CINXE.COM

Rate of convergence - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Rate of convergence - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"a5d9b711-db6e-46e8-9b0e-932d34210690","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Rate_of_convergence","wgTitle":"Rate of convergence","wgCurRevisionId":1254889770,"wgRevisionId":1254889770,"wgArticleId":999701,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles needing additional references from August 2020","All articles needing additional references","Articles needing additional references from October 2024","Numerical analysis","Rates"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Rate_of_convergence","wgRelevantArticleId":999701,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1783502","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics": true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Rate of convergence - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Rate_of_convergence"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Rate_of_convergence&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Rate_of_convergence"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Rate_of_convergence rootpage-Rate_of_convergence skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Rate+of+convergence" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Rate+of+convergence" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Rate+of+convergence" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Rate+of+convergence" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Asymptotic_rates_of_convergence_for_iterative_methods" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Asymptotic_rates_of_convergence_for_iterative_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Asymptotic rates of convergence for iterative methods</span> </div> </a> <button aria-controls="toc-Asymptotic_rates_of_convergence_for_iterative_methods-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Asymptotic rates of convergence for iterative methods subsection</span> </button> <ul id="toc-Asymptotic_rates_of_convergence_for_iterative_methods-sublist" class="vector-toc-list"> <li id="toc-Definitions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Definitions</span> </div> </a> <ul id="toc-Definitions-sublist" class="vector-toc-list"> <li id="toc-R-convergence" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#R-convergence"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1.1</span> <span>R-convergence</span> </div> </a> <ul id="toc-R-convergence-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Convergence_rates_to_fixed_points_of_recurrent_sequences" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Convergence_rates_to_fixed_points_of_recurrent_sequences"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Convergence rates to fixed points of recurrent sequences</span> </div> </a> <ul id="toc-Convergence_rates_to_fixed_points_of_recurrent_sequences-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Order_estimation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Order_estimation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Order estimation</span> </div> </a> <ul id="toc-Order_estimation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Accelerating_convergence_rates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Accelerating_convergence_rates"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.5</span> <span>Accelerating convergence rates</span> </div> </a> <ul id="toc-Accelerating_convergence_rates-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Asymptotic_rates_of_convergence_for_discretization_methods" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Asymptotic_rates_of_convergence_for_discretization_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Asymptotic rates of convergence for discretization methods</span> </div> </a> <button aria-controls="toc-Asymptotic_rates_of_convergence_for_discretization_methods-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Asymptotic rates of convergence for discretization methods subsection</span> </button> <ul id="toc-Asymptotic_rates_of_convergence_for_discretization_methods-sublist" class="vector-toc-list"> <li id="toc-Definitions_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definitions_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Definitions</span> </div> </a> <ul id="toc-Definitions_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Comparing_asymptotic_rates_of_convergence" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Comparing_asymptotic_rates_of_convergence"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Comparing asymptotic rates of convergence</span> </div> </a> <button aria-controls="toc-Comparing_asymptotic_rates_of_convergence-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Comparing asymptotic rates of convergence subsection</span> </button> <ul id="toc-Comparing_asymptotic_rates_of_convergence-sublist" class="vector-toc-list"> <li id="toc-Definitions_3" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definitions_3"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Definitions</span> </div> </a> <ul id="toc-Definitions_3-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Examples</span> </div> </a> <ul id="toc-Examples_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Non-asymptotic_rates_of_convergence" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Non-asymptotic_rates_of_convergence"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Non-asymptotic rates of convergence</span> </div> </a> <ul id="toc-Non-asymptotic_rates_of_convergence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Rate of convergence</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 13 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-13" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">13 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B3%D8%B1%D8%B9%D8%A9_%D8%A7%D9%84%D8%AA%D9%82%D8%A7%D8%B1%D8%A8" title="سرعة التقارب – Arabic" lang="ar" hreflang="ar" data-title="سرعة التقارب" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Taxa_de_converg%C3%A8ncia" title="Taxa de convergència – Catalan" lang="ca" hreflang="ca" data-title="Taxa de convergència" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Konvergenzgeschwindigkeit" title="Konvergenzgeschwindigkeit – German" lang="de" hreflang="de" data-title="Konvergenzgeschwindigkeit" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Orden_de_convergencia" title="Orden de convergencia – Spanish" lang="es" hreflang="es" data-title="Orden de convergencia" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%86%D8%B1%D8%AE_%D9%87%D9%85%DA%AF%D8%B1%D8%A7%DB%8C%DB%8C" title="نرخ همگرایی – Persian" lang="fa" hreflang="fa" data-title="نرخ همگرایی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Vitesse_de_convergence_des_suites" title="Vitesse de convergence des suites – French" lang="fr" hreflang="fr" data-title="Vitesse de convergence des suites" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Laju_konvergensi" title="Laju konvergensi – Indonesian" lang="id" hreflang="id" data-title="Laju konvergensi" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8_%D7%94%D7%AA%D7%9B%D7%A0%D7%A1%D7%95%D7%AA" title="סדר התכנסות – Hebrew" lang="he" hreflang="he" data-title="סדר התכנסות" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Taxa_de_converg%C3%AAncia" title="Taxa de convergência – Portuguese" lang="pt" hreflang="pt" data-title="Taxa de convergência" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%BA%D0%BE%D1%80%D0%BE%D1%81%D1%82%D1%8C_%D1%81%D1%85%D0%BE%D0%B4%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D0%B8" title="Скорость сходимости – Russian" lang="ru" hreflang="ru" data-title="Скорость сходимости" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A8%D0%B2%D0%B8%D0%B4%D0%BA%D1%96%D1%81%D1%82%D1%8C_%D0%B7%D0%B1%D1%96%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D1%96" title="Швидкість збіжності – Ukrainian" lang="uk" hreflang="uk" data-title="Швидкість збіжності" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/T%E1%BB%91c_%C4%91%E1%BB%99_h%E1%BB%99i_t%E1%BB%A5" title="Tốc độ hội tụ – Vietnamese" lang="vi" hreflang="vi" data-title="Tốc độ hội tụ" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%94%B6%E6%96%82%E9%80%9F%E5%BA%A6" title="收斂速度 – Chinese" lang="zh" hreflang="zh" data-title="收斂速度" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1783502#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Rate_of_convergence" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Rate_of_convergence" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Rate_of_convergence"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Rate_of_convergence&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Rate_of_convergence"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Rate_of_convergence&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Rate_of_convergence" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Rate_of_convergence" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Rate_of_convergence&amp;oldid=1254889770" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Rate_of_convergence&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Rate_of_convergence&amp;id=1254889770&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRate_of_convergence"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRate_of_convergence"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Rate_of_convergence&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Rate_of_convergence&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1783502" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Speed of convergence of a mathematical sequence</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist"><tbody><tr><th class="sidebar-title" style="background:#ccccff;display:block;margin-bottom:0.2em;"><a href="/wiki/Differential_equation" title="Differential equation">Differential equations</a></th></tr><tr><th class="sidebar-heading" style="background:#ddddff;font-size:105%;display:block;margin-bottom:0.4em;"> Scope</th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">Fields</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><th class="sidebar-heading" style="padding-bottom:0;"> <div class="hlist"><ul><li><a href="/wiki/Natural_science" title="Natural science">Natural sciences</a></li><li><a href="/wiki/Engineering" title="Engineering">Engineering</a></li></ul></div></th></tr><tr><td class="sidebar-content hlist" style="padding-bottom:0.6em;"> <ul><li><a href="/wiki/Astronomy" title="Astronomy">Astronomy</a></li> <li><a href="/wiki/Physics" title="Physics">Physics</a></li> <li><a href="/wiki/Chemistry" title="Chemistry">Chemistry</a></li> <li><br /><a href="/wiki/Biology" title="Biology">Biology</a></li> <li><a href="/wiki/Geology" title="Geology">Geology</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0;"> <a href="/wiki/Applied_mathematics" title="Applied mathematics">Applied mathematics</a></th></tr><tr><td class="sidebar-content hlist" style="padding-bottom:0.6em;"> <ul><li><a href="/wiki/Continuum_mechanics" title="Continuum mechanics">Continuum mechanics</a></li> <li><a href="/wiki/Chaos_theory" title="Chaos theory">Chaos theory</a></li> <li><a href="/wiki/Dynamical_systems" class="mw-redirect" title="Dynamical systems">Dynamical systems</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0;"> <a href="/wiki/Social_science" title="Social science">Social sciences</a></th></tr><tr><td class="sidebar-content hlist" style="padding-bottom:0.6em;;padding-bottom:0;"> <ul><li><a href="/wiki/Economics" title="Economics">Economics</a></li> <li><a href="/wiki/Population_dynamics" title="Population dynamics">Population dynamics</a></li></ul></td> </tr></tbody></table> <hr /> <a href="/wiki/List_of_named_differential_equations" title="List of named differential equations">List of named differential equations</a></div></div></td> </tr><tr><th class="sidebar-heading" style="background:#ddddff;font-size:105%;display:block;margin-bottom:0.4em;;display:block;margin-top:0.1em;"> Classification</th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">Types</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content"> <div class="hlist"> <ul><li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">Ordinary</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial</a></li> <li><a href="/wiki/Differential-algebraic_system_of_equations" title="Differential-algebraic system of equations">Differential-algebraic</a></li> <li><a href="/wiki/Integro-differential_equation" title="Integro-differential equation">Integro-differential</a></li> <li><a href="/wiki/Fractional_differential_equations" class="mw-redirect" title="Fractional differential equations">Fractional</a></li> <li><a href="/wiki/Linear_differential_equation" title="Linear differential equation">Linear</a></li> <li><a href="/wiki/Non-linear_differential_equation" class="mw-redirect" title="Non-linear differential equation">Non-linear</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading"> By variable type</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Dependent_and_independent_variables" title="Dependent and independent variables">Dependent and independent variables</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Autonomous_differential_equation" class="mw-redirect" title="Autonomous differential equation">Autonomous</a></li> <li>Coupled&#160;/&#32;Decoupled</li> <li><a href="/wiki/Exact_differential_equation" title="Exact differential equation">Exact</a></li> <li><a href="/wiki/Homogeneous_differential_equation" title="Homogeneous differential equation">Homogeneous</a>&#160;/&#32;<a href="/wiki/Non-homogeneous_differential_equation" class="mw-redirect" title="Non-homogeneous differential equation">Nonhomogeneous</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading"> Features</th></tr><tr><td class="sidebar-content"> <div class="hlist"> <ul><li><a href="/wiki/Ordinary_differential_equation#Definitions" title="Ordinary differential equation">Order</a></li> <li><a href="/wiki/Differential_operator" title="Differential operator">Operator</a></li></ul> </div> <ul><li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Notation</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">Relation to processes</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"> <ul><li><a href="/wiki/Difference_equation" class="mw-redirect" title="Difference equation">Difference <span style="font-size:85%;">(discrete analogue)</span></a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic</a> <ul><li><a href="/wiki/Stochastic_partial_differential_equation" title="Stochastic partial differential equation">Stochastic partial</a></li></ul></li> <li><a href="/wiki/Delay_differential_equation" title="Delay differential equation">Delay</a></li></ul> </div></div></div></td> </tr><tr><th class="sidebar-heading" style="background:#ddddff;font-size:105%;display:block;margin-bottom:0.4em;"> Solution</th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">Existence and uniqueness</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"> <ul><li><a href="/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem" title="Picard–Lindelöf theorem">Picard–Lindelöf theorem </a></li> <li><a href="/wiki/Peano_existence_theorem" title="Peano existence theorem">Peano existence theorem</a></li> <li><a href="/wiki/Carath%C3%A9odory%27s_existence_theorem" title="Carathéodory&#39;s existence theorem">Carathéodory's existence theorem</a></li> <li><a href="/wiki/Cauchy%E2%80%93Kowalevski_theorem" class="mw-redirect" title="Cauchy–Kowalevski theorem">Cauchy–Kowalevski theorem</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">General topics</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><div class="hlist"> <ul><li><a href="/wiki/Initial_condition" title="Initial condition">Initial conditions</a></li> <li><a href="/wiki/Boundary_value_problem" title="Boundary value problem">Boundary values</a> <ul><li><a href="/wiki/Dirichlet_boundary_condition" title="Dirichlet boundary condition">Dirichlet</a></li> <li><a href="/wiki/Neumann_boundary_condition" title="Neumann boundary condition">Neumann</a></li> <li><a href="/wiki/Robin_boundary_condition" title="Robin boundary condition">Robin</a></li> <li><a href="/wiki/Cauchy_problem" title="Cauchy problem">Cauchy problem</a></li></ul></li> <li><a href="/wiki/Wronskian" title="Wronskian">Wronskian</a></li> <li><a href="/wiki/Phase_portrait" title="Phase portrait">Phase portrait</a></li> <li><a href="/wiki/Lyapunov_stability" title="Lyapunov stability">Lyapunov</a>&#160;/&#32;<a href="/wiki/Asymptotic_stability" class="mw-redirect" title="Asymptotic stability">Asymptotic</a>&#160;/&#32;<a href="/wiki/Exponential_stability" title="Exponential stability">Exponential stability</a></li> <li><a class="mw-selflink selflink">Rate of convergence</a></li> <li><span class="nowrap"><a href="/wiki/Power_series_solution_of_differential_equations" title="Power series solution of differential equations">Series</a>&#160;/&#32;Integral solutions</span></li> <li><a href="/wiki/Numerical_integration" title="Numerical integration">Numerical integration</a></li> <li><a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">Solution methods</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><div class="hlist"> <ul><li>Inspection</li> <li><a href="/wiki/Method_of_characteristics" title="Method