CINXE.COM

Harish-Chandra isomorphism - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Harish-Chandra isomorphism - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"47e2c88c-5bc8-4e89-8325-eee1bd04f939","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Harish-Chandra_isomorphism","wgTitle":"Harish-Chandra isomorphism","wgCurRevisionId":1199304220,"wgRevisionId":1199304220,"wgArticleId":5352569,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Pages using multiple image with auto scaled images","Representation theory of Lie algebras","Theorems in algebra"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Harish-Chandra_isomorphism","wgRelevantArticleId":5352569,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[], "wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q5657840","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init", "ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Harish-Chandra isomorphism - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Harish-Chandra_isomorphism"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Harish-Chandra_isomorphism"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Harish-Chandra_isomorphism rootpage-Harish-Chandra_isomorphism skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Harish-Chandra+isomorphism" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Harish-Chandra+isomorphism" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Harish-Chandra+isomorphism" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Harish-Chandra+isomorphism" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Introduction_and_setting" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Introduction_and_setting"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Introduction and setting</span> </div> </a> <button aria-controls="toc-Introduction_and_setting-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Introduction and setting subsection</span> </button> <ul id="toc-Introduction_and_setting-sublist" class="vector-toc-list"> <li id="toc-Central_characters" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Central_characters"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Central characters</span> </div> </a> <ul id="toc-Central_characters-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Statement_of_Harish-Chandra_theorem" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Statement_of_Harish-Chandra_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Statement of Harish-Chandra theorem</span> </div> </a> <button aria-controls="toc-Statement_of_Harish-Chandra_theorem-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Statement of Harish-Chandra theorem subsection</span> </button> <ul id="toc-Statement_of_Harish-Chandra_theorem-sublist" class="vector-toc-list"> <li id="toc-Explicit_isomorphism" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Explicit_isomorphism"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Explicit isomorphism</span> </div> </a> <ul id="toc-Explicit_isomorphism-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fundamental_invariants" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Fundamental_invariants"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Fundamental invariants</span> </div> </a> <ul id="toc-Fundamental_invariants-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalization_to_affine_Lie_algebras" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Generalization_to_affine_Lie_algebras"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Generalization to affine Lie algebras</span> </div> </a> <ul id="toc-Generalization_to_affine_Lie_algebras-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_resources" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_resources"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External resources</span> </div> </a> <ul id="toc-External_resources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Harish-Chandra isomorphism</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 1 language" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-1" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">1 language</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Isomorphisme_de_Harish-Chandra" title="Isomorphisme de Harish-Chandra – French" lang="fr" hreflang="fr" data-title="Isomorphisme de Harish-Chandra" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5657840#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Harish-Chandra_isomorphism" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Harish-Chandra_isomorphism" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Harish-Chandra_isomorphism"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Harish-Chandra_isomorphism"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Harish-Chandra_isomorphism" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Harish-Chandra_isomorphism" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;oldid=1199304220" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Harish-Chandra_isomorphism&amp;id=1199304220&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHarish-Chandra_isomorphism"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHarish-Chandra_isomorphism"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Harish-Chandra_isomorphism&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5657840" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Isomorphism of commutative rings constructed in the theory of Lie algebras</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Harish-Chandra_homomorphism" title="Harish-Chandra homomorphism">Harish-Chandra homomorphism</a>.</div> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>Harish-Chandra isomorphism</b>, introduced by <a href="/wiki/Harish-Chandra" title="Harish-Chandra">Harish-Chandra</a>&#160;(<a href="#CITEREFHarish-Chandra1951">1951</a>), is an <a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a> of commutative rings constructed in the theory of <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebras</a>. The isomorphism maps the <a href="/wiki/Center_(ring_theory)" title="Center (ring theory)">center</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">Z</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dbbf009e4f6b83b6f074666d14ca559fa238eaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.356ex; height:2.843ex;" alt="{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))}"></span> of the <a href="/wiki/Universal_enveloping_algebra" title="Universal enveloping algebra">universal enveloping algebra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U({\mathfrak {g}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U({\mathfrak {g}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d259de5e97b5d78daf491cddb6b914ad2ef6fffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.764ex; height:2.843ex;" alt="{\displaystyle U({\mathfrak {g}})}"></span> of a <a href="/wiki/Reductive_Lie_algebra" title="Reductive Lie algebra">reductive Lie algebra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40a913b1503ed9ec94361b99f7fd59ef60705c28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.172ex; height:2.009ex;" alt="{\displaystyle {\mathfrak {g}}}"></span> to the elements <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S({\mathfrak {h}})^{W}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>W</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S({\mathfrak {h}})^{W}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/931c2bcb1ac49216568765f25808fea9f4b03895" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.474ex; height:3.176ex;" alt="{\displaystyle S({\mathfrak {h}})^{W}}"></span> of the <a href="/wiki/Symmetric_algebra" title="Symmetric algebra">symmetric algebra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S({\mathfrak {h}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S({\mathfrak {h}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86687b59161e0ca3a6a3025d92062b013ff42fde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.52ex; height:2.843ex;" alt="{\displaystyle S({\mathfrak {h}})}"></span> of a <a href="/wiki/Cartan_subalgebra" title="Cartan subalgebra">Cartan subalgebra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8f80a9d9b4cf9b0b6f562d5eff0f290da478ebe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.211ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {h}}}"></span> that are invariant under the <a href="/wiki/Weyl_group" title="Weyl group">Weyl group</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Introduction_and_setting">Introduction and setting</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=edit&amp;section=1" title="Edit section: Introduction and setting"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40a913b1503ed9ec94361b99f7fd59ef60705c28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.172ex; height:2.009ex;" alt="{\displaystyle {\mathfrak {g}}}"></span> be a <a href="/wiki/Semisimple_Lie_algebra" title="Semisimple Lie algebra">semisimple Lie algebra</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8f80a9d9b4cf9b0b6f562d5eff0f290da478ebe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.211ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {h}}}"></span> its <a href="/wiki/Cartan_subalgebra" title="Cartan