CINXE.COM

Urban scaling with censored data | PLOS Complex Systems

<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:dc="http://purl.org/dc/terms/" xmlns:doi="http://dx.doi.org/" lang="en" xml:lang="en" itemscope itemtype="http://schema.org/Article" class="no-js"> <head prefix="og: http://ogp.me/ns#"> <link rel="stylesheet" href="/resource/css/screen.css?112d78c04dc25a6fb55b68d577e0729a"/> <!-- allows for extra head tags --> <!-- hello --> <link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Open+Sans:400,400i,600"> <link media="print" rel="stylesheet" type="text/css" href="/resource/css/print.css"/> <script type="text/javascript"> var siteUrlPrefix = "/complexsystems/"; </script> <script src="/resource/js/vendor/modernizr-v2.7.1.js" type="text/javascript"></script> <script src="/resource/js/vendor/detectizr.min.js" type="text/javascript"></script> <link rel="shortcut icon" href="/resource/img/favicon.ico" type="image/x-icon"/> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <link rel="canonical" href="https://journals.plos.org/complexsystems/article?id=10.1371/journal.pcsy.0000029" /> <meta name="description" content="Author summary Over the past two decades, urban scaling has become essential for understanding the rural-urban continuum by quantifying how urban characteristics depend on a city&rsquo;s population size. For example, more populous cities are expected to have more patents and wages per capita, but fewer gas stations and road surfaces. Nonetheless, access to incomplete datasets about urban features systematically skews the conclusions derived from this theory. This issue is particularly relevant for features related to health outcomes, which are regularly obtained from partially censored datasets. For instance, data on firearms in the United States remain inaccessible to the public. To address this limitation, we developed a framework that enables urban researchers to draw reliable conclusions about urban scaling, even when dealing with censored datasets. We demonstrate this framework with data on firearm homicide and the number of firearms recovered by authorities in American cities." /> <meta name="citation_abstract" content="In the realm of urban science, scaling laws are essential for understanding the relationship between city population and urban features, such as socioeconomic outputs. Ideally, these laws would be based on complete datasets; however, researchers often face challenges related to data availability and reporting practices, resulting in datasets that include only the highest observations of the urban features (top-k). A key question that emerges is: Under what conditions can an analysis based solely on top-k observations accurately determine whether a scaling relationship is truly superlinear or sublinear? To address this question, we conduct a numerical study that explores how relying exclusively on reported values can lead to erroneous conclusions, revealing a selection bias that favors sublinear over superlinear scaling. In response, we develop a method that provides robust estimates of the minimum and maximum potential scaling exponents when only top-k observations are available. We apply this method to two case studies involving firearm violence, a domain notorious for its suppressed datasets, and we demonstrate how this approach offers a reliable framework for analyzing scaling relationships with censored data."> <meta name="keywords" content="Firearms,Homicide,Urban geography,Optimization,Monte Carlo method,Census,Normal distribution,Factorial design" /> <meta name="citation_doi" content="10.1371/journal.pcsy.0000029"/> <meta name="citation_author" content="Inês Figueira"/> <meta name="citation_author_institution" content="Center for Urban Science and Progress, New York University Tandon School of Engineering, Brooklyn, New York, United States of America"/> <meta name="citation_author_institution" content="Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States of America"/> <meta name="citation_author" content="Rayan Succar"/> <meta name="citation_author_institution" content="Center for Urban Science and Progress, New York University Tandon School of Engineering, Brooklyn, New York, United States of America"/> <meta name="citation_author_institution" content="Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States of America"/> <meta name="citation_author" content="Roni Barak Ventura"/> <meta name="citation_author_institution" content="Center for Urban Science and Progress, New York University Tandon School of Engineering, Brooklyn, New York, United States of America"/> <meta name="citation_author_institution" content="Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States of America"/> <meta name="citation_author_institution" content="School of Applied Engineering and Technology, New Jersey Institute of Technology, Newark, New Jersey, United States of America"/> <meta name="citation_author" content="Maurizio Porfiri"/> <meta name="citation_author_institution" content="Center for Urban Science and Progress, New York University Tandon School of Engineering, Brooklyn, New York, United States of America"/> <meta name="citation_author_institution" content="Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States of America"/> <meta name="citation_author_institution" content="Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States of America"/> <meta name="citation_title" content="Urban scaling with censored data"/> <meta itemprop="name" content="Urban scaling with censored data"/> <meta name="citation_journal_title" content="PLOS Complex Systems"/> <meta name="citation_journal_abbrev" content="PLOS Complex Systems"/> <meta name="citation_date" content="Jan 3, 2025"/> <meta name="citation_firstpage" content="e0000029"/> <meta name="citation_issue" content="1"/> <meta name="citation_volume" content="2"/> <meta name="citation_issn" content="2837-8830"/> <meta name="citation_publisher" content="Public Library of Science"/> <meta name="citation_pdf_url" content="https://journals.plos.org/complexsystems/article/file?id=10.1371/journal.pcsy.0000029&type=printable"> <meta name="citation_article_type" content="Research Article"> <meta name="dc.identifier" content="10.1371/journal.pcsy.0000029" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:site" content="PLOSComplexSys"/> <meta name="twitter:title" content="Urban scaling with censored data" /> <meta property="twitter:description" content="Author summary Over the past two decades, urban scaling has become essential for understanding the rural-urban continuum by quantifying how urban characteristics depend on a city&rsquo;s population size. For example, more populous cities are expected to have more patents and wages per capita, but fewer gas stations and road surfaces. Nonetheless, access to incomplete datasets about urban features systematically skews the conclusions derived from this theory. This issue is particularly relevant for features related to health outcomes, which are regularly obtained from partially censored datasets. For instance, data on firearms in the United States remain inaccessible to the public. To address this limitation, we developed a framework that enables urban researchers to draw reliable conclusions about urban scaling, even when dealing with censored datasets. We demonstrate this framework with data on firearm homicide and the number of firearms recovered by authorities in American cities." /> <meta property="twitter:image" content="https://journals.plos.org/complexsystems/article/figure/image?id=10.1371/journal.pcsy.0000029.g004&size=inline" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://journals.plos.org/complexsystems/article?id=10.1371/journal.pcsy.0000029"/> <meta property="og:title" content="Urban scaling with censored data"/> <meta property="og:description" content="Author summary Over the past two decades, urban scaling has become essential for understanding the rural-urban continuum by quantifying how urban characteristics depend on a city&rsquo;s population size. For example, more populous cities are expected to have more patents and wages per capita, but fewer gas stations and road surfaces. Nonetheless, access to incomplete datasets about urban features systematically skews the conclusions derived from this theory. This issue is particularly relevant for features related to health outcomes, which are regularly obtained from partially censored datasets. For instance, data on firearms in the United States remain inaccessible to the public. To address this limitation, we developed a framework that enables urban researchers to draw reliable conclusions about urban scaling, even when dealing with censored datasets. We demonstrate this framework with data on firearm homicide and the number of firearms recovered by authorities in American cities."/> <meta property="og:image" content="https://journals.plos.org/complexsystems/article/figure/image?id=10.1371/journal.pcsy.0000029.g004&size=inline"/> <meta name="citation_reference" content="citation_title=Scaling;citation_author=GI Barenblatt;citation_publication_date=2003;citation_publisher=Cambridge University Press"/> <meta name="citation_reference" content="citation_title=A general model for the origin of allometric scaling laws in biology;citation_author=GB West;citation_author=JH Brown;citation_author=BJ Enquist;citation_journal_title=Science;citation_volume=276;citation_number=276;citation_issue=5309;citation_first_page=122;citation_last_page=126;citation_publication_date=1997;"/> <meta name="citation_reference" content="citation_title=On the origin and robustness of power-law species–area relationships in ecology;citation_author=H García Martín;citation_author=N Goldenfeld;citation_journal_title=Proc Natl Acad Sci USA;citation_volume=103;citation_number=103;citation_issue=27;citation_first_page=10310;citation_last_page=10315;citation_publication_date=2006;"/> <meta name="citation_reference" content="citation_title=Scaled equation of state parameters for gases in the critical region;citation_author=JMHL Sengers;citation_author=WL Greer;citation_author=JV Sengers;citation_journal_title=J Phys Chem;citation_volume=5;citation_number=5;citation_issue=1;citation_first_page=1;citation_last_page=52;citation_publication_date=1976;"/> <meta name="citation_reference" content="citation_title=Growth, innovation, scaling, and the pace of life in cities;citation_author=LM Bettencourt;citation_author=J Lobo;citation_author=D Helbing;citation_author=C Kühnert;citation_author=GB West;citation_journal_title=Proc Natl Acad Sci