CINXE.COM

{"title":"Characterization of the Dispersion Phenomenon in an Optical Biosensor","authors":"An-Shik Yang, Chin-Ting Kuo, Yung-Chun Yang, Wen-Hsin Hsieh, Chiang-Ho Cheng","volume":103,"journal":"International Journal of Mechanical and Mechatronics Engineering","pagesStart":1199,"pagesEnd":1205,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10001625","abstract":"Optical biosensors have become a powerful detection\r\nand analysis tool for wide-ranging applications in biomedical research,\r\npharmaceuticals and environmental monitoring. This study carried out\r\nthe computational fluid dynamics (CFD)-based simulations to explore\r\nthe dispersion phenomenon in the micro channel of an optical\r\nbiosensor. The predicted time sequences of concentration contours\r\nwere utilized to better understand the dispersion development occurred\r\nin different geometric shapes of micro channels. The simulation results\r\nshowed the surface concentrations at the sensing probe (with the best\r\nperformance of a grating coupler) in respect of time to appraise the\r\ndispersion effect and therefore identify the design configurations\r\nresulting in minimum dispersion.","references":"[1] R. Narayanaswamy, O. S. Wolfbeis, Optical Sensors, Springer, New\r\nYork, 2004\r\n[2] D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, H.\r\nS. Sorensen, Free-solution label-free molecular interactions studied by\r\nback-scattering interfometry, Science 317 (2007) 1732\u20131736.\r\n[3] M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, W.\r\nW. Web, Zeromode waveguides for single-molecule analysis at high\r\nconcentrations, Science 299 (2003) 682\u2013686.\r\n[4] Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose biosensor based on carbon nanotube\r\nnanoelectrode ensembles, Nano Letters 4 (2004) 191\u2013195.\r\n[5] C. McDonagh, C.S. Burke, B.D. MacCraith, Optical chemical sensors,\r\nChemical Reviews 108 (2008) 400\u2013422\r\n[6] J. Wang, Electrochemical glucose biosensors, Chemical Reviews 108\r\n(2008)814\u2013825.\r\n[7] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, Y. Sun, Sensitive\r\noptical biosensor for unlabeled targets: a review, Analytica Chimica Acta\r\n620 (2008)8\u201326.\r\n[8] F. Vollmer, S. Arnold, Whispering-gallery-mode biosensing: laber-free\r\ndetection down to single molecules, Nature Methods 5 (2008) 591\u2013596.\r\n[9] V. Goral et al, Label-free optical biosensor with microfluidics for sensing\r\nligand-directed functional selectivity on trafficking of thrombin receptor,\r\nFEBS Letters 585 (2011) 1054\u20131060\r\n[10] T. Kumeria et al, Label-free reflectometric interference microchip\r\nbiosensor based on nanoporous alumina for detection of circulating\r\ntumour cells Biosensors and Bioelectronics 35 (2012) 167-173.\r\n[11] X. Xu et al, A simple and rapid optical biosensor for detection of aflatoxin\r\nB1 based on competitive dispersion of gold nanorods, Biosensors and\r\nBioelectronics 47 (2013) 361\u2013367.\r\n[12] L. Zhian et al Label-free biosensor by protein grating coupler on planar\r\noptical waveguides, optics letters Vol. 33, No. 15\r\n[13] Robert Horvath et al, Grating coupled optical waveguide interferometer\r\nfor label-free biosensing, Sensors and Actuators B 155 (2011) 446\u2013450\r\n[14] M. Matlosz et al. Micro channel reactors for kinetic measurement:\r\nInfluence of diffusion and dispersion on experimental accuracy,\r\nMicroreaction Technology\r\n[15] N. Orgovan et al, In-situ and label-free optical monitoring of the adhesion\r\nand spreading of primary monocytes isolated from human blood:\r\nDependence on serum concentration levels, Biosensors and\r\nBioelectronics 54 (2014) 339\u2013344\r\n[16] J. Vlachopoulos et al, Polymer processing, Mater. Sci. Technol. Lond., 19\r\n(2003), pp. 1161\u20131169\r\n[17] S. H. Kim et al, Nanopattern insert molding, Nanotechnology 21(2010)\r\n[18] R. R. Lamonte, D. McNally, Cyclic olefin copolymers, Adv. Mater.\r\nProcess. 159 (2001)33\u201336.\r\n[19] AWK. Law, H. Wang, Measurement of mixing processes with combined\r\ndigital particle image velocimetry and planner laser induced fluorescence,\r\nExp. Therm Fluid Sci. 22 (2000) 213-229.\r\n[20] ANSYS\/FLUENT, version 13 User guide manual, ANSYS Inc.,\r\nCanonsburg, PA, USA, 2010 (Website: www.ansys.com).\r\n[21] A. A. S. Bhagat, E. T. K. Peterson, I. Papautsky, A passive planar\r\nmicro-mixer with obstructions for mixing at low Reynolds numbers, J.\r\nMicromech. Microeng. 17 (2007) 1017- 1024.\r\n[22] J. P. Van Doormaal, G. D. Raithby, Enhancements of the SIMPLE\r\nmethod for predicting incompressible fluid flows, Numer. Heat Transfer 7\r\n(1984) 147-163.\r\n[23] D. S. Jang, R. Jetli, S. Acharya, Comparison of the PISO, SIMPLER, and\r\nSIMPLEC algorithms for the treatment of the pressure-velocity coupling\r\nin steady flow problems, Numer Heat Tran. 10 (1986) 209-228. ","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 103, 2015"}