to develop a multiparametric MRI texture analysis model using a combination of conventional and diffusion MRI to predict a wide range of biomarkers in patients with glioma.MethodsIn this retrospective study, patients were included if they (1) had diagnosis of gliomas with known IDH1, EGFR, MGMT, ATRX, TP53, and PTEN status from surgical pathology and (2) had preoperative MRI including FLAIR, T1c+ and diffusion for radiomic texture analysis. Statistical analysis included logistic regression and receiver-operating characteristic (ROC) curve analysis to determine the optimal model for predicting glioma biomarkers. A comparative analysis between ROCs (conventional only vs conventional + diffusion) was performed.ResultsFrom a total of 111 patients included, 91 (82%) were categorized to training and 20 (18%) to test datasets. Constructed cross-validated model using a combination of texture features from conventional and diffusion MRI resulted in overall AUC/accuracy of 1/79% for IDH1, 0.99/80% for ATRX, 0.79/67% for MGMT, and 0.77/66% for EGFR. The addition of diffusion data to conventional MRI features significantly (P &lt; .05) increased predictive performance for IDH1, MGMT, and ATRX. The overall accuracy of the final model in predicting biomarkers in the test group was 80% (IDH1), 70% (ATRX), 70% (MGMT), and 75% (EGFR).ConclusionAddition of MR diffusion to conventional MRI features provides added diagnostic value in preoperative determination of IDH1, MGMT, and ATRX in patients with glioma."/> <meta id="og-description" name="og:description" content="Author(s): Kihira, Shingo; Tsankova, Nadejda; Bauer, Adam; Sakai, Yu; Mahmoudi, Keon; Zubizarreta, Nicole; Houldsworth, Jane; Khan, Fahad; Salamon, Noriko; Hormigo, Adilia; Nael, Kambiz | Abstract: BackgroundEarly identification of glioma molecular phenotypes can lead to understanding of patient prognosis and treatment guidance. We aimed to develop a multiparametric MRI texture analysis model using a combination of conventional and diffusion MRI to predict a wide range of biomarkers in patients with glioma.MethodsIn this retrospective study, patients were included if they (1) had diagnosis of gliomas with known IDH1, EGFR, MGMT, ATRX, TP53, and PTEN status from surgical pathology and (2) had preoperative MRI including FLAIR, T1c+ and diffusion for radiomic texture analysis. Statistical analysis included logistic regression and receiver-operating characteristic (ROC) curve analysis to determine the optimal model for predicting glioma biomarkers. A comparative analysis between ROCs (conventional only vs conventional + diffusion) was performed.ResultsFrom a total of 111 patients included, 91 (82%) were categorized to training and 20 (18%) to test datasets. Constructed cross-validated model using a combination of texture features from conventional and diffusion MRI resulted in overall AUC/accuracy of 1/79% for IDH1, 0.99/80% for ATRX, 0.79/67% for MGMT, and 0.77/66% for EGFR. The addition of diffusion data to conventional MRI features significantly (P &lt; .05) increased predictive performance for IDH1, MGMT, and ATRX. The overall accuracy of the final model in predicting biomarkers in the test group was 80% (IDH1), 70% (ATRX), 70% (MGMT), and 75% (EGFR).ConclusionAddition of MR diffusion to conventional MRI features provides added diagnostic value in preoperative determination of IDH1, MGMT, and ATRX in patients with glioma."/> <meta id="og-image" property="og:image" content="https://escholarship.org/images/escholarship-facebook2.jpg"/> <meta id="og-image-width" property="og:image:width" content="1242"/> <meta id="og-image-height" property="og:image:height" content="1242"/> <meta id="meta-author0" name="citation_author" content="Kihira, Shingo"/> <meta id="meta-author1" name="citation_author" content="Tsankova, Nadejda"/> <meta id="meta-author2" name="citation_author" content="Bauer, Adam"/> <meta id="meta-author3" name="citation_author" content="Sakai, Yu"/> <meta id="meta-author4" name="citation_author" content="Mahmoudi, Keon"/> <meta id="meta-author5" name="citation_author" content="Zubizarreta, Nicole"/> <meta id="meta-author6" name="citation_author" content="Houldsworth, Jane"/> <meta id="meta-author7" name="citation_author" content="Khan, Fahad"/> <meta id="meta-author8" name="citation_author" content="Salamon, Noriko"/> <meta id="meta-author9" name="citation_author" content="Hormigo, Adilia"/> <meta id="meta-author10" name="citation_author" content="Nael, Kambiz"/> <meta id="meta-publication_date" name="citation_publication_date" content="2021"/> <meta id="meta-doi" name="citation_doi" content="10.1093/noajnl/vdab051"/> <meta id="meta-journal_title" name="citation_journal_title" content="Neuro-Oncology Advances"/> <meta id="meta-issn" name="citation_issn" content="0801-3284"/> <meta id="meta-volume" name="citation_volume" content="3"/> <meta id="meta-issue" name="citation_issue" content="1"/> <meta id="meta-firstpage" name="citation_firstpage" content="vdab051-"/> <meta id="meta-online_date" name="citation_online_date" content="2021-09-20"/> <meta id="meta-pdf_url" name="citation_pdf_url" content="https://escholarship.org/content/qt80s7v9kh/qt80s7v9kh.pdf?t=qzpyy6"/> <link rel="canonical" href="https://escholarship.org/uc/item/80s7v9kh"/> <link rel="stylesheet" href="/css/main-62e3023ddd136de2.css"> <link rel="resource" type="application/l10n" href="/node_modules/pdfjs-embed2/dist/locale/locale.properties"> <noscript><style> .jsonly { display: none } </style></noscript> <!-- Matomo --> <!-- TBD Configure Matomo for SPA https://developer.matomo.org/guides/spa-tracking --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.cdlib.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '7']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> </head> <body> <div id="main"><div data-reactroot=""><div class="body"><a href="#maincontent" class="c-skipnav">Skip to main content</a><div><div><header id="#top" class="c-header"><a class="c-header__logo2" href="/"><picture><source srcSet="/images/logo_eschol-small.svg" media="(min-width: 870px)"/><img src="/images/logo_eschol-mobile.svg" alt="eScholarship"/></picture><div class="c-header__logo2-tagline">Open Access Publications from the University of California</div></a><div class="c-header__search"><form class="c-search2"><div class="c-search2__inputs"><div class="c-search2__form"><label class="c-search2__label" for="global-search">Search eScholarship</label><input type="search" name="q" id="global-search" class="c-search2__field" placeholder="Search" autoComplete="off" autoCapitalize="off"/></div><fieldset><legend>Refine Search</legend><div class="c-search2__refine"><input type="radio" id="c-search2__refine-eschol" name="searchType" value="eScholarship" checked=""/><label for="c-search2__refine-eschol">All of eScholarship</label><input type="radio" id="c-search2__refine-campus" name="searchType" value="ucla_postprints"/><label for="c-search2__refine-campus">This <!