USA;citation_volume=104;citation_number=104;citation_issue=17;citation_first_page=7301;citation_last_page=7306;citation_publication_date=2007;"/> <meta name="citation_reference" content="citation_title=Introduction to urban science: evidence and theory of cities as complex systems;citation_author=LM Bettencourt;citation_publication_date=2021;citation_publisher=MIT Press"/> <meta name="citation_reference" content="citation_title=More crime in cities? On the scaling laws of crime and the inadequacy of per capita rankings–a cross-country study;citation_author=M Oliveira;citation_journal_title=Crime Sci;citation_volume=10;citation_number=10;citation_issue=1;citation_first_page=27;citation_publication_date=2021;"/> <meta name="citation_reference" content="citation_title=Urban scaling and the production function for cities;citation_author=J Lobo;citation_author=LM Bettencourt;citation_author=D Strumsky;citation_author=GB West;citation_journal_title=PLOS One;citation_volume=8;citation_number=8;citation_issue=3;citation_first_page=e58407;citation_publication_date=2013;"/> <meta name="citation_reference" content="citation_title=Distance to the scaling law: a useful approach for unveiling relationships between crime and urban metrics;citation_author=LG Alves;citation_author=HV Ribeiro;citation_author=EK Lenzi;citation_author=RS Mendes;citation_journal_title=PLOS One;citation_volume=8;citation_number=8;citation_issue=8;citation_first_page=e69580;citation_publication_date=2013;"/> <meta name="citation_reference" content="citation_title=Evolution of urban scaling: Evidence from Brazil;citation_author=J Meirelles;citation_author=CR Neto;citation_author=FF Ferreira;citation_author=FL Ribeiro;citation_author=CR Binder;citation_journal_title=PLOS One;citation_volume=13;citation_number=13;citation_issue=10;citation_first_page=e0204574;citation_publication_date=2018;"/> <meta name="citation_reference" content="citation_title=Scaling of mortality in 742 metropolitan areas of the Americas;citation_author=U Bilal;citation_author=CP de Castro;citation_author=T Alfaro;citation_author=T Barrientos-Gutierrez;citation_author=ML Barreto;citation_author=CM Leveau;citation_journal_title=Sci Adv;citation_volume=7;citation_number=7;citation_issue=50;citation_first_page=eabl6325;citation_publication_date=2021;"/> <meta name="citation_reference" content="citation_title=Urban scaling of firearm violence, ownership and accessibility in the United States;citation_author=R Succar;citation_author=M Porfiri;citation_journal_title=Nat Cities;citation_volume=1;citation_number=1;citation_issue=3;citation_first_page=216;citation_last_page=224;citation_publication_date=2024;"/> <meta name="citation_reference" content="citation_title=The origins of scaling in cities;citation_author=LM Bettencourt;citation_journal_title=Science;citation_volume=340;citation_number=340;citation_issue=6139;citation_first_page=1438;citation_last_page=1441;citation_publication_date=2013;"/> <meta name="citation_reference" content="citation_title=The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050;citation_author=S Angel;citation_author=J Parent;citation_author=DL Civco;citation_author=A Blei;citation_author=D Potere;citation_journal_title=Prog Plann;citation_volume=75;citation_number=75;citation_issue=2;citation_first_page=53;citation_last_page=107;citation_publication_date=2011;"/> <meta name="citation_reference" content="citation_title=Urban scaling in Europe;citation_author=LM Bettencourt;citation_author=J Lobo;citation_journal_title=J R Soc Interface;citation_volume=13;citation_number=13;citation_issue=116;citation_first_page=20160005;citation_publication_date=2016;"/> <meta name="citation_reference" content="citation_title=The interpretation of urban scaling analysis in time;citation_author=LM Bettencourt;citation_author=VC Yang;citation_author=J Lobo;citation_author=CP Kempes;citation_author=D Rybski;citation_author=MJ Hamilton;citation_journal_title=J R Soc Interface;citation_volume=17;citation_number=17;citation_issue=163;citation_first_page=20190846;citation_publication_date=2020;"/> <meta name="citation_reference" content="citation_title=Are the absent always wrong? Dealing with zero values in urban scaling;citation_author=O Finance;citation_author=C Cottineau;citation_journal_title=Environ Plan B Urban Anal City Sci;citation_volume=46;citation_number=46;citation_issue=9;citation_first_page=1663;citation_last_page=1677;citation_publication_date=2019;"/> <meta name="citation_reference" content="citation_title=Is this scaling nonlinear?;citation_author=JC Leitao;citation_author=JM Miotto;citation_author=M Gerlach;citation_author=EG Altmann;citation_journal_title=R Soc Open Sci;citation_volume=3;citation_number=3;citation_issue=7;citation_first_page=150649;citation_publication_date=2016;"/> <meta name="citation_reference" content="citation_title=Removing spatial autocorrelation in urban scaling analysis;citation_author=Y Xiao;citation_author=P Gong;citation_journal_title=Cities;citation_volume=124;citation_number=124;citation_first_page=103600;citation_publication_date=2022;"/> <meta name="citation_reference" content="114 Congress. 114 HR 1449 IH: Tiahrt Restrictions Repeal Act; 2015 [cited 2024 Aug 3]. Available from: https://www.congress.gov/bill/114th-congress/house-bill/1449 ."/> <meta name="citation_reference" content="citation_title=Statistical analysis with missing data;citation_author=RJ Little;citation_author=DB Rubin;citation_volume=vol. 793;citation_number=793;citation_publication_date=2019;citation_publisher=John Wiley &amp; Sons"/> <meta name="citation_reference" content="citation_title=Missing data: An update on the state of the art;citation_author=CK Enders;citation_journal_title=Psychol Methods;citation_publication_date=2023;"/> <meta name="citation_reference" content="citation_title=Applied missing data analysis;citation_author=CK Enders;citation_publication_date=2022;citation_publisher=Guilford Publications"/> <meta name="citation_reference" content="citation_title=Robust two-stage approach outperforms robust full information maximum likelihood with incomplete nonnormal data;citation_author=V Savalei;citation_author=CF Falk;citation_journal_title=Struct Equ Modeling;citation_volume=21;citation_number=21;citation_issue=2;citation_first_page=280;citation_last_page=302;citation_publication_date=2014;"/> <meta name="citation_reference" content="citation_title=Analysis of interactions and nonlinear effects with missing data: A factored regression modeling approach using maximum likelihood estimation;citation_author=O Lüdtke;citation_author=A Robitzsch;citation_author=SG West;citation_journal_title=Multivar Behav Res;citation_volume=55;citation_number=55;citation_issue=3;citation_first_page=361;citation_last_page=381;citation_publication_date=2020;"/> <meta name="citation_reference" content="citation_title=A Bayesian latent variable selection model for nonignorable missingness;citation_author=H Du;citation_author=C Enders;citation_author=BT Keller;citation_author=TN Bradbury;citation_author=BR Karney;citation_journal_title=Multivar Behav Res;citation_volume=57;citation_number=57;citation_issue=2-3;citation_first_page=478;citation_last_page=512;citation_publication_date=2022;"/> <meta name="citation_reference" content="citation_title=Bayesian psychometric modeling;citation_author=R Levy;citation_author=RJ Mislevy;citation_publication_date=2017;citation_publisher=Chapman and Hall/CRC"/> <meta name="citation_reference" content="citation_title=Multiple imputation of missing covariate values in multilevel models with random slopes: A cautionary note;citation_author=S Grund;citation_author=O Lüdtke;citation_author=A Robitzsch;citation_journal_title=Behav Res Methods;citation_volume=48;citation_number=48;citation_first_page=640;citation_last_page=649;citation_publication_date=2016;"/> <meta name="citation_reference" content="citation_title=Multiple improvements of multiple imputation likelihood ratio tests;citation_author=KW Chan;citation_author=XL Meng;citation_journal_title=Stat Sin;citation_volume=32;citation_number=32;citation_issue=3;citation_first_page=1489;citation_last_page=1514;citation_publication_date=2022;"/> <meta name="citation_reference" content="citation_title=An introduction to modern missing data analyses;citation_author=AN Baraldi;citation_author=CK Enders;citation_journal_title=J Sch Psychol;citation_volume=48;citation_number=48;citation_issue=1;citation_first_page=5;citation_last_page=37;citation_publication_date=2010;"/> <meta name="citation_reference" content="citation_title=Advanced econometrics;citation_author=T Amemiya;citation_publication_date=1985;citation_publisher=Harvard university press"/> <meta name="citation_reference" content="citation_title=Censored regression quantiles;citation_author=JL Powell;citation_journal_title=J Econom;citation_volume=32;citation_number=32;citation_issue=1;citation_first_page=143;citation_last_page=155;citation_publication_date=1986;"/> <meta name="citation_reference" content="Lewbel A, Linton OB. Nonparametric censored regression; 1998. Available from: https://elischolar.library.yale.edu/cowles-discussion-paper-series/1434/ ."/> <meta name="citation_reference" content="Centers for Disease Control and Prevention. 1999-2020: Underlying Cause of Death by Bridged-Race Categories; 2013 [cited 2024 Aug 15]. Available from: https://wonder.cdc.gov/Deaths-by-Underlying-Cause.html ."