subalgebra">Cartan subalgebra</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ,\mu \in {\mathfrak {h}}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ,\mu \in {\mathfrak {h}}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d7a67ed78c3126aa695123ec0794bd9d120eede" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.897ex; height:2.843ex;" alt="{\displaystyle \lambda ,\mu \in {\mathfrak {h}}^{*}}"></span> be two elements of the <a href="/wiki/Weight_space_(representation_theory)" class="mw-redirect" title="Weight space (representation theory)">weight space</a> (where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {h}}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {h}}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f3aabbf2288ea46018dd238954e63d809f190a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.676ex;" alt="{\displaystyle {\mathfrak {h}}^{*}}"></span> is the <a href="/wiki/Dual_vector_space" class="mw-redirect" title="Dual vector space">dual</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8f80a9d9b4cf9b0b6f562d5eff0f290da478ebe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.211ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {h}}}"></span>) and assume that a set of <a href="/wiki/Positive_root#Positive_roots_and_simple_roots" class="mw-redirect" title="Positive root">positive roots</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi _{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi _{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f82966138a26adf8d536630cdf9a17c8f80b81c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.189ex; height:2.509ex;" alt="{\displaystyle \Phi _{+}}"></span> have been fixed. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a99e54af252e9a82c9d14480301e5783f79357b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.546ex; height:2.509ex;" alt="{\displaystyle V_{\lambda }}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4bb6c8ae1af963277075c4d3004aff27f4bfcf8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.579ex; height:2.843ex;" alt="{\displaystyle V_{\mu }}"></span> be <a href="/wiki/Highest_weight_module" class="mw-redirect" title="Highest weight module">highest weight modules</a> with highest weights <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> respectively. </p> <div class="mw-heading mw-heading3"><h3 id="Central_characters">Central characters</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=edit&amp;section=2" title="Edit section: Central characters"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40a913b1503ed9ec94361b99f7fd59ef60705c28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.172ex; height:2.009ex;" alt="{\displaystyle {\mathfrak {g}}}"></span>-modules <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a99e54af252e9a82c9d14480301e5783f79357b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.546ex; height:2.509ex;" alt="{\displaystyle V_{\lambda }}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4bb6c8ae1af963277075c4d3004aff27f4bfcf8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.579ex; height:2.843ex;" alt="{\displaystyle V_{\mu }}"></span> are representations of the <a href="/wiki/Universal_enveloping_algebra" title="Universal enveloping algebra">universal enveloping algebra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U({\mathfrak {g}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U({\mathfrak {g}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d259de5e97b5d78daf491cddb6b914ad2ef6fffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.764ex; height:2.843ex;" alt="{\displaystyle U({\mathfrak {g}})}"></span> and its <a href="/wiki/Center_(algebra)" title="Center (algebra)">center</a> acts on the modules by scalar multiplication (this follows from the fact that the modules are generated by a highest weight vector). So, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\in V_{\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\in V_{\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32ad98993293d3f7f4ee4f7abeb1e2fd0acd45f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.514ex; height:2.509ex;" alt="{\displaystyle v\in V_{\lambda }}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in {\mathcal {Z}}(U({\mathfrak {g}}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">Z</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in {\mathcal {Z}}(U({\mathfrak {g}}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/348b79d1c752e022b021b00fbce6246ad6f35009" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.526ex; height:2.843ex;" alt="{\displaystyle x\in {\mathcal {Z}}(U({\mathfrak {g}}))}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\cdot v:=\chi _{\lambda }(x)v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>v</mi> <mo>:=</mo> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\cdot v:=\chi _{\lambda }(x)v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/264e048e28f060388d22e50a99b4b4730bec4911" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.794ex; height:2.843ex;" alt="{\displaystyle x\cdot v:=\chi _{\lambda }(x)v}"></span> and similarly for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4bb6c8ae1af963277075c4d3004aff27f4bfcf8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.579ex; height:2.843ex;" alt="{\displaystyle V_{\mu }}"></span>, where the functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi _{\lambda },\,\chi _{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi _{\lambda },\,\chi _{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b61156e6b0edd17bd69934f72785b1cdcd04bfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.745ex; height:2.343ex;" alt="{\displaystyle \chi _{\lambda },\,\chi _{\mu }}"></span> are homomorphisms from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">Z</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dbbf009e4f6b83b6f074666d14ca559fa238eaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.356ex; height:2.843ex;" alt="{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))}"></span> to scalars called <i>central characters</i>. </p> <div class="mw-heading mw-heading2"><h2 id="Statement_of_Harish-Chandra_theorem">Statement of Harish-Chandra theorem</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=edit&amp;section=3" title="Edit section: Statement of Harish-Chandra theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ,\mu \in {\mathfrak {h}}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ,\mu \in {\mathfrak {h}}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d7a67ed78c3126aa695123ec0794bd9d120eede" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.897ex; height:2.843ex;" alt="{\displaystyle \lambda ,\mu \in {\mathfrak {h}}^{*}}"></span>, the characters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi _{\lambda }=\chi _{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi _{\lambda }=\chi _{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae76e351eb2028de967bb9944dd8e5103787111d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.423ex; height:2.343ex;" alt="{\displaystyle \chi _{\lambda }=\chi _{\mu }}"></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda +\delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda +\delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6617a562ae793fd771db354bcca75b16ae6eac88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.244ex; height:2.509ex;" alt="{\displaystyle \lambda +\delta }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu +\delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu +\delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b604f17499e2a03b40c0ef75fd9b2df34f37828" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.291ex; height:2.843ex;" alt="{\displaystyle \mu +\delta }"></span> are on the same <a href="/wiki/Orbit_(group_theory)" class="mw-redirect" title="Orbit (group theory)">orbit</a> of the <a href="/wiki/Weyl_group" title="Weyl group">Weyl group</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {h}}^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {h}}^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f3aabbf2288ea46018dd238954e63d809f190a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.676ex;" alt="{\displaystyle {\mathfrak {h}}^{*}}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span> is the half-sum of the <a href="/wiki/Positive_root" class="mw-redirect" title="Positive root">positive roots</a>, sometimes known as the <b>Weyl vector</b>.