CINXE.COM
Search results for: Surajit Chakrabarty
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Surajit Chakrabarty</title> <meta name="description" content="Search results for: Surajit Chakrabarty"> <meta name="keywords" content="Surajit Chakrabarty"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Surajit Chakrabarty" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Surajit Chakrabarty"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Surajit Chakrabarty</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Chakrabarty">Surajit Chakrabarty</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyush%20Chauhan"> Piyush Chauhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhasis%20Panda"> Subhasis Panda</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujoy%20Bhattacharya"> Sujoy Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20Markov%20model" title=" hidden Markov model"> hidden Markov model</a>, <a href="https://publications.waset.org/abstracts/search?q=pothole" title=" pothole"> pothole</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20breaker" title=" speed breaker"> speed breaker</a> </p> <a href="https://publications.waset.org/abstracts/121459/speed-breakerpothole-detection-using-hidden-markov-models-a-deep-learning-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Convergence of Generalized Jacobi, Gauss-Seidel and Successive Overrelaxation Methods for Various Classes of Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manideepa%20Saha">Manideepa Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jahnavi%20Chakrabarty"> Jahnavi Chakrabarty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generalized Jacobi (GJ) and Generalized Gauss-Seidel (GGS) methods are most effective than conventional Jacobi and Gauss-Seidel methods for solving linear system of equations. It is known that GJ and GGS methods converge for strictly diagonally dominant (SDD) and for M-matrices. In this paper, we study the convergence of GJ and GGS converge for symmetric positive definite (SPD) matrices, L-matrices and H-matrices. We introduce a generalization of successive overrelaxation (SOR) method for solving linear systems and discuss its convergence for the classes of SDD matrices, SPD matrices, M-matrices, L-matrices and for H-matrices. Advantages of generalized SOR method are established through numerical experiments over GJ, GGS, and SOR methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convergence" title="convergence">convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=Gauss-Seidel" title=" Gauss-Seidel"> Gauss-Seidel</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20method" title=" iterative method"> iterative method</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacobi" title=" Jacobi"> Jacobi</a>, <a href="https://publications.waset.org/abstracts/search?q=SOR" title=" SOR"> SOR</a> </p> <a href="https://publications.waset.org/abstracts/97280/convergence-of-generalized-jacobi-gauss-seidel-and-successive-overrelaxation-methods-for-various-classes-of-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> The Modality of Multivariate Skew Normal Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bader%20Alruwaili">Bader Alruwaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Ray"> Surajit Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finite mixtures are a flexible and powerful tool that can be used for univariate and multivariate distributions, and a wide range of research analysis has been conducted based on the multivariate normal mixture and multivariate of a t-mixture. Determining the number of modes is an important activity that, in turn, allows one to determine the number of homogeneous groups in a population. Our work currently being carried out relates to the study of the modality of the skew normal distribution in the univariate and multivariate cases. For the skew normal distribution, the aims are associated with studying the modality of the skew normal distribution and providing the ridgeline, the ridgeline elevation function, the $\Pi$ function, and the curvature function, and this will be conducive to an exploration of the number and location of mode when mixing the two components of skew normal distribution. The subsequent objective is to apply these results to the application of real world data sets, such as flow cytometry data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mode" title="mode">mode</a>, <a href="https://publications.waset.org/abstracts/search?q=modality" title=" modality"> modality</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20skew%20normal" title=" multivariate skew normal"> multivariate skew normal</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20mixture" title=" finite mixture"> finite mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20mode" title=" number of mode"> number of mode</a> </p> <a href="https://publications.waset.org/abstracts/68912/the-modality-of-multivariate-skew-normal-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Enhancement of Genetic Diversity through Cross Breeding of Two Catfish (Heteropneustes fossilis and Clarias batrachus) in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Miah">M. F. Miah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chakrabarty"> A. Chakrabarty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two popular and highly valued fish, Stinging catfish (Heteropneustes fossilis) and Asian catfish (Clarias batrachus) are considered for observing genetic enhancement. Cross breeding was performed considering wild and farmed fish through inducing agent. Five RAPD markers were used to assess genetic diversity among parents and offspring of these two catfish for evaluating genetic enhancement in F1 generation. Considering different genetic data such as banding pattern of DNA, polymorphic loci, polymorphic information content (PIC), inter individual pair wise similarity, Nei genetic similarity, genetic distance, phylogenetic relationships, allele frequency, genotype frequency, intra locus gene diversity and average gene diversity of parents and offspring of these two fish were analyzed and finally in both cases higher genetic diversity was found in F1 generation than the parents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heteropneustes%20fossilis" title="Heteropneustes fossilis">Heteropneustes fossilis</a>, <a href="https://publications.waset.org/abstracts/search?q=Clarias%20batrachus" title=" Clarias batrachus"> Clarias