/> <meta name="citation_reference" content="citation_title=How the geometry of cities determines urban scaling laws;citation_author=C Molinero;citation_author=S Thurner;citation_journal_title=J R Soc Interface;citation_volume=18;citation_number=18;citation_issue=176;citation_first_page=20200705;citation_publication_date=2021;"/> <meta name="citation_reference" content="citation_title=A unified theory of urban living;citation_author=L Bettencourt;citation_author=G West;citation_journal_title=Nature;citation_volume=467;citation_number=467;citation_issue=7318;citation_first_page=912;citation_last_page=913;citation_publication_date=2010;"/> <meta name="citation_reference" content="citation_title=Rural to urban population density scaling of crime and property transactions in English and Welsh parliamentary constituencies;citation_author=QS Hanley;citation_author=D Lewis;citation_author=HV Ribeiro;citation_journal_title=PLOS One;citation_volume=11;citation_number=11;citation_issue=2;citation_first_page=e0149546;citation_publication_date=2016;"/> <meta name="citation_reference" content="citation_title=Unveiling relationships between crime and property in England and Wales via density scale-adjusted metrics and network tools;citation_author=HV Ribeiro;citation_author=QS Hanley;citation_author=D Lewis;citation_journal_title=PLOS One;citation_volume=13;citation_number=13;citation_issue=2;citation_first_page=e0192931;citation_publication_date=2018;"/> <meta name="citation_reference" content="citation_title=Rural–urban scaling of age, mortality, crime and property reveals a loss of expected self-similar behaviour;citation_author=J Sutton;citation_author=G Shahtahmassebi;citation_author=HV Ribeiro;citation_author=QS Hanley;citation_journal_title=Sci Rep;citation_volume=10;citation_number=10;citation_issue=1;citation_first_page=16863;citation_publication_date=2020;"/> <meta name="citation_reference" content="citation_title=Firearm purchasing and firearm violence during the coronavirus pandemic in the United States: a cross-sectional study;citation_author=JP Schleimer;citation_author=CD McCort;citation_author=AB Shev;citation_author=VA Pear;citation_author=E Tomsich;citation_author=A De Biasi;citation_journal_title=Inj Epidemiol;citation_volume=8;citation_number=8;citation_first_page=1;citation_last_page=10;citation_publication_date=2021;"/> <meta name="citation_reference" content="citation_title=Analysis of firearm violence during the COVID-19 pandemic in the US;citation_author=S Sun;citation_author=W Cao;citation_author=Y Ge;citation_author=M Siegel;citation_author=GA Wellenius;citation_journal_title=JAMA Netw Open;citation_volume=5;citation_number=5;citation_issue=4;citation_first_page=e229393;citation_last_page=e229393;citation_publication_date=2022;"/> <meta name="citation_reference" content="citation_title=Urban–rural shifts in intentional firearm death: different causes, same results;citation_author=CC Branas;citation_author=ML Nance;citation_author=MR Elliott;citation_author=TS Richmond;citation_author=CW Schwab;citation_journal_title=Am J Public Health;citation_volume=94;citation_number=94;citation_issue=10;citation_first_page=1750;citation_last_page=1755;citation_publication_date=2004;"/> <meta name="citation_reference" content="citation_title=Association between firearm laws and homicide in urban counties;citation_author=CK Crifasi;citation_author=M Merrill-Francis;citation_author=A McCourt;citation_author=JS Vernick;citation_author=GJ Wintemute;citation_author=DW Webster;citation_journal_title=J Urban Health;citation_volume=95;citation_number=95;citation_first_page=383;citation_last_page=390;citation_publication_date=2018;"/> <meta name="citation_reference" content="citation_title=The impact of state firearm laws on homicide rates in suburban and rural areas compared to large cities in the United States, 1991-2016;citation_author=M Siegel;citation_author=B Solomon;citation_author=A Knopov;citation_author=EF Rothman;citation_author=SW Cronin;citation_author=Z Xuan;citation_journal_title=J Rural Health;citation_volume=36;citation_number=36;citation_issue=2;citation_first_page=255;citation_last_page=265;citation_publication_date=2020;"/> <meta name="citation_reference" content="citation_title=Firearm death rates in rural vs urban US counties;citation_author=PM Reeping;citation_author=A Mak;citation_author=CC Branas;citation_author=AN Gobaud;citation_author=ML Nance;citation_journal_title=JAMA Surg;citation_volume=158;citation_number=158;citation_issue=7;citation_first_page=771;citation_last_page=772;citation_publication_date=2023;"/> <meta name="citation_reference" content="Parker K, Horowitz JM, Igielnik R, Oliphant JB, Brown A. America’s complex relationship with guns. Pew Research Center’s Social and Demographic Trends Project. Pew Research Center.; 2017 Jun 22 [cited 2024 Aug 16]. Available from: https://www.pewresearch.org/social-trends/2017/06/22/the-demographics-of-gun-ownership ."/> <meta name="citation_reference" content="Horwitz S, Grimaldi JV. ATF’s oversight limited in face of gun lobby. Washington Post.; 2010 Oct 26 [cited 2024 Aug 2]. Available from: https://www.washingtonpost.com/wp-dyn/content/article/2010/10/25/AR2010102505823.html?sub = AR ."/> <meta name="citation_reference" content="Giffords Law Center to Prevent Gun Violence. Maintaining Records of Gun Sales in California; 2023 [cited 2024 Aug 7]. Available from: https://giffords.org/lawcenter/state-laws/maintaining-records-of-gun-sales-in-california/ ."/> <meta name="citation_reference" content="citation_title=Community attachment;citation_author=DM Hummon;citation_first_page=253;citation_last_page=278;citation_publication_date=1992;citation_publisher=Springer US"/> <meta name="citation_reference" content="citation_title=Local place identity: A comparison between residents of rural and urban communities;citation_author=D Belanche;citation_author=LV Casaló;citation_author=MA Rubio;citation_journal_title=J Rural Stud;citation_volume=82;citation_number=82;citation_first_page=242;citation_last_page=252;citation_publication_date=2021;"/> <meta name="citation_reference" content="citation_title=The impact of community policing on crime rates: Does the effect of community policing differ in large and small law enforcement agencies?;citation_author=MA Sozer;citation_author=AV Merlo;citation_journal_title=Police Pract Res;citation_volume=14;citation_number=14;citation_issue=6;citation_first_page=506;citation_last_page=521;citation_publication_date=2013;"/> <meta name="citation_reference" content="Everytown Research &amp;amp; Policy. Community-Led Public Safety Strategies; 2022 [cited 2024 Aug 14]. Available from: http://www-cs-faculty.stanford.edu/~uno/abcde.html ."/> <meta name="citation_reference" content="citation_title=Allometric scaling of metabolism, growth, and activity in whole colonies of the seed-harvester ant Pogonomyrmex californicus;citation_author=JS Waters;citation_author=CT Holbrook;citation_author=JH Fewell;citation_author=JF Harrison;citation_journal_title=Am Nat;citation_volume=176;citation_number=176;citation_issue=4;citation_first_page=501;citation_last_page=510;citation_publication_date=2010;"/> <meta name="citation_reference" content="citation_title=Reverse social contagion as a mechanism for regulating mass behaviors in highly integrated social systems;citation_author=M Porfiri;citation_author=P De Lellis;citation_author=E Aung;citation_author=S Meneses;citation_author=N Abaid;citation_author=JS Waters;citation_journal_title=PNAS Nexus;citation_volume=3;citation_number=3;citation_issue=7;citation_publication_date=2024;"/> <meta name="citation_reference" content="citation_title=Electrochemical biosensors: a solution to pollution detection with reference to environmental contaminants;citation_author=G Hernandez-Vargas;citation_author=JE Sosa-Hernández;citation_author=S Saldarriaga-Hernandez;citation_author=AM Villalba-Rodríguez;citation_author=R Parra-Saldivar;citation_author=HM Iqbal;citation_journal_title=Biosensors;citation_volume=8;citation_number=8;citation_issue=2;citation_first_page=29;citation_publication_date=2018;"/> <meta name="citation_reference" content="citation_title=Polycyclic aromatic hydrocarbons in fine particulate matter emitted from burning kerosene, liquid petroleum gas, and wood fuels in household cookstoves;citation_author=G Shen;citation_author=W Preston;citation_author=SM Ebersviller;citation_author=C Williams;citation_author=JW Faircloth;citation_author=JJ Jetter;citation_journal_title=Energy Fuels;citation_volume=31;citation_number=31;citation_issue=3;citation_first_page=3081;citation_last_page=3090;citation_publication_date=2017;"/> <meta name="citation_reference" content="citation_title=Polycyclic aromatic hydrocarbons not declining in Arctic air despite global emission reduction;citation_author=Y Yu;citation_author=A Katsoyiannis;citation_author=P Bohlin-Nizzetto;citation_author=E Brorstrom-Lunden;citation_author=J Ma;citation_author=Y Zhao;citation_journal_title=Environ Sci Technol;citation_volume=53;citation_number=53;citation_issue=5;citation_first_page=2375;citation_last_page=2382;citation_publication_date=2019;"/> <meta name="citation_reference" content="citation_title=A heteroscedastic Bayesian generalized logistic regression model with application to scaling problems;citation_author=J Sutton;citation_author=G Shahtahmassebi;citation_author=QS Hanley;citation_author=HV Ribeiro;citation_journal_title=Chaos Solit Fractals;citation_volume=182;citation_number=182;citation_first_page=114787;citation_publication_date=2024;"/> <meta name="citation_reference" content="United Stated Census Bureau. Incorporated Places and Minor Civil Divisions Datasets: Subcounty Resident Population Estimates: April 1, 2020 to July 1, 2023 (SUB-EST2023); 2024 [cited 2024 May 11]. Database: City and Town Population Totals: 2020-2023 [Internet]. Available from: https://www.census.gov/data/tables/time-series/demo/popest/2020s-total-cities-and-towns.html ."/> <meta name="citation_reference" content="citation_title=Array programming with NumPy;citation_author=CR Harris;citation_author=KJ Millman;citation_author=SJ van der Walt;citation_author=R Gommers;citation_author=P Virtanen;citation_author=D Cournapeau;citation_journal_title=Nature;citation_volume=585;citation_number=585;citation_issue=7825;citation_first_page=357;citation_last_page=362;citation_publication_date=2020;"/> <meta name="citation_reference" content="citation_title=The pre-history of urban scaling;citation_author=SG Ortman;citation_author=AH Cabaniss;citation_author=JO Sturm;citation_author=LM Bettencourt;citation_journal_title=PLOS One;citation_volume=9;citation_number=9;citation_issue=2;citation_first_page=e87902;citation_publication_date=2014;"/> <meta name="citation_reference" content="United States Bureau of Labor Statiscs. COUNTY-MSA-CSA CROSSWALKS, 1990-2012 &amp;amp; 2013-2023; 2024 [cited 2024 July 7]. Database: City and Town Population Totals: 2020-2023 [Internet]. Available from: https://www.bls.gov/cew/classifications/areas/county-msa-csa-crosswalk.htm ."/> <meta name="citation_reference" content="Bureau of Alcohol, Tobacco, Firearms and Explosives. U.S. Firearms Trace Data by State; 2022 [cited 2024 May 11]. Database: Data &amp;amp; Statistics [Internet]. Available from: https://www.atf.gov/resource-center/data-statistics ."/> <meta name="citation_reference" content="citation_title=Modern mathematical statistics with applications;citation_author=JL Devore;citation_author=KN Berk;citation_author=MA Carlton;citation_volume=vol. 285;citation_number=285;citation_publication_date=2012;citation_publisher=Springer"/> <!