<sup id="cite_ref-FOOTNOTEHumphreys1978130_1-0" class="reference"><a href="#cite_note-FOOTNOTEHumphreys1978130-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>Another closely related formulation is that the <a href="/wiki/Harish-Chandra_homomorphism" title="Harish-Chandra homomorphism">Harish-Chandra homomorphism</a> from the center of the <a href="/wiki/Universal_enveloping_algebra" title="Universal enveloping algebra">universal enveloping algebra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">Z</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dbbf009e4f6b83b6f074666d14ca559fa238eaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.356ex; height:2.843ex;" alt="{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S({\mathfrak {h}})^{W}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>W</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S({\mathfrak {h}})^{W}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/931c2bcb1ac49216568765f25808fea9f4b03895" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.474ex; height:3.176ex;" alt="{\displaystyle S({\mathfrak {h}})^{W}}"></span> (the elements of the symmetric algebra of the Cartan subalgebra fixed by the Weyl group) is an <a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Explicit_isomorphism">Explicit isomorphism</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=edit&amp;section=4" title="Edit section: Explicit isomorphism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>More explicitly, the isomorphism can be constructed as the composition of two maps, one from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {Z}}={\mathcal {Z}}(U({\mathfrak {g}}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">Z</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">Z</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {Z}}={\mathcal {Z}}(U({\mathfrak {g}}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e2ba4a74c640e46d07faf9b4ad0d4bb1832dbdf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.853ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {Z}}={\mathcal {Z}}(U({\mathfrak {g}}))}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U({\mathfrak {h}})=S({\mathfrak {h}}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U({\mathfrak {h}})=S({\mathfrak {h}}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/997bdd87ac93b355e510c8ef27920f836849dd7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.068ex; height:2.843ex;" alt="{\displaystyle U({\mathfrak {h}})=S({\mathfrak {h}}),}"></span> and another from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S({\mathfrak {h}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S({\mathfrak {h}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86687b59161e0ca3a6a3025d92062b013ff42fde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.52ex; height:2.843ex;" alt="{\displaystyle S({\mathfrak {h}})}"></span> to itself. </p><p>The first is a projection <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma :{\mathfrak {Z}}\rightarrow S({\mathfrak {h}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">Z</mi> </mrow> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma :{\mathfrak {Z}}\rightarrow S({\mathfrak {h}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49ce32820cfb016bbaf08c157dd09791204dfd31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.733ex; height:2.843ex;" alt="{\displaystyle \gamma :{\mathfrak {Z}}\rightarrow S({\mathfrak {h}})}"></span>. For a choice of positive roots <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi _{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi _{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f82966138a26adf8d536630cdf9a17c8f80b81c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.189ex; height:2.509ex;" alt="{\displaystyle \Phi _{+}}"></span>, defining <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{+}=\bigoplus _{\alpha \in \Phi _{+}}{\mathfrak {g}}_{\alpha },n^{-}=\bigoplus _{\alpha \in \Phi _{-}}{\mathfrak {g}}_{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>=</mo> <munder> <mo>&#x2A01;<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> </mrow> </munder> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>,</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo>=</mo> <munder> <mo>&#x2A01;<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> </mrow> </munder> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{+}=\bigoplus _{\alpha \in \Phi _{+}}{\mathfrak {g}}_{\alpha },n^{-}=\bigoplus _{\alpha \in \Phi _{-}}{\mathfrak {g}}_{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b9be83be4ceefeed5209ff531be90903ed6e021" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:27.802ex; height:5.843ex;" alt="{\displaystyle n^{+}=\bigoplus _{\alpha \in \Phi _{+}}{\mathfrak {g}}_{\alpha },n^{-}=\bigoplus _{\alpha \in \Phi _{-}}{\mathfrak {g}}_{\alpha }}"></span> as the corresponding positive nilpotent subalgebra and negative nilpotent subalgebra respectively, due to the <a href="/wiki/Poincar%C3%A9%E2%80%93Birkhoff%E2%80%93Witt_theorem" title="Poincaré–Birkhoff–Witt theorem">Poincaré–Birkhoff–Witt theorem</a> there is a decomposition <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U({\mathfrak {g}})=U({\mathfrak {h}})\oplus (U({\mathfrak {g}}){\mathfrak {n}}^{+}+{\mathfrak {n}}^{-}U({\mathfrak {g}})).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>&#x2295;<!-- ⊕ --></mo> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">n</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">n</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U({\mathfrak {g}})=U({\mathfrak {h}})\oplus (U({\mathfrak {g}}){\mathfrak {n}}^{+}+{\mathfrak {n}}^{-}U({\mathfrak {g}})).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/577ca54421b0370b7cbe9bc82e0261bf809663c6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.801ex; height:3.009ex;" alt="{\displaystyle U({\mathfrak {g}})=U({\mathfrak {h}})\oplus (U({\mathfrak {g}}){\mathfrak {n}}^{+}+{\mathfrak {n}}^{-}U({\mathfrak {g}})).}"></span> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\in {\mathfrak {Z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">Z</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\in {\mathfrak {Z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96df2fc72cfee34d5550e6ce437fbf2533c0bb37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.328ex; height:2.509ex;" alt="{\displaystyle z\in {\mathfrak {Z}}}"></span> is central, then in fact <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\in U({\mathfrak {h}})\oplus (U({\mathfrak {g}}){\mathfrak {n}}^{+}\cap {\mathfrak {n}}^{-}U({\mathfrak {g}})).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>&#x2295;<!-- ⊕ --></mo> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">n</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>&#x2229;<!-- ∩ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">n</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\in U({\mathfrak {h}})\oplus (U({\mathfrak {g}}){\mathfrak {n}}^{+}\cap {\mathfrak {n}}^{-}U({\mathfrak {g}})).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79567176e2f4a7e6a82167ac587951fe18268f38" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.61ex; height:3.009ex;" alt="{\displaystyle z\in U({\mathfrak {h}})\oplus (U({\mathfrak {g}}){\mathfrak {n}}^{+}\cap {\mathfrak {n}}^{-}U({\mathfrak {g}})).}"></span> The restriction of the projection <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U({\mathfrak {g}})\rightarrow U({\mathfrak {h}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U({\mathfrak {g}})\rightarrow U({\mathfrak {h}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/314a1cf4feebc63520707ead94195adebf39cfbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.181ex; height:2.843ex;" alt="{\displaystyle U({\mathfrak {g}})\rightarrow U({\mathfrak {h}})}"></span> to the centre is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma :{\mathfrak {Z}}\rightarrow S({\mathfrak {h}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">Z</mi> </mrow> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma :{\mathfrak {Z}}\rightarrow S({\mathfrak {h}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49ce32820cfb016bbaf08c157dd09791204dfd31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.733ex; height:2.843ex;" alt="{\displaystyle \gamma :{\mathfrak {Z}}\rightarrow S({\mathfrak {h}})}"></span>, and is a homomorphism of algebras. This is related to the central characters by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi _{\lambda }(x)=\gamma (x)(\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi _{\lambda }(x)=\gamma (x)(\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaa838b9bb5d129a397d0a37d7eb1a59e1971eb0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.449ex; height:2.843ex;" alt="{\displaystyle \chi _{\lambda }(x)=\gamma (x)(\lambda )}"></span> </p><p>The second map is the <i>twist map</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau :S({\mathfrak {h}})\rightarrow S({\mathfrak {h}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mo>:</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau :S({\mathfrak {h}})\rightarrow S({\mathfrak {h}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73756eb6d0466dd76e550732e650ce5e99399129" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.793ex; height:2.843ex;" alt="{\displaystyle \tau :S({\mathfrak {h}})\rightarrow S({\mathfrak {h}})}"></span>. On <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8f80a9d9b4cf9b0b6f562d5eff0f290da478ebe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.211ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {h}}}"></span> viewed as a subspace of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U({\mathfrak {h}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U({\mathfrak {h}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad0332d36cab683ba4a47708e8485d91376ab49a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.803ex; height:2.843ex;" alt="{\displaystyle U({\mathfrak {h}})}"></span> it is defined <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau (h)=h-\delta (h)1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau (h)=h-\delta (h)1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d90ef6140c7f373c2348b52d1f269818f6aa02a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.987ex; height:2.843ex;" alt="{\displaystyle \tau (h)=h-\delta (h)1}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span> the Weyl vector. </p><p>Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\gamma }}=\tau \circ \gamma :{\mathfrak {Z}}\rightarrow S({\mathfrak {h}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>&#x03C4;<!