of characteristics">Method of characteristics</a></li> <li><br /><a href="/wiki/Euler_method" title="Euler method">Euler</a></li> <li><a href="/wiki/Exponential_response_formula" title="Exponential response formula">Exponential response formula</a></li> <li><a href="/wiki/Finite_difference_method" title="Finite difference method">Finite difference</a>&#160;<span style="font-size:85%;">(<a href="/wiki/Crank%E2%80%93Nicolson_method" title="Crank–Nicolson method">Crank–Nicolson</a>)</span></li> <li><a href="/wiki/Finite_element_method" title="Finite element method">Finite element</a> <ul><li><a href="/wiki/Infinite_element_method" title="Infinite element method">Infinite element</a></li></ul></li> <li><a href="/wiki/Finite_volume_method" title="Finite volume method">Finite volume</a></li> <li><a href="/wiki/Galerkin_method" title="Galerkin method">Galerkin</a> <ul><li><a href="/wiki/Petrov%E2%80%93Galerkin_method" title="Petrov–Galerkin method">Petrov–Galerkin</a></li></ul></li> <li><a href="/wiki/Green%27s_function" title="Green&#39;s function">Green's function</a></li> <li><a href="/wiki/Integrating_factor" title="Integrating factor">Integrating factor</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transforms</a></li> <li><a href="/wiki/Perturbation_theory" title="Perturbation theory">Perturbation theory</a></li> <li><a href="/wiki/Runge%E2%80%93Kutta_methods" title="Runge–Kutta methods">Runge–Kutta</a></li></ul> </div> <ul><li><a href="/wiki/Separation_of_variables" title="Separation of variables">Separation of variables</a></li> <li><a href="/wiki/Method_of_undetermined_coefficients" title="Method of undetermined coefficients">Undetermined coefficients</a></li> <li><a href="/wiki/Variation_of_parameters" title="Variation of parameters">Variation of parameters</a></li></ul></div></div></td> </tr><tr><th class="sidebar-heading" style="background:#ddddff;font-size:105%;display:block;margin-bottom:0.4em;"> People</th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">List</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><div class="hlist" style="padding-top:0.5em"> <ul><li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a></li> <li><a href="/wiki/Gottfried_Leibniz" class="mw-redirect" title="Gottfried Leibniz">Gottfried Leibniz</a></li> <li><a href="/wiki/Jacob_Bernoulli" title="Jacob Bernoulli">Jacob Bernoulli</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Joseph-Louis Lagrange</a></li> <li><a href="/wiki/J%C3%B3zef_Maria_Hoene-Wro%C5%84ski" title="Józef Maria Hoene-Wroński">Józef Maria Hoene-Wroński</a></li> <li><a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Joseph Fourier</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/George_Green_(mathematician)" title="George Green (mathematician)">George Green</a></li> <li><a href="/wiki/Carl_David_Tolm%C3%A9_Runge" class="mw-redirect" title="Carl David Tolmé Runge">Carl David Tolmé Runge</a></li> <li><a href="/wiki/Martin_Kutta" title="Martin Kutta">Martin Kutta</a></li> <li><a href="/wiki/Rudolf_Lipschitz" title="Rudolf Lipschitz">Rudolf Lipschitz</a></li> <li><a href="/wiki/Ernst_Lindel%C3%B6f" class="mw-redirect" title="Ernst Lindelöf">Ernst Lindelöf</a></li> <li><a href="/wiki/%C3%89mile_Picard" title="Émile Picard">Émile Picard</a></li> <li><a href="/wiki/Phyllis_Nicolson" title="Phyllis Nicolson">Phyllis Nicolson</a></li> <li><a href="/wiki/John_Crank" title="John Crank">John Crank</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Differential_equations" title="Template:Differential equations"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Differential_equations" title="Template talk:Differential equations"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Differential_equations" title="Special:EditPage/Template:Differential equations"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, particularly <a href="/wiki/Numerical_analysis" title="Numerical analysis">numerical analysis</a>, the <b>rate of convergence</b> and <b>order of convergence</b> of a <a href="/wiki/Sequence" title="Sequence">sequence</a> that converges to a <a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">limit</a> are any of several characterizations of how quickly that sequence approaches its limit. These are broadly divided into rates and orders of convergence that describe how quickly a sequence further approaches its limit once it is already close to it, called <a href="/wiki/Asymptotic_analysis" title="Asymptotic analysis">asymptotic</a> rates and orders of convergence, and those that describe how quickly sequences approach their limits from starting points that are not necessarily close to their limits, called non-asymptotic rates and orders of convergence. </p><p>Asymptotic behavior is particularly useful for deciding when to stop a sequence of numerical computations, for instance once a target precision has been reached with an iterative <a href="/wiki/Root-finding_algorithm" title="Root-finding algorithm">root-finding algorithm</a>, but pre-asymptotic behavior is often crucial for determining whether to begin a sequence of computations at all, since it may be impossible or impractical to ever reach a target precision with a poorly chosen approach. Asymptotic rates and orders of convergence are the focus of this article. </p><p>In practical numerical computations, asymptotic rates and orders of convergence follow two common conventions for two types of sequences: the first for sequences of iterations of an <a href="/wiki/Iterative_method" title="Iterative method">iterative numerical method</a> and the second for sequences of successively more accurate numerical <a href="/wiki/Discretization" title="Discretization">discretizations</a> of a target. In formal mathematics, rates of convergence and orders of convergence are often described comparatively using <a href="/wiki/Asymptotic_notation" class="mw-redirect" title="Asymptotic notation">asymptotic notation</a> commonly called "<a href="/wiki/Big_O_notation" title="Big O notation">big O notation</a>," which can be used to encompass both of the prior conventions; this is an application of <a href="/wiki/Asymptotic_analysis" title="Asymptotic analysis">asymptotic analysis</a>. </p><p>For iterative methods, a sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c03ec3abdeddde419f4f842f850836397640565" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.228ex; height:2.843ex;" alt="{\displaystyle (x_{k})}"></span> that converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> is said to have asymptotic <i>order of convergence</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q\geq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q\geq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0bce12fe4743c114489912363f5e84ca58b91d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.33ex; height:2.509ex;" alt="{\displaystyle q\geq 1}"></span> and asymptotic <i>rate of convergence</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|x_{k+1}-L\right|}{\left|x_{k}-L\right|^{q}}}=\mu .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> </mrow> <mo>|</mo> </mrow> <msup> <mrow> <mo>|</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|x_{k+1}-L\right|}{\left|x_{k}-L\right|^{q}}}=\mu .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05ad12c609b46fb489d22f5ba31afde034bed97a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.749ex; height:6.509ex;" alt="{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|x_{k+1}-L\right|}{\left|x_{k}-L\right|^{q}}}=\mu .}"></span><sup id="cite_ref-:0_1-0" class="reference"><a href="#cite_note-:0-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>Where methodological precision is required, these rates and orders of convergence are known specifically as the rates and orders of Q-convergence, short for quotient-convergence, since the limit in question is a quotient of error terms.<sup id="cite_ref-:0_1-1" class="reference"><a href="#cite_note-:0-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> The rate of convergence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> may also be called the <i>asymptotic error constant</i>, and some authors will use <i>rate</i> where this article uses <i>order.</i><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Series_acceleration" title="Series acceleration">Series acceleration</a> methods are techniques for improving the rate of convergence of the sequence of partial sums of a <a href="/wiki/Series_(mathematics)" title="Series (mathematics)">series</a> and possibly its order of convergence, also. </p><p>Similar concepts are used for sequences of discretizations. For instance, ideally the solution of a <a href="/wiki/Differential_equation" title="Differential equation">differential equation</a> discretized via a <a href="/wiki/Regular_grid" title="Regular grid">regular grid</a> will converge to the solution of the continuous equation as the grid spacing goes to zero, and if so the asymptotic rate and order of that convergence are important properties of the gridding method. A sequence of approximate grid solutions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (y_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (y_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34b0efcd30727da7d198b2f5b2caa60b55467611" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.037ex; height:2.843ex;" alt="{\displaystyle (y_{k})}"></span> of some problem that converges to a true solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> with a corresponding sequence of regular grid spacings <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (h_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (h_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fddc1507f7adccc30f8d8933cd09ff6895019e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.237ex; height:2.843ex;" alt="{\displaystyle (h_{k})}"></span> that converge to 0 is said to have asymptotic <i>order of convergence</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> and asymptotic <i>rate of convergence</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> if </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|y_{k}-S\right|}{h_{k}^{q}}}=\mu ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>S</mi> </mrow> <mo>|</mo> </mrow> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> </mfrac> </mrow> <mo>=</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|y_{k}-S\right|}{h_{k}^{q}}}=\mu ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3280d210ec55f27da3369d35090f13358404298a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.374ex; height:6.843ex;" alt="{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|y_{k}-S\right|}{h_{k}^{q}}}=\mu ,}"></span> </p><p>where the absolute value symbols stand for a <a href="/wiki/Metric_(mathematics)" class="mw-redirect" title="Metric (mathematics)">metric</a> for the space of solutions such as the <a href="/wiki/Uniform_norm" title="Uniform norm">uniform norm</a>. Similar definitions also apply for non-grid discretization schemes such as the <a href="/wiki/Polygon_mesh" title="Polygon mesh">polygon meshes</a> of a <a href="/wiki/Finite_element_method" title="Finite element method">finite element method</a> or the <a href="/wiki/Basis_set_(chemistry)" title="Basis set (chemistry)">basis sets</a> in <a href="/wiki/Computational_chemistry" title="Computational chemistry">computational chemistry</a>: in general, the appropriate definition of the asymptotic rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> will involve the asymptotic limit of the ratio of an approximation error term above to an asymptotic order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> power of a discretization scale parameter below. </p><p>In general, comparatively, one sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5225a9d8f787b53879bcfb2c3135462b293f9915" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.128ex; height:2.843ex;" alt="{\displaystyle (a_{k})}"></span> that converges to a limit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87a7bf511194a88867e63c66594f8c06f106bbbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.685ex; height:2.509ex;" alt="{\displaystyle L_{a}}"></span> is said to asymptotically converge more quickly than another sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (b_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (b_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46e5b176440aafc55bb438980710bc5197931fde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.896ex; height:2.843ex;" alt="{\displaystyle (b_{k})}"></span> that converges to a limit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c329e421a62c4d4f0b24faa03f451908bad311" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.52ex; height:2.509ex;" alt="{\displaystyle L_{b}}"></span> if </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|a_{k}-L_{a}\right|}{|b_{k}-L_{b}|}}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|a_{k}-L_{a}\right|}{|b_{k}-L_{b}|}}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f1b08539be8fc54c19ab725b950d741f04bea8a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.411ex; height:6.509ex;" alt="{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|a_{k}-L_{a}\right|}{|b_{k}-L_{b}|}}=0,}"></span> </p><p>and the two are said to asymptotically converge with the same order of convergence if the limit is any positive finite value. The two are said to be asymptotically equivalent if the limit is equal to one. These comparative definitions of rate and order of asymptotic convergence are fundamental in asymptotic analysis and find wide application in mathematical analysis as a whole, including numerical analysis, <a href="/wiki/Real_analysis" title="Real analysis">real analysis</a>, <a href="/wiki/Complex_analysis" title="Complex analysis">complex analysis</a>, and <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Asymptotic_rates_of_convergence_for_iterative_methods">Asymptotic rates of convergence for iterative methods</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit&amp;section=1" title="Edit section: Asymptotic rates of convergence for iterative methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Definitions">Definitions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit&amp;section=2" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Suppose that the <a href="/wiki/Sequence" title="Sequence">sequence</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c03ec3abdeddde419f4f842f850836397640565" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.228ex; height:2.843ex;" alt="{\displaystyle (x_{k})}"></span> of iterates of an <a href="/wiki/Iterative_method" title="Iterative method">iterative method</a> converges to the <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limit</a> number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\rightarrow \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\rightarrow \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/612a3ec99f1c9f12de1cfab011e306ae799858ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.149ex; height:2.176ex;" alt="{\displaystyle k\rightarrow \infty }"></span>. The sequence is said to <i>converge with order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span></i> and with a <i>rate of convergence</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> if the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\rightarrow \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\rightarrow \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/612a3ec99f1c9f12de1cfab011e306ae799858ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.149ex; height:2.176ex;" alt="{\displaystyle k\rightarrow \infty }"></span> limit of quotients of <a href="/wiki/Absolute_difference" title="Absolute difference">absolute differences</a> of sequential iterates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{k},x_{k+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{k},x_{k+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dcfa6c69fa205008e7482d96f8b4bb3320fb510" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.971ex; height:2.009ex;" alt="{\displaystyle x_{k},x_{k+1}}"></span> from their limit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> satisfies </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{k\to \infty }{\frac {|x_{k+1}-L|}{|x_{k}-L|^{q}}}=\mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{k\to \infty }{\frac {|x_{k+1}-L|}{|x_{k}-L|^{q}}}=\mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b1d67deb84d6c2fababbdd5c3ce35fc3ecd35b9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.102ex; height:6.509ex;" alt="{\displaystyle \lim _{k\to \infty }{\frac {|x_{k+1}-L|}{|x_{k}-L|^{q}}}=\mu }"></span> </p><p>for some positive constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu \in (0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu \in (0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93a91a5bb7756e29d0910752d16938014bb5cc30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.41ex; height:2.843ex;" alt="{\displaystyle \mu \in (0,1)}"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/785938d022f0b0b0bf4b3afa5e1cedceab7a3874" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.33ex; height:2.509ex;" alt="{\displaystyle q=1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu \in (0,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu \in (0,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da45a77742441c59bbc7736f9549db97b49e21a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.572ex; height:2.843ex;" alt="{\displaystyle \mu \in (0,\infty )}"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe3606e1cf4480eb39e5ddcd46d4dae2067c0b5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.33ex; height:2.509ex;" alt="{\displaystyle q&gt;1}"></span>.