-- DoubleClick overall ad setup script --> <script type='text/javascript'> var googletag = googletag || {}; googletag.cmd = googletag.cmd || []; (function() { var gads = document.createElement('script'); gads.async = true; gads.type = 'text/javascript'; var useSSL = 'https:' == document.location.protocol; gads.src = (useSSL ? 'https:' : 'http:') + '//www.googletagservices.com/tag/js/gpt.js'; var node = document.getElementsByTagName('script')[0]; node.parentNode.insertBefore(gads, node); })(); </script> <!-- DoubleClick ad slot setup script --> <script id="doubleClickSetupScript" type='text/javascript'> googletag.cmd.push(function() { googletag.defineSlot('/75507958/PCSY_728x90_ATF', [728, 90], 'div-gpt-ad-1458247671871-0').addService(googletag.pubads()); googletag.defineSlot('/75507958/PCSY_160x600_BTF', [160, 600], 'div-gpt-ad-1458247671871-1').addService(googletag.pubads()); var personalizedAds = window.plosCookieConsent && window.plosCookieConsent.hasConsented('advertising'); googletag.pubads().setRequestNonPersonalizedAds(personalizedAds ? 0 : 1); googletag.pubads().enableSingleRequest(); googletag.enableServices(); }); </script> <script type="text/javascript"> var WombatConfig = WombatConfig || {}; WombatConfig.journalKey = "PLOSComplexSystems"; WombatConfig.journalName = "PLOS Complex Systems"; WombatConfig.figurePath = "/complexsystems/article/figure/image"; WombatConfig.figShareInstitutionString = "plos"; WombatConfig.doiResolverPrefix = "https://dx.plos.org/"; </script> <script type="text/javascript"> var WombatConfig = WombatConfig || {}; WombatConfig.metrics = WombatConfig.metrics || {}; WombatConfig.metrics.referenceUrl = "http://lagotto.io/plos"; WombatConfig.metrics.googleScholarUrl = "https://scholar.google.com/scholar"; WombatConfig.metrics.googleScholarCitationUrl = WombatConfig.metrics.googleScholarUrl + "?hl=en&lr=&q="; WombatConfig.metrics.crossrefUrl = "https://www.crossref.org"; </script> <script defer="defer" src="/resource/js/defer.js?5d23b84e5e396356b27c"></script><script src="/resource/js/sync.js?5d23b84e5e396356b27c"></script> <script src="/resource/js/vendor/jquery.min.js" type="text/javascript"></script> <script type="text/javascript" src="https://widgets.figshare.com/static/figshare.js"></script> <script src="/resource/js/vendor/fastclick/lib/fastclick.js" type="text/javascript"></script> <script src="/resource/js/vendor/foundation/foundation.js" type="text/javascript"></script> <script src="/resource/js/vendor/underscore-min.js" type="text/javascript"></script> <script src="/resource/js/vendor/underscore.string.min.js" type="text/javascript"></script> <script src="/resource/js/vendor/moment.js" type="text/javascript"></script> <script src="/resource/js/vendor/jquery-ui-effects.min.js" type="text/javascript"></script> <script src="/resource/js/vendor/foundation/foundation.tooltip.js" type="text/javascript"></script> <script src="/resource/js/vendor/foundation/foundation.dropdown.js" type="text/javascript"></script> <script src="/resource/js/vendor/foundation/foundation.tab.js" type="text/javascript"></script> <script src="/resource/js/vendor/foundation/foundation.reveal.js" type="text/javascript"></script> <script src="/resource/js/vendor/foundation/foundation.slider.js" type="text/javascript"></script> <script src="/resource/js/util/utils.js" type="text/javascript"></script> <script src="/resource/js/components/toggle.js" type="text/javascript"></script> <script src="/resource/js/components/truncate_elem.js" type="text/javascript"></script> <script src="/resource/js/components/tooltip_hover.js" type="text/javascript"></script> <script src="/resource/js/vendor/jquery.dotdotdot.js" type="text/javascript"></script> <!--For Google Tag manager to be able to track site information --> <script> dataLayer = [{ 'mobileSite': 'false', 'desktopSite': 'true' }]; </script> <title>Urban scaling with censored data | PLOS Complex Systems</title> </head> <body class="article ploscomplexsystems"> <!-- Google Tag Manager --> <noscript><iframe src="//www.googletagmanager.com/ns.html?id=GTM-TP26BH" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= '//www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-TP26BH'); </script> <noscript><iframe src="//www.googletagmanager.com/ns.html?id=GTM-MQQMGF" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= '//www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-MQQMGF');</script> <!-- End Google Tag Manager --> <!-- Start of HubSpot Embed Code --> <script> // from https://developers.hubspot.com/docs/reference/api/analytics-and-events/cookie-banner/cookie-banner-api#example-using-a-third-party-cookie-banner-to-control-hubspot-cookies window.disableHubSpotCookieBanner = true; window._hsp = window._hsp || []; window._hsp.push(['setHubSpotConsent', { analytics: window.plosCookieConsent?.hasConsented('analytics'), advertisement: window.plosCookieConsent?.hasConsented('advertising'), functionality: window.plosCookieConsent?.hasConsented('functionality') } ]); </script> <script type="text/javascript" id="hs-script-loader" async defer src="//js.hs-scripts.com/44092021.js"></script> <!-- End of HubSpot Embed Code --> <!-- New Relic --> <script type="text/javascript"> ;window.NREUM||(NREUM={});NREUM.init={distributed_tracing:{enabled:true},privacy:{cookies_enabled:true},ajax:{deny_list:["bam.nr-data.net"]}}; window.NREUM||(NREUM={}),__nr_require=function(t,e,n){function r(n){if(!e[n]){var o=e[n]={exports:{}};t[n][0].call(o.exports,function(e){var o=t[n][1][e];return r(o||e)},o,o.exports)}return e[n].exports}if("function"==typeof __nr_require)return __nr_require;for(var o=0;o<n.length;o++)r(n[o]);return r}({1:[function(t,e,n){function r(t){try{s.console&&console.log(t)}catch(e){}}var o,i=t("ee"),a=t(32),s={};try{o=localStorage.getItem("__nr_flags").split(","),console&&"function"==typeof console.log&&(s.console=!0,o.indexOf("dev")!==-1&&(s.dev=!0),o.indexOf("nr_dev")!==-1&&(s.nrDev=!0))}catch(c){}s.nrDev&&i.on("internal-error",function(t){r(t.stack)}),s.dev&&i.on("fn-err",function(t,e,n){r(n.stack)}),s.dev&&(r("NR AGENT IN DEVELOPMENT MODE"),r("flags: "+a(s,function(t,e){return t}).join(", ")))},{}],2:[function(t,e,n){function r(t,e,n,r,s){try{l?l-=1:o(s||new UncaughtException(t,e,n),!0)}catch(f){try{i("ierr",[f,c.now(),!0])}catch(d){}}return"function"==typeof u&&u.apply(this,a(arguments))}function UncaughtException(t,e,n){this.message=t||"Uncaught error with no additional information",this.sourceURL=e,this.line=n}function o(t,e){var n=e?null:c.now();i("err",[t,n])}var i=t("handle"),a=t(33),s=t("ee"),c=t("loader"),f=t("gos"),u=window.onerror,d=!1,p="nr@seenError";if(!c.disabled){var l=0;c.features.err=!0,t(1),window.onerror=r;try{throw new Error}catch(h){"stack"in h&&(t(14),t(13),"addEventListener"in window&&t(7),c.xhrWrappable&&t(15),d=!0)}s.on("fn-start",function(t,e,n){d&&(l+=1)}),s.on("fn-err",function(t,e,n){d&&!n[p]&&(f(n,p,function(){return!0}),this.thrown=!0,o(n))}),s.on("fn-end",function(){d&&!this.thrown&&l>0&&(l-=1)}),s.on("internal-error",function(t){i("ierr",[t,c.now(),!0])})}},{}],3:[function(t,e,n){var r=t("loader");r.disabled||(r.features.ins=!0)},{}],4:[function(t,e,n){function r(){U++,L=g.hash,this[u]=y.now()}function o(){U--,g.hash!==L&&i(0,!0);var t=y.now();this[h]=~~this[h]+t-this[u],this[d]=t}function i(t,e){E.emit("newURL",[""+g,e])}function a(t,e){t.on(e,function(){this[e]=y.now()})}var s="-start",c="-end",f="-body",u="fn"+s,d="fn"+c,p="cb"+s,l="cb"+c,h="jsTime",m="fetch",v="addEventListener",w=window,g=w.location,y=t("loader");if(w[v]&&y.xhrWrappable&&!y.disabled){var x=t(11),b=t(12),E=t(9),R=t(7),O=t(14),T=t(8),P=t(15),S=t(10),M=t("ee"),N=M.get("tracer"),C=t(23);t(17),y.features.spa=!0;var L,U=0;M.on(u,r),b.on(p,r),S.on(p,r),M.on(d,o),b.on(l,o),S.on(l,o),M.buffer([u,d,"xhr-resolved"]),R.buffer([u]),O.buffer(["setTimeout"+c,"clearTimeout"+s,u]),P.buffer([u,"new-xhr","send-xhr"+s]),T.buffer([m+s,m+"-done",m+f+s,m+f+c]),E.buffer(["newURL"]),x.buffer([u]),b.buffer(["propagate",p,l,"executor-err","resolve"+s]),N.buffer([u,"no-"+u]),S.buffer(["new-jsonp","cb-start","jsonp-error","jsonp-end"]),a(T,m+s),a(T,m+"-done"),a(S,"new-jsonp"),a(S,"jsonp-end"),a(S,"cb-start"),E.on("pushState-end",i),E.on("replaceState-end",i),w[v]("hashchange",i,C(!0)),w[v]("load",i,C(!0)),w[v]("popstate",function(){i(0,U>1)},C(!0))}},{}],5:[function(t,e,n){function r(){var t=new PerformanceObserver(function(t,e){var n=t.getEntries();s(v,[n])});try{t.observe({entryTypes:["resource"]})}catch(e){}}function o(t){if(s(v,[window.performance.getEntriesByType(w)]),window.performance["c"+p])try{window.performance[h](m,o,!1)}catch(t){}else try{window.performance[h]("webkit"+m,o,!1)}catch(t){}}function i(t){}if(window.performance&&window.performance.timing&&window.performance.getEntriesByType){var a=t("ee"),s=t("handle"),c=t(14),f=t(13),u=t(6),d=t(23),p="learResourceTimings",l="addEventListener",h="removeEventListener",m="resourcetimingbufferfull",v="bstResource",w="resource",g="-start",y="-end",x="fn"+g,b="fn"+y,E="bstTimer",R="pushState",O=t("loader");if(!O.disabled){O.features.stn=!0,t(9),"addEventListener"in window&&t(7);var T=NREUM.o.EV;a.on(x,function(t,e){var n=t[0];n instanceof T&&(this.bstStart=O.now())}),a.on(b,function(t,e){var n=t[0];n instanceof T&&s("bst",[n,e,this.bstStart,O.now()])}),c.on(x,function(t,e,n){this.bstStart=O.now(),this.bstType=n}),c.on(b,function(t,e){s(E,[e,this.bstStart,O.now(),this.bstType])}),f.on(x,function(){this.bstStart=O.now()}),f.on(b,function(t,e){s(E,[e,this.bstStart,O.now(),"requestAnimationFrame"])}),a.on(R+g,function(t){this.time=O.now(),this.startPath=location.pathname+location.hash}),a.on(R+y,function(t){s("bstHist",[location.pathname+location.hash,this.startPath,this.time])}),u()?(s(v,[window.performance.getEntriesByType("resource")]),r()):l in window.performance&&(window.performance["c"+p]?window.performance[l](m,o,d(!1)):window.performance[l]("webkit"+m,o,d(!1))),document[l]("scroll",i,d(!1)),document[l]("keypress",i,d(!1)),document[l]("click",i,d(!1))}}},{}],6:[function(t,e,n){e.exports=function(){return"PerformanceObserver"in window&&"function"==typeof window.PerformanceObserver}},{}],7:[function(t,e,n){function r(t){for(var e=t;e&&!e.hasOwnProperty(u);)e=Object.getPrototypeOf(e);e&&o(e)}function o(t){s.inPlace(t,[u,d],"-",i)}function i(t,e){return t[1]}var a=t("ee").get("events"),s=t("wrap-function")(a,!0),c=t("gos"),f=XMLHttpRequest,u="addEventListener",d="removeEventListener";e.exports=a,"getPrototypeOf"in Object?(r(document),r(window),r(f.prototype)):f.prototype.hasOwnProperty(u)&&(o(window),o(f.prototype)),a.on(u+"-start",function(t,e){var n=t[1];if(null!