-- τ --></mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>&#x03B3;<!-- γ --></mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">Z</mi> </mrow> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {\gamma }}=\tau \circ \gamma :{\mathfrak {Z}}\rightarrow S({\mathfrak {h}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/757dda71a51a0b6edcadd542e12fd5a762db98b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.49ex; height:2.843ex;" alt="{\displaystyle {\tilde {\gamma }}=\tau \circ \gamma :{\mathfrak {Z}}\rightarrow S({\mathfrak {h}})}"></span> is the isomorphism. The reason this twist is introduced is that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi _{\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi _{\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbd0e416e02a215304e4b13837c55e1a06acbfd9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.646ex; height:2.009ex;" alt="{\displaystyle \chi _{\lambda }}"></span> is not actually Weyl-invariant, but it can be proven that the twisted character <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\chi }}_{\lambda }=\chi _{\lambda -\delta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C7;<!-- χ --></mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03C7;<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {\chi }}_{\lambda }=\chi _{\lambda -\delta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e391ea46dee7b0ab1e4f49201aba322134b9f114" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.41ex; height:2.676ex;" alt="{\displaystyle {\tilde {\chi }}_{\lambda }=\chi _{\lambda -\delta }}"></span> is. </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=edit&amp;section=5" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The theorem has been used to obtain a simple Lie algebraic proof of <a href="/wiki/Weyl%27s_character_formula" class="mw-redirect" title="Weyl&#39;s character formula">Weyl's character formula</a> for finite-dimensional irreducible representations.<sup id="cite_ref-FOOTNOTEHumphreys1978135–141_2-0" class="reference"><a href="#cite_note-FOOTNOTEHumphreys1978135–141-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> The proof has been further simplified by <a href="/wiki/Victor_Kac" title="Victor Kac">Victor Kac</a>, so that only the quadratic Casimir operator is required; there is a corresponding streamlined treatment proof of the character formula in the second edition of <a href="#CITEREFHumphreys1978">Humphreys (1978</a>, pp.&#160;143–144). </p><p>Further, it is a necessary condition for the existence of a non-zero homomorphism of some highest weight modules (a homomorphism of such modules preserves central character). A simple consequence is that for <a href="/wiki/Verma_module" title="Verma module">Verma modules</a> or <a href="/wiki/Generalized_Verma_module" title="Generalized Verma module">generalized Verma modules</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a99e54af252e9a82c9d14480301e5783f79357b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.546ex; height:2.509ex;" alt="{\displaystyle V_{\lambda }}"></span> with highest weight <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span>, there exist only finitely many weights <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> for which a non-zero homomorphism <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\lambda }\rightarrow V_{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\lambda }\rightarrow V_{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f33b87ed74f6fb078910c1d95e413c55203e9047" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.738ex; height:2.843ex;" alt="{\displaystyle V_{\lambda }\rightarrow V_{\mu }}"></span> exists. </p> <div class="mw-heading mw-heading2"><h2 id="Fundamental_invariants">Fundamental invariants</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=edit&amp;section=6" title="Edit section: Fundamental invariants"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40a913b1503ed9ec94361b99f7fd59ef60705c28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.172ex; height:2.009ex;" alt="{\displaystyle {\mathfrak {g}}}"></span> a simple Lie algebra, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> be its <i>rank</i>, that is, the dimension of any Cartan subalgebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8f80a9d9b4cf9b0b6f562d5eff0f290da478ebe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.211ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {h}}}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40a913b1503ed9ec94361b99f7fd59ef60705c28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.172ex; height:2.009ex;" alt="{\displaystyle {\mathfrak {g}}}"></span>. <a href="/wiki/H._S._M._Coxeter" class="mw-redirect" title="H. S. M. Coxeter">H. S. M. Coxeter</a> observed that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S({\mathfrak {h}})^{W}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>W</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S({\mathfrak {h}})^{W}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/931c2bcb1ac49216568765f25808fea9f4b03895" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.474ex; height:3.176ex;" alt="{\displaystyle S({\mathfrak {h}})^{W}}"></span> is isomorphic to a <a href="/wiki/Polynomial_ring" title="Polynomial ring">polynomial algebra</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> variables (see <a href="/wiki/Chevalley%E2%80%93Shephard%E2%80%93Todd_theorem" title="Chevalley–Shephard–Todd theorem">Chevalley–Shephard–Todd theorem</a> for a more general statement). Therefore, the center of the universal enveloping algebra of a simple Lie algebra is isomorphic to a polynomial algebra. The degrees of the generators of the algebra are the degrees of the fundamental invariants given in the following table. </p> <table class="wikitable" style="text-align:center"> <tbody><tr> <th>Lie algebra</th> <th><a href="/wiki/Coxeter_number" class="mw-redirect" title="Coxeter number">Coxeter number</a> <i>h</i></th> <th><a href="/wiki/Dual_Coxeter_number" class="mw-redirect" title="Dual Coxeter number">Dual Coxeter number</a></th> <th>Degrees of fundamental invariants </th></tr> <tr> <td><b>R</b></td> <td>0</td> <td>0</td> <td>1 </td></tr> <tr> <td>A<sub><i>n</i></sub></td> <td><i>n</i>&#160;+&#160;1</td> <td><i>n</i>&#160;+&#160;1</td> <td>2, 3, 4, ..., <i>n</i>&#160;+&#160;1 </td></tr> <tr> <td>B<sub><i>n</i></sub></td> <td>2<i>n</i></td> <td>2<i>n</i>&#160;&#8722;&#160;1</td> <td>2, 4, 6, ..., 2<i>n</i> </td></tr> <tr> <td>C<sub><i>n</i></sub></td> <td>2<i>n</i></td> <td><i>n</i>&#160;+&#160;1</td> <td>2, 4, 6, ..., 2<i>n</i> </td></tr> <tr> <td>D<sub><i>n</i></sub></td> <td>2<i>n</i>&#160;&#8722;&#160;2</td> <td>2<i>n</i>&#160;&#8722;&#160;2</td> <td><i>n</i>; 2, 4, 6, ..., 2<i>n</i>&#160;&#8722;&#160;2 </td></tr> <tr> <td>E<sub>6</sub></td> <td>12</td> <td>12</td> <td>2, 5, 6, 8, 9, 12 </td></tr> <tr> <td>E<sub>7</sub></td> <td>18</td> <td>18</td> <td>2, 6, 8, 10, 12, 14, 18 </td></tr> <tr> <td>E<sub>8</sub></td> <td>30</td> <td>30</td> <td>2, 8, 12, 14, 18, 20, 24, 30 </td></tr> <tr> <td>F<sub>4</sub></td> <td>12</td> <td>9</td> <td>2, 6, 8, 12 </td></tr> <tr> <td>G<sub>2</sub></td> <td>6</td> <td>4</td> <td>2, 6 </td></tr></tbody></table> <p>The number of the fundamental invariants of a <a href="/wiki/Lie_group" title="Lie group">Lie group</a> is equal to its rank. Fundamental invariants are also related to the <a href="/wiki/Cohomology_ring" title="Cohomology ring">cohomology ring</a> of a Lie group. In particular, if the fundamental invariants have degrees <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{1},\cdots ,d_{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{1},\cdots ,d_{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d2e8194a515197c1d0580bdacca50b866494c48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.624ex; height:2.509ex;" alt="{\displaystyle d_{1},\cdots ,d_{r}}"></span>, then the generators of the cohomology ring have degrees <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2d_{1}-1,\cdots ,2d_{r}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <mn>2</mn> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2d_{1}-1,\cdots ,2d_{r}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86acea143705466b644ddcb357274af8646b8e3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.955ex; height:2.509ex;" alt="{\displaystyle 2d_{1}-1,\cdots ,2d_{r}-1}"></span>. Due to this, the degrees of the fundamental invariants can be calculated from the <a href="/wiki/Betti_number" title="Betti number">Betti numbers</a> of the Lie group and vice versa. In another direction, fundamental invariants are related to cohomology of the <a href="/wiki/Classifying_space" title="Classifying space">classifying space</a>. The cohomology ring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H^{*}(BG,\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>B</mi> <mi>G</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H^{*}(BG,\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ad79e283d5387d3f6257f5c004267d50f80373a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.27ex; height:2.843ex;" alt="{\displaystyle H^{*}(BG,\mathbb {R} )}"></span> is isomorphic to a polynomial algebra on generators with degrees <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2d_{1},\cdots ,2d_{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <mn>2</mn> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2d_{1},\cdots ,2d_{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7452d14b0495eb65f22dff3a8219b70851c8534a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.949ex; height:2.509ex;" alt="{\displaystyle 2d_{1},\cdots ,2d_{r}}"></span>.