<sup id="cite_ref-:0_1-2" class="reference"><a href="#cite_note-:0-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Other more technical rate definitions are needed if the sequence converges but <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lim _{k\to \infty }{\frac {|x_{k+1}-L|}{|x_{k}-L|}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lim _{k\to \infty }{\frac {|x_{k+1}-L|}{|x_{k}-L|}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d223ed4de76c5bda2e00395e02899dfbaa87ab37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.906ex; height:4.843ex;" alt="{\textstyle \lim _{k\to \infty }{\frac {|x_{k+1}-L|}{|x_{k}-L|}}=1}"></span><sup id="cite_ref-:1_5-0" class="reference"><a href="#cite_note-:1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> or the limit does not exist.<sup id="cite_ref-:0_1-3" class="reference"><a href="#cite_note-:0-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> This definition is technically called Q-convergence, short for quotient-convergence, and the rates and orders are called rates and orders of Q-convergence when that technical specificity is needed. <a href="#R-convergence">§&#160;R-convergence</a>, below, is an appropriate alternative when this limit does not exist. </p><p>Sequences with larger orders <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> converge more quickly than those with smaller order, and those with smaller rates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> converge more quickly than those with larger rates for a given order. This "smaller rates converge more quickly" behavior among sequences of the same order is standard but it can be counterintuitive. Therefore it is also common to define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\log _{10}\mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\log _{10}\mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c89da1090408b625029f388c4454cbb4f85e6454" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.832ex; height:2.676ex;" alt="{\displaystyle -\log _{10}\mu }"></span> as the rate; this is the "number of extra decimals of precision per iterate" for sequences that converge with order 1.<sup id="cite_ref-:0_1-4" class="reference"><a href="#cite_note-:0-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>Integer powers of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> are common and are given common names. Convergence with order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/785938d022f0b0b0bf4b3afa5e1cedceab7a3874" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.33ex; height:2.509ex;" alt="{\displaystyle q=1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu \in (0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu \in (0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93a91a5bb7756e29d0910752d16938014bb5cc30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.41ex; height:2.843ex;" alt="{\displaystyle \mu \in (0,1)}"></span> is called <i>linear convergence</i> and the sequence is said to <i>converge linearly to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span></i>. Convergence with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26622af6012fb982cab4e9584f57dd4f364233b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.33ex; height:2.509ex;" alt="{\displaystyle q=2}"></span> and any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> is called <i>quadratic convergence</i> and the sequence is said to <i>converge quadratically</i>. Convergence with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d859ff2e5023ed1f714ccace69e88ab993a5f43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.33ex; height:2.509ex;" alt="{\displaystyle q=3}"></span> and any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> is called <i>cubic convergence</i>. However, it is not necessary that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> be an integer. For example, the <a href="/wiki/Secant_method" title="Secant method">secant method</a>, when converging to a regular, <a href="/wiki/Polynomial#Solving_polynomial_equations" title="Polynomial">simple root</a>, has an order of the <a href="/wiki/Golden_ratio" title="Golden ratio">golden ratio</a> φ ≈ 1.618.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>The common names for integer orders of convergence connect to <a href="/wiki/Big_O_notation" title="Big O notation">asymptotic big O notation</a>, where the convergence of the quotient implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |x_{k+1}-L|=O(|x_{k}-L|^{q}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |x_{k+1}-L|=O(|x_{k}-L|^{q}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0bc54836bcae10ca81468c4226bd2b11f3e96b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.688ex; height:3.009ex;" alt="{\textstyle |x_{k+1}-L|=O(|x_{k}-L|^{q}).}"></span> These are linear, quadratic, and cubic polynomial expressions when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> is 1, 2, and 3, respectively. More precisely, the limits imply the leading order error is exactly <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu |x_{k}-L|^{q},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu |x_{k}-L|^{q},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb27619648fadcef20a1d169bd9ef7e506bebc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.172ex; height:3.009ex;" alt="{\textstyle \mu |x_{k}-L|^{q},}"></span> which can be expressed using <a href="/wiki/Small_o_notation" class="mw-redirect" title="Small o notation">asymptotic small o notation</a> as<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |x_{k+1}-L|=\mu |x_{k}-L|^{q}+o(|x_{k}-L|^{q}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo>+</mo> <mi>o</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |x_{k+1}-L|=\mu |x_{k}-L|^{q}+o(|x_{k}-L|^{q}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c91b6b46023936a5db6ef548ef7c58774b30d85e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.408ex; height:3.009ex;" alt="{\textstyle |x_{k+1}-L|=\mu |x_{k}-L|^{q}+o(|x_{k}-L|^{q}).}"></span> </p><p>In general, when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe3606e1cf4480eb39e5ddcd46d4dae2067c0b5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.33ex; height:2.509ex;" alt="{\displaystyle q&gt;1}"></span> for a sequence or for any sequence that satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lim _{k\to \infty }{\frac {|x_{k+1}-L|}{|x_{k}-L|}}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lim _{k\to \infty }{\frac {|x_{k+1}-L|}{|x_{k}-L|}}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c0bddc9d15926fb37f4a791b5d863f49a6a76dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.553ex; height:4.843ex;" alt="{\textstyle \lim _{k\to \infty }{\frac {|x_{k+1}-L|}{|x_{k}-L|}}=0,}"></span> those sequences are said to <i>converge superlinearly</i> (i.e., faster than linearly).<sup id="cite_ref-:0_1-5" class="reference"><a href="#cite_note-:0-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> A sequence is said to <i>converge sublinearly</i> (i.e., slower than linearly) if it converges and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lim _{k\to \infty }{\frac {|x_{k+1}-L|}{|x_{k}-L|}}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lim _{k\to \infty }{\frac {|x_{k+1}-L|}{|x_{k}-L|}}=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b28fdb7918f27900d25094ae73007bc919cd7ae9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.553ex; height:4.843ex;" alt="{\textstyle \lim _{k\to \infty }{\frac {|x_{k+1}-L|}{|x_{k}-L|}}=1.}"></span> Importantly, it is incorrect to say that these sublinear-order sequences converge linearly with an asymptotic rate of convergence of 1. A sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c03ec3abdeddde419f4f842f850836397640565" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.228ex; height:2.843ex;" alt="{\displaystyle (x_{k})}"></span> <i>converges logarithmically to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span></i> if the sequence converges sublinearly and also <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lim _{k\to \infty }{\frac {|x_{k+1}-x_{k}|}{|x_{k}-x_{k-1}|}}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lim _{k\to \infty }{\frac {|x_{k+1}-x_{k}|}{|x_{k}-x_{k-1}|}}=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6850828f26fa5012949d891e7d8bab5e2da377e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.234ex; height:4.843ex;" alt="{\textstyle \lim _{k\to \infty }{\frac {|x_{k+1}-x_{k}|}{|x_{k}-x_{k-1}|}}=1.}"></span><sup id="cite_ref-:1_5-1" class="reference"><a href="#cite_note-:1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="R-convergence">R-convergence</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit&amp;section=3" title="Edit section: R-convergence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The definitions of Q-convergence rates have the shortcoming that they do not naturally capture the convergence behavior of sequences that do converge, but do not converge with an asymptotically constant rate with every step, so that the Q-convergence limit does not exist. One class of examples is the staggered geometric progressions that get closer to their limits only every other step or every several steps, for instance the example <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (b_{k})=1,1,1/4,1/4,1/16,1/16,\ldots ,1/4^{\left\lfloor {\frac {k}{2}}\right\rfloor },\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mo>,</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mo>,</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>16</mn> <mo>,</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>16</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>&#x230A;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x230B;</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (b_{k})=1,1,1/4,1/4,1/16,1/16,\ldots ,1/4^{\left\lfloor {\frac {k}{2}}\right\rfloor },\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/362aff43fb63ea5448dce72e667f353be814ffcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:46.685ex; height:4.343ex;" alt="{\textstyle (b_{k})=1,1,1/4,1/4,1/16,1/16,\ldots ,1/4^{\left\lfloor {\frac {k}{2}}\right\rfloor },\ldots }"></span> detailed below (where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lfloor x\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lfloor x\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3c85cd99f40de23dcf048e0bee42f069c2b2bf7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.394ex; height:2.843ex;" alt="{\textstyle \lfloor x\rfloor }"></span> is the <a href="/wiki/Floor_function" class="mw-redirect" title="Floor function">floor function</a> applied to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>). The defining Q-linear convergence limits do not exist for this sequence because one subsequence of error quotients starting from odd steps converges to 1 and another subsequence of quotients starting from even steps converges to 1/4. When two subsequences of a sequence converge to different limits, the sequence does not itself converge to a limit. </p><p>In cases like these, a closely related but more technical definition of rate of convergence called R-convergence is more appropriate. The "R-" prefix stands for "root."<sup id="cite_ref-:0_1-6" class="reference"><a href="#cite_note-:0-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-NocedalWright2006_7-0" class="reference"><a href="#cite_note-NocedalWright2006-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 620">&#58;&#8202;620&#8202;</span></sup> A sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c03ec3abdeddde419f4f842f850836397640565" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.228ex; height:2.843ex;" alt="{\displaystyle (x_{k})}"></span> that converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> is said to <i>converge at least R-linearly</i> if there exists an error-bounding sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\varepsilon _{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\varepsilon _{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b95f4112077005e71cb0ef191b8b8f2e56078658" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.982ex; height:2.843ex;" alt="{\displaystyle (\varepsilon _{k})}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |x_{k}-L|\leq \varepsilon _{k}\quad {\text{for all }}k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for all&#xA0;</mtext> </mrow> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |x_{k}-L|\leq \varepsilon _{k}\quad {\text{for all }}k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2e770fdcc7fccad10b89fd45f13d2592e9ec950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.343ex; height:2.843ex;" alt="{\textstyle |x_{k}-L|\leq \varepsilon _{k}\quad {\text{for all }}k}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\varepsilon _{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\varepsilon _{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b95f4112077005e71cb0ef191b8b8f2e56078658" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.982ex; height:2.843ex;" alt="{\displaystyle (\varepsilon _{k})}"></span> converges Q-linearly to zero; analogous definitions hold for R-superlinear convergence, R-sublinear convergence, R-quadratic convergence, and so on.<sup id="cite_ref-:0_1-7" class="reference"><a href="#cite_note-:0-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>Any error bounding sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\varepsilon _{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\varepsilon _{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b95f4112077005e71cb0ef191b8b8f2e56078658" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.982ex; height:2.843ex;" alt="{\displaystyle (\varepsilon _{k})}"></span> provides a lower bound on the rate and order of R-convergence and the greatest lower bound gives the exact rate and order of R-convergence. As for Q-convergence, sequences with larger orders <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> converge more quickly and those with smaller rates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> converge more quickly for a given order, so these greatest-rate-lower-bound error-upper-bound sequences are those that have the greatest possible <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> and the smallest possible <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> given that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span>. </p><p>For the example <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (b_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (b_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50a305e2f47dc703ad560149e75df87d91389f76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.896ex; height:2.843ex;" alt="{\textstyle (b_{k})}"></span> given above, the tight bounding sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (\varepsilon _{k})=2,1,1/2,1/4,1/8,1/16,\ldots ,1/2^{k-1},\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> <mo>,</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>8</mn> <mo>,</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>16</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (\varepsilon _{k})=2,1,1/2,1/4,1/8,1/16,\ldots ,1/2^{k-1},\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c880353182608a21a92f42057173557e871bc25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.299ex; height:3.176ex;" alt="{\textstyle (\varepsilon _{k})=2,1,1/2,1/4,1/8,1/16,\ldots ,1/2^{k-1},\ldots }"></span>converges Q-linearly with rate 1/2, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (b_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (b_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50a305e2f47dc703ad560149e75df87d91389f76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.896ex; height:2.843ex;" alt="{\textstyle (b_{k})}"></span> converges R-linearly with rate 1/2. Generally, for any staggered geometric progression <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ar^{\lfloor k/m\rfloor })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>m</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ar^{\lfloor k/m\rfloor })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1d758723b2369bdfc28524b7e2421bf6c0855be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.901ex; height:3.343ex;" alt="{\displaystyle (ar^{\lfloor k/m\rfloor })}"></span>, the sequence will not converge Q-linearly but will converge R-linearly with rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\sqrt[{m}]{|r|}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </mroot> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\sqrt[{m}]{|r|}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31020b77516ba8bab63bd9ea590caa8c630fbd43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.313ex; height:3.343ex;" alt="{\textstyle {\sqrt[{m}]{|r|}}.