==n&&("function"==typeof n||"object"==typeof n)){var r=c(n,"nr@wrapped",function(){function t(){if("function"==typeof n.handleEvent)return n.handleEvent.apply(n,arguments)}var e={object:t,"function":n}[typeof n];return e?s(e,"fn-",null,e.name||"anonymous"):n});this.wrapped=t[1]=r}}),a.on(d+"-start",function(t){t[1]=this.wrapped||t[1]})},{}],8:[function(t,e,n){function r(t,e,n){var r=t[e];"function"==typeof r&&(t[e]=function(){var t=i(arguments),e={};o.emit(n+"before-start",[t],e);var a;e[m]&&e[m].dt&&(a=e[m].dt);var s=r.apply(this,t);return o.emit(n+"start",[t,a],s),s.then(function(t){return o.emit(n+"end",[null,t],s),t},function(t){throw o.emit(n+"end",[t],s),t})})}var o=t("ee").get("fetch"),i=t(33),a=t(32);e.exports=o;var s=window,c="fetch-",f=c+"body-",u=["arrayBuffer","blob","json","text","formData"],d=s.Request,p=s.Response,l=s.fetch,h="prototype",m="nr@context";d&&p&&l&&(a(u,function(t,e){r(d[h],e,f),r(p[h],e,f)}),r(s,"fetch",c),o.on(c+"end",function(t,e){var n=this;if(e){var r=e.headers.get("content-length");null!==r&&(n.rxSize=r),o.emit(c+"done",[null,e],n)}else o.emit(c+"done",[t],n)}))},{}],9:[function(t,e,n){var r=t("ee").get("history"),o=t("wrap-function")(r);e.exports=r;var i=window.history&&window.history.constructor&&window.history.constructor.prototype,a=window.history;i&&i.pushState&&i.replaceState&&(a=i),o.inPlace(a,["pushState","replaceState"],"-")},{}],10:[function(t,e,n){function r(t){function e(){f.emit("jsonp-end",[],l),t.removeEventListener("load",e,c(!1)),t.removeEventListener("error",n,c(!1))}function n(){f.emit("jsonp-error",[],l),f.emit("jsonp-end",[],l),t.removeEventListener("load",e,c(!1)),t.removeEventListener("error",n,c(!1))}var r=t&&"string"==typeof t.nodeName&&"script"===t.nodeName.toLowerCase();if(r){var o="function"==typeof t.addEventListener;if(o){var a=i(t.src);if(a){var d=s(a),p="function"==typeof d.parent[d.key];if(p){var l={};u.inPlace(d.parent,[d.key],"cb-",l),t.addEventListener("load",e,c(!1)),t.addEventListener("error",n,c(!1)),f.emit("new-jsonp",[t.src],l)}}}}}function o(){return"addEventListener"in window}function i(t){var e=t.match(d);return e?e[1]:null}function a(t,e){var n=t.match(l),r=n[1],o=n[3];return o?a(o,e[r]):e[r]}function s(t){var e=t.match(p);return e&&e.length>=3?{key:e[2],parent:a(e[1],window)}:{key:t,parent:window}}var c=t(23),f=t("ee").get("jsonp"),u=t("wrap-function")(f);if(e.exports=f,o()){var d=/[?&](?:callback|cb)=([^&#]+)/,p=/(.*)\.([^.]+)/,l=/^(\w+)(\.|$)(.*)$/,h=["appendChild","insertBefore","replaceChild"];Node&&Node.prototype&&Node.prototype.appendChild?u.inPlace(Node.prototype,h,"dom-"):(u.inPlace(HTMLElement.prototype,h,"dom-"),u.inPlace(HTMLHeadElement.prototype,h,"dom-"),u.inPlace(HTMLBodyElement.prototype,h,"dom-")),f.on("dom-start",function(t){r(t[0])})}},{}],11:[function(t,e,n){var r=t("ee").get("mutation"),o=t("wrap-function")(r),i=NREUM.o.MO;e.exports=r,i&&(window.MutationObserver=function(t){return this instanceof i?new i(o(t,"fn-")):i.apply(this,arguments)},MutationObserver.prototype=i.prototype)},{}],12:[function(t,e,n){function r(t){var e=i.context(),n=s(t,"executor-",e,null,!1),r=new f(n);return i.context(r).getCtx=function(){return e},r}var o=t("wrap-function"),i=t("ee").get("promise"),a=t("ee").getOrSetContext,s=o(i),c=t(32),f=NREUM.o.PR;e.exports=i,f&&(window.Promise=r,["all","race"].forEach(function(t){var e=f[t];f[t]=function(n){function r(t){return function(){i.emit("propagate",[null,!o],a,!1,!1),o=o||!t}}var o=!1;c(n,function(e,n){Promise.resolve(n).then(r("all"===t),r(!1))});var a=e.apply(f,arguments),s=f.resolve(a);return s}}),["resolve","reject"].forEach(function(t){var e=f[t];f[t]=function(t){var n=e.apply(f,arguments);return t!==n&&i.emit("propagate",[t,!0],n,!1,!1),n}}),f.prototype["catch"]=function(t){return this.then(null,t)},f.prototype=Object.create(f.prototype,{constructor:{value:r}}),c(Object.getOwnPropertyNames(f),function(t,e){try{r[e]=f[e]}catch(n){}}),o.wrapInPlace(f.prototype,"then",function(t){return function(){var e=this,n=o.argsToArray.apply(this,arguments),r=a(e);r.promise=e,n[0]=s(n[0],"cb-",r,null,!1),n[1]=s(n[1],"cb-",r,null,!1);var c=t.apply(this,n);return r.nextPromise=c,i.emit("propagate",[e,!0],c,!1,!1),c}}),i.on("executor-start",function(t){t[0]=s(t[0],"resolve-",this,null,!1),t[1]=s(t[1],"resolve-",this,null,!1)}),i.on("executor-err",function(t,e,n){t[1](n)}),i.on("cb-end",function(t,e,n){i.emit("propagate",[n,!0],this.nextPromise,!1,!1)}),i.on("propagate",function(t,e,n){this.getCtx&&!e||(this.getCtx=function(){if(t instanceof Promise)var e=i.context(t);return e&&e.getCtx?e.getCtx():this})}),r.toString=function(){return""+f})},{}],13:[function(t,e,n){var r=t("ee").get("raf"),o=t("wrap-function")(r),i="equestAnimationFrame";e.exports=r,o.inPlace(window,["r"+i,"mozR"+i,"webkitR"+i,"msR"+i],"raf-"),r.on("raf-start",function(t){t[0]=o(t[0],"fn-")})},{}],14:[function(t,e,n){function r(t,e,n){t[0]=a(t[0],"fn-",null,n)}function o(t,e,n){this.method=n,this.timerDuration=isNaN(t[1])?0:+t[1],t[0]=a(t[0],"fn-",this,n)}var i=t("ee").get("timer"),a=t("wrap-function")(i),s="setTimeout",c="setInterval",f="clearTimeout",u="-start",d="-";e.exports=i,a.inPlace(window,[s,"setImmediate"],s+d),a.inPlace(window,[c],c+d),a.inPlace(window,[f,"clearImmediate"],f+d),i.on(c+u,r),i.on(s+u,o)},{}],15:[function(t,e,n){function r(t,e){d.inPlace(e,["onreadystatechange"],"fn-",s)}function o(){var t=this,e=u.context(t);t.readyState>3&&!e.resolved&&(e.resolved=!0,u.emit("xhr-resolved",[],t)),d.inPlace(t,y,"fn-",s)}function i(t){x.push(t),m&&(E?E.then(a):w?w(a):(R=-R,O.data=R))}function a(){for(var t=0;t<x.length;t++)r([],x[t]);x.length&&(x=[])}function s(t,e){return e}function c(t,e){for(var n in t)e[n]=t[n];return e}t(7);var f=t("ee"),u=f.get("xhr"),d=t("wrap-function")(u),p=t(23),l=NREUM.o,h=l.XHR,m=l.MO,v=l.PR,w=l.SI,g="readystatechange",y=["onload","onerror","onabort","onloadstart","onloadend","onprogress","ontimeout"],x=[];e.exports=u;var b=window.XMLHttpRequest=function(t){var e=new h(t);try{u.emit("new-xhr",[e],e),e.addEventListener(g,o,p(!1))}catch(n){try{u.emit("internal-error",[n])}catch(r){}}return e};if(c(h,b),b.prototype=h.prototype,d.inPlace(b.prototype,["open","send"],"-xhr-",s),u.on("send-xhr-start",function(t,e){r(t,e),i(e)}),u.on("open-xhr-start",r),m){var E=v&&v.resolve();if(!w&&!v){var R=1,O=document.createTextNode(R);new m(a).observe(O,{characterData:!0})}}else f.on("fn-end",function(t){t[0]&&t[0].type===g||a()})},{}],16:[function(t,e,n){function r(t){if(!s(t))return null;var e=window.NREUM;if(!e.loader_config)return null;var n=(e.loader_config.accountID||"").toString()||null,r=(e.loader_config.agentID||"").toString()||null,f=(e.loader_config.trustKey||"").toString()||null;if(!n||!r)return null;var h=l.generateSpanId(),m=l.generateTraceId(),v=Date.now(),w={spanId:h,traceId:m,timestamp:v};return(t.sameOrigin||c(t)&&p())&&(w.traceContextParentHeader=o(h,m),w.traceContextStateHeader=i(h,v,n,r,f)),(t.sameOrigin&&!u()||!t.sameOrigin&&c(t)&&d())&&(w.newrelicHeader=a(h,m,v,n,r,f)),w}function o(t,e){return"00-"+e+"-"+t+"-01"}function i(t,e,n,r,o){var i=0,a="",s=1,c="",f="";return o+"@nr="+i+"-"+s+"-"+n+"-"+r+"-"+t+"-"+a+"-"+c+"-"+f+"-"+e}function a(t,e,n,r,o,i){var a="btoa"in window&&"function"==typeof window.btoa;if(!a)return null;var s={v:[0,1],d:{ty:"Browser",ac:r,ap:o,id:t,tr:e,ti:n}};return i&&r!==i&&(s.d.tk=i),btoa(JSON.stringify(s))}function s(t){return f()&&c(t)}function c(t){var e=!1,n={};if("init"in NREUM&&"distributed_tracing"in NREUM.init&&(n=NREUM.init.distributed_tracing),t.sameOrigin)e=!0;else if(n.allowed_origins instanceof Array)for(var r=0;r<n.allowed_origins.length;r++){var o=h(n.allowed_origins[r]);if(t.hostname===o.hostname&&t.protocol===o.protocol&&t.port===o.port){e=!0;break}}return e}function f(){return"init"in NREUM&&"distributed_tracing"in NREUM.init&&!!NREUM.init.distributed_tracing.enabled}function u(){return"init"in NREUM&&"distributed_tracing"in NREUM.init&&!!NREUM.init.distributed_tracing.exclude_newrelic_header}function d(){return"init"in NREUM&&"distributed_tracing"in NREUM.init&&NREUM.init.distributed_tracing.cors_use_newrelic_header!==!1}function p(){return"init"in NREUM&&"distributed_tracing"in NREUM.init&&!!NREUM.init.distributed_tracing.cors_use_tracecontext_headers}var l=t(29),h=t(18);e.exports={generateTracePayload:r,shouldGenerateTrace:s}},{}],17:[function(t,e,n){function r(t){var e=this.params,n=this.metrics;if(!this.ended){this.ended=!0;for(var r=0;r<p;r++)t.removeEventListener(d[r],this.listener,!1);e.aborted||(n.duration=a.now()-this.startTime,this.loadCaptureCalled||4!==t.readyState?null==e.status&&(e.status=0):i(this,t),n.cbTime=this.cbTime,s("xhr",[e,n,this.startTime,this.endTime,"xhr"],this))}}function o(t,e){var n=c(e),r=t.params;r.hostname=n.hostname,r.port=n.port,r.protocol=n.protocol,r.host=n.hostname+":"+n.port,r.pathname=n.pathname,t.parsedOrigin=n,t.sameOrigin=n.sameOrigin}function i(t,e){t.params.status=e.status;var n=v(e,t.lastSize);if(n&&(t.metrics.rxSize=n),t.sameOrigin){var r=e.getResponseHeader("X-NewRelic-App-Data");r&&(t.params.cat=r.split(", ").pop())}t.loadCaptureCalled=!0}var a=t("loader");if(a.xhrWrappable&&!a.disabled){var s=t("handle"),c=t(18),f=t(16).generateTracePayload,u=t("ee"),d=["load","error","abort","timeout"],p=d.length,l=t("id"),h=t(24),m=t(22),v=t(19),w=t(23),g=NREUM.o.REQ,y=window.XMLHttpRequest;a.features.xhr=!0,t(15),t(8),u.on("new-xhr",function(t){var e=this;e.totalCbs=0,e.called=0,e.cbTime=0,e.end=r,e.ended=!1,e.xhrGuids={},e.lastSize=null,e.loadCaptureCalled=!1,e.params=this.params||{},e.metrics=this.metrics||{},t.addEventListener("load",function(n){i(e,t)},w(!1)),h&&(h>34||h<10)||t.addEventListener("progress",function(t){e.lastSize=t.loaded},w(!1))}),u.on("open-xhr-start",function(t){this.params={method:t[0]},o(this,t[1]),this.metrics={}}),u.on("open-xhr-end",function(t,e){"loader_config"in NREUM&&"xpid"in NREUM.loader_config&&this.sameOrigin&&e.setRequestHeader("X-NewRelic-ID",NREUM.loader_config.xpid);var n=f(this.parsedOrigin);if(n){var r=!1;n.newrelicHeader&&(e.setRequestHeader("newrelic",n.newrelicHeader),r=!0),n.traceContextParentHeader&&(e.setRequestHeader("traceparent",n.traceContextParentHeader),n.traceContextStateHeader&&e.setRequestHeader("tracestate",n.traceContextStateHeader),r=!0),r&&(this.dt=n)}}),u.on("send-xhr-start",function(t,e){var n=this.metrics,r=t[0],o=this;if(n&&r){var i=m(r);i&&(n.txSize=i)}this.startTime=a.now(),this.listener=function(t){try{"abort"!==t.type||o.loadCaptureCalled||(o.params.aborted=!0),("load"!==t.type||o.called===o.totalCbs&&(o.onloadCalled||"function"!