batrachus</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20breeding" title=" cross breeding"> cross breeding</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20enhancement" title=" genetic enhancement"> genetic enhancement</a> </p> <a href="https://publications.waset.org/abstracts/82616/enhancement-of-genetic-diversity-through-cross-breeding-of-two-catfish-heteropneustes-fossilis-and-clarias-batrachus-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Host-Assisted Delivery of a Model Drug to Genomic DNA: Key Information From Ultrafast Spectroscopy and in Silico Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ria%20Ghosh">Ria Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumendra%20Singh"> Soumendra Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipanjan%20Mukherjee"> Dipanjan Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Susmita%20Mondal"> Susmita Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Monojit%20Das"> Monojit Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttam%20Pal"> Uttam Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Aniruddha%20Adhikari"> Aniruddha Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Aman%20Bhushan"> Aman Bhushan</a>, <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Bose"> Surajit Bose</a>, <a href="https://publications.waset.org/abstracts/search?q=Siddharth%20Sankar%20Bhattacharyya"> Siddharth Sankar Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Debasish%20Pal"> Debasish Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanusri%20Saha-Dasgupta"> Tanusri Saha-Dasgupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Maitree%20Bhattacharyya"> Maitree Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Debasis%20Bhattacharyya"> Debasis Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Asim%20Kumar%20Mallick"> Asim Kumar Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Das"> Ranjan Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Kumar%20Pal"> Samir Kumar Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drug delivery to a target without adverse effects is one of the major criteria for clinical use. Herein, we have made an attempt to explore the delivery efficacy of SDS surfactant in a monomer and micellar stage during the delivery of the model drug, Toluidine Blue (TB) from the micellar cavity to DNA. Molecular recognition of pre-micellar SDS encapsulated TB with DNA occurs at a rate constant of k1 ~652 s 1. However, no significant release of encapsulated TB at micellar concentration was observed within the experimental time frame. This originated from the higher binding affinity of TB towards the nano-cavity of SDS at micellar concentration which does not allow the delivery of TB from the nano-cavity of SDS micelles to DNA. Thus, molecular recognition controls the extent of DNA recognition by TB which in turn modulates the rate of delivery of TB from SDS in a concentration-dependent manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA" title="DNA">DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=micelle" title=" micelle"> micelle</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-micelle" title=" pre-micelle"> pre-micelle</a>, <a href="https://publications.waset.org/abstracts/search?q=SDS" title=" SDS"> SDS</a>, <a href="https://publications.waset.org/abstracts/search?q=toluidine%20blue" title=" toluidine blue"> toluidine blue</a> </p> <a href="https://publications.waset.org/abstracts/154090/host-assisted-delivery-of-a-model-drug-to-genomic-dna-key-information-from-ultrafast-spectroscopy-and-in-silico-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Prevalence of Depression among Post Stroke Survivors in South Asian Region: A Systematic Review and Meta-Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roseminu%20Varghese">Roseminu Varghese</a>, <a href="https://publications.waset.org/abstracts/search?q=Laveena%20Anitha%20Barboza"> Laveena Anitha Barboza</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyothi%20Chakrabarty"> Jyothi Chakrabarty</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravishankar"> Ravishankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Depression among post-stroke survivors is prevalent, but it is unidentified. The purpose of this review was to determine the pooled prevalence of depression among post-stroke survivors in the South Asian region from all published health sciences research articles. The review also aimed to analyze the disparities in the prevalence of depression among the post-stroke survivors from different study locations. Data search to identify the relevant research articles published from 2005 to 2016 was done by using mesh terms and keywords in Web of Science, PubMed Medline, CINAHL, Scopus, J gate, IndMED databases. The final analysis comprised of 9 studies, including a population of 1,520 men and women. Meta-analysis was performed in STATA version 13.0. The overall pooled post-stroke depression prevalence was 0.46, 95% (CI), (0.3- 0.62). The prevalence rate in this systematic review is evident of depression among post-stroke survivors in the South Asian Region. Identifying the prevalence of post-stroke depression at an early stage is important to improve outcomes of the rehabilitative process of stroke survivors and for its early intervention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depression" title="depression">depression</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20stroke%20survivors" title=" post stroke survivors"> post stroke survivors</a>, <a href="https://publications.waset.org/abstracts/search?q=prevalence" title=" prevalence"> prevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20review" title=" systematic review"> systematic review</a> </p> <a href="https://publications.waset.org/abstracts/118544/prevalence-of-depression-among-post-stroke-survivors-in-south-asian-region-a-systematic-review-and-meta-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Reconstruction of Holographic Dark Energy in Chameleon Brans-Dicke Cosmology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Chattopadhyay">Surajit Chattopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accelerated expansion of the current universe is well-established in the literature. Dark energy and modified gravity are two approaches to account for this accelerated expansion. In the present work, we consider scalar field models of dark energy, namely, tachyon and DBI essence in the framework of chameleon Brans-Dicke cosmology. The equation of state parameter is reconstructed and the subsequent cosmological