}"></span> These examples demonstrate why the "R" in R-linear convergence is short for "root." </p> <div class="mw-heading mw-heading3"><h3 id="Examples">Examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit&amp;section=4" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Geometric_progression" title="Geometric progression">geometric progression</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (a_{k})=1,{\frac {1}{2}},{\frac {1}{4}},{\frac {1}{8}},{\frac {1}{16}},{\frac {1}{32}},\ldots ,1/{2^{k}},\dots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>8</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>16</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>32</mn> </mfrac> </mrow> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (a_{k})=1,{\frac {1}{2}},{\frac {1}{4}},{\frac {1}{8}},{\frac {1}{16}},{\frac {1}{32}},\ldots ,1/{2^{k}},\dots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0e276abaf6def959d45c07178c1218000a26367" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:37.004ex; height:3.676ex;" alt="{\textstyle (a_{k})=1,{\frac {1}{2}},{\frac {1}{4}},{\frac {1}{8}},{\frac {1}{16}},{\frac {1}{32}},\ldots ,1/{2^{k}},\dots }"></span> converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8f8f92d30bf35881f908422487556c595351ba6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.844ex; height:2.176ex;" alt="{\displaystyle L=0}"></span>. Plugging the sequence into the definition of Q-linear convergence (i.e., order of convergence 1) shows that </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{k\to \infty }{\frac {\left|1/2^{k+1}-0\right|}{\left|1/2^{k}-0\right|}}=\lim _{k\to \infty }{\frac {2^{k}}{2^{k+1}}}={\frac {1}{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>0</mn> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>0</mn> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{k\to \infty }{\frac {\left|1/2^{k+1}-0\right|}{\left|1/2^{k}-0\right|}}=\lim _{k\to \infty }{\frac {2^{k}}{2^{k+1}}}={\frac {1}{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edf0bb2c0c0ee11aa1226e3a4b532b1e477e201e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:35.899ex; height:7.509ex;" alt="{\displaystyle \lim _{k\to \infty }{\frac {\left|1/2^{k+1}-0\right|}{\left|1/2^{k}-0\right|}}=\lim _{k\to \infty }{\frac {2^{k}}{2^{k+1}}}={\frac {1}{2}}.}"></span> </p><p>Thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5225a9d8f787b53879bcfb2c3135462b293f9915" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.128ex; height:2.843ex;" alt="{\displaystyle (a_{k})}"></span> converges Q-linearly with a convergence rate of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu =1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu =1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c94cb0df46ce83d6fdc7dbe6d7f495aff144b9a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.988ex; height:2.843ex;" alt="{\displaystyle \mu =1/2}"></span>; see the first plot of the figure below. </p><p>More generally, for any initial value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> in the real numbers and a real number common ratio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> between -1 and 1, a geometric progression <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ar^{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ar^{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8aef2c6b42567fc145f770f5f189bf8f63c8e39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.176ex; height:3.176ex;" alt="{\displaystyle (ar^{k})}"></span> converges linearly with rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |r|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |r|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33724ed2b4730b9b29dd9d08e8b216c539ed7dde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.342ex; height:2.843ex;" alt="{\displaystyle |r|}"></span> and the sequence of partial sums of a <a href="/wiki/Geometric_series" title="Geometric series">geometric series</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (\sum _{n=0}^{k}ar^{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mi>a</mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (\sum _{n=0}^{k}ar^{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bb44c13d25ced404874184b4a632dc2ab70ec0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.466ex; height:3.509ex;" alt="{\textstyle (\sum _{n=0}^{k}ar^{n})}"></span> also converges linearly with rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |r|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |r|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33724ed2b4730b9b29dd9d08e8b216c539ed7dde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.342ex; height:2.843ex;" alt="{\displaystyle |r|}"></span>. The same holds also for geometric progressions and geometric series parameterized by any <a href="/wiki/Complex_number" title="Complex number">complex numbers</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in \mathbb {C} ,r\in \mathbb {C} ,|r|&lt;1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>,</mo> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in \mathbb {C} ,r\in \mathbb {C} ,|r|&lt;1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b182da99029d630955dd65dee062df883a89db2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.634ex; height:2.843ex;" alt="{\displaystyle a\in \mathbb {C} ,r\in \mathbb {C} ,|r|&lt;1.}"></span> </p><p>The staggered geometric progression <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (b_{k})=1,1,{\frac {1}{4}},{\frac {1}{4}},{\frac {1}{16}},{\frac {1}{16}},\ldots ,1/4^{\left\lfloor {\frac {k}{2}}\right\rfloor },\ldots ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>16</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>16</mn> </mfrac> </mrow> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>&#x230A;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x230B;</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (b_{k})=1,1,{\frac {1}{4}},{\frac {1}{4}},{\frac {1}{16}},{\frac {1}{16}},\ldots ,1/4^{\left\lfloor {\frac {k}{2}}\right\rfloor },\ldots ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d09ed00cefbc8a6b84a59273bf6c73ee923a886e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:39.721ex; height:4.843ex;" alt="{\textstyle (b_{k})=1,1,{\frac {1}{4}},{\frac {1}{4}},{\frac {1}{16}},{\frac {1}{16}},\ldots ,1/4^{\left\lfloor {\frac {k}{2}}\right\rfloor },\ldots ,}"></span> using the <a href="/wiki/Floor_and_ceiling_functions" title="Floor and ceiling functions">floor function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lfloor x\rfloor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lfloor x\rfloor }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3c85cd99f40de23dcf048e0bee42f069c2b2bf7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.394ex; height:2.843ex;" alt="{\textstyle \lfloor x\rfloor }"></span> that gives the largest integer that is less than or equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feff4d40084c7351bf57b11ba2427f6331f5bdbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x,}"></span> converges R-linearly to 0 with rate 1/2, but it does not converge Q-linearly; see the second plot of the figure below. The defining Q-linear convergence limits do not exist for this sequence because one subsequence of error quotients starting from odd steps converges to 1 and another subsequence of quotients starting from even steps converges to 1/4. When two subsequences of a sequence converge to different limits, the sequence does not itself converge to a limit. Generally, for any staggered geometric progression <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ar^{\lfloor k/m\rfloor })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">&#x230A;<!-- ⌊ --></mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>m</mi> <mo fence="false" stretchy="false">&#x230B;<!-- ⌋ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ar^{\lfloor k/m\rfloor })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1d758723b2369bdfc28524b7e2421bf6c0855be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.901ex; height:3.343ex;" alt="{\displaystyle (ar^{\lfloor k/m\rfloor })}"></span>, the sequence will not converge Q-linearly but will converge R-linearly with rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\sqrt[{m}]{|r|}};}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </mroot> </mrow> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\sqrt[{m}]{|r|}};}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06abd59852f8c47697c7c4a123a10b497a9c027a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.313ex; height:3.343ex;" alt="{\textstyle {\sqrt[{m}]{|r|}};}"></span> these examples demonstrate why the "R" in R-linear convergence is short for "root." </p><p>The sequence <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (c_{k})={\frac {1}{2}},{\frac {1}{4}},{\frac {1}{16}},{\frac {1}{256}},{\frac {1}{65,\!536}},\ldots ,{\frac {1}{2^{2^{k}}}},\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>16</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>256</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>65</mn> <mo>,</mo> <mspace width="negativethinmathspace" /> <mn>536</mn> </mrow> </mfrac> </mrow> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> </msup> </mfrac> </mrow> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (c_{k})={\frac {1}{2}},{\frac {1}{4}},{\frac {1}{16}},{\frac {1}{256}},{\frac {1}{65,\!536}},\ldots ,{\frac {1}{2^{2^{k}}}},\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7266ef6cc68fa3972c5854bb377d4c6927f52551" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:42.764ex; height:6.009ex;" alt="{\displaystyle (c_{k})={\frac {1}{2}},{\frac {1}{4}},{\frac {1}{16}},{\frac {1}{256}},{\frac {1}{65,\!536}},\ldots ,{\frac {1}{2^{2^{k}}}},\ldots }"></span> converges to zero Q-superlinearly. In fact, it is quadratically convergent with a quadratic convergence rate of 1. It is shown in the third plot of the figure below. </p><p>Finally, the sequence <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (d_{k})=1,{\frac {1}{2}},{\frac {1}{3}},{\frac {1}{4}},{\frac {1}{5}},{\frac {1}{6}},\ldots ,{\frac {1}{k+1}},\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (d_{k})=1,{\frac {1}{2}},{\frac {1}{3}},{\frac {1}{4}},{\frac {1}{5}},{\frac {1}{6}},\ldots ,{\frac {1}{k+1}},\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4604d54ebe0756404a48fbed45bebe479288ee05" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:38.516ex; height:5.509ex;" alt="{\displaystyle (d_{k})=1,{\frac {1}{2}},{\frac {1}{3}},{\frac {1}{4}},{\frac {1}{5}},{\frac {1}{6}},\ldots ,{\frac {1}{k+1}},\ldots }"></span> converges to zero Q-sublinearly and logarithmically and its convergence is shown as the fourth plot of the figure below. </p> <figure class="mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/File:ConvergencePlots.png" class="mw-file-description"><img alt="Plot showing the different rates of convergence for the sequences ak, bk, ck and dk." src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2c/ConvergencePlots.png/600px-ConvergencePlots.png" decoding="async" width="600" height="199" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2c/ConvergencePlots.png/900px-ConvergencePlots.png 1.5x, //upload.wikimedia.org/wikipedia/commons/2/2c/ConvergencePlots.png 2x" data-file-width="1144" data-file-height="379" /></a><figcaption>Log-linear plots of the example sequences <i>a</i><sub><i>k</i></sub>, <i>b</i><sub><i>k</i></sub>, <i>c</i><sub><i>k</i></sub>, and <i>d</i><sub><i>k</i></sub> that exemplify linear, linear, superlinear (quadratic), and sublinear rates of convergence, respectively.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Convergence_rates_to_fixed_points_of_recurrent_sequences">Convergence rates to fixed points of recurrent sequences</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit&amp;section=5" title="Edit section: Convergence rates to fixed points of recurrent sequences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Recurrent sequences <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x_{k+1}:=f(x_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>:=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x_{k+1}:=f(x_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2274a76d57f72c66047fb843276295aaece555f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.771ex; height:2.843ex;" alt="{\textstyle x_{k+1}:=f(x_{k})}"></span>, called <a href="/wiki/Fixed-point_iteration" title="Fixed-point iteration">fixed point iterations</a>, define discrete time autonomous <a href="/wiki/Dynamical_system" title="Dynamical system">dynamical systems</a> and have important general applications in mathematics through various <a href="/wiki/Fixed-point_theorems" class="mw-redirect" title="Fixed-point theorems">fixed-point theorems</a> about their convergence behavior. When <i>f</i> is <a href="/wiki/Continuously_differentiable" class="mw-redirect" title="Continuously differentiable">continuously differentiable</a>, given a <a href="/wiki/Fixed_point_(mathematics)" title="Fixed point (mathematics)">fixed point</a> <i>p</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle f(p)=p,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>p</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle f(p)=p,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e277660bfafe7949626d3f8c0b325f7103397a24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.172ex; height:2.843ex;" alt="{\textstyle f(p)=p,}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |f'(p)|&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |f'(p)|&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f43e13ccd1355d45b76690004dd56572226c251" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.539ex; height:2.843ex;" alt="{\textstyle |f&#039;(p)|&lt;1}"></span>, the fixed point is an <a href="/wiki/Attractive_fixed_point" class="mw-redirect" title="Attractive fixed point">attractive fixed point</a> and the recurrent sequence will converge at least linearly to <i>p</i> for any starting value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> sufficiently close to <i>p</i>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f'(p)|=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f'(p)|=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cbfa5acbee6eba1c4d6fbeb3e924c81816070f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.539ex; height:3.009ex;" alt="{\displaystyle |f&#039;(p)|=0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |f''(p)|&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>f</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |f''(p)|&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07ccb6185fc9aa4543e9926cfa417c00459f9a8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.991ex; height:2.843ex;" alt="{\textstyle |f&#039;&#039;(p)|&lt;1}"></span>, then the recurrent sequence will converge at least quadratically, and so on. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f'(p)|&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f'(p)|&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87cf1d97baafff157c17fae76d3266771f8066fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.539ex; height:3.009ex;" alt="{\displaystyle |f&#039;(p)|&gt;1}"></span>, then the fixed point is a <a href="/wiki/Repulsive_fixed_point" class="mw-redirect" title="Repulsive fixed point">repulsive fixed point</a> and sequences cannot converge to <i>p</i> from its immediate <a href="/wiki/Neighbourhood_(mathematics)" title="Neighbourhood (mathematics)">neighborhoods</a>, though they may still jump to <i>p</i> directly from outside of its local neighborhoods. </p> <div class="mw-heading mw-heading3"><h3 id="Order_estimation">Order estimation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit&amp;section=6" title="Edit section: Order estimation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A practical method to calculate the order of convergence for a sequence generated by a fixed point iteration is to calculate the following sequence, which converges to the order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span>:<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q\approx {\frac {\log \left|\displaystyle {\frac {x_{k+1}-x_{k}}{x_{k}-x_{k-1}}}\right|}{\log \left|\displaystyle {\frac {x_{k}-x_{k-1}}{x_{k-1}-x_{k-2}}}\right|}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> <mo>|</mo> </mrow> </mrow> <mrow> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>|</mo> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> <mo>|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q\approx {\frac {\log \left|\displaystyle {\frac {x_{k+1}-x_{k}}{x_{k}-x_{k-1}}}\right|}{\log \left|\displaystyle {\frac {x_{k}-x_{k-1}}{x_{k-1}-x_{k-2}}}\right|}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47bcd60c716ba02fd9d8c3bafaa458503d700533" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:22.631ex; height:12.509ex;" alt="{\displaystyle q\approx {\frac {\log \left|\displaystyle {\frac {x_{k+1}-x_{k}}{x_{k}-x_{k-1}}}\right|}{\log \left|\displaystyle {\frac {x_{k}-x_{k-1}}{x_{k-1}-x_{k-2}}}\right|}}.}"></span> </p><p>For numerical approximation of an exact value through a numerical method of order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> see.