<sup id="cite_ref-borel_sur_la_cohomologie_3-0" class="reference"><a href="#cite_note-borel_sur_la_cohomologie-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=edit&amp;section=7" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40a913b1503ed9ec94361b99f7fd59ef60705c28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.172ex; height:2.009ex;" alt="{\displaystyle {\mathfrak {g}}}"></span> is the Lie algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {sl}}(2,\mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {sl}}(2,\mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6194fdd6c417135b0b5e424b4560b8ec55628b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:7.406ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {sl}}(2,\mathbb {R} )}"></span>, then the center of the universal enveloping algebra is generated by the <a href="/wiki/Casimir_invariant" class="mw-redirect" title="Casimir invariant">Casimir invariant</a> of degree 2, and the Weyl group acts on the Cartan subalgebra, which is isomorphic to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>, by negation, so the invariant of the Weyl group is the square of the generator of the Cartan subalgebra, which is also of degree 2.</li> <li>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {g}}=A_{2}={\mathfrak {sl}}(3,\mathbb {C} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {g}}=A_{2}={\mathfrak {sl}}(3,\mathbb {C} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9368b5bff95c6a62187af7e5018cfca882f721b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.531ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {g}}=A_{2}={\mathfrak {sl}}(3,\mathbb {C} )}"></span>, the Harish-Chandra isomorphism says <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">Z</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dbbf009e4f6b83b6f074666d14ca559fa238eaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.356ex; height:2.843ex;" alt="{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))}"></span> is isomorphic to a polynomial algebra of Weyl-invariant polynomials in two variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{1},h_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{1},h_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0f5492b4d0faf6a4c1631275ab55a977d20bd0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.82ex; height:2.509ex;" alt="{\displaystyle h_{1},h_{2}}"></span> (since the Cartan subalgebra is two-dimensional). For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ec73b8bc9abc3efb934f5a6ec2803713771f4bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.797ex; height:2.509ex;" alt="{\displaystyle A_{2}}"></span>, the Weyl group is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{3}\cong D_{6}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2245;<!-- ≅ --></mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{3}\cong D_{6}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31b75fcaa3d97d2460ac287e3d073894e87b3a42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.556ex; height:2.509ex;" alt="{\displaystyle S_{3}\cong D_{6}}"></span> which acts on the CSA in the standard representation. Since the Weyl group acts by reflections, they are isometries and so the degree 2 polynomial <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{2}(h_{1},h_{2})=h_{1}^{2}+h_{2}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{2}(h_{1},h_{2})=h_{1}^{2}+h_{2}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cdde9f0875a2ef2bcebb38ccb26e4767068b49c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.548ex; height:3.176ex;" alt="{\displaystyle f_{2}(h_{1},h_{2})=h_{1}^{2}+h_{2}^{2}}"></span> is Weyl-invariant. The contours of the degree 3 Weyl-invariant polynomial (for a particular choice of standard representation where one of the reflections is across the x-axis) are shown below. These two polynomials generate the polynomial algebra, and are the fundamental invariants for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ec73b8bc9abc3efb934f5a6ec2803713771f4bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.797ex; height:2.509ex;" alt="{\displaystyle A_{2}}"></span>.</li> <li>For all the Lie algebras in the classification, there is a fundamental invariant of degree 2, the <b>quadratic Casimir</b>. In the isomorphism, these correspond to a degree 2 polynomial on the CSA. Since the Weyl group acts by reflections on the CSA, they are isometries, so the degree 2 invariant polynomial is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{2}(\mathbf {h} )=h_{1}^{2}+\cdots +h_{r}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">h</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{2}(\mathbf {h} )=h_{1}^{2}+\cdots +h_{r}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9584c8d5e136130fc07490a171363f7293185208" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.777ex; height:3.176ex;" alt="{\displaystyle f_{2}(\mathbf {h} )=h_{1}^{2}+\cdots +h_{r}^{2}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> is the dimension of the CSA <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">h</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8f80a9d9b4cf9b0b6f562d5eff0f290da478ebe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.211ex; height:2.509ex;" alt="{\displaystyle {\mathfrak {h}}}"></span>, also known as the rank of the Lie algebra.</li> <li>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {g}}=A_{1}={\mathfrak {sl}}(2,\mathbb {C} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">l</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {g}}=A_{1}={\mathfrak {sl}}(2,\mathbb {C} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20d021c691aaf386fa0a9e803697170bf17c9334" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.531ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {g}}=A_{1}={\mathfrak {sl}}(2,\mathbb {C} )}"></span>, the Cartan subalgebra is one-dimensional, and the Harish-Chandra isomorphism says <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">Z</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dbbf009e4f6b83b6f074666d14ca559fa238eaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.356ex; height:2.843ex;" alt="{\displaystyle {\mathcal {Z}}(U({\mathfrak {g}}))}"></span> is isomorphic to the algebra of Weyl-invariant polynomials in a single variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>. The Weyl group is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1143e284d5f25cef778ab482edf6617a523ddd9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.479ex; height:2.509ex;" alt="{\displaystyle S_{2}}"></span> acting as reflection, with non-trivial element acting on polynomials by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\mapsto -h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo>&#x2212;<!-- − --></mo> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\mapsto -h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7506be30098807e7314096668e6b262277ff91eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.1ex; height:2.343ex;" alt="{\displaystyle h\mapsto -h}"></span>. The subalgebra of Weyl-invariant polynomials in the full polynomial algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K[h]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">[</mo> <mi>h</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K[h]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec3c8c2ceb4cb68b52620aa81f66124b02960e65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.699ex; height:2.843ex;" alt="{\displaystyle K[h]}"></span> is therefore only the even polynomials, generated by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{2}(h)=h^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{2}(h)=h^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1804825a8d2d91707053588fd812269d05316ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.833ex; height:3.176ex;" alt="{\displaystyle f_{2}(h)=h^{2}}"></span>.