implications are studied. We examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields and we have seen that quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. In the subsequent phase, we have established a correspondence between the NHDE model and the quintessence, the DBI-essence and the tachyon scalar field models in the framework of chameleon Brans–Dicke cosmology. We reconstruct the potentials and the dynamics for these three scalar field models we have considered. The reconstructed potentials are found to increase with the evolution of the universe and in a very late stage they are observed to decay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title="dark energy">dark energy</a>, <a href="https://publications.waset.org/abstracts/search?q=holographic%20principle" title=" holographic principle"> holographic principle</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20gravity" title=" modified gravity"> modified gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/32547/reconstruction-of-holographic-dark-energy-in-chameleon-brans-dicke-cosmology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Bhattacharya">Surajit Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Veltri"> Daniel Veltri</a>, <a href="https://publications.waset.org/abstracts/search?q=Atit%20A.%20Patel"> Atit A. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20N.%20Cox"> Daniel N. Cox</a> </p> <p class="card-text"><strong>Abstract:</strong></p> miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=miRNA" title="miRNA">miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA%3AmRNA%20target%20prediction" title=" miRNA:mRNA target prediction"> miRNA:mRNA target prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20methods" title=" statistical methods"> statistical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA%3AmRNA%20interaction%20network" title=" miRNA:mRNA interaction network"> miRNA:mRNA interaction network</a> </p> <a href="https://publications.waset.org/abstracts/27427/intra-mir-explorer-a-novel-bioinformatics-platform-for-integrated-discovery-of-mirnamrna-gene-regulatory-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Optimal Design of Storm Water Networks Using Simulation-Optimization Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dibakar%20Chakrabarty">Dibakar Chakrabarty</a>, <a href="https://publications.waset.org/abstracts/search?q=Mebada%20Suiting"> Mebada Suiting</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid urbanization coupled with changes in land use pattern results in increasing peak discharge and shortening of catchment time of concentration. The consequence is floods, which often inundate roads and inhabited areas of cities and towns. Management of storm water resulting from rainfall has, therefore, become an important issue for the municipal bodies. Proper management of storm water obviously includes adequate design of storm water drainage networks. The design of storm water network is a costly exercise. Least cost design of storm water networks assumes significance, particularly when the fund available is limited. Optimal design of a storm water system is a difficult task as it involves the design of various components, like, open or closed conduits, storage units, pumps etc. In this paper, a methodology for least cost design of storm water drainage systems is proposed. The methodology proposed in this study consists of coupling a storm water simulator with an optimization method. The simulator used in this study is EPA’s storm water management model (SWMM), which is linked with Genetic Algorithm (GA) optimization method. The model proposed here is a mixed integer nonlinear optimization formulation, which takes care of minimizing the sectional areas of the open conduits of storm water networks, while satisfactorily conveying the runoff resulting from rainfall to the network outlet. Performance evaluations of the developed model show that the proposed method can be used for cost effective design of open conduit based storm water networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29" title="genetic algorithm (GA)">genetic algorithm (GA)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20design" title=" optimal design"> optimal design</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation-optimization" title=" simulation-optimization"> simulation-optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=storm%20water%20network" title=" storm water network"> storm water network</a>, <a href="https://publications.waset.org/abstracts/search?q=SWMM" title=" SWMM"> SWMM</a> </p> <a href="https://publications.waset.org/abstracts/60461/optimal-design-of-storm-water-networks-using-simulation-optimization-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> ABET Accreditation Process for Engineering and Technology Programs: Detailed Process Flow from Criteria 1 to Criteria 8</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar">Amit Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajdeep%20Chakrabarty"> Rajdeep Chakrabarty</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20Gupta"> Ganesh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper illustrates the detailed accreditation process of Accreditation Board of Engineering and Technology (ABET) for accrediting engineering and Technology programs. ABET is a non-governmental agency that accredits engineering and technology, applied and natural sciences, and computing sciences programs. ABET was founded on 10th May 1932 and was founded by Institute of Electrical and Electronics Engineering. International industries accept ABET accredited institutes having the highest standards in their academic programs. In this accreditation, there are eight criteria in general; criterion 1 describes the student outcome evaluations, criteria 2 measures the program's educational objectives, criteria 3 is the student outcome calculated from the marks obtained by students, criteria 4 establishes continuous improvement, criteria 5 focus on curriculum of the institute, criteria 6 is about faculties of this institute, criteria 7 measures the facilities provided by the institute and finally, criteria 8 focus on institutional support towards staff of the institute. In this paper, we focused on the calculative part of each criterion with equations and suitable examples, the files and documentation required for each criterion, and the total workflow of the process. The references and the values used to illustrate the calculations are all taken