-- -->Series</label><input type="hidden" name="searchUnitType" value="series"/></div></fieldset></div><button type="submit" class="c-search2__submit-button" aria-label="search"></button><button type="button" class="c-search2__search-close-button" aria-label="close search field"></button></form></div><button class="c-header__search-open-button" aria-label="open search field"></button></header></div><div class=" c-subheader has-banner is-wide has-campus-label is-black "><a class="c-subheader__title" href="/uc/ucla"><h1>UCLA</h1></a><a class="c-subheader__banner" href="/uc/ucla"><img src="/cms-assets/c16e7a631956312b6b0ca3c58ac21c61c80a2176d91f50236b191969f594f0b1" alt="UCLA Previously Published Works banner"/></a><a class="c-subheader__campus" href="/uc/ucla">UCLA</a><div id="wizardModalBase" class="c-subheader__buttons"><button id="wizardlyDeposit" class="o-button__3">Deposit</button><div class="c-modal"></div><button id="wizardlyManage" class="o-button__3">Manage<span class="c-subheader__button-fragment">Submissions</span></button><div class="c-modal"></div></div></div><div class="c-navbar"><nav class="c-nav"><details open="" class="c-nav__main"><summary class="c-nav__main-button">Menu</summary><ul class="c-nav__main-items"><li><a href="/uc/ucla/about">About eScholarship</a></li><li><a href="/uc/ucla/ucoapolicies">UC Open Access Policies</a></li><li><a href="/ucla/journals">Journals</a></li><li><a href="/ucla/units">Academic Units</a></li></ul></details></nav><div class="c-socialicons"><a href="/rss/unit/ucla_postprints"><img src="/images/logo_rss-circle-black.svg" alt="RSS"/></a></div></div><nav class="c-breadcrumb"><ul><li><a href="/">eScholarship</a></li><li><a href="/uc/ucla">UCLA</a></li><li><a class="c-breadcrumb-link--active" href="/uc/ucla_postprints">UCLA Previously Published Works</a></li></ul></nav><div class="c-columns--sticky-sidebar"><main id="maincontent"><div><div class="c-itemactions"><div class="o-download"><a href="/content/qt80s7v9kh/qt80s7v9kh.pdf?t=qzpyy6" class="o-download__button" download="eScholarship UC item 80s7v9kh.pdf">Download <!-- -->PDF</a><details class="o-download__formats"><summary aria-label="formats"></summary><div><ul class="o-download__nested-menu"><li class="o-download__nested-list1">Main<ul><li><a href="/content/qt80s7v9kh/qt80s7v9kh.pdf?t=qzpyy6" download="eScholarship UC item 80s7v9kh.pdf">PDF</a></li></ul></li></ul></div></details></div><details class="c-share"><summary><span>Share</span></summary><div><div class="c-share__list"><a class="c-share__email" href="">Email</a><a class="c-share__facebook" href="">Facebook</a></div></div></details></div></div><h2 class="c-tabcontent__main-heading" tabindex="-1"><div class="c-clientmarkup">Multiparametric MRI Texture Analysis in Prediction of Glioma Biomarker Status: Added Value of MR Diffusion</div></h2><div class="c-authorlist"><time class="c-authorlist__year">2021</time><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AKihira%2C%20Shingo">Kihira, Shingo</a>; </li><li><a href="/search/?q=author%3ATsankova%2C%20Nadejda">Tsankova, Nadejda</a>; </li><li><a href="/search/?q=author%3ABauer%2C%20Adam">Bauer, Adam</a>; </li><li><a href="/search/?q=author%3ASakai%2C%20Yu">Sakai, Yu</a>; </li><li><a href="/search/?q=author%3AMahmoudi%2C%20Keon">Mahmoudi, Keon</a>; </li><li><a href="/search/?q=author%3AZubizarreta%2C%20Nicole">Zubizarreta, Nicole</a>; </li><li><a href="/search/?q=author%3AHouldsworth%2C%20Jane">Houldsworth, Jane</a>; </li><li><a href="/search/?q=author%3AKhan%2C%20Fahad">Khan, Fahad</a>; </li><li><a href="/search/?q=author%3ASalamon%2C%20Noriko">Salamon, Noriko</a>; </li><li><a href="/search/?q=author%3AHormigo%2C%20Adilia">Hormigo, Adilia</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ANael%2C%20Kambiz">Nael, Kambiz</a> </li><li><a class="c-authorlist__list-more-link">et al.</a></li></ul></div><div class="c-pubinfo"><h2 class="c-pubinfo__location-heading">Published Web Location</h2><a href="https://doi.org/10.1093/noajnl/vdab051" class="c-pubinfo__link">https://doi.org/10.1093/noajnl/vdab051</a></div><div class="c-tabs"><div class="c-tabs__tabs"><button class="c-tabs__button-more" aria-label="Show all tabs">...</button><button class="c-tabs__button--active">Main Content</button><button class="c-tabs__button">Metrics</button><button class="c-tabs__button">Author & <!-- -->Article<!-- --> Info</button></div><div class="c-tabs__content"><div class="c-tabcontent"><a name="article_abstract"></a><details class="c-togglecontent" open=""><summary>Abstract</summary><div class="c-clientmarkup"><p><h3>Background</h3>Early identification of glioma molecular phenotypes can lead to understanding of patient prognosis and treatment guidance. We aimed to develop a multiparametric MRI texture analysis model using a combination of conventional and diffusion MRI to predict a wide range of biomarkers in patients with glioma.<h3>Methods</h3>In this retrospective study, patients were included if they (1) had diagnosis of gliomas with known <i>IDH1</i>, <i>EGFR</i>, <i>MGMT</i>, <i>ATRX</i>, <i>TP53</i>, and <i>PTEN</i> status from surgical pathology and (2) had preoperative MRI including FLAIR, T1c+ and diffusion for radiomic texture analysis. Statistical analysis included logistic regression and receiver-operating characteristic (ROC) curve analysis to determine the optimal model for predicting glioma biomarkers. A comparative analysis between ROCs (conventional only vs conventional + diffusion) was performed.<h3>Results</h3>From a total of 111 patients included, 91 (82%) were categorized to training and 20 (18%) to test datasets. Constructed cross-validated model using a combination of texture features from conventional and diffusion MRI resulted in overall AUC/accuracy of 1/79% for <i>IDH1</i>, 0.99/80% for <i>ATRX</i>, 0.79/67% for <i>MGMT</i>, and 0.77/66% for <i>EGFR</i>. The addition of diffusion data to conventional MRI features significantly (<i>P</i> < .05) increased predictive performance for <i>IDH1</i>, <i>MGMT</i>, and <i>ATRX</i>. The overall accuracy of the final model in predicting biomarkers in the test group was 80% (<i>IDH1</i>), 70% (<i>ATRX</i>), 70% (<i>MGMT</i>), and 75% (<i>EGFR</i>).<h3>Conclusion</h3>Addition of MR diffusion to conventional MRI features provides added diagnostic value in preoperative determination of IDH1, MGMT, and ATRX in patients with glioma.</p></div><p class="o-well-colored">Many UC-authored scholarly publications are freely available on this site because of the UC's <a href="https://osc.universityofcalifornia.edu/open-access-at-uc/open-access-policy/">open access policies</a>. <a href="https://help.escholarship.org/support/tickets/new">Let us know how this access is important for you.</a></p></details><details class="c-togglecontent" open=""><a name="article_main"></a><summary>Main Content</summary><div class="c-pdfview"><button class="c-pdfview__button-download">Download PDF to View</button><button class="c-pdfview__button-view">View Larger</button></div><div class="c-pdfview__accessibility">For improved accessibility of PDF content, <a href="/content/qt80s7v9kh/qt80s7v9kh.pdf?t=qzpyy6">download the file</a> to your device.