</li></ul> <style data-mw-deduplicate="TemplateStyles:r1237032888/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner img{background-color:white}}</style><div class="thumb tmulti tnone center"><div class="thumbinner multiimageinner" style="width:392px;max-width:392px"><div class="trow"><div class="tsingle" style="width:390px;max-width:390px"><div class="thumbimage" style="border:none;;height:388px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:D_6_invariant_cubic.png" class="mw-file-description"><img alt="Invariant cubic" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/D_6_invariant_cubic.png/388px-D_6_invariant_cubic.png" decoding="async" width="388" height="388" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/D_6_invariant_cubic.png/582px-D_6_invariant_cubic.png 1.5x, //upload.wikimedia.org/wikipedia/commons/7/7e/D_6_invariant_cubic.png 2x" data-file-width="756" data-file-height="756" /></a></span></div><div class="thumbcaption">Weyl-invariant cubic for A<sub>2</sub>, corresponding to the degree 3 fundamental invariant</div></div></div></div></div> <ul><li>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {g}}=B_{2}={\mathfrak {so}}(5)={\mathfrak {sp}}(4)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {g}}=B_{2}={\mathfrak {so}}(5)={\mathfrak {sp}}(4)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d6947aee756554c6f54ae9e7b06dc58091deb70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.588ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {g}}=B_{2}={\mathfrak {so}}(5)={\mathfrak {sp}}(4)}"></span>, the Weyl group is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{8}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{8}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd5a4a777375871bc5059a864f071975cd4bc434" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle D_{8}}"></span>, acting on two coordinates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{1},h_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{1},h_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0f5492b4d0faf6a4c1631275ab55a977d20bd0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.82ex; height:2.509ex;" alt="{\displaystyle h_{1},h_{2}}"></span>, and is generated (non-minimally) by four reflections, which act on coordinates as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (h_{1}\mapsto -h_{1},h_{2}\mapsto h_{2}),(h_{1}\mapsto h_{1},h_{2}\mapsto -h_{2}),(h_{1}\mapsto h_{2},h_{2}\mapsto h_{1}),(h_{1}\mapsto -h_{2},h_{2}\mapsto h_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (h_{1}\mapsto -h_{1},h_{2}\mapsto h_{2}),(h_{1}\mapsto h_{1},h_{2}\mapsto -h_{2}),(h_{1}\mapsto h_{2},h_{2}\mapsto h_{1}),(h_{1}\mapsto -h_{2},h_{2}\mapsto h_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba04a0c06dd64f23c6a82a28c13beed9a883041" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:87.103ex; height:2.843ex;" alt="{\displaystyle (h_{1}\mapsto -h_{1},h_{2}\mapsto h_{2}),(h_{1}\mapsto h_{1},h_{2}\mapsto -h_{2}),(h_{1}\mapsto h_{2},h_{2}\mapsto h_{1}),(h_{1}\mapsto -h_{2},h_{2}\mapsto h_{1})}"></span>. Any invariant quartic must be even in both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14e8880a2e4243a2fe5157e574a0547ef3d5d373" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.393ex; height:2.509ex;" alt="{\displaystyle h_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56d2d1733d09f02f33694f72b6da94681021e0f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.393ex; height:2.509ex;" alt="{\displaystyle h_{2}}"></span>, and invariance under exchange of coordinates means any invariant quartic can be written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{4}(h_{1},h_{2})=ah_{1}^{4}+bh_{1}^{2}h_{2}^{2}+ah_{2}^{4}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mo>+</mo> <mi>b</mi> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mi>a</mi> <msubsup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{4}(h_{1},h_{2})=ah_{1}^{4}+bh_{1}^{2}h_{2}^{2}+ah_{2}^{4}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7d41bd8ec107b10ead397673b1a17236986042e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:32.279ex; height:3.176ex;" alt="{\displaystyle f_{4}(h_{1},h_{2})=ah_{1}^{4}+bh_{1}^{2}h_{2}^{2}+ah_{2}^{4}.}"></span> Despite this being a two-dimensional vector space, this contributes only one new fundamental invariant as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{2}(h_{1},h_{2})^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{2}(h_{1},h_{2})^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9741b509150b559aa44d29e6bd4e62a4933fa3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.877ex; height:3.176ex;" alt="{\displaystyle f_{2}(h_{1},h_{2})^{2}}"></span> lies in the space. In this case, there is no unique choice of quartic invariant as any polynomial with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\neq 2a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>2</mn> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\neq 2a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fa46b3acaa8221ee7b602a3f5483a7e6b7c0c2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.488ex; height:2.676ex;" alt="{\displaystyle b\neq 2a}"></span> (and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/181523deba732fda302fd176275a0739121d3bc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.261ex; height:2.509ex;" alt="{\displaystyle a,b}"></span> not both zero) suffices.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Generalization_to_affine_Lie_algebras">Generalization to affine Lie algebras</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=edit&amp;section=8" title="Edit section: Generalization to affine Lie algebras"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The above result holds for <a href="/wiki/Reductive_Lie_algebra" title="Reductive Lie algebra">reductive</a>, and in particular <a href="/wiki/Semisimple_Lie_algebra" title="Semisimple Lie algebra">semisimple Lie algebras</a>. There is a generalization to <a href="/wiki/Affine_Lie_algebra" title="Affine Lie algebra">affine Lie algebras</a> shown by <a href="/wiki/Boris_Feigin" title="Boris Feigin">Feigin</a> and <a href="/wiki/Edward_Frenkel" title="Edward Frenkel">Frenkel</a> showing that an algebra known as the Feigin–Frenkel center is isomorphic to a <a href="/wiki/W-algebra" title="W-algebra">W-algebra</a> associated to the <a href="/wiki/Langlands_dual" class="mw-redirect" title="Langlands dual">Langlands dual</a> Lie algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{L}{\mathfrak {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{L}{\mathfrak {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d548cdd738c6c3382ca06706d08f4d271355139" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.523ex; height:3.009ex;" alt="{\displaystyle ^{L}{\mathfrak {g}}}"></span>.<sup id="cite_ref-molev_4-0" class="reference"><a href="#cite_note-molev-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ffr_5-0" class="reference"><a href="#cite_note-ffr-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <b>Feigin–Frenkel center</b> of an affine Lie algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mathfrak {g}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mathfrak {g}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b62800c03c4bdb2f1b251dc596f0456ddb0e41a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.172ex; height:2.676ex;" alt="{\displaystyle {\hat {\mathfrak {g}}}}"></span> is not exactly the center of the universal enveloping algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {Z}}(U({\hat {\mathfrak {g}}}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">Z</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>U</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {Z}}(U({\hat {\mathfrak {g}}}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4825acc211a4215a18fbf5f0d8191455d1dc93d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.356ex; height:2.843ex;" alt="{\displaystyle {\mathcal {Z}}(U({\hat {\mathfrak {g}}}))}"></span>. They are elements <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> of the vacuum <a href="/wiki/Affine_Lie_algebra#affine_vertex_algebra" title="Affine Lie algebra">affine vertex algebra</a> at critical level <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=-h^{\vee }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2228;<!-- ∨ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=-h^{\vee }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a3cf49e61f45c446fd0d7ef78a065c9e11fd7df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.785ex; height:2.676ex;" alt="{\displaystyle k=-h^{\vee }}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h^{\vee }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2228;<!