=typeof e.onload))&&o.end(e)}catch(n){try{u.emit("internal-error",[n])}catch(r){}}};for(var s=0;s<p;s++)e.addEventListener(d[s],this.listener,w(!1))}),u.on("xhr-cb-time",function(t,e,n){this.cbTime+=t,e?this.onloadCalled=!0:this.called+=1,this.called!==this.totalCbs||!this.onloadCalled&&"function"==typeof n.onload||this.end(n)}),u.on("xhr-load-added",function(t,e){var n=""+l(t)+!!e;this.xhrGuids&&!this.xhrGuids[n]&&(this.xhrGuids[n]=!0,this.totalCbs+=1)}),u.on("xhr-load-removed",function(t,e){var n=""+l(t)+!!e;this.xhrGuids&&this.xhrGuids[n]&&(delete this.xhrGuids[n],this.totalCbs-=1)}),u.on("xhr-resolved",function(){this.endTime=a.now()}),u.on("addEventListener-end",function(t,e){e instanceof y&&"load"===t[0]&&u.emit("xhr-load-added",[t[1],t[2]],e)}),u.on("removeEventListener-end",function(t,e){e instanceof y&&"load"===t[0]&&u.emit("xhr-load-removed",[t[1],t[2]],e)}),u.on("fn-start",function(t,e,n){e instanceof y&&("onload"===n&&(this.onload=!0),("load"===(t[0]&&t[0].type)||this.onload)&&(this.xhrCbStart=a.now()))}),u.on("fn-end",function(t,e){this.xhrCbStart&&u.emit("xhr-cb-time",[a.now()-this.xhrCbStart,this.onload,e],e)}),u.on("fetch-before-start",function(t){function e(t,e){var n=!1;return e.newrelicHeader&&(t.set("newrelic",e.newrelicHeader),n=!0),e.traceContextParentHeader&&(t.set("traceparent",e.traceContextParentHeader),e.traceContextStateHeader&&t.set("tracestate",e.traceContextStateHeader),n=!0),n}var n,r=t[1]||{};"string"==typeof t[0]?n=t[0]:t[0]&&t[0].url?n=t[0].url:window.URL&&t[0]&&t[0]instanceof URL&&(n=t[0].href),n&&(this.parsedOrigin=c(n),this.sameOrigin=this.parsedOrigin.sameOrigin);var o=f(this.parsedOrigin);if(o&&(o.newrelicHeader||o.traceContextParentHeader))if("string"==typeof t[0]||window.URL&&t[0]&&t[0]instanceof URL){var i={};for(var a in r)i[a]=r[a];i.headers=new Headers(r.headers||{}),e(i.headers,o)&&(this.dt=o),t.length>1?t[1]=i:t.push(i)}else t[0]&&t[0].headers&&e(t[0].headers,o)&&(this.dt=o)}),u.on("fetch-start",function(t,e){this.params={},this.metrics={},this.startTime=a.now(),this.dt=e,t.length>=1&&(this.target=t[0]),t.length>=2&&(this.opts=t[1]);var n,r=this.opts||{},i=this.target;"string"==typeof i?n=i:"object"==typeof i&&i instanceof g?n=i.url:window.URL&&"object"==typeof i&&i instanceof URL&&(n=i.href),o(this,n);var s=(""+(i&&i instanceof g&&i.method||r.method||"GET")).toUpperCase();this.params.method=s,this.txSize=m(r.body)||0}),u.on("fetch-done",function(t,e){this.endTime=a.now(),this.params||(this.params={}),this.params.status=e?e.status:0;var n;"string"==typeof this.rxSize&&this.rxSize.length>0&&(n=+this.rxSize);var r={txSize:this.txSize,rxSize:n,duration:a.now()-this.startTime};s("xhr",[this.params,r,this.startTime,this.endTime,"fetch"],this)})}},{}],18:[function(t,e,n){var r={};e.exports=function(t){if(t in r)return r[t];var e=document.createElement("a"),n=window.location,o={};e.href=t,o.port=e.port;var i=e.href.split("://");!o.port&&i[1]&&(o.port=i[1].split("/")[0].split("@").pop().split(":")[1]),o.port&&"0"!==o.port||(o.port="https"===i[0]?"443":"80"),o.hostname=e.hostname||n.hostname,o.pathname=e.pathname,o.protocol=i[0],"/"!==o.pathname.charAt(0)&&(o.pathname="/"+o.pathname);var a=!e.protocol||":"===e.protocol||e.protocol===n.protocol,s=e.hostname===document.domain&&e.port===n.port;return o.sameOrigin=a&&(!e.hostname||s),"/"===o.pathname&&(r[t]=o),o}},{}],19:[function(t,e,n){function r(t,e){var n=t.responseType;return"json"===n&&null!==e?e:"arraybuffer"===n||"blob"===n||"json"===n?o(t.response):"text"===n||""===n||void 0===n?o(t.responseText):void 0}var o=t(22);e.exports=r},{}],20:[function(t,e,n){function r(){}function o(t,e,n,r){return function(){return u.recordSupportability("API/"+e+"/called"),i(t+e,[f.now()].concat(s(arguments)),n?null:this,r),n?void 0:this}}var i=t("handle"),a=t(32),s=t(33),c=t("ee").get("tracer"),f=t("loader"),u=t(25),d=NREUM;"undefined"==typeof window.newrelic&&(newrelic=d);var p=["setPageViewName","setCustomAttribute","setErrorHandler","finished","addToTrace","inlineHit","addRelease"],l="api-",h=l+"ixn-";a(p,function(t,e){d[e]=o(l,e,!0,"api")}),d.addPageAction=o(l,"addPageAction",!0),d.setCurrentRouteName=o(l,"routeName",!0),e.exports=newrelic,d.interaction=function(){return(new r).get()};var m=r.prototype={createTracer:function(t,e){var n={},r=this,o="function"==typeof e;return i(h+"tracer",[f.now(),t,n],r),function(){if(c.emit((o?"":"no-")+"fn-start",[f.now(),r,o],n),o)try{return e.apply(this,arguments)}catch(t){throw c.emit("fn-err",[arguments,this,t],n),t}finally{c.emit("fn-end",[f.now()],n)}}}};a("actionText,setName,setAttribute,save,ignore,onEnd,getContext,end,get".split(","),function(t,e){m[e]=o(h,e)}),newrelic.noticeError=function(t,e){"string"==typeof t&&(t=new Error(t)),u.recordSupportability("API/noticeError/called"),i("err",[t,f.now(),!1,e])}},{}],21:[function(t,e,n){function r(t){if(NREUM.init){for(var e=NREUM.init,n=t.split("."),r=0;r<n.length-1;r++)if(e=e[n[r]],"object"!=typeof e)return;return e=e[n[n.length-1]]}}e.exports={getConfiguration:r}},{}],22:[function(t,e,n){e.exports=function(t){if("string"==typeof t&&t.length)return t.length;if("object"==typeof t){if("undefined"!=typeof ArrayBuffer&&t instanceof ArrayBuffer&&t.byteLength)return t.byteLength;if("undefined"!=typeof Blob&&t instanceof Blob&&t.size)return t.size;if(!("undefined"!=typeof FormData&&t instanceof FormData))try{return JSON.stringify(t).length}catch(e){return}}}},{}],23:[function(t,e,n){var r=!1;try{var o=Object.defineProperty({},"passive",{get:function(){r=!0}});window.addEventListener("testPassive",null,o),window.removeEventListener("testPassive",null,o)}catch(i){}e.exports=function(t){return r?{passive:!0,capture:!!t}:!!t}},{}],24:[function(t,e,n){var r=0,o=navigator.userAgent.match(/Firefox[\/\s](\d+\.\d+)/);o&&(r=+o[1]),e.exports=r},{}],25:[function(t,e,n){function r(t,e){var n=[a,t,{name:t},e];return i("storeMetric",n,null,"api"),n}function o(t,e){var n=[s,t,{name:t},e];return i("storeEventMetrics",n,null,"api"),n}var i=t("handle"),a="sm",s="cm";e.exports={constants:{SUPPORTABILITY_METRIC:a,CUSTOM_METRIC:s},recordSupportability:r,recordCustom:o}},{}],26:[function(t,e,n){function r(){return s.exists&&performance.now?Math.round(performance.now()):(i=Math.max((new Date).getTime(),i))-a}function o(){return i}var i=(new Date).getTime(),a=i,s=t(34);e.exports=r,e.exports.offset=a,e.exports.getLastTimestamp=o},{}],27:[function(t,e,n){function r(t){return!(!t||!t.protocol||"file:"===t.protocol)}e.exports=r},{}],28:[function(t,e,n){function r(t,e){var n=t.getEntries();n.forEach(function(t){"first-paint"===t.name?p("timing",["fp",Math.floor(t.startTime)]):"first-contentful-paint"===t.name&&p("timing",["fcp",Math.floor(t.startTime)])})}function o(t,e){var n=t.getEntries();if(n.length>0){var r=n[n.length-1];if(c&&c<r.startTime)return;p("lcp",[r])}}function i(t){t.getEntries().forEach(function(t){t.hadRecentInput||p("cls",[t])})}function a(t){if(t instanceof v&&!g){var e=Math.round(t.timeStamp),n={type:t.type};e<=l.now()?n.fid=l.now()-e:e>l.offset&&e<=Date.now()?(e-=l.offset,n.fid=l.now()-e):e=l.now(),g=!0,p("timing",["fi",e,n])}}function s(t){"hidden"===t&&(c=l.now(),p("pageHide",[c]))}if(!("init"in NREUM&&"page_view_timing"in NREUM.init&&"enabled"in NREUM.init.page_view_timing&&NREUM.init.page_view_timing.enabled===!1)){var c,f,u,d,p=t("handle"),l=t("loader"),h=t(31),m=t(23),v=NREUM.o.EV;if("PerformanceObserver"in window&&"function"==typeof window.PerformanceObserver){f=new PerformanceObserver(r);try{f.observe({entryTypes:["paint"]})}catch(w){}u=new PerformanceObserver(o);try{u.observe({entryTypes:["largest-contentful-paint"]})}catch(w){}d=new PerformanceObserver(i);try{d.observe({type:"layout-shift",buffered:!0})}catch(w){}}if("addEventListener"in document){var g=!1,y=["click","keydown","mousedown","pointerdown","touchstart"];y.forEach(function(t){document.addEventListener(t,a,m(!1))})}h(s)}},{}],29:[function(t,e,n){function r(){function t(){return e?15&e[n++]:16*Math.random()|0}var e=null,n=0,r=window.crypto||window.msCrypto;r&&r.getRandomValues&&(e=r.getRandomValues(new Uint8Array(31)));for(var o,i="xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx",a="",s=0;s<i.length;s++)o=i[s],"x"===o?a+=t().toString(16):"y"===o?(o=3&t()|8,a+=o.toString(16)):a+=o;return a}function o(){return a(16)}function i(){return a(32)}function a(t){function e(){return n?15&n[r++]:16*Math.random()|0}var n=null,r=0,o=window.crypto||window.msCrypto;o&&o.getRandomValues&&Uint8Array&&(n=o.getRandomValues(new Uint8Array(31)));for(var i=[],a=0;a<t;a++)i.push(e().toString(16));return i.join("")}e.exports={generateUuid:r,generateSpanId:o,generateTraceId:i}},{}],30:[function(t,e,n){function r(t,e){if(!o)return!1;if(t!==o)return!1;if(!e)return!0;if(!i)return!1;for(var n=i.split("."),r=e.split("."),a=0;a<r.length;a++)if(r[a]!==n[a])return!1;return!0}var o=null,i=null,a=/Version\/(\S+)\s+Safari/;if(navigator.userAgent){var s=navigator.userAgent,c=s.match(a);c&&s.indexOf("Chrome")===-1&&s.indexOf("Chromium")===-1&&(o="Safari",i=c[1])}e.exports={agent:o,version:i,match:r}},{}],31:[function(t,e,n){function r(t){function e(){t(s&&document[s]?document[s]:document[i]?"hidden":"visible")}"addEventListener"in document&&a&&document.addEventListener(a,e,o(!1))}var o=t(23);e.exports=r;var i,a,s;"undefined"!=typeof document.hidden?(i="hidden",a="visibilitychange",s="visibilityState"):"undefined"!=typeof document.msHidden?(i="msHidden",a="msvisibilitychange"):"undefined"!=typeof document.webkitHidden&&(i="webkitHidden",a="webkitvisibilitychange",s="webkitVisibilityState")},{}],32:[function(t,e,n){function r(t,e){var n=[],r="",i=0;for(r in t)o.call(t,r)&&(n[i]=e(r,t[r]),i+=1);return n}var o=Object.prototype.hasOwnProperty;e.exports=r},{}],33:[function(t,e,n){function r(t,e,n){e||(e=0),"undefined"==typeof n&&(n=t?t.length:0);for(var r=-1,o=n-e||0,i=Array(o<0?0:o);++r<o;)i[r]=t[e+r];return i}e.exports=r},{}],34:[function(t,e,n){e.exports={exists:"undefined"!=typeof window.performance&&window.performance.timing&&"undefined"!=typeof window.performance.timing.navigationStart}},{}],ee:[function(t,e,n){function r(){}function o(t){function e(t){return t&&t instanceof r?t:t?f(t,c,a):a()}function n(n,r,o,i,a){if(a!