</div><div class="c-pdfview__viewer"><div id="pdfjs-cdl-wrapper"> <div id="pdfjs-viewer" className="jsonly"> <noscript> <embed src=/content/qt80s7v9kh/qt80s7v9kh_noSplash_21024f858ab41b3aa37c148e97b8e8ff.pdf?t=qzpyy6 type='application/pdf' /> </noscript> <div id="outerContainer"> <div id="sidebarContainer"> <div id="toolbarSidebar"> <div class="splitToolbarButton toggled"> <button id="viewThumbnail" class="toolbarButton toggled" title="Show Thumbnails" tabindex="2" data-l10n-id="thumbs"> <span data-l10n-id="thumbs_label">Thumbnails</span> </button> <button id="viewOutline" class="toolbarButton" title="Show Document Outline (double-click to expand/collapse all items)" tabindex="3" data-l10n-id="document_outline"> <span data-l10n-id="document_outline_label">Document Outline</span> </button> <button id="viewAttachments" class="toolbarButton" title="Show Attachments" tabindex="4" data-l10n-id="attachments"> <span data-l10n-id="attachments_label">Attachments</span> </button> </div> </div> <div id="sidebarContent"> <div id="thumbnailView"> </div> <div id="outlineView" class="hidden"> </div> <div id="attachmentsView" class="hidden"> </div> </div> <div id="sidebarResizer" class="hidden"></div> </div> <!-- sidebarContainer --> <div id="mainContainer"> <div class="findbar hidden doorHanger" id="findbar"> <div id="findbarInputContainer"> <input id="findInput" class="toolbarField" title="Find" placeholder="Find in document…" tabindex="91" data-l10n-id="find_input"> <div class="splitToolbarButton"> <button id="findPrevious" class="toolbarButton findPrevious" title="Find the previous occurrence of the phrase" tabindex="92" data-l10n-id="find_previous"> <span data-l10n-id="find_previous_label">Previous</span> </button> <div class="splitToolbarButtonSeparator"></div> <button id="findNext" class="toolbarButton findNext" title="Find the next occurrence of the phrase" tabindex="93" data-l10n-id="find_next"> <span data-l10n-id="find_next_label">Next</span> </button> </div> </div> <div id="findbarOptionsOneContainer"> <input type="checkbox" id="findHighlightAll" class="toolbarField" tabindex="94"> <label for="findHighlightAll" class="toolbarLabel" data-l10n-id="find_highlight">Highlight all</label> <input type="checkbox" id="findMatchCase" class="toolbarField" tabindex="95"> <label for="findMatchCase" class="toolbarLabel" data-l10n-id="find_match_case_label">Match case</label> </div> <div id="findbarOptionsTwoContainer"> <input type="checkbox" id="findEntireWord" class="toolbarField" tabindex="96"> <label for="findEntireWord" class="toolbarLabel" data-l10n-id="find_entire_word_label">Whole words</label> <span id="findResultsCount" class="toolbarLabel hidden"></span> </div> <div id="findbarMessageContainer"> <span id="findMsg" class="toolbarLabel"></span> </div> </div> <!-- findbar --> <div id="secondaryToolbar" class="secondaryToolbar hidden doorHangerRight"> <div id="secondaryToolbarButtonContainer"> <button id="secondaryPresentationMode" class="secondaryToolbarButton presentationMode visibleLargeView" title="Switch to Presentation Mode" tabindex="51" data-l10n-id="presentation_mode"> <span data-l10n-id="presentation_mode_label">Presentation Mode</span> </button> <button id="secondaryOpenFile" class="secondaryToolbarButton openFile visibleLargeView" title="Open File" tabindex="52" data-l10n-id="open_file"> <span data-l10n-id="open_file_label">Open</span> </button> <button id="secondaryPrint" class="secondaryToolbarButton print visibleMediumView" title="Print" tabindex="53" data-l10n-id="print"> <span data-l10n-id="print_label">Print</span> </button> <button id="secondaryDownload" class="secondaryToolbarButton download visibleMediumView" title="Download" tabindex="54" data-l10n-id="download"> <span data-l10n-id="download_label">Download</span> </button> <a href="#" id="secondaryViewBookmark" class="secondaryToolbarButton bookmark visibleSmallView" title="Current view (copy or open in new window)" tabindex="55" data-l10n-id="bookmark"> <span data-l10n-id="bookmark_label">Current View</span> </a> <div class="horizontalToolbarSeparator visibleLargeView"></div> <button id="firstPage" class="secondaryToolbarButton firstPage" title="Go to First Page" tabindex="56" data-l10n-id="first_page"> <span data-l10n-id="first_page_label">Go to First Page</span> </button> <button id="lastPage" class="secondaryToolbarButton lastPage" title="Go to Last Page" tabindex="57" data-l10n-id="last_page"> <span data-l10n-id="last_page_label">Go to Last Page</span> </button> <div class="horizontalToolbarSeparator"></div> <button id="pageRotateCw" class="secondaryToolbarButton rotateCw" title="Rotate Clockwise" tabindex="58" data-l10n-id="page_rotate_cw"> <span data-l10n-id="page_rotate_cw_label">Rotate Clockwise</span> </button> <button id="pageRotateCcw" class="secondaryToolbarButton rotateCcw" title="Rotate Counterclockwise" tabindex="59" data-l10n-id="page_rotate_ccw"> <span data-l10n-id="page_rotate_ccw_label">Rotate Counterclockwise</span> </button> <div class="horizontalToolbarSeparator"></div> <button id="cursorSelectTool" class="secondaryToolbarButton selectTool toggled" title="Enable Text Selection Tool" tabindex="60" data-l10n-id="cursor_text_select_tool"> <span data-l10n-id="cursor_text_select_tool_label">Text Selection Tool</span> </button> <button id="cursorHandTool" class="secondaryToolbarButton handTool" title="Enable Hand Tool" tabindex="61" data-l10n-id="cursor_hand_tool"> <span data-l10n-id="cursor_hand_tool_label">Hand Tool</span> </button> <div class="horizontalToolbarSeparator"></div> <button id="scrollVertical" class="secondaryToolbarButton scrollModeButtons scrollVertical toggled" title="Use Vertical Scrolling" tabindex="62" data-l10n-id="scroll_vertical"> <span data-l10n-id="scroll_vertical_label">Vertical Scrolling</span> </button> <button id="scrollHorizontal" class="secondaryToolbarButton scrollModeButtons scrollHorizontal" title="Use Horizontal Scrolling" tabindex="63" data-l10n-id="scroll_horizontal"> <span data-l10n-id="scroll_horizontal_label">Horizontal Scrolling</span> </button> <button id="scrollWrapped" class="secondaryToolbarButton scrollModeButtons scrollWrapped" title="Use Wrapped Scrolling" tabindex="64" data-l10n-id="scroll_wrapped"> <span data-l10n-id="scroll_wrapped_label">Wrapped Scrolling</span> </button> <div class="horizontalToolbarSeparator scrollModeButtons"></div> <button id="spreadNone" class="secondaryToolbarButton spreadModeButtons spreadNone toggled" title="Do not join page spreads" tabindex="65" data-l10n-id="spread_none"> <span data-l10n-id="spread_none_label">No Spreads</span> </button> <button id="spreadOdd" class="secondaryToolbarButton spreadModeButtons spreadOdd" title="Join page spreads starting with odd-numbered pages" tabindex="66" data-l10n-id="spread_odd"> <span data-l10n-id="spread_odd_label">Odd Spreads</span> </button> <button id="spreadEven" class="secondaryToolbarButton spreadModeButtons spreadEven" title="Join page spreads starting with even-numbered pages" tabindex="67" data-l10n-id="spread_even"> <span data-l10n-id="spread_even_label">Even Spreads</span> </button> <div class="horizontalToolbarSeparator spreadModeButtons"></div> <button id="documentProperties" class="secondaryToolbarButton documentProperties" title="Document Properties…" tabindex="68" data-l10n-id="document_properties"> <span data-l10n-id="document_properties_label">Document Properties…</span> </button> </div> </div> <!