-- ∨ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h^{\vee }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae135cb68f06593d8b0cdd837786b1869934c04c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.667ex; height:2.509ex;" alt="{\displaystyle h^{\vee }}"></span> is the <a href="/wiki/Coxeter_element#definitions" title="Coxeter element">dual Coxeter number</a> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {g}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {g}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40a913b1503ed9ec94361b99f7fd59ef60705c28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.172ex; height:2.009ex;" alt="{\displaystyle {\mathfrak {g}}}"></span> which are annihilated by the positive <a href="/wiki/Loop_algebra" title="Loop algebra">loop algebra</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {g}}[t]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">[</mo> <mi>t</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {g}}[t]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c63492d70ec3aeccae49684c13993aa50a5e3928" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.305ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {g}}[t]}"></span> part of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mathfrak {g}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mathfrak {g}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b62800c03c4bdb2f1b251dc596f0456ddb0e41a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.172ex; height:2.676ex;" alt="{\displaystyle {\hat {\mathfrak {g}}}}"></span>, that is, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {Z}}({\hat {\mathfrak {g}}}):=\{S\in V_{\text{cri}}({\mathfrak {g}})|{\mathfrak {g}}[t]S=0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">Z</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mi>S</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>cri</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">[</mo> <mi>t</mi> <mo stretchy="false">]</mo> <mi>S</mi> <mo>=</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {Z}}({\hat {\mathfrak {g}}}):=\{S\in V_{\text{cri}}({\mathfrak {g}})|{\mathfrak {g}}[t]S=0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26601a23e1cf59e3c779e78110e22b51200c9645" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.903ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {Z}}({\hat {\mathfrak {g}}}):=\{S\in V_{\text{cri}}({\mathfrak {g}})|{\mathfrak {g}}[t]S=0\}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{\text{cri}}({\mathfrak {g}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>cri</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{\text{cri}}({\mathfrak {g}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e96f01c999240921fc9e3f7b572b3120c542707" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.401ex; height:2.843ex;" alt="{\displaystyle V_{\text{cri}}({\mathfrak {g}})}"></span> is the affine vertex algebra at the critical level. Elements of this center are also known as <i>singular vectors</i> or <i>Segal–Sugawara vectors</i>. </p><p>The isomorphism in this case is an isomorphism between the Feigin–Frenkel center and the W-algebra constructed associated to the Langlands dual Lie algebra by <a href="/wiki/W-algebra#Drinfeld–Sokolov_reduction" title="W-algebra">Drinfeld–Sokolov reduction</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {Z}}({\hat {\mathfrak {g}}})\cong {\mathcal {W}}(^{L}{\mathfrak {g}}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">Z</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>&#x2245;<!-- ≅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">W</mi> </mrow> </mrow> <msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {Z}}({\hat {\mathfrak {g}}})\cong {\mathcal {W}}(^{L}{\mathfrak {g}}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8045074389a3be0122f4b6cf2c6731d3455a1222" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.863ex; height:3.176ex;" alt="{\displaystyle {\mathfrak {Z}}({\hat {\mathfrak {g}}})\cong {\mathcal {W}}(^{L}{\mathfrak {g}}).}"></span> There is also a description of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {Z}}({\hat {\mathfrak {g}}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">Z</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {Z}}({\hat {\mathfrak {g}}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ce583bb2ebe6db842b91840cf2477b5a52b21ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.38ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {Z}}({\hat {\mathfrak {g}}})}"></span> as a polynomial algebra in a finite number of countably infinite families of generators, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial ^{n}S_{i},i=1,\cdots ,l,n\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <mi>l</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial ^{n}S_{i},i=1,\cdots ,l,n\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30c80822d996530fea8d46e074acc546f900e3cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.445ex; height:2.676ex;" alt="{\displaystyle \partial ^{n}S_{i},i=1,\cdots ,l,n\geq 0}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{i},i=1,\cdots ,l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{i},i=1,\cdots ,l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd1ff8dff00b58c1c9b1732544ad6a8784471b51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.193ex; height:2.509ex;" alt="{\displaystyle S_{i},i=1,\cdots ,l}"></span> have degrees <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{i}+1,i=1,\cdots ,l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{i}+1,i=1,\cdots ,l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ee3dc6c1548eb381c6d506425069d09b0986984" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.98ex; height:2.509ex;" alt="{\displaystyle d_{i}+1,i=1,\cdots ,l}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62b4e7c1cedb9564609aefd2aa2309972f455c24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.318ex; height:2.176ex;" alt="{\displaystyle \partial }"></span> is the (negative of) the natural derivative operator on the loop algebra. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=edit&amp;section=9" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Translation_functor" title="Translation functor">Translation functor</a></li> <li><a href="/wiki/Infinitesimal_character" title="Infinitesimal character">Infinitesimal character</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=edit&amp;section=10" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-FOOTNOTEHumphreys1978130-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHumphreys1978130_1-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHumphreys1978">Humphreys 1978</a>, p.&#160;130.</span> </li> <li id="cite_note-FOOTNOTEHumphreys1978135–141-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHumphreys1978135–141_2-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHumphreys1978">Humphreys 1978</a>, pp.&#160;135–141.</span> </li> <li id="cite_note-borel_sur_la_cohomologie-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-borel_sur_la_cohomologie_3-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBorel1954" class="citation journal cs1">Borel, Armand (Apr 1954). "Sur la cohomologie des espaces homogenes des groupes de Lie compacts". <i>American Journal of Mathematics</i>. <b>76</b> (2): 273–342.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Journal+of+Mathematics&amp;rft.atitle=Sur+la+cohomologie+des+espaces+homogenes+des+groupes+de+Lie+compacts&amp;rft.volume=76&amp;rft.issue=2&amp;rft.pages=273-342&amp;rft.date=1954-04&amp;rft.aulast=Borel&amp;rft.aufirst=Armand&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHarish-Chandra+isomorphism" class="Z3988"></span></span> </li> <li id="cite_note-molev-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-molev_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMolev2021" class="citation journal cs1">Molev, Alexander (19 January 2021). "On Segal–Sugawara vectors and Casimir elements for classical Lie algebras". <i>Letters in Mathematical Physics</i>. <b>111</b> (8). <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2008.05256">2008.05256</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11005-020-01344-3">10.1007/s11005-020-01344-3</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:254795180">254795180</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Letters+in+Mathematical+Physics&amp;rft.atitle=On+Segal%E2%80%93Sugawara+vectors+and+Casimir+elements+for+classical+Lie+algebras&amp;rft.volume=111&amp;rft.issue=8&amp;rft.date=2021-01-19&amp;rft_id=info%3Aarxiv%2F2008.05256&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A254795180%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs11005-020-01344-3&amp;rft.aulast=Molev&amp;rft.aufirst=Alexander&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHarish-Chandra+isomorphism" class="Z3988"></span></span> </li> <li id="cite_note-ffr-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-ffr_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeiginFrenkelReshetikhin1994" class="citation journal cs1">Feigin, Boris; Frenkel, Edward; Reshetikhin, Nikolai (3 Apr 1994). "Gaudin Model, Bethe Ansatz and Critical Level". <i>Commun. Math. Phys</i>. <b>166</b>: 27–62. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/hep-th/9402022">hep-th/9402022</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02099300">10.1007/BF02099300</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17099900">17099900</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Commun.+Math.+Phys.