==!1&&(a=!0),!l.aborted||i){t&&a&&t(n,r,o);for(var s=e(o),c=m(n),f=c.length,u=0;u<f;u++)c[u].apply(s,r);var p=d[y[n]];return p&&p.push([x,n,r,s]),s}}function i(t,e){g[t]=m(t).concat(e)}function h(t,e){var n=g[t];if(n)for(var r=0;r<n.length;r++)n[r]===e&&n.splice(r,1)}function m(t){return g[t]||[]}function v(t){return p[t]=p[t]||o(n)}function w(t,e){l.aborted||u(t,function(t,n){e=e||"feature",y[n]=e,e in d||(d[e]=[])})}var g={},y={},x={on:i,addEventListener:i,removeEventListener:h,emit:n,get:v,listeners:m,context:e,buffer:w,abort:s,aborted:!1};return x}function i(t){return f(t,c,a)}function a(){return new r}function s(){(d.api||d.feature)&&(l.aborted=!0,d=l.backlog={})}var c="nr@context",f=t("gos"),u=t(32),d={},p={},l=e.exports=o();e.exports.getOrSetContext=i,l.backlog=d},{}],gos:[function(t,e,n){function r(t,e,n){if(o.call(t,e))return t[e];var r=n();if(Object.defineProperty&&Object.keys)try{return Object.defineProperty(t,e,{value:r,writable:!0,enumerable:!1}),r}catch(i){}return t[e]=r,r}var o=Object.prototype.hasOwnProperty;e.exports=r},{}],handle:[function(t,e,n){function r(t,e,n,r){o.buffer([t],r),o.emit(t,e,n)}var o=t("ee").get("handle");e.exports=r,r.ee=o},{}],id:[function(t,e,n){function r(t){var e=typeof t;return!t||"object"!==e&&"function"!==e?-1:t===window?0:a(t,i,function(){return o++})}var o=1,i="nr@id",a=t("gos");e.exports=r},{}],loader:[function(t,e,n){function r(){if(!P++){var t=T.info=NREUM.info,e=v.getElementsByTagName("script")[0];if(setTimeout(f.abort,3e4),!(t&&t.licenseKey&&t.applicationID&&e))return f.abort();c(R,function(e,n){t[e]||(t[e]=n)});var n=a();s("mark",["onload",n+T.offset],null,"api"),s("timing",["load",n]);var r=v.createElement("script");0===t.agent.indexOf("http://")||0===t.agent.indexOf("https://")?r.src=t.agent:r.src=h+"://"+t.agent,e.parentNode.insertBefore(r,e)}}function o(){"complete"===v.readyState&&i()}function i(){s("mark",["domContent",a()+T.offset],null,"api")}var a=t(26),s=t("handle"),c=t(32),f=t("ee"),u=t(30),d=t(27),p=t(21),l=t(23),h=p.getConfiguration("ssl")===!1?"http":"https",m=window,v=m.document,w="addEventListener",g="attachEvent",y=m.XMLHttpRequest,x=y&&y.prototype,b=!d(m.location);NREUM.o={ST:setTimeout,SI:m.setImmediate,CT:clearTimeout,XHR:y,REQ:m.Request,EV:m.Event,PR:m.Promise,MO:m.MutationObserver};var E=""+location,R={beacon:"bam.nr-data.net",errorBeacon:"bam.nr-data.net",agent:"js-agent.newrelic.com/nr-spa-1212.min.js"},O=y&&x&&x[w]&&!/CriOS/.test(navigator.userAgent),T=e.exports={offset:a.getLastTimestamp(),now:a,origin:E,features:{},xhrWrappable:O,userAgent:u,disabled:b};if(!b){t(20),t(28),v[w]?(v[w]("DOMContentLoaded",i,l(!1)),m[w]("load",r,l(!1))):(v[g]("onreadystatechange",o),m[g]("onload",r)),s("mark",["firstbyte",a.getLastTimestamp()],null,"api");var P=0}},{}],"wrap-function":[function(t,e,n){function r(t,e){function n(e,n,r,c,f){function nrWrapper(){var i,a,u,p;try{a=this,i=d(arguments),u="function"==typeof r?r(i,a):r||{}}catch(l){o([l,"",[i,a,c],u],t)}s(n+"start",[i,a,c],u,f);try{return p=e.apply(a,i)}catch(h){throw s(n+"err",[i,a,h],u,f),h}finally{s(n+"end",[i,a,p],u,f)}}return a(e)?e:(n||(n=""),nrWrapper[p]=e,i(e,nrWrapper,t),nrWrapper)}function r(t,e,r,o,i){r||(r="");var s,c,f,u="-"===r.charAt(0);for(f=0;f<e.length;f++)c=e[f],s=t[c],a(s)||(t[c]=n(s,u?c+r:r,o,c,i))}function s(n,r,i,a){if(!h||e){var s=h;h=!0;try{t.emit(n,r,i,e,a)}catch(c){o([c,n,r,i],t)}h=s}}return t||(t=u),n.inPlace=r,n.flag=p,n}function o(t,e){e||(e=u);try{e.emit("internal-error",t)}catch(n){}}function i(t,e,n){if(Object.defineProperty&&Object.keys)try{var r=Object.keys(t);return r.forEach(function(n){Object.defineProperty(e,n,{get:function(){return t[n]},set:function(e){return t[n]=e,e}})}),e}catch(i){o([i],n)}for(var a in t)l.call(t,a)&&(e[a]=t[a]);return e}function a(t){return!(t&&t instanceof Function&&t.apply&&!t[p])}function s(t,e){var n=e(t);return n[p]=t,i(t,n,u),n}function c(t,e,n){var r=t[e];t[e]=s(r,n)}function f(){for(var t=arguments.length,e=new Array(t),n=0;n<t;++n)e[n]=arguments[n];return e}var u=t("ee"),d=t(33),p="nr@original",l=Object.prototype.hasOwnProperty,h=!1;e.exports=r,e.exports.wrapFunction=s,e.exports.wrapInPlace=c,e.exports.argsToArray=f},{}]},{},["loader",2,17,5,3,4]); ;NREUM.loader_config={accountID:"804283",trustKey:"804283",agentID:"402703674",licenseKey:"cf99e8d2a3",applicationID:"402703674"} ;NREUM.info={beacon:"bam.nr-data.net",errorBeacon:"bam.nr-data.net",licenseKey:"cf99e8d2a3", // Modified this value from the generated script, to pass prod vs dev applicationID: window.location.hostname.includes('journals.plos.org') ? "402703674" : "402694889", sa:1} </script> <!-- End New Relic --> <header> <div id="topslot" class="head-top"> <a id="skip-to-content" tabindex="0" class="button" href="#main-content"> Skip to main content </a> <div class="center"> <div class="title">Advertisement</div> <!-- DoubleClick Ad Zone --> <div class='advertisement' id='div-gpt-ad-1458247671871-0' style='width:728px; height:90px;'> <script type='text/javascript'> googletag.cmd.push(function() { googletag.display('div-gpt-ad-1458247671871-0'); }); </script> </div> </div> </div> <div id="user" class="nav" data-user-management-url="https://community.plos.org"> </div> <div id="pagehdr"> <nav class="nav-main"> <h1 class="logo"> <a href="/complexsystems/.">PLOS Complex Systems</a> </h1> <section class="top-bar-section"> <ul class="nav-elements"> <li class="multi-col-parent menu-section-header has-dropdown" id="publish"> Publish <div class="dropdown mega "> <ul class="multi-col" id="publish-dropdown-list"> <li class="menu-section-header " id="submissions"> <span class="menu-section-header-title"> Submissions </span> <ul class="menu-section " id="submissions-dropdown-list"> <li> <a href="/complexsystems/s/submission-guidelines" >Submission Guidelines</a> </li> <li> <a href="/complexsystems/s/figures" >Figures</a> </li> <li> <a href="/complexsystems/s/tables" >Tables</a> </li> <li> <a href="/complexsystems/s/supporting-information" >Supporting Information</a> </li> <li> <a href="/complexsystems/s/latex" >LaTeX</a> </li> <li> <a href="/complexsystems/s/what-we-publish" >What We Publish</a> </li> <li> <a href="/complexsystems/s/preprints" >Preprints</a> </li> <li> <a href="/complexsystems/s/revising-your-manuscript" >Revising Your Manuscript</a> </li> <li> <a href="/complexsystems/s/submit-now" >Submit Now</a> </li> </ul> </li> <li class="menu-section-header " id="policies"> <span class="menu-section-header-title"> Policies </span> <ul class="menu-section " id="policies-dropdown-list"> <li> <a href="/complexsystems/s/best-practices-in-research-reporting" >Best Practices in Research Reporting</a> </li> <li> <a href="/complexsystems/s/human-subjects-research" >Human Subjects Research</a> </li> <li> <a href="/complexsystems/s/animal-research" >Animal Research</a> </li> <li> <a href="/complexsystems/s/competing-interests" >Competing Interests</a> </li> <li> <a href="/complexsystems/s/disclosure-of-funding-sources" >Disclosure of Funding Sources</a> </li> <li> <a href="/complexsystems/s/licenses-and-copyright" >Licenses and Copyright</a> </li> <li> <a href="/complexsystems/s/data-availability" >Data Availability</a> </li> <li> <a href="/complexsystems/s/complementary-research" >Complementary Research</a> </li> <li> <a href="/complexsystems/s/materials-software-and-code-sharing" >Materials, Software and Code Sharing</a> </li> <li> <a href="/complexsystems/s/ethical-publishing-practice" >Ethical Publishing Practice</a> </li> <li> <a href="/complexsystems/s/authorship" >Authorship</a> </li> <li> <a href="/complexsystems/s/corrections-expressions-of-concern-and-retractions" >Corrections, Expressions of Concern, and Retractions</a> </li> </ul> </li> <li class="menu-section-header " id="manuscript-review-and-publication"> <span class="menu-section-header-title"> Manuscript Review and Publication </span> <ul class="menu-section " id="manuscript-review-and-publication-dropdown-list"> <li> <a href="/complexsystems/s/editorial-and-peer-review-process" >Editorial and Peer Review Process</a> </li> <li> <a href="https://plos.org/resources/editor-center" >Editor Center</a> </li> <li> <a href="/complexsystems/s/reviewer-guidelines" >Guidelines for Reviewers</a> </li> <li> <a href="/complexsystems/s/accepted-manuscripts" >Accepted Manuscripts</a> </li> <li> <a href="/complexsystems/s/comments" >Comments</a> </li> <li> <a href="/complexsystems/s/guidelines-for-editors" >Guidelines for Editors</a> </li> </ul> </li> </ul> <div class="calloutcontainer"> <h3 class="callout-headline">Submit Your Manuscript</h3> <div class="action-contain"> <p class="callout-content"> <em>PLOS Complex Systems</em> publishes research of broad significance that untangles the complex systems at the heart of the world we live in. </p> <p class="button-contain"> <a class="button button-default" href="/complexsystems/s/submit-now"> Get Started </a> </p> </div> <!-- opens in siteMenuCalloutDescription --> </div> </div> </li> <li class="menu-section-header has-dropdown " id="about"> <span class="menu-section-header-title"> About </span> <ul class="menu-section dropdown " id="about-dropdown-list"> <li> <a href="/complexsystems/s/journal-information" >Journal Information</a> </li> <li> <a href="/complexsystems/s/editors-in-chief" >Editors-in-Chief</a> </li> <li> <a href="/complexsystems/s/editorial-board" >Editorial Board</a> </li> <li> <a href="/complexsystems/s/publishing-information" >Publishing Information</a> </li> <li> <a href="https://plos.org/publication-fees" >Publication Fees</a> </li> <li> <a href="https://plos.org/press-and-media" >Press and Media</a> </li> <li> <a href="/complexsystems/s/contact" >Contact</a> </li> </ul> </li> <li class="menu-section-header ignore-top-bar-li-style"> <a href="/complexsystems/search?sortOrder=DATE_NEWEST_FIRST&filterStartDate=2021-10-01&filterJournals=PLOSComplexSystems&q=&resultsPerPage=60">Browse</a> </li> <script src="/resource/js/vendor/jquery.hoverIntent.js" type="text/javascript"></script> <script src="/resource/js/components/menu_drop.js" type="text/javascript"></script> <script src="/resource/js/components/hover_delay.js" type="text/javascript"></script> <li id="navsearch" class="head-search"> <form name="searchForm" action="/complexsystems/search" method="get"> <fieldset> <legend>Search</legend> <label for="search">Search</label> <div class="search-contain"> <input id="search" type="text" name="q" placeholder="SEARCH" required/> <button id="headerSearchButton" type="submit" aria-label="Submit search"> <i title="Submit search" class="search-icon"></i> </button> </div> </fieldset> <input type="hidden" name="filterJournals" value="PLOSComplexSystems"/> </form> <a id="advSearch" href="/complexsystems/search"> advanced search </a> <script src="/resource/js/components/placeholder_style.js" type="text/javascript"></script> </li> </ul> </section> </nav> </div> </header> <main id="main-content"> <div class="set-grid"> <header class="title-block"> <script src="/resource/js/components/signposts.js" type="text/javascript"></script> <ul id="almSignposts" class="signposts"> <li id="loadingMetrics"> <p>Loading metrics</p> </li> </ul> <script type="text/template" id="signpostsGeneralErrorTemplate"> <li id="metricsError">Article metrics are unavailable at this time. Please try again later.