-- secondaryToolbar --> <div class="toolbar"> <div id="toolbarContainer"> <div id="toolbarViewer"> <div id="toolbarViewerLeft"> <button id="sidebarToggle" class="toolbarButton" title="Toggle Sidebar" tabindex="11" data-l10n-id="toggle_sidebar"> <span data-l10n-id="toggle_sidebar_label">Toggle Sidebar</span> </button> <div class="toolbarButtonSpacer"></div> <button id="viewFind" class="toolbarButton" title="Find in Document" tabindex="12" data-l10n-id="findbar"> <span data-l10n-id="findbar_label">Find</span> </button> <div class="splitToolbarButton hiddenSmallView"> <button class="toolbarButton pageUp" title="Previous Page" id="previous" tabindex="13" data-l10n-id="previous"> <span data-l10n-id="previous_label">Previous</span> </button> <div class="splitToolbarButtonSeparator"></div> <button class="toolbarButton pageDown" title="Next Page" id="next" tabindex="14" data-l10n-id="next"> <span data-l10n-id="next_label">Next</span> </button> </div> <input type="number" id="pageNumber" class="toolbarField pageNumber" title="Page" value="1" size="4" min="1" tabindex="15" data-l10n-id="page"> <span id="numPages" class="toolbarLabel"></span> </div> <div id="toolbarViewerRight"> <button id="presentationMode" class="toolbarButton presentationMode hiddenLargeView" title="Switch to Presentation Mode" tabindex="31" data-l10n-id="presentation_mode"> <span data-l10n-id="presentation_mode_label">Presentation Mode</span> </button> <button id="openFile" class="toolbarButton openFile hiddenLargeView" title="Open File" tabindex="32" data-l10n-id="open_file"> <span data-l10n-id="open_file_label">Open</span> </button> <button id="print" class="toolbarButton print hiddenMediumView" title="Print" tabindex="33" data-l10n-id="print"> <span data-l10n-id="print_label">Print</span> </button> <button id="download" class="toolbarButton download hiddenMediumView" title="Download" tabindex="34" data-l10n-id="download"> <span data-l10n-id="download_label">Download</span> </button> <a href="#" id="viewBookmark" class="toolbarButton bookmark hiddenSmallView" title="Current view (copy or open in new window)" tabindex="35" data-l10n-id="bookmark"> <span data-l10n-id="bookmark_label">Current View</span> </a> <div class="verticalToolbarSeparator hiddenSmallView"></div> <button id="secondaryToolbarToggle" class="toolbarButton" title="Tools" tabindex="36" data-l10n-id="tools"> <span data-l10n-id="tools_label">Tools</span> </button> </div> <div id="toolbarViewerMiddle"> <div class="splitToolbarButton"> <button id="zoomOut" class="toolbarButton zoomOut" title="Zoom Out" tabindex="21" data-l10n-id="zoom_out"> <span data-l10n-id="zoom_out_label">Zoom Out</span> </button> <div class="splitToolbarButtonSeparator"></div> <button id="zoomIn" class="toolbarButton zoomIn" title="Zoom In" tabindex="22" data-l10n-id="zoom_in"> <span data-l10n-id="zoom_in_label">Zoom In</span> </button> </div> <span id="scaleSelectContainer" class="dropdownToolbarButton"> <select id="scaleSelect" title="Zoom" tabindex="23" data-l10n-id="zoom"> <option id="pageAutoOption" title="" value="auto" selected="selected" data-l10n-id="page_scale_auto">Automatic Zoom</option> <option id="pageActualOption" title="" value="page-actual" data-l10n-id="page_scale_actual">Actual Size</option> <option id="pageFitOption" title="" value="page-fit" data-l10n-id="page_scale_fit">Page Fit</option> <option id="pageWidthOption" title="" value="page-width" data-l10n-id="page_scale_width">Page Width</option> <option id="customScaleOption" title="" value="custom" disabled="disabled" hidden="true"></option> <option title="" value="0.5" data-l10n-id="page_scale_percent" data-l10n-args='{ "scale": 50 }'>50%</option> <option title="" value="0.75" data-l10n-id="page_scale_percent" data-l10n-args='{ "scale": 75 }'>75%</option> <option title="" value="1" data-l10n-id="page_scale_percent" data-l10n-args='{ "scale": 100 }'>100%</option> <option title="" value="1.25" data-l10n-id="page_scale_percent" data-l10n-args='{ "scale": 125 }'>125%</option> <option title="" value="1.5" data-l10n-id="page_scale_percent" data-l10n-args='{ "scale": 150 }'>150%</option> <option title="" value="2" data-l10n-id="page_scale_percent" data-l10n-args='{ "scale": 200 }'>200%</option> <option title="" value="3" data-l10n-id="page_scale_percent" data-l10n-args='{ "scale": 300 }'>300%</option> <option title="" value="4" data-l10n-id="page_scale_percent" data-l10n-args='{ "scale": 400 }'>400%</option> </select> </span> </div> </div> <div id="loadingBar"> <div class="progress indeterminate" style="width:100%;"> <div class="glimmer"> </div> </div> </div> </div> </div> <menu type="context" id="viewerContextMenu"> <menuitem id="contextFirstPage" label="First Page" data-l10n-id="first_page"></menuitem> <menuitem id="contextLastPage" label="Last Page" data-l10n-id="last_page"></menuitem> <menuitem id="contextPageRotateCw" label="Rotate Clockwise" data-l10n-id="page_rotate_cw"></menuitem> <menuitem id="contextPageRotateCcw" label="Rotate Counter-Clockwise" data-l10n-id="page_rotate_ccw"></menuitem> </menu> <div id="viewerContainer" tabindex="0"> <div id="viewer" class="pdfViewer"></div> </div> <div id="errorWrapper" hidden='true'> <div id="errorMessageLeft"> <span id="errorMessage"></span> <button id="errorShowMore" data-l10n-id="error_more_info"> More Information </button> <button id="errorShowLess" data-l10n-id="error_less_info" hidden='true'> Less Information </button> </div> <div id="errorMessageRight"> <button id="errorClose" data-l10n-id="error_close"> Close </button> </div> <div class="clearBoth"></div> <textarea id="errorMoreInfo" hidden='true' readonly="readonly"></textarea> </div> </div> <!-- mainContainer --> <div id="overlayContainer" class="hidden"> <div id="passwordOverlay" class="container hidden"> <div class="dialog"> <div class="row"> <p id="passwordText" data-l10n-id="password_label">Enter the password to open this PDF file:</p> </div> <div class="row"> <input type="password" id="password" class="toolbarField"> </div> <div class="buttonRow"> <button id="passwordCancel" class="overlayButton"><span data-l10n-id="password_cancel">Cancel</span></button> <button id="passwordSubmit" class="overlayButton"><span data-l10n-id="password_ok">OK</span></button> </div> </div> </div> <div id="documentPropertiesOverlay" class="container hidden"> <div class="dialog"> <div class="row"> <span data-l10n-id="document_properties_file_name">File name:</span> <p id="fileNameField">-</p> </div> <div class="row"> <span data-l10n-id="document_properties_file_size">File size:</span> <p id="fileSizeField">-</p> </div> <div class="separator"></div> <div class="row"> <span data-l10n-id="document_properties_title">Title:</span> <p id="titleField">-</p> </div> <div class="row"> <span data-l10n-id="document_properties_author">Author:</span> <p id="authorField">-</p> </div> <div class="row"> <span data-l10n-id="document_properties_subject">Subject:</span> <p id="subjectField">-</p> </div> <div class="row"> <span data-l10n-id="document_properties_keywords">Keywords:</span> <p id="keywordsField">-</p> </div> <div class="row"> <span data-l10n-id="document_properties_creation_date">Creation Date:</span> <p id="creationDateField">-</p> </div> <div class="row"> <span data-l10n-id="document_properties_modification_date">Modification Date:</span> <p id="modificationDateField">-</p> </div> <div class="row"> <span data-l10n-id="document_properties_creator">Creator:</span> <p id="creatorField">-</p> </div> <div class="separator"></div> <div class="row"> <span data-l10n-id="document_properties_producer">PDF Producer:</span> <p id="producerField">-</p> </div> <div class="row"> <span data-l10n-id="document_properties_version">PDF Version:</span> <p id="versionField">-</p> </div> <div class="row"> <span data-l10n-id="document_properties_page_count">Page Count:</span> <p id="pageCountField">-</p> </div> <div class="row"> <span data-l10n-id="document_properties_page_size">Page Size:</span> <p id="pageSizeField">-</p> </div> <div class="separator"></div> <div class="row"> <span data-l10n-id="document_properties_linearized">Fast Web View:</span> <p id="linearizedField">-</p> </div> <div class="buttonRow"> <button id="documentPropertiesClose" class="overlayButton"><span data-l10n-id="document_properties_close">Close</span></button> </div> </div> </div> <!