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Accelerating_convergence_rates">Accelerating convergence rates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit&amp;section=7" title="Edit section: Accelerating convergence rates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Series_acceleration" title="Series acceleration">Series acceleration</a></div> <p>Many methods exist to accelerate the convergence of a given sequence, i.e., to <a href="/wiki/Sequence_transformation" title="Sequence transformation">transform one sequence</a> into a second sequence that converges more quickly to the same limit. Such techniques are in general known as "<a href="/wiki/Series_acceleration" title="Series acceleration">series acceleration</a>" methods. These may reduce the <a href="/wiki/Computational_cost" class="mw-redirect" title="Computational cost">computational costs</a> of approximating the limits of the original sequences. One example of series acceleration by sequence transformation is <a href="/wiki/Aitken%27s_delta-squared_process" title="Aitken&#39;s delta-squared process">Aitken's delta-squared process</a>. These methods in general, and in particular Aitken's method, do not typically increase the order of convergence and thus they are useful only if initially the convergence is not faster than linear: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c03ec3abdeddde419f4f842f850836397640565" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.228ex; height:2.843ex;" alt="{\displaystyle (x_{k})}"></span> converges linearly, Aitken's method transforms it into a sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5225a9d8f787b53879bcfb2c3135462b293f9915" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.128ex; height:2.843ex;" alt="{\displaystyle (a_{k})}"></span> that still converges linearly (except for pathologically designed special cases), but faster in the sense that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lim _{k\rightarrow \infty }(a_{k}-L)/(x_{k}-L)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lim _{k\rightarrow \infty }(a_{k}-L)/(x_{k}-L)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f50d89fa1be2f266e545c3478579718b80c35bf5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.23ex; height:2.843ex;" alt="{\textstyle \lim _{k\rightarrow \infty }(a_{k}-L)/(x_{k}-L)=0}"></span>. On the other hand, if the convergence is already of order &#8805; 2, Aitken's method will bring no improvement. </p> <div class="mw-heading mw-heading2"><h2 id="Asymptotic_rates_of_convergence_for_discretization_methods">Asymptotic rates of convergence for discretization methods</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit&amp;section=8" title="Edit section: Asymptotic rates of convergence for discretization methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed_section plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Rate_of_convergence" title="Special:EditPage/Rate of convergence">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>&#32;in this section. Unsourced material may be challenged and removed.</span> <span class="date-container"><i>(<span class="date">August 2020</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Definitions_2">Definitions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit&amp;section=9" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A sequence of discretized approximations <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (y_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (y_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34b0efcd30727da7d198b2f5b2caa60b55467611" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.037ex; height:2.843ex;" alt="{\displaystyle (y_{k})}"></span> of some continuous-domain function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> that converges to this target, together with a corresponding sequence of discretization scale parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (h_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (h_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fddc1507f7adccc30f8d8933cd09ff6895019e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.237ex; height:2.843ex;" alt="{\displaystyle (h_{k})}"></span> that converge to 0, is said to have asymptotic <i>order of convergence</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> and asymptotic <i>rate of convergence</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> if </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|y_{k}-S\right|}{h_{k}^{q}}}=\mu ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>S</mi> </mrow> <mo>|</mo> </mrow> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> </mfrac> </mrow> <mo>=</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|y_{k}-S\right|}{h_{k}^{q}}}=\mu ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3280d210ec55f27da3369d35090f13358404298a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.374ex; height:6.843ex;" alt="{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|y_{k}-S\right|}{h_{k}^{q}}}=\mu ,}"></span> </p><p>for some positive constants <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> and using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4eb41e5fd5dc37eaa1718dfbf4bc082edb991936" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.623ex; height:2.843ex;" alt="{\displaystyle |x|}"></span> to stand for an appropriate <a href="/wiki/Distance_metric" class="mw-redirect" title="Distance metric">distance metric</a> on the <a href="/wiki/Function_space" title="Function space">space of solutions</a>, most often either the <a href="/wiki/Uniform_norm" title="Uniform norm">uniform norm</a>, the <a href="/wiki/Taxicab_geometry" title="Taxicab geometry">absolute difference</a>, or the <a href="/wiki/Euclidean_distance" title="Euclidean distance">Euclidean distance</a>. Discretization scale parameters may be spacings of a <a href="/wiki/Regular_grid" title="Regular grid">regular grid</a> in space or in time, the inverse of the number of points of a grid in one dimension, an average or maximum distance between points in a <a href="/wiki/Polygon_mesh" title="Polygon mesh">polygon mesh</a>, the single-dimension spacings of an irregular <a href="/wiki/Sparse_grid" title="Sparse grid">sparse grid</a>, or a characteristic quantum of energy or momentum in a <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanical</a> <a href="/wiki/Basis_set_(chemistry)" title="Basis set (chemistry)">basis set</a>. </p><p>When all the discretizations are generated using a single common method, it is common to discuss the asymptotic rate and order of convergence for the method itself rather than any particular discrete sequences of discretized solutions. In these cases one considers a single abstract discretized solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{h}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{h}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05e1b7d6e3a1b3e3261f7c1446b1269574ab45b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.318ex; height:2.009ex;" alt="{\displaystyle y_{h}}"></span> generated using the method with a scale parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> and then the method is said to have asymptotic <i>order of convergence</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> and asymptotic <i>rate of convergence</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> if </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{h\rightarrow 0}{\frac {\left|y_{h}-S\right|}{h^{q}}}=\mu ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>S</mi> </mrow> <mo>|</mo> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{h\rightarrow 0}{\frac {\left|y_{h}-S\right|}{h^{q}}}=\mu ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89df06053b1f336e2469a5568eeb1495474c985f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.734ex; height:5.843ex;" alt="{\displaystyle \lim _{h\rightarrow 0}{\frac {\left|y_{h}-S\right|}{h^{q}}}=\mu ,}"></span> </p><p>again for some positive constants <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> and an appropriate metric <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b62265e223769ba94a6452c1ee279d3bcc574016" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.27ex; height:2.843ex;" alt="{\displaystyle |x|.}"></span> This implies that the error of a discretization asymptotically scales like the discretization's scale parameter to the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> power, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left|y_{h}-S\right|=O(h^{q})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>S</mi> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left|y_{h}-S\right|=O(h^{q})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6e0070f0b93453ae38885289c7a6017a09a9963" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.96ex; height:2.843ex;" alt="{\textstyle \left|y_{h}-S\right|=O(h^{q})}"></span> using <a href="/wiki/Big_O_notation" title="Big O notation">asymptotic big O notation</a>. More precisely, it implies the leading order error is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu h^{q},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu h^{q},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce24bdff270dbaacf51780893b47595d2725e99b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.376ex; height:2.843ex;" alt="{\displaystyle \mu h^{q},}"></span> which can be expressed using <a href="/wiki/Small_o_notation" class="mw-redirect" title="Small o notation">asymptotic small o notation</a> as<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \left|y_{h}-S\right|=\mu h^{q}+o(h^{q}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>S</mi> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mi>&#x03BC;<!-- μ --></mi> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo>+</mo> <mi>o</mi> <mo stretchy="false">(</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \left|y_{h}-S\right|=\mu h^{q}+o(h^{q}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546398dbb43a749e697328ccdffc5af9d3be677a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.531ex; height:2.843ex;" alt="{\textstyle \left|y_{h}-S\right|=\mu h^{q}+o(h^{q}).}"></span> </p><p>In some cases multiple rates and orders for the same method but with different choices of scale parameter may be important, for instance for <a href="/wiki/Finite_difference_method" title="Finite difference method">finite difference methods</a> based on multidimensional grids where the different dimensions have different grid spacings or for <a href="/wiki/Finite_element_method" title="Finite element method">finite element methods</a> based on polygon meshes where choosing either average distance between mesh points or maximum distance between mesh points as scale parameters may imply different orders of convergence. In some especially technical contexts, discretization methods' asymptotic rates and orders of convergence will be characterized by several scale parameters at once with the value of each scale parameter possibly affecting the asymptotic rate and order of convergence of the method with respect to the other scale parameters. </p> <div class="mw-heading mw-heading3"><h3 id="Example">Example</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit&amp;section=10" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider the ordinary differential equation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {dy}{dx}}=-\kappa y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BA;<!-- κ --></mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {dy}{dx}}=-\kappa y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0093139b9af5978d3bd67b291a3d42388a172ecb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:10.783ex; height:5.509ex;" alt="{\displaystyle {\frac {dy}{dx}}=-\kappa y}"></span></dd></dl> <p>with initial condition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(0)=y_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(0)=y_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b7f7ab4d55beca261df55663bdc6e674d0acef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.419ex; height:2.843ex;" alt="{\displaystyle y(0)=y_{0}}"></span>. We can approximate a solution to this one-dimensional equation using a sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (y_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (y_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81e3bac0852409ba19a3346beca1b87fe9f5aac6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.167ex; height:2.843ex;" alt="{\displaystyle (y_{n})}"></span> applying the <a href="/wiki/Forward_Euler_method" class="mw-redirect" title="Forward Euler method">forward Euler method</a> for numerical discretization using any regular grid spacing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> and grid points indexed by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {y_{n+1}-y_{n}}{h}}=-\kappa y_{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mi>h</mi> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BA;<!-- κ --></mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {y_{n+1}-y_{n}}{h}}=-\kappa y_{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23b78e45708476f862eafb25f1e7a6d9691660ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.743ex; height:5.343ex;" alt="{\displaystyle {\frac {y_{n+1}-y_{n}}{h}}=-\kappa y_{n},}"></span></dd></dl> <p>which implies the first-order <a href="/wiki/Linear_recurrence_with_constant_coefficients" title="Linear recurrence with constant coefficients">linear recurrence with constant coefficients</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{n+1}=y_{n}(1-h\kappa ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>h</mi> <mi>&#x03BA;<!-- κ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{n+1}=y_{n}(1-h\kappa ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0486bf91fc025fac087dfb2d457b80a647f99fdd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.051ex; height:2.843ex;" alt="{\displaystyle y_{n+1}=y_{n}(1-h\kappa ).}"></span></dd></dl> <p>Given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y(0)=y_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y(0)=y_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b7f7ab4d55beca261df55663bdc6e674d0acef2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.419ex; height:2.843ex;" alt="{\displaystyle y(0)=y_{0}}"></span>, the sequence satisfying that recurrence is the <a href="/wiki/Geometric_progression" title="Geometric progression">geometric progression</a> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{n}=y_{0}(1-h\kappa )^{n}=y_{0}\left(1-nh\kappa +{\frac {n(n-1)}{2}}h^{2}\kappa ^{2}+....\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>h</mi> <mi>&#x03BA;<!-- κ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>h</mi> <mi>&#x03BA;<!-- κ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{n}=y_{0}(1-h\kappa )^{n}=y_{0}\left(1-nh\kappa +{\frac {n(n-1)}{2}}h^{2}\kappa ^{2}+....\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d07473a1fdbe499ec0d63b2aa92ac11c02196c7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:58.576ex; height:6.343ex;" alt="{\displaystyle y_{n}=y_{0}(1-h\kappa )^{n}=y_{0}\left(1-nh\kappa +{\frac {n(n-1)}{2}}h^{2}\kappa ^{2}+....\right).}"></span> </p><p>The exact analytical solution to the differential equation is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=f(x)=y_{0}\exp(-\kappa x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BA;<!-- κ --></mi> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=f(x)=y_{0}\exp(-\kappa x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bd902ab192e40f5e7dda01778f98e71e1847b1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.189ex; height:2.843ex;" alt="{\displaystyle y=f(x)=y_{0}\exp(-\kappa x)}"></span>, corresponding to the following <a href="/wiki/Taylor_expansion" class="mw-redirect" title="Taylor expansion">Taylor expansion</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle nh\kappa }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>h</mi> <mi>&#x03BA;<!-- κ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle nh\kappa }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d09c7836f0c435b964407b3e629a57fd242f631" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.073ex; height:2.176ex;" alt="{\displaystyle nh\kappa }"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{n})=f(nh)=y_{0}\exp(-\kappa nh)=y_{0}\left(1-nh\kappa +{\frac {n^{2}h^{2}\kappa ^{2}}{2}}+...\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BA;<!-- κ --></mi> <mi>n</mi> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mi>h</mi> <mi>&#x03BA;<!-- κ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{n})=f(nh)=y_{0}\exp(-\kappa nh)=y_{0}\left(1-nh\kappa +{\frac {n^{2}h^{2}\kappa ^{2}}{2}}+...\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8ce35d037f6dfd533b9431bb4b7174556e4feea" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:65.509ex; height:6.343ex;" alt="{\displaystyle f(x_{n})=f(nh)=y_{0}\exp(-\kappa nh)=y_{0}\left(1-nh\kappa +{\frac {n^{2}h^{2}\kappa ^{2}}{2}}+...\right).