from the samples provided at ABET's official website. In the final section, we also discuss the criterion-wise score weightage followed by evaluation with timeframe and deadlines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Engineering%20Accreditation%20Committee" title="Engineering Accreditation Committee">Engineering Accreditation Committee</a>, <a href="https://publications.waset.org/abstracts/search?q=Computing%20Accreditation%20Committee" title=" Computing Accreditation Committee"> Computing Accreditation Committee</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20indicator" title=" performance indicator"> performance indicator</a>, <a href="https://publications.waset.org/abstracts/search?q=Program%20Educational%20Objective" title=" Program Educational Objective"> Program Educational Objective</a>, <a href="https://publications.waset.org/abstracts/search?q=ABET%20Criterion%201%20to%207" title=" ABET Criterion 1 to 7"> ABET Criterion 1 to 7</a>, <a href="https://publications.waset.org/abstracts/search?q=IEEE" title=" IEEE"> IEEE</a>, <a href="https://publications.waset.org/abstracts/search?q=National%20Board%20of%20Accreditation" title=" National Board of Accreditation"> National Board of Accreditation</a>, <a href="https://publications.waset.org/abstracts/search?q=MOOCS" title=" MOOCS"> MOOCS</a>, <a href="https://publications.waset.org/abstracts/search?q=Board%20of%20Studies" title=" Board of Studies"> Board of Studies</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholders" title=" stakeholders"> stakeholders</a>, <a href="https://publications.waset.org/abstracts/search?q=course%20objective" title=" course objective"> course objective</a>, <a href="https://publications.waset.org/abstracts/search?q=program%20outcome" title=" program outcome"> program outcome</a>, <a href="https://publications.waset.org/abstracts/search?q=articulation" title=" articulation"> articulation</a>, <a href="https://publications.waset.org/abstracts/search?q=attainment" title=" attainment"> attainment</a>, <a href="https://publications.waset.org/abstracts/search?q=CO-PO%20mapping" title=" CO-PO mapping"> CO-PO mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=CO-PO-SO%20mapping" title=" CO-PO-SO mapping"> CO-PO-SO mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=PDCA%20cycle" title=" PDCA cycle"> PDCA cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20certificates" title=" degree certificates"> degree certificates</a>, <a href="https://publications.waset.org/abstracts/search?q=course%20files" title=" course files"> course files</a>, <a href="https://publications.waset.org/abstracts/search?q=course%20catalogue" title=" course catalogue"> course catalogue</a> </p> <a href="https://publications.waset.org/abstracts/169512/abet-accreditation-process-for-engineering-and-technology-programs-detailed-process-flow-from-criteria-1-to-criteria-8" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Improved Performance of Mn Substituted Ceria Nanospheres for Water Gas Shift Reaction: Influence of Preparation Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhairi%20Lakshminarayana">Bhairi Lakshminarayana</a>, <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Sarker"> Surajit Sarker</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Subrahmanyam"> Ch. Subrahmanyam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study reports the development of noble metal free nano catalysts for low-temperature CO oxidation and water gas shift reaction. Mn-substituted CeO2 solid solution catalysts were synthesized by co-precipitation, combustion and hydrothermal methods. The formation of solid solution was confirmed by XRD with Rietveld refinement and the percentage of carbon and nitrogen doping was ensured by CHNS analyzer. Raman spectroscopic confirmed the oxygen vacancies. The surface area, pore volume and pore size distribution confirmed by N2 physisorption analysis, whereas, UV-visible diffuse reflectance spectroscopy and XPS data confirmed the oxidation state of the Mn ion. The particle size and morphology (spherical shape) of the material was confirmed using FESEM and HRTEM analysis. Ce0.8Mn0.2O2-δ was calcined at 400 °C, 600 °C and 800 °C. Raman spectroscopy confirmed that the catalyst calcined at 400 °C has the best redox properties. The activity of the designed catalysts for CO oxidation (0.2 vol%), carried out with GHSV of 21,000 h-1 and it has been observed that co-precipitation favored the best active catalyst towards CO oxidation and water gas shift reaction, due to the high surface area, improved reducibility, oxygen mobility and highest quantity of surface oxygen species. The activation energy of low temperature CO oxidation on Ce0.8Mn0.2O2- δ (combustion) was 5.5 kcal.K-1.mole-1. The designed catalysts were tested for water gas shift reaction. The present study demonstrates that Mn ion substituted ceria at 400 °C calcination temperature prepared by co-precipitation method promise to revive a green sustainable energy production approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ce0.8Mn0.2O2-%C3%B0" title="Ce0.8Mn0.2O2-ð">Ce0.8Mn0.2O2-ð</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%20oxidation" title=" CO oxidation"> CO oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20characterization" title=" physicochemical characterization"> physicochemical characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20gas%20shift%20reaction%20%28WGS%29" title=" water gas shift reaction (WGS)"> water gas shift reaction (WGS)</a> </p> <a href="https://publications.waset.org/abstracts/47110/improved-performance-of-mn-substituted-ceria-nanospheres-for-water-gas-shift-reaction-influence-of-preparation-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Application of Regularized Spatio-Temporal Models to the Analysis of Remote Sensing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salihah%20Alghamdi">Salihah Alghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Ray"> Surajit Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space-time data can be observed over irregularly shaped manifolds, which might have complex boundaries or interior gaps. Most of the existing methods do not consider the shape of the data, and as a result, it is difficult to model irregularly shaped data accommodating the complex domain. We used a method that can deal with space-time data that are distributed over non-planner shaped regions. The method is based on partial differential equations and finite element analysis. The model can be