&amp;rft.atitle=Gaudin+Model%2C+Bethe+Ansatz+and+Critical+Level&amp;rft.volume=166&amp;rft.pages=27-62&amp;rft.date=1994-04-03&amp;rft_id=info%3Aarxiv%2Fhep-th%2F9402022&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17099900%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF02099300&amp;rft.aulast=Feigin&amp;rft.aufirst=Boris&amp;rft.au=Frenkel%2C+Edward&amp;rft.au=Reshetikhin%2C+Nikolai&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHarish-Chandra+isomorphism" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_resources">External resources</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=edit&amp;section=11" title="Edit section: External resources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a rel="nofollow" class="external text" href="https://www2.math.upenn.edu/~brweber/Courses/2013/Math651/Notes/L14_HarishChandra.pdf">Notes on the Harish-Chandra isomorphism</a> </p> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Harish-Chandra_isomorphism&amp;action=edit&amp;section=12" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarish-Chandra1951" class="citation cs2">Harish-Chandra (1951), "On some applications of the universal enveloping algebra of a semisimple Lie algebra", <i><a href="/wiki/Transactions_of_the_American_Mathematical_Society" title="Transactions of the American Mathematical Society">Transactions of the American Mathematical Society</a></i>, <b>70</b> (1): 28–96, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1990524">10.2307/1990524</a></span>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1990524">1990524</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0044515">0044515</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transactions+of+the+American+Mathematical+Society&amp;rft.atitle=On+some+applications+of+the+universal+enveloping+algebra+of+a+semisimple+Lie+algebra&amp;rft.volume=70&amp;rft.issue=1&amp;rft.pages=28-96&amp;rft.date=1951&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0044515%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1990524%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F1990524&amp;rft.au=Harish-Chandra&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHarish-Chandra+isomorphism" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHumphreys1978" class="citation book cs1">Humphreys, James E. (1978). <i>Introduction to Lie algebras and representation theory</i>. Graduate Texts in Mathematics. Vol.&#160;9 (Second revised&#160;ed.). <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-90053-5" title="Special:BookSources/0-387-90053-5"><bdi>0-387-90053-5</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0499562">0499562</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Lie+algebras+and+representation+theory&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.edition=Second+revised&amp;rft.pub=Springer-Verlag&amp;rft.date=1978&amp;rft.isbn=0-387-90053-5&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0499562%23id-name%3DMR&amp;rft.aulast=Humphreys&amp;rft.aufirst=James+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHarish-Chandra+isomorphism" class="Z3988"></span> (Contains an improved proof of Weyl's character formula.)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHumphreys2008" class="citation cs2"><a href="/wiki/James_E._Humphreys" title="James E. Humphreys">Humphreys, James E.</a> (2008), <i>Representations of semisimple Lie algebras in the BGG category O</i>, AMS, p.&#160;26, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-4678-0" title="Special:BookSources/978-0-8218-4678-0"><bdi>978-0-8218-4678-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Representations+of+semisimple+Lie+algebras+in+the+BGG+category+O&amp;rft.pages=26&amp;rft.pub=AMS&amp;rft.date=2008&amp;rft.isbn=978-0-8218-4678-0&amp;rft.aulast=Humphreys&amp;rft.aufirst=James+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHarish-Chandra+isomorphism" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnappVogan1995" class="citation cs2">Knapp, Anthony W.; Vogan, David A. (1995), <i>Cohomological induction and unitary representations</i>, Princeton Mathematical Series, vol.&#160;45, <a href="/wiki/Princeton_University_Press" title="Princeton University Press">Princeton University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-03756-1" title="Special:BookSources/978-0-691-03756-1"><bdi>978-0-691-03756-1</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1330919">1330919</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Cohomological+induction+and+unitary+representations&amp;rft.series=Princeton+Mathematical+Series&amp;rft.pub=Princeton+University+Press&amp;rft.date=1995&amp;rft.isbn=978-0-691-03756-1&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1330919%23id-name%3DMR&amp;rft.aulast=Knapp&amp;rft.aufirst=Anthony+W.&amp;rft.au=Vogan%2C+David+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHarish-Chandra+isomorphism" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnapp2013" class="citation cs2"><a href="/wiki/Anthony_W._Knapp" title="Anthony W. Knapp">Knapp, Anthony W.</a> (2013) [1996], <a rel="nofollow" class="external text" href="https://books.google.com/books?id=J8EGCAAAQBAJ&amp;pg=PA246">"V. Finite Dimensional Representations §5. Harish-Chandra Isomorphism"</a>, <i>Lie Groups Beyond an Introduction</i>, Progress in Mathematics, vol.&#160;140, Springer, pp.&#160;246–258, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4757-2453-0" title="Special:BookSources/978-1-4757-2453-0"><bdi>978-1-4757-2453-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=V.+Finite+Dimensional+Representations+%C2%A75.+Harish-Chandra+Isomorphism&amp;rft.btitle=Lie+Groups+Beyond+an+Introduction&amp;rft.series=Progress+in+Mathematics&amp;rft.pages=246-258&amp;rft.pub=Springer&amp;rft.date=2013&amp;rft.isbn=978-1-4757-2453-0&amp;rft.aulast=Knapp&amp;rft.aufirst=Anthony+W.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJ8EGCAAAQBAJ%26pg%3DPA246&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHarish-Chandra+isomorphism" class="Z3988"></span></li></ul> </div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐qqs7t Cached time: 20241124165623 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.363 seconds Real time usage: 0.544 seconds Preprocessor visited node count: 1597/1000000 Post‐expand include size: 20069/2097152 bytes Template argument size: 1144/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 30928/5000000 bytes Lua time usage: 0.161/10.000 seconds Lua memory usage: 6076289/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 291.584 1 -total 30.97% 90.307 1 Template:Reflist 27.06% 78.915 3 Template:Cite_journal 24.11% 70.298 1 Template:Short_description 15.35% 44.761 2 Template:Pagetype 10.08% 29.389 1 Template:Distinguish 9.91% 28.886 2 Template:Sfn 7.29% 21.266 4 Template:Citation 5.16% 15.037 1 Template:Multiple_image 4.76% 13.866 5 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:idhash:5352569-0!canonical and timestamp 20241124165623 and revision id 1199304220. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Harish-Chandra_isomorphism&amp;oldid=1199304220">https://en.wikipedia.org/w/index.php?title=Harish-Chandra_isomorphism&amp;oldid=1199304220</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Representation_theory_of_Lie_algebras" title="Category:Representation theory of Lie algebras">Representation theory of Lie algebras</a></li><li><a href="/wiki/Category:Theorems_in_algebra" title="Category:Theorems in algebra">Theorems in algebra</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Pages_using_multiple_image_with_auto_scaled_images" title="Category:Pages using multiple image with auto scaled images">Pages using multiple image with auto scaled images</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 26 January 2024, at 18:47<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Harish-Chandra_isomorphism&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-tc56n","wgBackendResponseTime":140,"wgPageParseReport":{"limitreport":{"cputime":"0.363","walltime":"0.544","ppvisitednodes":{"value":1597,"limit":1000000},"postexpandincludesize":{"value":20069,"limit":2097152},"templateargumentsize":{"value":1144,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":30928,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 291.584 1 -total"," 30.97% 90.307 1 Template:Reflist"," 27.06% 78.915 3 Template:Cite_journal"," 24.11% 70.298 1 Template:Short_description"," 15.35% 44.761 2 Template:Pagetype"," 10.08% 29.389 1 Template:Distinguish"," 9.91% 28.886 2 Template:Sfn"," 7.29% 21.266 4 Template:Citation"," 5.16% 15.037 1 Template:Multiple_image"," 4.76% 13.866 5 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.161","limit":"10.000"},"limitreport-memusage":{"value":6076289,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBorel1954\"] = 1,\n [\"CITEREFFeiginFrenkelReshetikhin1994\"] = 1,\n [\"CITEREFHarish-Chandra1951\"] = 1,\n [\"CITEREFHumphreys1978\"] = 1,\n [\"CITEREFHumphreys2008\"] = 1,\n [\"CITEREFKnapp2013\"] = 1,\n [\"CITEREFKnappVogan1995\"] = 1,\n [\"CITEREFMolev2021\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Citation\"] = 4,\n [\"Cite book\"] = 1,\n [\"Cite journal\"] = 3,\n [\"Distinguish\"] = 1,\n [\"Harvs\"] = 1,\n [\"Harvtxt\"] = 1,\n [\"Multiple image\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"Sfn\"] = 2,\n [\"Short description\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-qqs7t","timestamp":"20241124165623","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Harish-Chandra isomorphism","url":"https:\/\/en.wikipedia.org\/wiki\/Harish-Chandra_isomorphism","sameAs":"http:\/\/www.wikidata.org\/entity\/Q5657840","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q5657840","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-05-30T18:04:16Z","dateModified":"2024-01-26T18:47:14Z","headline":"an isomorphism of commutative rings constructed in the theory of Lie algebras"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10