}"></span> </p><p>Therefore the error of the discrete approximation at each discrete point is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |y_{n}-f(x_{n})|={\frac {nh^{2}\kappa ^{2}}{2}}+\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |y_{n}-f(x_{n})|={\frac {nh^{2}\kappa ^{2}}{2}}+\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/485a80f37051a55b9b708e05eaec9d8725ac58c0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.807ex; height:5.676ex;" alt="{\displaystyle |y_{n}-f(x_{n})|={\frac {nh^{2}\kappa ^{2}}{2}}+\ldots }"></span></dd></dl> <p>For any specific <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e7eadf846fe8a0d41f86251df968d05fcfa3374" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.598ex; height:2.009ex;" alt="{\displaystyle x=p}"></span>, given a sequence of forward Euler approximations <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ((y_{n})_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ((y_{n})_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c698069e7dedd8d9df7f265befc74d0f5dbfa6ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.065ex; height:2.843ex;" alt="{\displaystyle ((y_{n})_{k})}"></span>, each using grid spacings <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78fe4f83c0bf136a170a0433c961330328b3596f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.428ex; height:2.509ex;" alt="{\displaystyle h_{k}}"></span> that divide <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{p,k}=p/h_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{p,k}=p/h_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/747ebe9dbfd81ae710992b68d7c1937541960b31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.626ex; height:3.009ex;" alt="{\displaystyle n_{p,k}=p/h_{k}}"></span>, one has </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{h_{k}\rightarrow 0}{\frac {|y_{k}(p)-f(p)|}{h_{k}}}=\lim _{h_{k}\rightarrow 0}{\frac {|y_{k,n_{p,k}}-f(h_{k}n_{p,k})|}{h_{k}}}={\frac {h_{k}n_{p,k}\kappa ^{2}}{2}}={\frac {p\kappa ^{2}}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msup> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>p</mi> <msup> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{h_{k}\rightarrow 0}{\frac {|y_{k}(p)-f(p)|}{h_{k}}}=\lim _{h_{k}\rightarrow 0}{\frac {|y_{k,n_{p,k}}-f(h_{k}n_{p,k})|}{h_{k}}}={\frac {h_{k}n_{p,k}\kappa ^{2}}{2}}={\frac {p\kappa ^{2}}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b471d2c5cd2661e5855f0c3a564a5df739509e39" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:66.698ex; height:6.509ex;" alt="{\displaystyle \lim _{h_{k}\rightarrow 0}{\frac {|y_{k}(p)-f(p)|}{h_{k}}}=\lim _{h_{k}\rightarrow 0}{\frac {|y_{k,n_{p,k}}-f(h_{k}n_{p,k})|}{h_{k}}}={\frac {h_{k}n_{p,k}\kappa ^{2}}{2}}={\frac {p\kappa ^{2}}{2}}}"></span> </p><p>for any sequence of grids with successively smaller grid spacings <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78fe4f83c0bf136a170a0433c961330328b3596f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.428ex; height:2.509ex;" alt="{\displaystyle h_{k}}"></span>. Thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ((y_{n})_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ((y_{n})_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c698069e7dedd8d9df7f265befc74d0f5dbfa6ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.065ex; height:2.843ex;" alt="{\displaystyle ((y_{n})_{k})}"></span> converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> <a href="/wiki/Pointwise_convergence" title="Pointwise convergence">pointwise</a> with a convergence order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/785938d022f0b0b0bf4b3afa5e1cedceab7a3874" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.33ex; height:2.509ex;" alt="{\displaystyle q=1}"></span> and asymptotic error constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\kappa ^{2}/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <msup> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\kappa ^{2}/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f43f28becec822de07deb08fdc9db9d71f58a51f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:5.977ex; height:3.176ex;" alt="{\displaystyle p\kappa ^{2}/2}"></span> at each point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p&gt;0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&gt;</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p&gt;0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05a4848bb7e353ef2eb87203e58dc3fa2f0a8546" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.167ex; height:2.509ex;" alt="{\displaystyle p&gt;0.}"></span> Similarly, the sequence converges <a href="/wiki/Uniform_convergence" title="Uniform convergence">uniformly</a> with the same order and with rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L\kappa ^{2}/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <msup> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L\kappa ^{2}/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/950a6ee10ada7cc07cc40b4267befcf4ed79e530" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.301ex; height:3.176ex;" alt="{\displaystyle L\kappa ^{2}/2}"></span> on any bounded interval of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\leq L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\leq L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/053684f024257af5983028aba8711237605286c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.94ex; height:2.509ex;" alt="{\displaystyle p\leq L}"></span>, but it does not converge uniformly on the unbounded set of all positive real values, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,\infty ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,\infty ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e474a308631173de31a5b13e648de8fb2a001fa8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.718ex; height:2.843ex;" alt="{\displaystyle [0,\infty ).}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Comparing_asymptotic_rates_of_convergence">Comparing asymptotic rates of convergence</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit&amp;section=11" title="Edit section: Comparing asymptotic rates of convergence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Definitions_3">Definitions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit&amp;section=12" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Asymptotic_analysis" title="Asymptotic analysis">asymptotic analysis</a> in general, one sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a_{k})_{k\in \mathbb {N} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a_{k})_{k\in \mathbb {N} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63cfa6370af5272c22c630b3ae9e26b7aa0f8e90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.499ex; height:2.843ex;" alt="{\displaystyle (a_{k})_{k\in \mathbb {N} }}"></span> that converges to a <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limit</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> is said to asymptotically converge to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> with a faster order of convergence than another sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (b_{k})_{k\in \mathbb {N} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (b_{k})_{k\in \mathbb {N} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23d021642c4325cd84b2fb9301f89b2584361889" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.267ex; height:2.843ex;" alt="{\displaystyle (b_{k})_{k\in \mathbb {N} }}"></span> that converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> in a shared <a href="/wiki/Metric_space" title="Metric space">metric space</a> with <a href="/wiki/Distance_metric" class="mw-redirect" title="Distance metric">distance metric</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\cdot |,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\cdot |,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4986122d7564b160393bf814dd3395ec86b125bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.62ex; height:2.843ex;" alt="{\displaystyle |\cdot |,}"></span> such as the <a href="/wiki/Real_number" title="Real number">real numbers</a> or <a href="/wiki/Complex_number" title="Complex number">complex numbers</a> with the ordinary <a href="/wiki/Absolute_difference" title="Absolute difference">absolute difference</a> metrics, if </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|a_{k}-L\right|}{|b_{k}-L|}}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> </mrow> <mo>|</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|a_{k}-L\right|}{|b_{k}-L|}}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07a5bb57bb5fd796445f0f23efee6b1b2d9b85ea" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.309ex; height:6.509ex;" alt="{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|a_{k}-L\right|}{|b_{k}-L|}}=0,}"></span> </p><p>the two are said to asymptotically converge to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> with the same order of convergence if </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|a_{k}-L\right|}{|b_{k}-L|}}=\mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> </mrow> <mo>|</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|a_{k}-L\right|}{|b_{k}-L|}}=\mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82dd8cb4f551cfa5d35cfe546774e1654c303ee0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:17.902ex; height:6.509ex;" alt="{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|a_{k}-L\right|}{|b_{k}-L|}}=\mu }"></span> </p><p>for some positive finite constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e7e1ef161a49a22b500d63307460ad92eeb6a16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.049ex; height:2.176ex;" alt="{\displaystyle \mu ,}"></span> and the two are said to asymptotically converge to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> with the same rate and order of convergence if </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|a_{k}-L\right|}{|b_{k}-L|}}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>|</mo> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> </mrow> <mo>|</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|a_{k}-L\right|}{|b_{k}-L|}}=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd1bf6f4aad8831f0ae796aa97bbc50d0c1a6edb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.309ex; height:6.509ex;" alt="{\displaystyle \lim _{k\rightarrow \infty }{\frac {\left|a_{k}-L\right|}{|b_{k}-L|}}=1.}"></span> </p><p>These comparative definitions of rate and order of asymptotic convergence are fundamental in <a href="/wiki/Asymptotic_analysis" title="Asymptotic analysis">asymptotic analysis</a>.<sup id="cite_ref-Balcázar_10-0" class="reference"><a href="#cite_note-Balcázar-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Cucker_11-0" class="reference"><a href="#cite_note-Cucker-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> For the first two of these there are associated expressions in <a href="/wiki/Big_O_notation" title="Big O notation">asymptotic O notation</a>: the first is that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{k}-L=o(b_{k}-L)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mo>=</mo> <mi>o</mi> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{k}-L=o(b_{k}-L)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33fd7e6466e34b60026a573380ed35431a89abd9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.287ex; height:2.843ex;" alt="{\displaystyle a_{k}-L=o(b_{k}-L)}"></span> in small o notation<sup id="cite_ref-:22_12-0" class="reference"><a href="#cite_note-:22-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> and the second is that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{k}-L=\Theta (b_{k}-L)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mo>=</mo> <mi mathvariant="normal">&#x0398;<!-- Θ --></mi> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{k}-L=\Theta (b_{k}-L)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbf82f294a62917864d33432af7e23670db6a07c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.967ex; height:2.843ex;" alt="{\displaystyle a_{k}-L=\Theta (b_{k}-L)}"></span> in Knuth notation.<sup id="cite_ref-knuth_13-0" class="reference"><a href="#cite_note-knuth-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> The third is also called asymptotic equivalence, expressed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{k}-L\sim b_{k}-L.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mo>&#x223C;<!-- ∼ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{k}-L\sim b_{k}-L.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4485308a35fed119ea616d573697e467088b73e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.997ex; height:2.509ex;" alt="{\displaystyle a_{k}-L\sim b_{k}-L.}"></span><sup id="cite_ref-:2_14-0" class="reference"><a href="#cite_note-:2-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Examples_2">Examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit&amp;section=13" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For any two <a href="/wiki/Geometric_progression" title="Geometric progression">geometric progressions</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ar^{k})_{k\in \mathbb {N} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ar^{k})_{k\in \mathbb {N} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09edb0e62d31e102ae2e8aa1fd6a070e3f6fb628" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.548ex; height:3.176ex;" alt="{\displaystyle (ar^{k})_{k\in \mathbb {N} }}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (bs^{k})_{k\in \mathbb {N} },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>b</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (bs^{k})_{k\in \mathbb {N} },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f80e59b25839c09d522899ba304f2a72f20d9027" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.004ex; height:3.176ex;" alt="{\displaystyle (bs^{k})_{k\in \mathbb {N} },}"></span> with shared limit zero, the two sequences are asymptotically equivalent if and only if both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1956b03d1314c7071ac1f45ed7b1e29422dcfcc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a=b}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=s.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>s</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=s.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d437ea1b764d6f736b1fa6885c253f60c823904" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.884ex; height:1.676ex;" alt="{\displaystyle r=s.}"></span> They converge with the same order if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=s.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>s</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=s.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d437ea1b764d6f736b1fa6885c253f60c823904" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.884ex; height:1.676ex;" alt="{\displaystyle r=s.}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ar^{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ar^{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8aef2c6b42567fc145f770f5f189bf8f63c8e39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.176ex; height:3.176ex;" alt="{\displaystyle (ar^{k})}"></span> converges with a faster order than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (bs^{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>b</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (bs^{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0853410a7bd7a0d99ddf6ea1d7973a742f69881b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.986ex; height:3.176ex;" alt="{\displaystyle (bs^{k})}"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&lt;s.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&lt;</mo> <mi>s</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&lt;s.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ef46a5b6dc50ac4189bbe140ccfa7d614259f8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.884ex; height:1.843ex;" alt="{\displaystyle r&lt;s.}"></span> The convergence of any <a href="/wiki/Geometric_series" title="Geometric series">geometric series</a> to its limit has error terms that are equal to a geometric progression, so similar relationships hold among geometric series as well. Any sequence that is asymptotically equivalent to a convergent geometric sequence may be either be said to "converge geometrically" or "converge exponentially" with respect to the absolute difference from its limit, or it may be said to "converge linearly" relative to a logarithm of the absolute difference such as the "number of decimals of precision." The latter is standard in numerical analysis. </p><p>For any two sequences of elements proportional to an inverse power of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44e185ab9c990830d5055fa3ae698a4225ce67e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.858ex; height:2.509ex;" alt="{\displaystyle k,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ak^{-n})_{k\in \mathbb {N} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ak^{-n})_{k\in \mathbb {N} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88402407c09d8454cddd3e41666f2dc4f0054bc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.119ex; height:3.009ex;" alt="{\displaystyle (ak^{-n})_{k\in \mathbb {N} }}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (bk^{-m})_{k\in \mathbb {N} },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>b</mi> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msup> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (bk^{-m})_{k\in \mathbb {N} },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef1f10cd76169474bce524a8ab180b9b885f0251" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.99ex; height:3.009ex;" alt="{\displaystyle (bk^{-m})_{k\in \mathbb {N} },}"></span> with shared limit zero, the two sequences are asymptotically equivalent if and only if both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1956b03d1314c7071ac1f45ed7b1e29422dcfcc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a=b}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=m.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>m</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=m.