estimated using a penalized least squares approach with a regularization term that controls the over-fitting. The model is regularized using two roughness penalties, which consider the spatial and temporal regularities separately. The integrated square of the second derivative of the basis function is used as temporal penalty. While the spatial penalty consists of the integrated square of Laplace operator, which is integrated exclusively over the domain of interest that is determined using finite element technique. In this paper, we applied a spatio-temporal regression model with partial differential equations regularization (ST-PDE) approach to analyze a remote sensing data measuring the greenness of vegetation, measure by an index called enhanced vegetation index (EVI). The EVI data consist of measurements that take values between -1 and 1 reflecting the level of greenness of some region over a period of time. We applied (ST-PDE) approach to irregular shaped region of the EVI data. The approach efficiently accommodates the irregular shaped regions taking into account the complex boundaries rather than smoothing across the boundaries. Furthermore, the approach succeeds in capturing the temporal variation in the data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irregularly%20shaped%20domain" title="irregularly shaped domain">irregularly shaped domain</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equations" title=" partial differential equations"> partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20boundray" title=" complex boundray"> complex boundray</a> </p> <a href="https://publications.waset.org/abstracts/92276/application-of-regularized-spatio-temporal-models-to-the-analysis-of-remote-sensing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Prediction of Positive Cloud-to-Ground Lightning Striking Zones for Charged Thundercloud Based on Line Charge Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Das%20Barman">Surajit Das Barman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakibuzzaman%20Shah"> Rakibuzzaman Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Apurv%20Kumar"> Apurv Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bushfire is known as one of the ascendant factors to create pyrocumulus thundercloud that causes the ignition of new fires by pyrocumulonimbus (pyroCb) lightning strikes and creates major losses of lives and property worldwide. A conceptual model-based risk planning would be beneficial to predict the lightning striking zones on the surface of the earth underneath the pyroCb thundercloud. PyroCb thundercloud can generate both positive cloud-to-ground (+CG) and negative cloud-to-ground (-CG) lightning in which +CG tends to ignite more bushfires and cause massive damage to nature and infrastructure. In this paper, a simple line charge structured thundercloud model is constructed in 2-D coordinates using the method of image charge to predict the probable +CG lightning striking zones on the earth’s surface for two conceptual thundercloud charge configurations: titled dipole and conventional tripole structure with excessive lower positive charge regions that lead to producing +CG lightning. The electric potential and surface charge density along the earth’s surface for both structures via continuously adjusting the position and the charge density of their charge regions is investigated. Simulation results for tilted dipole structure confirm the down-shear extension of the upper positive charge region in the direction of the cloud’s forward flank by 4 to 8 km, resulting in negative surface density, and would expect +CG lightning to strike within 7.8 km to 20 km around the earth periphery in the direction of the cloud’s forward flank. On the other hand, the conceptual tripole charge structure with enhanced lower positive charge region develops negative surface charge density on the earth’s surface in the range |x| < 6.5 km beneath the thundercloud and highly favors producing +CG lightning strikes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyrocumulonimbus" title="pyrocumulonimbus">pyrocumulonimbus</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud-to-ground%20lightning" title=" cloud-to-ground lightning"> cloud-to-ground lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20structure" title=" charge structure"> charge structure</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charge%20density" title=" surface charge density"> surface charge density</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20flank" title=" forward flank"> forward flank</a> </p> <a href="https://publications.waset.org/abstracts/148259/prediction-of-positive-cloud-to-ground-lightning-striking-zones-for-charged-thundercloud-based-on-line-charge-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Formation of the Water Assisted Supramolecular Assembly in the Transition Structure of Organocatalytic Asymmetric Aldol Reaction: A DFT Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuheli%20Chakrabarty">Kuheli Chakrabarty</a>, <a href="https://publications.waset.org/abstracts/search?q=Animesh%20Ghosh"> Animesh Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Atanu%20Roy"> Atanu Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Gourab%20Kanti%20Das"> Gourab Kanti Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aldol reaction is an important class of carbon-carbon bond forming reactions. One of the popular ways to impose asymmetry in aldol reaction is the introduction of chiral auxiliary that binds the approaching reactants and create dissymmetry in the reaction environment, which finally evolves to enantiomeric excess in the aldol products. The last decade witnesses the usage of natural amino acids as chiral auxiliary to control the stereoselectivity in various carbon-carbon bond forming processes. In this context, L-proline was found to be an effective organocatalyst in asymmetric aldol additions. In last few decades the use of water as solvent or co-solvent in asymmetric organocatalytic reaction is increased sharply. Simple amino acids like L-proline does not catalyze asymmetric aldol reaction in aqueous medium not only that, In organic solvent medium high catalytic loading (~30 mol%) is required to achieve moderate to high asymmetric induction. In this context, huge efforts have been made to modify L-proline and 4-hydroxy-L-proline to prepare organocatalyst for aqueous medium asymmetric aldol reaction. Here, we report the result of our DFT calculations on asymmetric aldol reaction