--#if !(FIREFOX || MOZCENTRAL)--> <div id="printServiceOverlay" class="container hidden"> <div class="dialog"> <div class="row"> <span data-l10n-id="print_progress_message">Preparing document for printing…</span> </div> <div class="row"> <progress value="0" max="100"></progress> <span data-l10n-id="print_progress_percent" data-l10n-args='{ "progress": 0 }' class="relative-progress">0%</span> </div> <div class="buttonRow"> <button id="printCancel" class="overlayButton"><span data-l10n-id="print_progress_close">Cancel</span></button> </div> </div> </div> <!--#endif--> <!--#if CHROME--> <!--#include viewer-snippet-chrome-overlays.html--> <!--#endif--> </div> <!-- overlayContainer --> </div> <!-- outerContainer --> <div id="printContainer"></div> </div> <!-- pdfjs-viewer --> </div></div></details></div><p><br/></p></div></div></main><aside><section class="o-columnbox1"><header><h2>Jump To</h2></header><div class="c-jump"><a href="/uc/item/80s7v9kh">Article</a><ul class="c-jump__tree" aria-labelledby="c-jump__label"><li><a href="/uc/item/80s7v9kh">Abstract</a></li><li><a href="/uc/item/80s7v9kh">Main Content</a></li></ul><ul class="c-jump__siblings"><li><a href="/uc/item/80s7v9kh">Metrics</a></li><li><a href="/uc/item/80s7v9kh">Author & <!-- -->Article<!-- --> Info</a></li></ul></div></section><div><section class="o-columnbox1"><header><h2>Related Items</h2></header><ul class="c-relateditems"><li><h3><a class="o-textlink__secondary" href="/uc/item/7b46s9w7"><div class="c-clientmarkup">A clinically applicable integrative molecular classification of meningiomas</div></a></h3><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ANassiri%2C%20Farshad">Nassiri, Farshad</a>; </li><li><a href="/search/?q=author%3ALiu%2C%20Jeff">Liu, Jeff</a>; </li><li><a href="/search/?q=author%3APatil%2C%20Vikas">Patil, Vikas</a>; </li><li><a href="/search/?q=author%3AMamatjan%2C%20Yasin">Mamatjan, Yasin</a>; </li><li><a href="/search/?q=author%3AWang%2C%20Justin%20Z">Wang, Justin Z</a>; </li><li><a href="/search/?q=author%3AHugh-White%2C%20Rupert">Hugh-White, Rupert</a>; </li><li><a href="/search/?q=author%3AMacklin%2C%20Andrew%20M">Macklin, Andrew M</a>; </li><li><a href="/search/?q=author%3AKhan%2C%20Shahbaz">Khan, Shahbaz</a>; </li><li><a href="/search/?q=author%3ASingh%2C%20Olivia">Singh, Olivia</a>; </li><li><a href="/search/?q=author%3AKarimi%2C%20Shirin">Karimi, Shirin</a>; </li><li><a href="/search/?q=author%3ACorona%2C%20Rosario%20I">Corona, Rosario I</a>; </li><li><a href="/search/?q=author%3ALiu%2C%20Lydia%20Y">Liu, Lydia Y</a>; </li><li><a href="/search/?q=author%3AChen%2C%20Caroline%20Y">Chen, Caroline Y</a>; </li><li><a href="/search/?q=author%3AChakravarthy%2C%20Ankur">Chakravarthy, Ankur</a>; </li><li><a href="/search/?q=author%3AWei%2C%20Qingxia">Wei, Qingxia</a>; </li><li><a href="/search/?q=author%3AMehani%2C%20Bharati">Mehani, Bharati</a>; </li><li><a href="/search/?q=author%3ASuppiah%2C%20Suganth">Suppiah, Suganth</a>; </li><li><a href="/search/?q=author%3AGao%2C%20Andrew">Gao, Andrew</a>; </li><li><a href="/search/?q=author%3AWorkewych%2C%20Adriana%20M">Workewych, Adriana M</a>; </li><li><a href="/search/?q=author%3ATabatabai%2C%20Ghazaleh">Tabatabai, Ghazaleh</a>; </li><li><a href="/search/?q=author%3ABoutros%2C%20Paul%20C">Boutros, Paul C</a>; </li><li><a href="/search/?q=author%3ABader%2C%20Gary%20D">Bader, Gary D</a>; </li><li><a href="/search/?q=author%3Ade%20Carvalho%2C%20Daniel%20D">de Carvalho, Daniel D</a>; </li><li><a href="/search/?q=author%3AKislinger%2C%20Thomas">Kislinger, Thomas</a>; </li><li><a href="/search/?q=author%3AAldape%2C%20Kenneth">Aldape, Kenneth</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AZadeh%2C%20Gelareh">Zadeh, Gelareh</a> </li></ul></div></li><li><h3><a class="o-textlink__secondary" href="/uc/item/7hc2j2t9"><div class="c-clientmarkup">KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study.</div></a></h3><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AShah%2C%20Bijal">Shah, Bijal</a>; </li><li><a href="/search/?q=author%3AGhobadi%2C%20Armin">Ghobadi, Armin</a>; </li><li><a href="/search/?q=author%3AOluwole%2C%20Olalekan">Oluwole, Olalekan</a>; </li><li><a href="/search/?q=author%3ALogan%2C%20Aaron">Logan, Aaron</a>; </li><li><a href="/search/?q=author%3ABoissel%2C%20Nicolas">Boissel, Nicolas</a>; </li><li><a href="/search/?q=author%3ACassaday%2C%20Ryan">Cassaday, Ryan</a>; </li><li><a href="/search/?q=author%3ALeguay%2C%20Thibaut">Leguay, Thibaut</a>; </li><li><a href="/search/?q=author%3ABishop%2C%20Michael">Bishop, Michael</a>; </li><li><a href="/search/?q=author%3ATopp%2C%20Max">Topp, Max</a>; </li><li><a href="/search/?q=author%3ATzachanis%2C%20Dimitrios">Tzachanis, Dimitrios</a>; </li><li><a href="/search/?q=author%3AODwyer%2C%20Kristen">ODwyer, Kristen</a>; </li><li><a href="/search/?q=author%3AArellano%2C%20Martha">Arellano, Martha</a>; </li><li><a href="/search/?q=author%3ALin%2C%20Yi">Lin, Yi</a>; </li><li><a href="/search/?q=author%3ABaer%2C%20Maria">Baer, Maria</a>; </li><li><a href="/search/?q=author%3ASchiller%2C%20Gary">Schiller, Gary</a>; </li><li><a href="/search/?q=author%3APark%2C%20Jae">Park, Jae</a>; </li><li><a href="/search/?q=author%3ASubklewe%2C%20Marion">Subklewe, Marion</a>; </li><li><a href="/search/?q=author%3AAbedi%2C%20Mehrdad">Abedi, Mehrdad</a>; </li><li><a href="/search/?q=author%3AMinnema%2C%20Monique">Minnema, Monique</a>; </li><li><a href="/search/?q=author%3AWierda%2C%20William">Wierda, William</a>; </li><li><a href="/search/?q=author%3ADeAngelo%2C%20Daniel">DeAngelo, Daniel</a>; </li><li><a href="/search/?q=author%3AStiff%2C%20Patrick">Stiff, Patrick</a>; </li><li><a href="/search/?q=author%3AJeyakumar%2C%20Deepa">Jeyakumar, Deepa</a>; </li><li><a href="/search/?q=author%3AFeng%2C%20Chaoling">Feng, Chaoling</a>; </li><li><a href="/search/?q=author%3ADong%2C%20Jinghui">Dong, Jinghui</a>; </li><li><a href="/search/?q=author%3AShen%2C%20Tong">Shen, Tong</a>; </li><li><a href="/search/?q=author%3AMilletti%2C%20Francesca">Milletti, Francesca</a>; </li><li><a href="/search/?q=author%3ARossi%2C%20John">Rossi, John</a>; </li><li><a href="/search/?q=author%3AVezan%2C%20Remus">Vezan, Remus</a>; </li><li><a href="/search/?q=author%3AMasouleh%2C%20Behzad">Masouleh, Behzad</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AHouot%2C%20Roch">Houot, Roch</a> </li></ul></div></li><li><h3><a class="o-textlink__secondary" href="/uc/item/7w74367c"><div class="c-clientmarkup">The Relationship of Duffy Gene Polymorphism with High-Sensitivity C-Reactive Protein, Mortality, and Cardiovascular Outcomes in Black Individuals.