CINXE.COM

Flows: cocyclic and almost cocyclic

<!-- Modified 2011-11-19 by Robert Rosebrugh --> <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <title> Flows: cocyclic and almost cocyclic </title> <link REL="stylesheet" TYPE="text/css" href="../../../tac.css"> </head> <body> <h1> Flows: cocyclic and almost cocyclic </h1><h2> Michael Barr, John F. Kennison, and R. Raphael </h2> <p> A flow on a compact Hausdorff space is an automorphism. Using the closed structure on the category of uniform spaces, a flow gives rise, by iteration, to an action of the integers on the topological group of automorphisms of the object. We study special classes of flows: periodic, cocyclic, and almost cocyclic, mainly in term of the possibility of extending this action continuously to various compactifications of the integers. </p> <p> Keywords: flow on compact spaces, periodic and cocyclic flows, almost cocyclic flows </p> <p> 2000 MSC: 18B30,37C55,54C30,54B30 </p> <p><i>Theory and Applications of Categories,</i> <font face="times new roman"> Vol. 25, 2011, No. 18, pp 490-507.</font> </p><p> Published 2011-11-19. </p><p> <a href="http://www.tac.mta.ca/tac/volumes/25/18/25-18.dvi"> http://www.tac.mta.ca/tac/volumes/25/18/25-18.dvi</a><br> <a href="http://www.tac.mta.ca/tac/volumes/25/18/25-18.ps"> http://www.tac.mta.ca/tac/volumes/25/18/25-18.ps</a><br> <a href="http://www.tac.mta.ca/tac/volumes/25/18/25-18.pdf"> http://www.tac.mta.ca/tac/volumes/25/18/25-18.pdf</a><br> <a href="ftp://ftp.tac.mta.ca/pub/tac/html/volumes/25/18/25-18.dvi"> ftp://ftp.tac.mta.ca/pub/tac/html/volumes/25/18/25-18.dvi</a><br> <a href="ftp://ftp.tac.mta.ca/pub/tac/html/volumes/25/18/25-18.ps"> ftp://ftp.tac.mta.ca/pub/tac/html/volumes/25/18/25-18.ps</a><br> </p> <a href ="../../../index.html"> TAC Home </a> </body></html>

Pages: 1 2 3 4 5 6 7 8 9 10