of benzaldehyde, p-NO2 benzaldehyde and t-butyraldehyde with a number of ketones using L-proline hydrazide as organocatalyst in wet solvent free condition. Gaussian 09 program package and Gauss View program were used for the present work. Geometry optimizations were performed using B3LYP hybrid functional and 6-31G(d,p) basis set. Transition structures were confirmed by hessian calculation and IRC calculation. As the reactions were carried out in solvent free condition, No solvent effect were studied theoretically. Present study has revealed for the first time, the direct involvement of two water molecules in the aldol transition structures. In the TS, the enamine and the aldehyde is connected through hydrogen bonding by the assistance of two intervening water molecules forming a supramolecular network. Formation of this type of supramolecular assembly is possible due to the presence of protonated -NH2 group in the L-proline hydrazide moiety, which is responsible for the favorable entropy contribution to the aldol reaction. It is also revealed from the present study that, water assisted TS is energetically more favorable than the TS without involving any water molecule. It can be concluded from this study that, insertion of polar group capable of hydrogen bond formation in the L-proline skeleton can lead to a favorable aldol reaction with significantly high enantiomeric excess in wet solvent free condition by reducing the activation barrier of this reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aldol%20reaction" title="aldol reaction">aldol reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=organocatalysis" title=" organocatalysis"> organocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20structure" title=" transition structure "> transition structure </a> </p> <a href="https://publications.waset.org/abstracts/25023/formation-of-the-water-assisted-supramolecular-assembly-in-the-transition-structure-of-organocatalytic-asymmetric-aldol-reaction-a-dft-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> 2,7-Diazaindole as a Photophysical Probe for Excited State Hydrogen/Proton Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simran%20Baweja">Simran Baweja</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavika%20Kalal"> Bhavika Kalal</a>, <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Maity"> Surajit Maity</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoinduced tautomerization reactions have been the centre of attention among the scientific community over the past several decades because of their significance in various biological systems. 7-azaindole (7AI) is considered a model system for DNA base pairing and to understand the role of such tautomerization reactions in mutations. To the best of our knowledge, extensive studies have been carried out on 7-azaindole and its solvent clusters exhibiting proton/ hydrogen transfer in both solution as well as gas phases. Derivatives of the above molecule, like 2,7- and 2,6-diazaindoles are proposed to have even better photophysical properties due to the presence of -aza group on the 2nd position. However, there are studies in the solution phase that suggest the relevance of these molecules, but there are no experimental studies reported in the gas phase yet. In our current investigation, we present the first gas phase spectroscopic data of 2,7-diazaindole (2,7-DAI) and its solvent cluster (2,7-DAI-H2O). In this, we have employed state-of-the-art laser spectroscopic methods such as fluorescence excitation (LIF), dispersed fluorescence (DF), resonant two-photon ionization-time of flight mass spectrometry (2C-R2PI), photoionization efficiency spectroscopy (PIE), IR-UV double resonance spectroscopy, i.e., fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR) to understand the electronic structure of the molecule. The origin band corresponding to the S1 ← S0 transition of the bare 2,7-DAI is found to be positioned at 33910 cm-1, whereas the origin band corresponding to S1 ← S0 transition of the 2,7-DAI-H2O is positioned at 33074 cm-1. The red-shifted transition in the case of solvent cluster suggests the enhanced feasibility of excited state hydrogen/ proton transfer. The ionization potential for the 2,7-DAI molecule is found to be 8.92 eV which is significantly higher than the previously reported 7AI (8.11 eV) molecule, making it a comparatively complex molecule to study. The ionization potential is reduced by 0.14 eV in the case of 2,7-DAI-H2O (8.78 eV) cluster compared to that of 2,7-DAI. Moreover, on comparison with the available literature values of 7AI, we found the origin band of 2,7-DAI and 2,7-DAI-H2O to be red-shifted by -729 and -280 cm-1 respectively. The ground and excited state N-H stretching frequencies of the 27DAI molecule were determined using fluorescence-dip infrared spectra (FDIR) and resonant ion dip infrared spectroscopy (IDIR), obtained at 3523 and 3467 cm-1, respectively. The lower value of vNH in the electronically excited state of 27DAI implies the higher acidity of the group compared to the ground state. Moreover, we have done extensive computational analysis, which suggests that the energy barrier in the excited state reduces significantly as we increase the number of catalytic solvent molecules (S= H2O, NH3) as well as the polarity of solvent molecules. We found that the ammonia molecule is a better candidate for hydrogen transfer compared to water because of its higher gas-phase basicity. Further studies are underway to understand the excited state dynamics and photochemistry of such N-rich chromophores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excited%20state%20hydrogen%20transfer" title="excited state hydrogen transfer">excited state hydrogen transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20expansion" title=" supersonic expansion"> supersonic expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20phase%20spectroscopy" title=" gas phase spectroscopy"> gas phase spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=IR-UV%20double%20resonance%20spectroscopy" title=" IR-UV double resonance spectroscopy"> IR-UV double resonance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20induced%20fluorescence" title=" laser induced fluorescence"> laser induced fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=photoionization%20efficiency%20spectroscopy" title=" photoionization efficiency spectroscopy"> photoionization efficiency spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/171374/27-diazaindole-as-a-photophysical-probe-for-excited-state-hydrogenproton-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> 2,7-diazaindole as a Potential Photophysical Probe for Excited State Deactivation Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simran%20Baweja">Simran Baweja</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavika%20Kalal"> Bhavika Kalal</a>, <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Maity"> Surajit Maity</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoinduced tautomerization reactions have been the centre of attention among scientific community over past several decades because of their significance in various biological systems. 