</div></a></h3><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AHa%2C%20Edward">Ha, Edward</a>; </li><li><a href="/search/?q=author%3AHaessler%2C%20Jeffery">Haessler, Jeffery</a>; </li><li><a href="/search/?q=author%3ATaylor%2C%20Kent">Taylor, Kent</a>; </li><li><a href="/search/?q=author%3ATuftin%2C%20Bjoernar">Tuftin, Bjoernar</a>; </li><li><a href="/search/?q=author%3ABriggs%2C%20Matt">Briggs, Matt</a>; </li><li><a href="/search/?q=author%3AParikh%2C%20Manish">Parikh, Manish</a>; </li><li><a href="/search/?q=author%3APeterson%2C%20Stephen">Peterson, Stephen</a>; </li><li><a href="/search/?q=author%3AGerszten%2C%20Robert">Gerszten, Robert</a>; </li><li><a href="/search/?q=author%3AWilson%2C%20James">Wilson, James</a>; </li><li><a href="/search/?q=author%3AKelsey%2C%20Karl">Kelsey, Karl</a>; </li><li><a href="/search/?q=author%3ATahir%2C%20Usman">Tahir, Usman</a>; </li><li><a href="/search/?q=author%3ASeeman%2C%20Teresa">Seeman, Teresa</a>; </li><li><a href="/search/?q=author%3ARich%2C%20Stephen">Rich, Stephen</a>; </li><li><a href="/search/?q=author%3ACarson%2C%20April">Carson, April</a>; </li><li><a href="/search/?q=author%3APost%2C%20Wendy">Post, Wendy</a>; </li><li><a href="/search/?q=author%3AKooperberg%2C%20Charles">Kooperberg, Charles</a>; </li><li><a href="/search/?q=author%3ARotter%2C%20Jerome">Rotter, Jerome</a>; </li><li><a href="/search/?q=author%3ARaffield%2C%20Laura">Raffield, Laura</a>; </li><li><a href="/search/?q=author%3AAuer%2C%20Paul">Auer, Paul</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AReiner%2C%20Alex">Reiner, Alex</a> </li></ul></div></li><li><h3><a class="o-textlink__secondary" href="/uc/item/8sm5d1xw"><div class="c-clientmarkup">Distinct genetic liability profiles define clinically relevant patient strata across common diseases.</div></a></h3><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ATrastulla%2C%20Lucia">Trastulla, Lucia</a>; </li><li><a href="/search/?q=author%3ADolgalev%2C%20Georgii">Dolgalev, Georgii</a>; </li><li><a href="/search/?q=author%3AMoser%2C%20Sylvain">Moser, Sylvain</a>; </li><li><a href="/search/?q=author%3AJim%C3%A9nez-Barr%C3%B3n%2C%20Laura">Jiménez-Barrón, Laura</a>; </li><li><a href="/search/?q=author%3AAndlauer%2C%20Till">Andlauer, Till</a>; </li><li><a href="/search/?q=author%3Avon%20Scheidt%2C%20Moritz">von Scheidt, Moritz</a>; </li><li><a href="/search/?q=author%3ABudde%2C%20Monika">Budde, Monika</a>; </li><li><a href="/search/?q=author%3AHeilbronner%2C%20Urs">Heilbronner, Urs</a>; </li><li><a href="/search/?q=author%3APapiol%2C%20Sergi">Papiol, Sergi</a>; </li><li><a href="/search/?q=author%3ATeumer%2C%20Alexander">Teumer, Alexander</a>; </li><li><a href="/search/?q=author%3AHomuth%2C%20Georg">Homuth, Georg</a>; </li><li><a href="/search/?q=author%3AV%C3%B6lzke%2C%20Henry">Völzke, Henry</a>; </li><li><a href="/search/?q=author%3AD%C3%B6rr%2C%20Marcus">Dörr, Marcus</a>; </li><li><a href="/search/?q=author%3AFalkai%2C%20Peter">Falkai, Peter</a>; </li><li><a href="/search/?q=author%3ASchulze%2C%20Thomas">Schulze, Thomas</a>; </li><li><a href="/search/?q=author%3AGagneur%2C%20Julien">Gagneur, Julien</a>; </li><li><a href="/search/?q=author%3AIorio%2C%20Francesco">Iorio, Francesco</a>; </li><li><a href="/search/?q=author%3AM%C3%BCller-Myhsok%2C%20Bertram">Müller-Myhsok, Bertram</a>; </li><li><a href="/search/?q=author%3ASchunkert%2C%20Heribert">Schunkert, Heribert</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AZiller%2C%20Michael">Ziller, Michael</a> </li></ul></div></li><li><h3><a class="o-textlink__secondary" href="/uc/item/8w35h9b5"><div class="c-clientmarkup">Ensuring Equitable Care in Diabetes Management Among Patients of Health Resources & Services Administration-Funded Health Centers in the United States.</div></a></h3><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3APourat%2C%20Nadereh">Pourat, Nadereh</a>; </li><li><a href="/search/?q=author%3AChen%2C%20Xiao">Chen, Xiao</a>; </li><li><a href="/search/?q=author%3ALu%2C%20Connie">Lu, Connie</a>; </li><li><a href="/search/?q=author%3AZhou%2C%20Weihao">Zhou, Weihao</a>; </li><li><a href="/search/?q=author%3AHair%2C%20Brionna">Hair, Brionna</a>; </li><li><a href="/search/?q=author%3ABolton%2C%20Joshua">Bolton, Joshua</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ASripipatana%2C%20Alek">Sripipatana, Alek</a> </li></ul></div></li></ul></section></div></aside></div></div><div><div class="c-toplink"><a href="javascript:window.scrollTo(0, 0)">Top</a></div><footer class="c-footer"><nav class="c-footer__nav"><ul><li><a href="/">Home</a></li><li><a href="/aboutEschol">About eScholarship</a></li><li><a href="/campuses">Campus Sites</a></li><li><a href="/ucoapolicies">UC Open Access Policy</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="https://www.cdlib.org/about/accessibility.html">Accessibility</a></li><li><a href="/privacypolicy">Privacy Statement</a></li><li><a href="/policies">Site Policies</a></li><li><a href="/terms">Terms of Use</a></li><li><a href="/login"><strong>Admin Login</strong></a></li><li><a href="https://help.escholarship.org"><strong>Help</strong></a></li></ul></nav><div class="c-footer__logo"><a href="/"><img class="c-lazyimage" data-src="/images/logo_footer-eschol.svg" alt="eScholarship, University of California"/></a></div><div class="c-footer__copyright">Powered by the<br/><a href="http://www.cdlib.org">California Digital Library</a><br/>Copyright © 2017<br/>The Regents of the University of California</div></footer></div></div></div></div> <script>window.jscholApp_initialPageData = {"added":"2021-09-20","advisors":null,"altmetrics_ok":true,"appearsIn":[{"id":"ucla_postprints","name":"UCLA Previously Published Works"}],"attrs":{"doi":"10.1093/noajnl/vdab051","abstract":"<h4>Background</h4>Early identification of glioma molecular phenotypes can lead to understanding of patient prognosis and treatment guidance. We aimed to develop a multiparametric MRI texture analysis model using a combination of conventional and diffusion MRI to predict a wide range of biomarkers in patients with glioma.<h4>Methods</h4>In this retrospective study, patients were included if they (1) had diagnosis of gliomas with known <i>IDH1</i>, <i>EGFR</i>, <i>MGMT</i>, <i>ATRX</i>, <i>TP53</i>, and <i>PTEN</i> status from surgical pathology and (2) had preoperative MRI including FLAIR, T1c+ and diffusion for radiomic texture analysis. Statistical analysis included logistic regression and receiver-operating characteristic (ROC) curve analysis to determine the optimal model for predicting glioma biomarkers. A comparative analysis between ROCs (conventional only vs conventional + diffusion) was performed.<h4>Results</h4>From a total of 111 patients included, 91 (82%) were categorized to training and 20 (18%) to test datasets. Constructed cross-validated model using a combination of texture features from conventional and diffusion MRI resulted in overall AUC/accuracy of 1/79% for <i>IDH1</i>, 0.99/80% for <i>ATRX</i>, 0.79/67% for <i>MGMT</i>, and 0.77/66% for <i>EGFR</i>. The addition of diffusion data to conventional MRI features significantly (<i>P</i> < .05) increased predictive performance for <i>IDH1</i>, <i>MGMT</i>, and <i>ATRX</i>. The overall accuracy of the final model in predicting biomarkers in the test group was 80% (<i>IDH1</i>), 70% (<i>ATRX</i>), 70% (<i>MGMT</i>), and 75% (<i>EGFR</i>).