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bb5231edc76664ea044c7c6d58dbaa0d78327ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.18ex; height:1.676ex;" alt="{\displaystyle n=m.}"></span> They converge with the same order if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=m.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>m</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=m.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bb5231edc76664ea044c7c6d58dbaa0d78327ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.18ex; height:1.676ex;" alt="{\displaystyle n=m.}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ak^{-n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ak^{-n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3280b19baaff6a149a479137b6a5b2712b1d1fc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.747ex; height:3.009ex;" alt="{\displaystyle (ak^{-n})}"></span> converges with a faster order than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (bk^{-m})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>b</mi> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (bk^{-m})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/025e1b7341baa7ec0ee009cdd88c4dddd2d962d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.972ex; height:3.009ex;" alt="{\displaystyle (bk^{-m})}"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;m.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mi>m</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;m.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f18c9d2bb0b3dbcf98094e06f794218cbe8b9995" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.18ex; height:1.843ex;" alt="{\displaystyle n&gt;m.}"></span> </p><p>For any sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a_{k})_{k\in \mathbb {N} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a_{k})_{k\in \mathbb {N} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63cfa6370af5272c22c630b3ae9e26b7aa0f8e90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.499ex; height:2.843ex;" alt="{\displaystyle (a_{k})_{k\in \mathbb {N} }}"></span> with a limit of zero, its convergence can be compared to the convergence of the shifted sequence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a_{k-1})_{k\in \mathbb {N} },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a_{k-1})_{k\in \mathbb {N} },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e266946c28c9d6dd7d4486ac02bc729cdce07fa1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.247ex; height:2.843ex;" alt="{\displaystyle (a_{k-1})_{k\in \mathbb {N} },}"></span> rescalings of the shifted sequence by a constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e7e1ef161a49a22b500d63307460ad92eeb6a16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.049ex; height:2.176ex;" alt="{\displaystyle \mu ,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mu a_{k-1})_{k\in \mathbb {N} },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mu a_{k-1})_{k\in \mathbb {N} },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c17e660413661f8f12d33ad8b0d5fc59c912aa1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.648ex; height:2.843ex;" alt="{\displaystyle (\mu a_{k-1})_{k\in \mathbb {N} },}"></span> and scaled <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span>-powers of the shifted sequence, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mu a_{k-1}^{q})_{k\in \mathbb {N} }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <msubsup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mu a_{k-1}^{q})_{k\in \mathbb {N} }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295776a44f702f180001d883148f938d47030386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.648ex; height:3.343ex;" alt="{\displaystyle (\mu a_{k-1}^{q})_{k\in \mathbb {N} }.}"></span> These comparisons are the basis for the Q-convergence classifications for iterative numerical methods as described above: when a sequence of iterate errors from a numerical method <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (|x_{k}-L|)_{k\in \mathbb {N} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (|x_{k}-L|)_{k\in \mathbb {N} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a02e4d954b58e41cc753c784d3a7ddbdb33c7d5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.316ex; height:2.843ex;" alt="{\displaystyle (|x_{k}-L|)_{k\in \mathbb {N} }}"></span> is asymptotically equivalent to the shifted, exponentiated, and rescaled sequence of iterate errors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mu |x_{k-1}-L|^{q})_{k\in \mathbb {N} },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>L</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mu |x_{k-1}-L|^{q})_{k\in \mathbb {N} },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9c62b191b439b3e016638606e156923e5b64938" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.454ex; height:3.009ex;" alt="{\displaystyle (\mu |x_{k-1}-L|^{q})_{k\in \mathbb {N} },}"></span> it is said to converge with order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> and rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1ef6db045c1f6193799bd25a4b68ba9f78646d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.049ex; height:2.176ex;" alt="{\displaystyle \mu .}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Non-asymptotic_rates_of_convergence">Non-asymptotic rates of convergence</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit&amp;section=14" title="Edit section: Non-asymptotic rates of convergence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-More_citations_needed_section plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Rate_of_convergence" title="Special:EditPage/Rate of convergence">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>&#32;in this section. Unsourced material may be challenged and removed.</span> <span class="date-container"><i>(<span class="date">October 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>Non-asymptotic rates of convergence do not have the common, standard definitions that asymptotic rates of convergence have. Among formal techniques, <a href="/wiki/Lyapunov_theory" class="mw-redirect" title="Lyapunov theory">Lyapunov theory</a> is one of the most powerful and widely applied frameworks for characterizing and analyzing non-asymptotic convergence behavior. </p><p>For <a href="/wiki/Iterative_method" title="Iterative method">iterative methods</a>, one common practical approach is to discuss these rates in terms of the number of iterates or the <a href="/wiki/CPU_time" title="CPU time">computer time</a> required to reach close <a href="/wiki/Neighbourhood_(mathematics)" title="Neighbourhood (mathematics)">neighborhoods</a> of a limit from starting points far from the limit. The non-asymptotic rate is then an inverse of that number of iterates or computer time. In practical applications, an iterative method that required fewer steps or less computer time than another to reach target accuracy will be said to have converged faster than the other, even if its asymptotic convergence is slower. These rates will generally be different for different starting points and different error thresholds for defining the neighborhoods. It is most common to discuss summaries of <a href="/wiki/Statistical_distributions" class="mw-redirect" title="Statistical distributions">statistical distributions</a> of these single point rates corresponding to distributions of possible starting points, such as the "average non-asymptotic rate," the "median non-asymptotic rate," or the "worst-case non-asymptotic rate" for some method applied to some problem with some fixed error threshold. These ensembles of starting points can be chosen according to parameters like initial distance from the eventual limit in order to define quantities like "average non-asymptotic rate of convergence from a given distance." </p><p>For <a href="/wiki/Discretization" title="Discretization">discretized approximation</a> methods, similar approaches can be used with a discretization scale parameter such as an inverse of a number of <a href="/wiki/Regular_grid" title="Regular grid">grid</a> or <a href="/wiki/Polygon_mesh" title="Polygon mesh">mesh</a> points or a <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a> <a href="/wiki/Cutoff_frequency" title="Cutoff frequency">cutoff frequency</a> playing the role of inverse iterate number, though it is not especially common. For any problem, there is a greatest discretization scale parameter compatible with a desired accuracy of approximation, and it may not be as small as required for the asymptotic rate and order of convergence to provide accurate estimates of the error. In practical applications, when one discretization method gives a desired accuracy with a larger discretization scale parameter than another it will often be said to converge faster than the other, even if its eventual asymptotic convergence is slower. </p> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rate_of_convergence&amp;action=edit&amp;section=15" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-:0-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:0_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:0_1-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:0_1-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-:0_1-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-:0_1-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFNocedalWright1999" class="citation book cs1">Nocedal, Jorge; Wright, Stephen J. (1999). <i>Numerical Optimization</i> (1st&#160;ed.). New York, NY: Springer. pp.&#160;28–29. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-98793-4" title="Special:BookSources/978-0-387-98793-4"><bdi>978-0-387-98793-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Numerical+Optimization&amp;rft.place=New+York%2C+NY&amp;rft.pages=28-29&amp;rft.edition=1st&amp;rft.pub=Springer&amp;rft.date=1999&amp;rft.isbn=978-0-387-98793-4&amp;rft.aulast=Nocedal&amp;rft.aufirst=Jorge&amp;rft.au=Wright%2C+Stephen+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARate+of+convergence" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSenning" class="citation web cs1">Senning, Jonathan R. <a rel="nofollow" class="external text" href="http://www.math-cs.gordon.edu/courses/ma342/handouts/rate.pdf">"Computing and Estimating the Rate of Convergence"</a> <span class="cs1-format">(PDF)</span>. <i>gordon.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=gordon.edu&amp;rft.atitle=Computing+and+Estimating+the+Rate+of+Convergence&amp;rft.aulast=Senning&amp;rft.aufirst=Jonathan+R.&amp;rft_id=http%3A%2F%2Fwww.math-cs.gordon.edu%2Fcourses%2Fma342%2Fhandouts%2Frate.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARate+of+convergence" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHundley" class="citation web cs1">Hundley, Douglas. <a rel="nofollow" class="external text" href="http://people.whitman.edu/~hundledr/courses/M467F06/ConvAndError.pdf">"Rate of Convergence"</a> <span class="cs1-format">(PDF)</span>. <i>Whitman College</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-12-13</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Whitman+College&amp;rft.atitle=Rate+of+Convergence&amp;rft.aulast=Hundley&amp;rft.aufirst=Douglas&amp;rft_id=http%3A%2F%2Fpeople.whitman.edu%2F~hundledr%2Fcourses%2FM467F06%2FConvAndError.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARate+of+convergence" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPorta1989" class="citation journal cs1">Porta, F. A. (1989). <a rel="nofollow" class="external text" href="https://link.springer.com/content/pdf/10.1007/BF00939805.pdf">"On Q-Order and R-Order of Convergence"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of Optimization Theory and Applications</i>. <b>63</b> (3): 415–431. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00939805">10.1007/BF00939805</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:116192710">116192710</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-07-31</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Optimization+Theory+and+Applications&amp;rft.atitle=On+Q-Order+and+R-Order+of+Convergence&amp;rft.volume=63&amp;rft.issue=3&amp;rft.pages=415-431&amp;rft.date=1989&amp;rft_id=info%3Adoi%2F10.1007%2FBF00939805&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A116192710%23id-name%3DS2CID&amp;rft.aulast=Porta&amp;rft.aufirst=F.+A.&amp;rft_id=https%3A%2F%2Flink.springer.com%2Fcontent%2Fpdf%2F10.1007%2FBF00939805.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARate+of+convergence" class="Z3988"></span></span> </li> <li id="cite_note-:1-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_Tuyl1994" class="citation journal cs1">Van Tuyl, Andrew H. (1994). <a rel="nofollow" class="external text" href="https://www.ams.org/journals/mcom/1994-63-207/S0025-5718-1994-1234428-2/S0025-5718-1994-1234428-2.pdf">"Acceleration of convergence of a family of logarithmically convergent sequences"</a> <span class="cs1-format">(PDF)</span>. <i>Mathematics of Computation</i>. <b>63</b> (207): 229–246. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2153571">10.2307/2153571</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2153571">2153571</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics+of+Computation&amp;rft.atitle=Acceleration+of+convergence+of+a+family+of+logarithmically+convergent+sequences&amp;rft.volume=63&amp;rft.issue=207&amp;rft.pages=229-246&amp;rft.date=1994&amp;rft_id=info%3Adoi%2F10.2307%2F2153571&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2153571%23id-name%3DJSTOR&amp;rft.aulast=Van+Tuyl&amp;rft.aufirst=Andrew+H.&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fjournals%2Fmcom%2F1994-63-207%2FS0025-5718-1994-1234428-2%2FS0025-5718-1994-1234428-2.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARate+of+convergence" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChanson2024" class="citation web cs1">Chanson, Jeffrey R. (October 3, 2024). <a rel="nofollow" class="external text" href="https://math.libretexts.org/Bookshelves/Applied_Mathematics/Numerical_Methods_(Chasnov)/02%3A_Root_Finding/2.04%3A_Order_of_Convergence">"Order of Convergence"</a>. <i>LibreTexts Mathematics</i><span class="reference-accessdate">. Retrieved <span class="nowrap">October 3,</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=LibreTexts+Mathematics&amp;rft.atitle=Order+of+Convergence&amp;rft.date=2024-10-03&amp;rft.aulast=Chanson&amp;rft.aufirst=Jeffrey+R.&amp;rft_id=https%3A%2F%2Fmath.libretexts.org%2FBookshelves%2FApplied_Mathematics%2FNumerical_Methods_%28Chasnov%29%2F02%253A_Root_Finding%2F2.04%253A_Order_of_Convergence&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARate+of+convergence" class="Z3988"></span></span> </li> <li id="cite_note-NocedalWright2006-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-NocedalWright2006_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNocedalWright2006" class="citation book cs1">Nocedal, Jorge; Wright, Stephen J. (2006). <i>Numerical Optimization</i> (2nd&#160;ed.). Berlin, New York: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-30303-1" title="Special:BookSources/978-0-387-30303-1"><bdi>978-0-387-30303-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Numerical+Optimization&amp;rft.place=Berlin%2C+New+York&amp;rft.edition=2nd&amp;rft.pub=Springer-Verlag&amp;rft.date=2006&amp;rft.isbn=978-0-387-30303-1&amp;rft.aulast=Nocedal&amp;rft.aufirst=Jorge&amp;rft.au=Wright%2C+Stephen+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARate+of+convergence" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSenning" class="citation web cs1">Senning, Jonathan R. <a rel="nofollow" class="external text" href="http://www.math-cs.gordon.edu/courses/ma342/handouts/rate.pdf">"Computing and Estimating the Rate of Convergence"</a> <span class="cs1-format">(PDF)</span>. <i>gordon.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=gordon.edu&amp;rft.atitle=Computing+and+Estimating+the+Rate+of+Convergence&amp;rft.aulast=Senning&amp;rft.aufirst=Jonathan+R.&amp;rft_id=http%3A%2F%2Fwww.math-cs.gordon.edu%2Fcourses%2Fma342%2Fhandouts%2Frate.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARate+of+convergence" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSenning" class="citation web cs1">Senning, Jonathan R. <a rel="nofollow" class="external text" href="https://www.csc.kth.se/utbildning/kth/kurser/DN2255/ndiff13/ConvRate.pdf">"Verifying Numerical Convergence Rates"</a> <span class="cs1-format">(PDF)</span><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-02-09</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Verifying+Numerical+Convergence+Rates&amp;rft.aulast=Senning&amp;rft.aufirst=Jonathan+R.&amp;rft_id=https%3A%2F%2Fwww.csc.kth.se%2Futbildning%2Fkth%2Fkurser%2FDN2255%2Fndiff13%2FConvRate.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARate+of+convergence" class="Z3988"></span></span> </li> <li id="cite_note-Balcázar-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Balcázar_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBalcázarGabarró" class="citation journal cs1">Balcázar, José L.; Gabarró, Joaquim. <a rel="nofollow" class="external text" href="http://archive.numdam.org/article/ITA_1989__23_2_177_0.pdf">"Nonuniform complexity classes specified by lower and upper bounds"</a> <span class="cs1-format">(PDF)</span>. <i>RAIRO – Theoretical Informatics and Applications – Informatique Théorique et Applications</i>. <b>23</b> (2): 180. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0988-3754">0988-3754</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170314153158/http://archive.numdam.org/article/ITA_1989__23_2_177_0.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 14 March 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">14 March</span> 2017</span> &#8211; via Numdam.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=RAIRO+%E2%80%93+Theoretical+Informatics+and+Applications+%E2%80%93+Informatique+Th%C3%A9orique+et+Applications&amp;rft.atitle=Nonuniform+complexity+classes+specified+by+lower+and+upper+bounds&amp;rft.volume=23&amp;rft.issue=2&amp;rft.pages=180&amp;rft.issn=0988-3754&amp;rft.aulast=Balc%C3%A1zar&amp;rft.aufirst=Jos%C3%A9+L.&amp;rft.au=Gabarr%C3%B3%2C+Joaquim&amp;rft_id=http%3A%2F%2Farchive.numdam.org%2Farticle%2FITA_1989&#95;_23_2_177_0.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARate+of+convergence" class="Z3988"></span></span> </li> <li id="cite_note-Cucker-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Cucker_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCuckerBürgisser2013" class="citation book cs1">Cucker, Felipe; Bürgisser, Peter (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=SNu4BAAAQBAJ&amp;pg=PA467">"A.1 Big Oh, Little Oh, and Other Comparisons"</a>. <i>Condition: The Geometry of Numerical Algorithms</i>. Berlin, Heidelberg: Springer. pp.&#160;467–468. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-38896-5">10.1007/978-3-642-38896-5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-642-38896-5" title="Special:BookSources/978-3-642-38896-5"><bdi>978-3-642-38896-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=A.1+Big+Oh%2C+Little+Oh%2C+and+Other+Comparisons&amp;rft.btitle=Condition%3A+The+Geometry+of+Numerical+Algorithms&amp;rft.place=Berlin%2C+Heidelberg&amp;rft.pages=467-468&amp;rft.pub=Springer&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-642-38896-5&amp;rft.isbn=978-3-642-38896-5&amp;rft.aulast=Cucker&amp;rft.aufirst=Felipe&amp;rft.au=B%C3%BCrgisser%2C+Peter&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSNu4BAAAQBAJ%26pg%3DPA467&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARate+of+convergence" class="Z3988"></span></span> </li> <li id="cite_note-:22-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-:22_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApostol1967" class="citation book cs1">Apostol, Tom M. (1967). <i>Calculus</i>. Vol.&#160;1 (2nd&#160;ed.). USA: John Wiley &amp; Sons. p.&#160;286. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-00005-1" title="Special:BookSources/0-471-00005-1"><bdi>0-471-00005-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Calculus&amp;rft.place=USA&amp;rft.pages=286&amp;rft.edition=2nd&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1967&amp;rft.isbn=0-471-00005-1&amp;rft.aulast=Apostol&amp;rft.aufirst=Tom+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARate+of+convergence" class="Z3988"></span></span> </li> <li id="cite_note-knuth-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-knuth_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnuth1976" class="citation journal cs1">Knuth, Donald (April–June 1976). <a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F1008328.1008329">"Big Omicron and big Omega and big Theta"</a>. <i>SIGACT News</i>. <b>8</b> (2): 18–24. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F1008328.1008329">10.1145/1008328.1008329</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5230246">5230246</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SIGACT+News&amp;rft.atitle=Big+Omicron+and+big+Omega+and+big+Theta&amp;rft.volume=8&amp;rft.issue=2&amp;rft.pages=18-24&amp;rft.date=1976-04%2F1976-06&amp;rft_id=info%3Adoi%2F10.1145%2F1008328.1008329&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5230246%23id-name%3DS2CID&amp;rft.aulast=Knuth&amp;rft.aufirst=Donald&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1145%252F1008328.1008329&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARate+of+convergence" class="Z3988"></span></span> </li> <li id="cite_note-:2-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-:2_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApostol1967" class="citation book cs1">Apostol, Tom M. (1967). <i>Calculus</i>. Vol.&#160;1 (2nd&#160;ed.). USA: John Wiley &amp; Sons. p.&#160;396. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-00005-1" title="Special:BookSources/0-471-00005-1"><bdi>0-471-00005-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Calculus&amp;rft.place=USA&amp;rft.pages=396&amp;rft.edition=2nd&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1967&amp;rft.isbn=0-471-00005-1&amp;rft.aulast=Apostol&amp;rft.aufirst=Tom+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARate+of+convergence" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Asymptotic_equality">"Asymptotic equality"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Asymptotic+equality&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DAsymptotic_equality&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARate+of+convergence" class="Z3988"></span></span> </li> </ol></div></div> <ul><li class="mw-empty-elt"></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Differential_equations" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Differential_equations_topics" title="Template:Differential equations topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Differential_equations_topics" title="Template talk:Differential equations topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Differential_equations_topics" title="Special:EditPage/Template:Differential equations topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Differential_equations" style="font-size:114%;margin:0 4em"><a href="/wiki/Differential_equation" title="Differential equation">Differential equations</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Classification</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Operations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Differential_operator" title="Differential operator">Differential operator</a></li> <li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Notation for differentiation</a></li> <li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">Ordinary</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial</a></li> <li><a href="/wiki/Differential-algebraic_system_of_equations" title="Differential-algebraic system of equations">Differential-algebraic</a></li> <li><a href="/wiki/Integro-differential_equation" title="Integro-differential equation">Integro-differential</a></li> <li><a href="/wiki/Fractional_differential_equations" class="mw-redirect" title="Fractional differential equations">Fractional</a></li> <li><a href="/wiki/Linear_differential_equation" title="Linear differential equation">Linear</a></li> <li><a href="/wiki/Non-linear_differential_equation" class="mw-redirect" title="Non-linear differential equation">Non-linear</a></li> <li><a href="/wiki/Holonomic_function" title="Holonomic function">Holonomic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Attributes of variables</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dependent_and_independent_variables" title="Dependent and independent variables">Dependent and independent variables</a></li> <li><a href="/wiki/Homogeneous_differential_equation" title="Homogeneous differential equation">Homogeneous</a></li> <li><a href="/wiki/Non-homogeneous_differential_equation" class="mw-redirect" title="Non-homogeneous differential equation">Nonhomogeneous</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Coupled</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Decoupled</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Order</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Degree</a></li> <li><a href="/wiki/Autonomous_system_(mathematics)" title="Autonomous system (mathematics)">Autonomous</a></li> <li><a href="/wiki/Exact_differential_equation" title="Exact differential equation">Exact differential equation</a></li> <li><a href="/wiki/Jet_bundle#Partial_differential_equations" title="Jet bundle">On jet bundles</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Relation to processes</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Difference_equation" class="mw-redirect" title="Difference equation">Difference</a> (discrete analogue)</li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic</a> <ul><li><a href="/wiki/Stochastic_partial_differential_equation" title="Stochastic partial differential equation">Stochastic partial</a></li></ul></li> <li><a href="/wiki/Delay_differential_equation" title="Delay differential equation">Delay</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Solutions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Existence/uniqueness</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem" title="Picard–Lindelöf theorem">Picard–Lindelöf theorem</a></li> <li><a href="/wiki/Peano_existence_theorem" title="Peano existence theorem">Peano existence theorem</a></li> <li><a href="/wiki/Carath%C3%A9odory%27s_existence_theorem" title="Carathéodory&#39;s existence theorem">Carathéodory's existence theorem</a></li> <li><a href="/wiki/Cauchy%E2%80%93Kowalevski_theorem" class="mw-redirect" title="Cauchy–Kowalevski theorem">Cauchy–Kowalevski theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Solution topics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Wronskian" title="Wronskian">Wronskian</a></li> <li><a href="/wiki/Phase_portrait" title="Phase portrait">Phase portrait</a></li> <li><a href="/wiki/Phase_space" title="Phase space">Phase space</a></li> <li><a href="/wiki/Lyapunov_stability" title="Lyapunov stability">Lyapunov stability</a></li> <li><a href="/wiki/Asymptotic_stability" class="mw-redirect" title="Asymptotic stability">Asymptotic stability</a></li> <li><a href="/wiki/Exponential_stability" title="Exponential stability">Exponential stability</a></li> <li><a class="mw-selflink selflink">Rate of convergence</a></li> <li><a href="/wiki/Power_series_solution_of_differential_equations" title="Power series solution of differential equations">Series solutions</a></li> <li><a href="/wiki/Integral" title="Integral">Integral</a> solutions</li> <li><a href="/wiki/Numerical_integration" title="Numerical integration">Numerical integration</a></li> <li><a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Solution methods</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_mathematical_jargon#Proof_techniques" class="mw-redirect" title="List of mathematical jargon">Inspection</a></li> <li><a href="/wiki/Integration_by_substitution" title="Integration by substitution">Substitution</a></li> <li><a href="/wiki/Separation_of_variables" title="Separation of variables">Separation of variables</a></li> <li><a href="/wiki/Method_of_undetermined_coefficients" title="Method of undetermined coefficients">Method of undetermined coefficients</a></li> <li><a href="/wiki/Variation_of_parameters" title="Variation of parameters">Variation of parameters</a></li> <li><a href="/wiki/Integrating_factor" title="Integrating factor">Integrating factor</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transforms</a></li> <li><a href="/wiki/Euler_method" title="Euler method">Euler method</a></li> <li><a href="/wiki/Finite_difference_method" title="Finite difference method">Finite difference method</a></li> <li><a href="/wiki/Crank%E2%80%93Nicolson_method" title="Crank–Nicolson method">Crank–Nicolson method</a></li> <li><a href="/wiki/Runge%E2%80%93Kutta_methods" title="Runge–Kutta methods">Runge–Kutta methods</a></li> <li><a href="/wiki/Finite_element_method" title="Finite element method">Finite element method</a></li> <li><a href="/wiki/Finite_volume_method" title="Finite volume method">Finite volume method</a></li> <li><a href="/wiki/Galerkin_method" title="Galerkin method">Galerkin method</a></li> <li><a href="/wiki/Perturbation_theory" title="Perturbation theory">Perturbation theory</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Examples</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_named_differential_equations" title="List of named differential equations">List of named differential equations</a></li> <li><a href="/wiki/List_of_linear_ordinary_differential_equations" title="List of linear ordinary differential equations">List of linear ordinary differential equations</a></li> <li><a href="/wiki/List_of_nonlinear_ordinary_differential_equations" title="List of nonlinear ordinary differential equations">List of nonlinear ordinary differential equations</a></li> <li><a href="/wiki/List_of_nonlinear_partial_differential_equations" title="List of nonlinear partial differential equations">List of nonlinear partial differential equations</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mathematicians</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a></li> <li><a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Jacob_Bernoulli" title="Jacob Bernoulli">Jacob Bernoulli</a></li> <li><a href="/wiki/%C3%89mile_Picard" title="Émile Picard">Émile Picard</a></li> <li><a href="/wiki/J%C3%B3zef_Maria_Hoene-Wro%C5%84ski" title="Józef Maria Hoene-Wroński">Józef Maria Hoene-Wroński</a></li> <li><a href="/wiki/Ernst_Leonard_Lindel%C3%B6f" title="Ernst Leonard Lindelöf">Ernst Lindelöf</a></li> <li><a href="/wiki/Rudolf_Lipschitz" title="Rudolf Lipschitz">Rudolf Lipschitz</a></li> <li><a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Joseph-Louis Lagrange</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/John_Crank" title="John Crank">John Crank</a></li> <li><a href="/wiki/Phyllis_Nicolson" title="Phyllis Nicolson">Phyllis Nicolson</a></li> <li><a href="/wiki/Carl_David_Tolm%C3%A9_Runge" class="mw-redirect" title="Carl David Tolmé Runge">Carl David Tolmé Runge</a></li> <li><a href="/wiki/Martin_Kutta" title="Martin Kutta">Martin Kutta</a></li> <li><a href="/wiki/Sofya_Kovalevskaya" title="Sofya Kovalevskaya">Sofya Kovalevskaya</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐v4897 Cached time: 20241122142759 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.659 seconds Real time usage: 1.043 seconds Preprocessor visited node count: 3044/1000000 Post‐expand include size: 102382/2097152 bytes Template argument size: 1211/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 141726/5000000 bytes Lua time usage: 0.304/10.000 seconds Lua memory usage: 7311366/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 516.126 1 -total 35.33% 182.346 1 Template:Reflist 21.17% 109.262 1 Template:Differential_equations 20.62% 106.405 1 Template:Sidebar_with_collapsible_lists 16.75% 86.433 5 Template:Cite_book 15.26% 78.737 1 Template:Short_description 14.47% 74.706 2 Template:Sidebar 10.97% 56.608 2 Template:More_citations_needed_section 10.81% 55.797 2 Template:Pagetype 9.09% 46.926 2 Template:More_citations_needed --> <!-- Saved in parser cache with key enwiki:pcache:idhash:999701-0!canonical and timestamp 20241122142759 and revision id 1254889770. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Rate_of_convergence&amp;oldid=1254889770">https://en.wikipedia.org/w/index.php?title=Rate_of_convergence&amp;oldid=1254889770</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Numerical_analysis" title="Category:Numerical analysis">Numerical analysis</a></li><li><a href="/wiki/Category:Rates" title="Category:Rates">Rates</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_August_2020" title="Category:Articles needing additional references from August 2020">Articles needing additional references from August 2020</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_October_2024" title="Category:Articles needing additional references from October 2024">Articles needing additional references from October 2024</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 2 November 2024, at 05:12<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Rate_of_convergence&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-znn46","wgBackendResponseTime":187,"wgPageParseReport":{"limitreport":{"cputime":"0.659","walltime":"1.043","ppvisitednodes":{"value":3044,"limit":1000000},"postexpandincludesize":{"value":102382,"limit":2097152},"templateargumentsize":{"value":1211,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":141726,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 516.126 1 -total"," 35.33% 182.346 1 Template:Reflist"," 21.17% 109.262 1 Template:Differential_equations"," 20.62% 106.405 1 Template:Sidebar_with_collapsible_lists"," 16.75% 86.433 5 Template:Cite_book"," 15.26% 78.737 1 Template:Short_description"," 14.47% 74.706 2 Template:Sidebar"," 10.97% 56.608 2 Template:More_citations_needed_section"," 10.81% 55.797 2 Template:Pagetype"," 9.09% 46.926 2 Template:More_citations_needed"]},"scribunto":{"limitreport-timeusage":{"value":"0.304","limit":"10.000"},"limitreport-memusage":{"value":7311366,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-v4897","timestamp":"20241122142759","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Rate of convergence","url":"https:\/\/en.wikipedia.org\/wiki\/Rate_of_convergence","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1783502","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1783502","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-09-19T21:05:04Z","dateModified":"2024-11-02T05:12:04Z","headline":"rate at which a convergent sequence approaches its limit"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10