7-azaindole (7AI) is considered as a model system for DNA base pairing and to understand the role of such tautomerization reactions in mutations. To the best of our knowledge, extensive studies have been carried on 7-azaindole and its solvent clusters exhibiting proton/ hydrogen transfer in both solution as well as gas phase. Derivatives of above molecule, like 2,7- and 2,6-diazaindoles are proposed to have even better photophysical properties due to the presence of -aza group on the 2nd position. However, there are a few studies in the solution phase which suggest the relevance of these molecules, but there are no experimental studies reported in the gas phase yet. In our current investigation, we present the first gas phase spectroscopic data of 2,7-diazaindole (2,7-DAI) and its solvent cluster (2,7-DAI-H2O). In this, we have employed state-of-the-art laser spectroscopic methods such as fluorescence excitation (LIF), dispersed fluorescence (DF), resonant two-photon ionization time of flight mass spectrometry (2C-R2PI), photoionization efficiency spectroscopy (PIE), IR-UV double resonance spectroscopy i.e. fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR) to understand the electronic structure of the molecule. The origin band corresponding to S1 ← S0 transition of the bare 2,7-DAI is found to be positioned at 33910 cm-1 whereas the origin band corresponding to S1 ← S0 transition of the 2,7-DAI-H2O is positioned at 33074 cm-1. The red shifted transition in case of solvent cluster suggests the enhanced feasibility of excited state hydrogen/ proton transfer. The ionization potential for the 2,7-DAI molecule is found to be 8.92 eV, which is significantly higher that the previously reported 7AI (8.11 eV) molecule, making it a comparatively complex molecule to study. The ionization potential is reduced by 0.14 eV in case of 2,7-DAI-H2O (8.78 eV) cluster compared to that of 2,7-DAI. Moreover, on comparison with the available literature values of 7AI, we found the origin band of 2,7-DAI and 2,7-DAI-H2O to be red shifted by -729 and -280 cm-1 respectively. The ground and excited state N-H stretching frequencies of the 27DAI molecule were determined using fluorescence-dip infrared spectra (FDIR) and resonant ion dip infrared spectroscopy (IDIR), obtained at 3523 and 3467 cm-1, respectively. The lower value of vNH in the electronic excited state of 27DAI implies the higher acidity of the group compared to the ground state. Moreover, we have done extensive computational analysis, which suggests that the energy barrier in excited state reduces significantly as we increase the number of catalytic solvent molecules (S= H2O, NH3) as well as the polarity of solvent molecules. We found that the ammonia molecule is a better candidate for hydrogen transfer compared to water because of its higher gas-phase basicity. Further studies are underway to understand the excited state dynamics and photochemistry of such N-rich chromophores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoinduced%20tautomerization%20reactions" title="photoinduced tautomerization reactions">photoinduced tautomerization reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20phse%20spectroscopy" title=" gas phse spectroscopy"> gas phse spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=%29" title=" )"> )</a>, <a href="https://publications.waset.org/abstracts/search?q=IR-UV%20double%20resonance%20spectroscopy" title=" IR-UV double resonance spectroscopy"> IR-UV double resonance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20two-photon%20ionization%20time%20of%20flight%20mass%20spectrometry%20%282C-R2PI%29" title=" resonant two-photon ionization time of flight mass spectrometry (2C-R2PI)"> resonant two-photon ionization time of flight mass spectrometry (2C-R2PI)</a> </p> <a href="https://publications.waset.org/abstracts/171887/27-diazaindole-as-a-potential-photophysical-probe-for-excited-state-deactivation-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Re-Entrant Direct Hexagonal Phases in a Lyotropic System Induced by Ionic Liquids </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saheli%20Mitra">Saheli Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Karri"> Ramesh Karri</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20K.%20Mylapalli"> Praveen K. Mylapalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Arka.%20B.%20Dey"> Arka. B. Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Gourav%20Bhattacharya"> Gourav Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Gouriprasanna%20Roy"> Gouriprasanna Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20M.%20Kamil"> Syed M. Kamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Dhara"> Surajit Dhara</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20K.%20Sinha"> Sunil K. Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajal%20K.%20Ghosh"> Sajal K. Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most well-known structures of lyotropic liquid crystalline systems are the two dimensional hexagonal phase of cylindrical micelles with a positive interfacial curvature and the lamellar phase of flat bilayers with zero interfacial curvature. In aqueous solution of surfactants, the concentration dependent phase transitions have been investigated extensively. However, instead of changing the surfactant concentrations, the local curvature of an aggregate can be altered by tuning the electrostatic interactions among the constituent molecules. Intermediate phases with non-uniform interfacial curvature are still unexplored steps to understand the route of phase transition from hexagonal to lamellar. Understanding such structural evolution in lyotropic liquid crystalline systems is important as it decides the complex rheological behavior of the system, which is one of the main interests of the soft matter industry. Sodium dodecyl