<h4>Conclusion</h4>Addition of MR diffusion to conventional MRI features provides added diagnostic value in preoperative determination of IDH1, MGMT, and ATRX in patients with glioma.","keywords":["Biomedical and Clinical Sciences","Clinical Sciences","Oncology and Carcinogenesis","Cancer","Clinical Research","Neurosciences","Brain Disorders","Rare Diseases","Brain Cancer","Biomedical Imaging","Detection","screening and diagnosis","4.2 Evaluation of markers and technologies","glioma","MR diffusion","multiparametric MRI","radiogenomics","texture analysis"],"local_ids":[{"id":"3482564","type":"oa_harvester"}],"submitter":"auto@EuroPMC.uc","thumbnail":{"width":121,"height":156,"asset_id":"b23628ad5854dae279b2838ac0f928e0755645fc15f27641a47ff9f029b1d00f","timestamp":1632144030,"image_type":"jpeg"},"pub_status":"externalPub","ext_journal":{"issn":"0801-3284","name":"Neuro-Oncology Advances","fpage":"vdab051-","issue":"1","volume":"3"},"native_file":{"name":"PMC8156980.pdf","size":401905},"content_length":401905,"uc_pms_pub_type":"journal-article","is_peer_reviewed":true},"authors":[{"name":"Kihira, Shingo","fname":"Shingo","lname":"Kihira"},{"name":"Tsankova, Nadejda","fname":"Nadejda","lname":"Tsankova"},{"name":"Bauer, Adam","fname":"Adam","lname":"Bauer"},{"name":"Sakai, Yu","fname":"Yu","lname":"Sakai"},{"name":"Mahmoudi, Keon","fname":"Keon","lname":"Mahmoudi"},{"name":"Zubizarreta, Nicole","fname":"Nicole","lname":"Zubizarreta"},{"name":"Houldsworth, Jane","fname":"Jane","lname":"Houldsworth"},{"name":"Khan, Fahad","fname":"Fahad","lname":"Khan"},{"name":"Salamon, Noriko","email":"nsalamon@mednet.ucla.edu","fname":"Noriko","lname":"Salamon","ORCID_id":"0000-0002-3520-9467"},{"name":"Hormigo, Adilia","fname":"Adilia","lname":"Hormigo"},{"name":"Nael, Kambiz","email":"kanael@mednet.ucla.edu","fname":"Kambiz","lname":"Nael","ORCID_id":"0000-0002-4194-9488"}],"citation":{"id":"qt80s7v9kh","type":"article","title":"Multiparametric MRI Texture Analysis in Prediction of Glioma Biomarker Status: Added Value of MR Diffusion","URL":"http://escholarship.org/uc/item/80s7v9kh","issued":{"raw":["2021-1-1"]},"doi":"10.1093/noajnl/vdab051","issn":null,"author":[{"literal":"Kihira, Shingo","given":"Shingo","family":"Kihira"},{"literal":"Tsankova, Nadejda","given":"Nadejda","family":"Tsankova"},{"literal":"Bauer, Adam","given":"Adam","family":"Bauer"},{"literal":"Sakai, Yu","given":"Yu","family":"Sakai"},{"literal":"Mahmoudi, Keon","given":"Keon","family":"Mahmoudi"},{"literal":"Zubizarreta, Nicole","given":"Nicole","family":"Zubizarreta"},{"literal":"Houldsworth, Jane","given":"Jane","family":"Houldsworth"},{"literal":"Khan, Fahad","given":"Fahad","family":"Khan"},{"literal":"Salamon, Noriko","email":"nsalamon@mednet.ucla.edu","given":"Noriko","family":"Salamon","ORCID_id":"0000-0002-3520-9467"},{"literal":"Hormigo, Adilia","given":"Adilia","family":"Hormigo"},{"literal":"Nael, Kambiz","email":"kanael@mednet.ucla.edu","given":"Kambiz","family":"Nael","ORCID_id":"0000-0002-4194-9488"}]},"content_html":false,"content_key":"21024f858ab41b3aa37c148e97b8e8ff","content_type":"application/pdf","data_digest":"Y7mL8LgBqdgaf253WJpNrg==","editors":null,"genre":"article","id":"80s7v9kh","index_digest":"Cpt5bAwaiAMdSgk7RoB4lw==","last_indexed":"2023-10-10 14:59:34 +0000","oa_policy":"ucla","ordering_in_sect":null,"pdf_url":"/content/qt80s7v9kh/qt80s7v9kh.pdf?t=qzpyy6","preview_key":null,"published":"2021","rights":null,"sidebar":[{"id":1,"kind":"RecentArticles","attrs":{"items":[{"id":"qt7b46s9w7","title":"A clinically applicable integrative molecular classification of meningiomas","authors":[{"name":"Nassiri, Farshad","fname":"Farshad","lname":"Nassiri"},{"name":"Liu, Jeff","fname":"Jeff","lname":"Liu"},{"name":"Patil, Vikas","fname":"Vikas","lname":"Patil"},{"name":"Mamatjan, Yasin","fname":"Yasin","lname":"Mamatjan"},{"name":"Wang, Justin Z","fname":"Justin Z","lname":"Wang"},{"name":"Hugh-White, Rupert","fname":"Rupert","lname":"Hugh-White"},{"name":"Macklin, Andrew M","fname":"Andrew M","lname":"Macklin"},{"name":"Khan, Shahbaz","fname":"Shahbaz","lname":"Khan"},{"name":"Singh, Olivia","fname":"Olivia","lname":"Singh"},{"name":"Karimi, Shirin","fname":"Shirin","lname":"Karimi"},{"name":"Corona, Rosario I","fname":"Rosario I","lname":"Corona"},{"name":"Liu, Lydia Y","fname":"Lydia Y","lname":"Liu"},{"name":"Chen, Caroline Y","fname":"Caroline Y","lname":"Chen"},{"name":"Chakravarthy, Ankur","fname":"Ankur","lname":"Chakravarthy"},{"name":"Wei, Qingxia","fname":"Qingxia","lname":"Wei"},{"name":"Mehani, Bharati","fname":"Bharati","lname":"Mehani"},{"name":"Suppiah, Suganth","fname":"Suganth","lname":"Suppiah"},{"name":"Gao, Andrew","fname":"Andrew","lname":"Gao"},{"name":"Workewych, Adriana M","fname":"Adriana M","lname":"Workewych"},{"name":"Tabatabai, Ghazaleh","fname":"Ghazaleh","lname":"Tabatabai"},{"name":"Boutros, Paul C","email":"pboutros@mednet.ucla.edu","fname":"Paul C","lname":"Boutros","ORCID_id":"0000-0003-0553-7520"},{"name":"Bader, Gary D","fname":"Gary D","lname":"Bader"},{"name":"de Carvalho, Daniel D","fname":"Daniel D","lname":"de Carvalho"},{"name":"Kislinger, Thomas","fname":"Thomas","lname":"Kislinger"},{"name":"Aldape, Kenneth","fname":"Kenneth","lname":"Aldape"},{"name":"Zadeh, Gelareh","fname":"Gelareh","lname":"Zadeh"}],"genre":"article","author_hide":null,"editors":[],"advisors":[]},{"id":"qt7hc2j2t9","title":"KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study.","authors":[{"name":"Shah, Bijal","fname":"Bijal","lname":"Shah"},{"name":"Ghobadi, Armin","fname":"Armin","lname":"Ghobadi"},{"name":"Oluwole, Olalekan","fname":"Olalekan","lname":"Oluwole"},{"name":"Logan, Aaron","email":"aaron.logan@ucsf.edu","fname":"Aaron","lname":"Logan"},{"name":"Boissel, Nicolas","fname":"Nicolas","lname":"Boissel"},{"name":"Cassaday, Ryan","fname":"Ryan","lname":"Cassaday"},{"name":"Leguay, Thibaut","fname":"Thibaut","lname":"Leguay"},{"name":"Bishop, Michael","fname":"Michael","lname":"Bishop"},{"name":"Topp, Max","fname":"Max","lname":"Topp"},{"name":"Tzachanis, Dimitrios","email":"dtzachanis@ucsd.edu","fname":"Dimitrios","lname":"Tzachanis"},{"name":"ODwyer, Kristen","fname":"Kristen","lname":"ODwyer"},{"name":"Arellano, Martha","fname":"Martha","lname":"Arellano"},{"name":"Lin, Yi","fname":"Yi","lname":"Lin"},{"name":"Baer, Maria","fname":"Maria","lname":"Baer"},{"name":"Schiller, Gary","email":"gschiller@mednet.ucla.edu","fname":"Gary","lname":"Schiller"},{"name":"Park, Jae","fname":"Jae","lname":"Park"},{"name":"Subklewe, Marion","fname":"Marion","lname":"Subklewe"},{"name":"Abedi, Mehrdad","fname":"Mehrdad","lname":"Abedi"},{"name":"Minnema, Monique","fname":"Monique","lname":"Minnema"},{"name":"Wierda, William","fname":"William","lname":"Wierda"},{"name":"DeAngelo, Daniel","fname":"Daniel","lname":"DeAngelo"},{"name":"Stiff, Patrick","fname":"Patrick","lname":"Stiff"},{"name":"Jeyakumar, Deepa","email":"djeyakum@uci.edu","fname":"Deepa","lname":"Jeyakumar"},{"name":"Feng, Chaoling","fname":"Chaoling","lname":"Feng"},{"name":"Dong, Jinghui","fname":"Jinghui","lname":"Dong"},{"name":"Shen, Tong","fname":"Tong","lname":"Shen"},{"name":"Milletti, Francesca","fname":"Francesca","lname":"Milletti"},{"name":"Rossi, John","fname":"John","lname":"Rossi"},{"name":"Vezan, Remus","fname":"Remus","lname":"Vezan"},{"name":"Masouleh, Behzad","fname":"Behzad","lname":"Masouleh"},{"name":"Houot, Roch","fname":"Roch","lname":"Houot"}],"genre":"article","author_hide":null,"editors":[],"advisors":[]},{"id":"qt7w74367c","title":"The