CINXE.COM
Maximum Induced Subgraph of an Augmented Cube
<?xml version="1.0" encoding="UTF-8"?> <article key="pdf/9998319" mdate="2014-05-01 00:00:00"> <author>Meng-Jou Chien and Jheng-Cheng Chen and Chang-Hsiung Tsai</author> <title>Maximum Induced Subgraph of an Augmented Cube</title> <pages>807 - 810</pages> <year>2014</year> <volume>8</volume> <number>5</number> <journal>International Journal of Computer and Information Engineering</journal> <ee>https://publications.waset.org/pdf/9998319</ee> <url>https://publications.waset.org/vol/89</url> <publisher>World Academy of Science, Engineering and Technology</publisher> <abstract>Let max&amp;zeta;G(m) denote the maximum number of edges in a subgraph of graph G induced by m nodes. The ndimensional augmented cube, denoted as AQn, a variation of the hypercube, possesses some properties superior to those of the hypercube. We study the cases when G is the augmented cube AQn. </abstract> <index>Open Science Index 89, 2014</index> </article>