sulfate (SDS) is an anionic surfactant and can be considered as a unique system to tune the electrostatics by cationic additives. In present study, imidazolium-based ionic liquids (ILs) with different number of carbon atoms in their single hydrocarbon chain were used as the additive in the aqueous solution of SDS. At a fixed concentration of total non-aqueous components (SDS and IL), the molar ratio of these components was changed, which effectively altered the electrostatic interactions between the SDS molecules. As a result, the local curvature is observed to modify, and correspondingly, the structure of the hexagonal liquid crystalline phases are transformed into other phases. Polarizing optical microscopy of SDS and imidazole-based-IL systems have exhibited different textures of the liquid crystalline phases as a function of increasing concentration of the ILs. The small angle synchrotron x-ray diffraction (SAXD) study has indicated the hexagonal phase of direct cylindrical micelles to transform to a rectangular phase at the presence of short (two hydrocarbons) chain IL. However, the hexagonal phase is transformed to a lamellar phase at the presence of long (ten hydrocarbons) chain IL. Interestingly, at the presence of a medium (four hydrocarbons) chain IL, the hexagonal phase is transformed to another hexagonal phase of direct cylindrical micelles through the lamellar phase. To the best of our knowledge, such a phase sequence has not been reported earlier. Even though the small angle x-ray diffraction study has revealed the lattice parameters of these phases to be similar to each other, their rheological behavior has been distinctly different. These rheological studies have shed lights on how these phases differ in their viscoelastic behavior. Finally, the packing parameters, calculated for these phases based on the geometry of the aggregates, have explained the formation of the self-assembled aggregates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lyotropic%20liquid%20crystals" title="lyotropic liquid crystals">lyotropic liquid crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=polarizing%20optical%20microscopy" title=" polarizing optical microscopy"> polarizing optical microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20angle%20x-ray%20diffraction" title=" small angle x-ray diffraction"> small angle x-ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/104719/re-entrant-direct-hexagonal-phases-in-a-lyotropic-system-induced-by-ionic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Gis Based Flash Flood Runoff Simulation Model of Upper Teesta River Besin - Using Aster Dem and Meteorological Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhisek%20Chakrabarty">Abhisek Chakrabarty</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhraprakash%20Mandal"> Subhraprakash Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flash flood is one of the catastrophic natural hazards in the mountainous region of India. The recent flood in the Mandakini River in Kedarnath (14-17th June, 2013) is a classic example of flash floods that devastated Uttarakhand by killing thousands of people.The disaster was an integrated effect of high intensityrainfall, sudden breach of Chorabari Lake and very steep topography. Every year in Himalayan Region flash flood occur due to intense rainfall over a short period of time, cloud burst, glacial lake outburst and collapse of artificial check dam that cause high flow of river water. In Sikkim-Derjeeling Himalaya one of the probable flash flood occurrence zone is Teesta Watershed. The Teesta River is a right tributary of the Brahmaputra with draining mountain area of approximately 8600 Sq. km. It originates in the Pauhunri massif (7127 m). The total length of the mountain section of the river amounts to 182 km. The Teesta is characterized by a complex hydrological regime. The river is fed not only by precipitation, but also by melting glaciers and snow as well as groundwater. The present study describes an attempt to model surface runoff in upper Teesta basin, which is directly related to catastrophic flood events, by creating a system based on GIS technology. The main object was to construct a direct unit hydrograph for an excess rainfall by estimating the stream flow response at the outlet of a watershed. Specifically, the methodology was based on the creation of a spatial database in GIS environment and on data editing. Moreover, rainfall time-series data collected from Indian Meteorological Department and they were processed in order to calculate flow time and the runoff volume. Apart from the meteorological data, background data such as topography, drainage network, land cover and geological data were also collected. Clipping the watershed from the entire area and the streamline generation for Teesta watershed were done and cross-sectional profiles plotted across the river at various locations from Aster DEM data using the ERDAS IMAGINE 9.0 and Arc GIS 10.0 software. The analysis of different hydraulic model to detect flash flood probability ware done using HEC-RAS, Flow-2D, HEC-HMS Software, which were of great importance in order to achieve the final result. With an input rainfall intensity above 400 mm per day for three days the flood runoff simulation models shows outbursts of lakes and check dam individually or in combination with run-off causing severe damage to the downstream settlements. Model output shows that 313 Sq. km area were found to be most vulnerable to flash flood includes Melli, Jourthang, Chungthang, and Lachung and 655sq. km. as moderately vulnerable includes Rangpo,Yathang, Dambung,Bardang, Singtam, Teesta Bazarand Thangu Valley. The model was validated by inserting the rain fall data of a flood event took place in August 1968, and 78% of the actual area flooded reflected in the output of the model. Lastly preventive and curative measures were suggested to reduce the losses by probable flash flood event. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flash%20flood" title="flash flood">flash flood</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20model" title=" simulation model"> simulation model</a>, <a href="https://publications.waset.org/abstracts/search?q=Teesta%20river%20basin" title=" Teesta river basin"> Teesta river basin</a> </p> <a href="https://publications.waset.org/abstracts/25986/gis-based-flash-flood-runoff-simulation-model-of-upper-teesta-river-besin-using-aster-dem-and-meteorological-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>