Relationship of Duffy Gene Polymorphism with High-Sensitivity C-Reactive Protein, Mortality, and Cardiovascular Outcomes in Black Individuals.","authors":[{"name":"Ha, Edward","fname":"Edward","lname":"Ha"},{"name":"Haessler, Jeffery","fname":"Jeffery","lname":"Haessler"},{"name":"Taylor, Kent","fname":"Kent","lname":"Taylor"},{"name":"Tuftin, Bjoernar","fname":"Bjoernar","lname":"Tuftin"},{"name":"Briggs, Matt","fname":"Matt","lname":"Briggs"},{"name":"Parikh, Manish","fname":"Manish","lname":"Parikh"},{"name":"Peterson, Stephen","fname":"Stephen","lname":"Peterson"},{"name":"Gerszten, Robert","fname":"Robert","lname":"Gerszten"},{"name":"Wilson, James","fname":"James","lname":"Wilson"},{"name":"Kelsey, Karl","fname":"Karl","lname":"Kelsey"},{"name":"Tahir, Usman","fname":"Usman","lname":"Tahir"},{"name":"Seeman, Teresa","fname":"Teresa","lname":"Seeman"},{"name":"Rich, Stephen","fname":"Stephen","lname":"Rich"},{"name":"Carson, April","fname":"April","lname":"Carson"},{"name":"Post, Wendy","fname":"Wendy","lname":"Post"},{"name":"Kooperberg, Charles","fname":"Charles","lname":"Kooperberg"},{"name":"Rotter, Jerome","email":"jrotter@labiomed.org","fname":"Jerome","lname":"Rotter"},{"name":"Raffield, Laura","fname":"Laura","lname":"Raffield"},{"name":"Auer, Paul","fname":"Paul","lname":"Auer"},{"name":"Reiner, Alex","fname":"Alex","lname":"Reiner"}],"genre":"article","author_hide":null,"editors":[],"advisors":[]},{"id":"qt8sm5d1xw","title":"Distinct genetic liability profiles define clinically relevant patient strata across common diseases.","authors":[{"name":"Trastulla, Lucia","fname":"Lucia","lname":"Trastulla"},{"name":"Dolgalev, Georgii","fname":"Georgii","lname":"Dolgalev"},{"name":"Moser, Sylvain","fname":"Sylvain","lname":"Moser"},{"name":"Jim\u00E9nez-Barr\u00F3n, Laura","fname":"Laura","lname":"Jim\u00E9nez-Barr\u00F3n"},{"name":"Andlauer, Till","fname":"Till","lname":"Andlauer"},{"name":"von Scheidt, Moritz","fname":"Moritz","lname":"von Scheidt"},{"name":"Budde, Monika","fname":"Monika","lname":"Budde"},{"name":"Heilbronner, Urs","fname":"Urs","lname":"Heilbronner"},{"name":"Papiol, Sergi","fname":"Sergi","lname":"Papiol"},{"name":"Teumer, Alexander","fname":"Alexander","lname":"Teumer"},{"name":"Homuth, Georg","fname":"Georg","lname":"Homuth"},{"name":"V\u00F6lzke, Henry","fname":"Henry","lname":"V\u00F6lzke"},{"name":"D\u00F6rr, Marcus","fname":"Marcus","lname":"D\u00F6rr"},{"name":"Falkai, Peter","fname":"Peter","lname":"Falkai"},{"name":"Schulze, Thomas","fname":"Thomas","lname":"Schulze"},{"name":"Gagneur, Julien","fname":"Julien","lname":"Gagneur"},{"name":"Iorio, Francesco","fname":"Francesco","lname":"Iorio"},{"name":"M\u00FCller-Myhsok, Bertram","fname":"Bertram","lname":"M\u00FCller-Myhsok"},{"name":"Schunkert, Heribert","fname":"Heribert","lname":"Schunkert"},{"name":"Ziller, Michael","fname":"Michael","lname":"Ziller"}],"genre":"article","author_hide":null,"editors":[],"advisors":[]},{"id":"qt8w35h9b5","title":"Ensuring Equitable Care in Diabetes Management Among Patients of Health Resources & Services Administration-Funded Health Centers in the United States.","authors":[{"name":"Pourat, Nadereh","email":"pourat@ucla.edu","fname":"Nadereh","lname":"Pourat"},{"name":"Chen, Xiao","fname":"Xiao","lname":"Chen"},{"name":"Lu, Connie","fname":"Connie","lname":"Lu"},{"name":"Zhou, Weihao","fname":"Weihao","lname":"Zhou"},{"name":"Hair, Brionna","fname":"Brionna","lname":"Hair"},{"name":"Bolton, Joshua","fname":"Joshua","lname":"Bolton"},{"name":"Sripipatana, Alek","fname":"Alek","lname":"Sripipatana"}],"genre":"article","author_hide":null,"editors":[],"advisors":[]}],"title":"Related Items"}}],"source":"oa_harvester","status":"published","submitted":"2021-09-20","title":"Multiparametric MRI Texture Analysis in Prediction of Glioma Biomarker Status: Added Value of MR Diffusion","unit":{"id":"ucla_postprints","name":"UCLA Previously Published Works","type":"series","status":"active"},"usage":[{"month":"2021-09","hits":9,"downloads":0},{"month":"2021-10","hits":2,"downloads":1},{"month":"2021-11","hits":2,"downloads":0},{"month":"2021-12","hits":2,"downloads":0},{"month":"2022-01","hits":4,"downloads":0},{"month":"2022-02","hits":3,"downloads":1},{"month":"2022-03","hits":4,"downloads":1},{"month":"2022-04","hits":1,"downloads":0},{"month":"2022-05","hits":3,"downloads":3},{"month":"2022-06","hits":1,"downloads":1},{"month":"2022-08","hits":2,"downloads":1},{"month":"2022-09","hits":2,"downloads":2},{"month":"2022-10","hits":2,"downloads":1},{"month":"2022-11","hits":1,"downloads":1},{"month":"2023-01","hits":2,"downloads":0},{"month":"2023-02","hits":2,"downloads":2},{"month":"2023-03","hits":1,"downloads":1},{"month":"2023-04","hits":1,"downloads":1},{"month":"2023-05","hits":6,"downloads":6},{"month":"2023-06","hits":5,"downloads":2},{"month":"2023-07","hits":4,"downloads":4},{"month":"2023-08","hits":3,"downloads":3},{"month":"2023-09","hits":2,"downloads":2},{"month":"2023-11","hits":3,"downloads":3},{"month":"2023-12","hits":1,"downloads":0},{"month":"2024-01","hits":5,"downloads":1},{"month":"2024-02","hits":6,"downloads":3},{"month":"2024-03","hits":6,"downloads":5},{"month":"2024-05","hits":2,"downloads":2},{"month":"2024-06","hits":8,"downloads":2},{"month":"2024-07","hits":4,"downloads":2},{"month":"2024-08","hits":4,"downloads":0},{"month":"2024-09","hits":4,"downloads":1},{"month":"2024-10","hits":3,"downloads":3},{"month":"2024-11","hits":1,"downloads":1}],"unit_attrs":{"nav_bar":[{"id":1,"name":"Submission Guidelines","slug":"submitPaper","type":"page"}],"directSubmit":"enabled"},"header":{"campusID":"ucla","campusName":"UCLA","ancestorID":"ucla","ancestorName":"UCLA","campuses":[{"id":"","name":"eScholarship at..."},{"id":"ucb","name":"UC Berkeley"},{"id":"ucd","name":"UC Davis"},{"id":"uci","name":"UC Irvine"},{"id":"ucla","name":"UCLA"},{"id":"ucm","name":"UC Merced"},{"id":"ucr","name":"UC Riverside"},{"id":"ucsd","name":"UC San Diego"},{"id":"ucsf","name":"UCSF"},{"id":"ucsb","name":"UC Santa Barbara"},{"id":"ucsc","name":"UC Santa Cruz"},{"id":"ucop","name":"UC Office of the President"},{"id":"lbnl","name":"Lawrence Berkeley National Laboratory"},{"id":"anrcs","name":"UC Agriculture & Natural Resources"}],"logo":{"url":"/cms-assets/c16e7a631956312b6b0ca3c58ac21c61c80a2176d91f50236b191969f594f0b1","width":null,"height":null,"is_banner":true},"bgColor":null,"elColor":null,"directSubmit":"enabled","directSubmitURL":null,"directManageURLauthor":null,"directManageURLeditor":null,"nav_bar":[{"id":5,"name":"About eScholarship","slug":"about","type":"page","url":"/uc/ucla/about"},{"id":4,"name":"UC Open Access Policies","slug":"ucoapolicies","type":"page","url":"/uc/ucla/ucoapolicies"},{"id":2,"url":"/ucla/journals","name":"Journals","type":"link"},{"id":3,"url":"/ucla/units","name":"Academic Units","type":"link"}],"social":{"facebook":null,"twitter":null,"rss":"/rss/unit/ucla_postprints"},"breadcrumb":[{"name":"eScholarship","id":"root","url":"/"},{"name":"UCLA","id":"ucla","url":"/uc/ucla"},{"name":"UCLA Previously Published Works","id":"ucla_postprints","url":"/uc/ucla_postprints"}]},"commenting_ok":null};</script> <script src="/js/vendors~app-bundle-7424603c338d723fd773.js"></script> <script src="/js/app-bundle-8362e6d7829414ab4baa.js"></script> </body> </html>