</li> </script> <script type="text/template" id="signpostsNewArticleErrorTemplate"> <li></li><li></li><li id="tooSoon">Article metrics are unavailable for recently published articles.</li> </script> <script type="text/template" id="signpostsTemplate"> <li id="almSaves"> <%= s.numberFormat(saveCount, 0) %> <div class="tools" data-js-tooltip-hover="trigger"> <a class="metric-term" href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000029#savedHeader">Save</a> <p class="saves-tip" data-js-tooltip-hover="target"><a href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000029#savedHeader">Total Mendeley and Citeulike bookmarks.</a></p> </div> </li> <li id="almCitations"> <%= s.numberFormat(citationCount, 0) %> <div class="tools" data-js-tooltip-hover="trigger"> <a class="metric-term" href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000029#citedHeader">Citation</a> <p class="citations-tip" data-js-tooltip-hover="target"><a href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000029#citedHeader">Paper's citation count computed by Dimensions.</a></p> </div> </li> <li id="almViews"> <%= s.numberFormat(viewCount, 0) %> <div class="tools" data-js-tooltip-hover="trigger"> <a class="metric-term" href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000029#viewedHeader">View</a> <p class="views-tip" data-js-tooltip-hover="target"><a href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000029#viewedHeader">PLOS views and downloads.</a></p> </div> </li> <li id="almShares"> <%= s.numberFormat(shareCount, 0) %> <div class="tools" data-js-tooltip-hover="trigger"> <a class="metric-term" href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000029#discussedHeader">Share</a> <p class="shares-tip" data-js-tooltip-hover="target"><a href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000029#discussedHeader">Sum of Facebook, Twitter, Reddit and Wikipedia activity.</a></p> </div> </li> </script> <div class="article-meta"> <div class="classifications"> <p class="license-short" id="licenseShort">Open Access</p> <p class="peer-reviewed" id="peerReviewed">Peer-reviewed</p> <div class="article-type" > <p class="type-article" id="artType">Research Article</p> </div> </div> </div> <div class="article-title-etc"> <div class="title-authors"> <h1 id="artTitle"><?xml version="1.0" encoding="UTF-8"?>Urban scaling with censored data</h1> <ul class="author-list clearfix" data-js-tooltip="tooltip_container" id="author-list"> <li data-js-tooltip="tooltip_trigger" > <a data-author-id="0" class="author-name" > Inês Figueira <span class="contribute"> </span>,</a> <div id="author-meta-0" class="author-info" data-js-tooltip="tooltip_target"> <p> <span class="contribute"> </span> Contributed equally to this work with: Inês Figueira, Rayan Succar </p> <p class="roles" id="authRoles"> <span class="type">Roles</span> Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing – original draft, Writing – review & editing </p> <p id="authAffiliations-0"><span class="type">Affiliations</span> Center for Urban Science and Progress, New York University Tandon School of Engineering, Brooklyn, New York, United States of America, Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States of America </p> <div> <p class="orcid" id="authOrcid-0"> <span> <a id="connect-orcid-link" href="https://orcid.org/0009-0007-7733-7356" target="_blank" title="ORCID Registry"> <img id="orcid-id-logo" src="/resource/img/orcid_16x16.png" width="16" height="16" alt="ORCID logo"/> https://orcid.org/0009-0007-7733-7356 </a> </span> </p> </div> <a data-js-tooltip="tooltip_close" class="close" id="tooltipClose0"> &#x02A2F; </a> </div> </li> <li data-js-tooltip="tooltip_trigger" > <a data-author-id="1" class="author-name" > Rayan Succar <span class="contribute"> </span>,</a> <div id="author-meta-1" class="author-info" data-js-tooltip="tooltip_target"> <p> <span class="contribute"> </span> Contributed equally to this work with: Inês Figueira, Rayan Succar </p> <p class="roles" id="authRoles"> <span class="type">Roles</span> Conceptualization, Formal analysis, Investigation, Methodology, Software, Visualization, Writing – original draft, Writing – review & editing </p> <p id="authAffiliations-1"><span class="type">Affiliations</span> Center for Urban Science and Progress, New York University Tandon School of Engineering, Brooklyn, New York, United States of America, Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States of America </p> <div> <p class="orcid" id="authOrcid-1"> <span> <a id="connect-orcid-link" href="https://orcid.org/0000-0003-0927-3147" target="_blank" title="ORCID Registry"> <img id="orcid-id-logo" src="/resource/img/orcid_16x16.png" width="16" height="16" alt="ORCID logo"/> https://orcid.org/0000-0003-0927-3147 </a> </span> </p> </div> <a data-js-tooltip="tooltip_close" class="close" id="tooltipClose1"> &#x02A2F; </a> </div> </li> <li data-js-tooltip="tooltip_trigger" > <a data-author-id="2" class="author-name" > Roni Barak Ventura,</a> <div id="author-meta-2" class="author-info" data-js-tooltip="tooltip_target"> <p class="roles" id="authRoles"> <span class="type">Roles</span> Data curation, Investigation, Writing – original draft, Writing – review & editing </p> <p id="authAffiliations-2"><span class="type">Affiliations</span> Center for Urban Science and Progress, New York University Tandon School of Engineering, Brooklyn, New York, United States of America, Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States of America, School of Applied Engineering and Technology, New Jersey Institute of Technology, Newark, New Jersey, United States of America </p> <div> <p class="orcid" id="authOrcid-2"> <span> <a id="connect-orcid-link" href="https://orcid.org/0000-0001-8186-3710" target="_blank" title="ORCID Registry"> <img id="orcid-id-logo" src="/resource/img/orcid_16x16.png" width="16" height="16" alt="ORCID logo"/> https://orcid.org/0000-0001-8186-3710 </a> </span> </p> </div> <a data-js-tooltip="tooltip_close" class="close" id="tooltipClose2"> &#x02A2F; </a> </div> </li> <li data-js-tooltip="tooltip_trigger" > <a data-author-id="3" class="author-name" > Maurizio Porfiri <span class="email"> </span></a> <div id="author-meta-3" class="author-info" data-js-tooltip="tooltip_target"> <p class="roles" id="authRoles"> <span class="type">Roles</span> Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Resources, Supervision, Writing – original draft, Writing – review & editing </p> <p id="authCorresponding-3"> <span class="email">* E-mail:</span> <a href="mailto:mporfiri@nyu.edu">mporfiri@nyu.edu</a></p> <p id="authAffiliations-3"><span class="type">Affiliations</span> Center for Urban Science and Progress, New York University Tandon School of Engineering, Brooklyn, New York, United States of America, Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States of America, Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States of America </p> <div> <p class="orcid" id="authOrcid-3"> <span> <a id="connect-orcid-link" href="https://orcid.org/0000-0002-1480-3539" target="_blank" title="ORCID Registry"> <img id="orcid-id-logo" src="/resource/img/orcid_16x16.png" width="16" height="16" alt="ORCID logo"/> https://orcid.org/0000-0002-1480-3539 </a> </span> </p> </div> <a data-js-tooltip="tooltip_close" class="close" id="tooltipClose3"> &#x02A2F; </a> </div> </li> </ul> <script src="/resource/js/components/tooltip.js" type="text/javascript"></script> </div> <div id="floatTitleTop" data-js-floater="title_author" class="float-title" role="presentation"> <div class="set-grid"> <div class="float-title-inner"> <h1><?xml version="1.0" encoding="UTF-8"?>Urban scaling with censored data</h1> <ul id="floatAuthorList" data-js-floater="floated_authors"> <li data-float-index="1">Inês Figueira,&nbsp; </li> <li data-float-index="2">Rayan Succar,&nbsp; </li> <li data-float-index="3">Roni Barak Ventura,&nbsp; </li> <li data-float-index="4">Maurizio Porfiri </li> </ul> </div> <div class="logo-close" id="titleTopCloser"> <img src="/resource/img/logo-plos.png" style="height: 2em" alt="PLOS" /> <div class="close-floater" title="close">x</div> </div> </div> </div> <ul class="date-doi"> <li id="artPubDate">Published: January 3, 2025</li> <li id="artDoi"> <a href="https://doi.org/10.1371/journal.pcsy.0000029">https://doi.org/10.1371/journal.pcsy.0000029</a> </li> <li class="flex-spacer"></li> </ul> </div> <div> </div> </header> <section class="article-body"> <ul class="article-tabs"> <li class="tab-title active" id="tabArticle"> <a href="/complexsystems/article?id=10.1371/journal.pcsy.0000029" class="article-tab-1">Article</a> </li> <li class="tab-title " id="tabAuthors"> <a href="/complexsystems/article/authors?id=10.1371/journal.pcsy.0000029" class="article-tab-2">Authors</a> </li> <li class="tab-title " id="tabMetrics"> <a href="/complexsystems/article/metrics?id=10.1371/journal.pcsy.0000029" class="article-tab-3">Metrics</a> </li> <li class="tab-title " id="tabComments"> <a href="/complexsystems/article/comments?id=10.1371/journal.pcsy.0000029" class="article-tab-4">Comments</a> </li> <li class="tab-title" id="tabRelated"> <a class="article-tab-5" id="tabRelated-link">Media Coverage</a> <script>$(document).ready(function() { $.getMediaLink("10.1371/journal.pcsy.0000029").then(function (url) { $("#tabRelated-link").attr("href", url) } ) })</script> </li> <li class="tab-title " id="tabPeerReview"> <a href="/complexsystems/article/peerReview?id=10.1371/journal.pcsy.0000029" class="article-tab-6">Peer Review</a> </li> </ul> <div class="article-container"> <div id="nav-article"> <ul class="nav-secondary"> <li class="nav-comments" id="nav-comments"> <a href="article/comments?id=10.1371/journal.pcsy.0000029">Reader Comments</a> </li> <li id="nav-figures"><a href="#" data-doi="10.1371/journal.pcsy.0000029">Figures</a></li> </ul> <div id="nav-data-linking" data-data-url="https://github.com/dynamicalsystemslaboratory/Urban-scaling-with-missing-data"> </div> </div> <script src="/resource/js/components/scroll.js" type="text/javascript"></script> <script src="/resource/js/components/nav_builder.js" type="text/javascript"></script> <script src="/resource/js/components/floating_nav.js" type="text/javascript"></script> <div id="figure-lightbox-container"></div> <script id="figure-lightbox-template" type="text/template"> <div id="figure-lightbox" class="reveal-modal full" data-reveal aria-hidden="true" role="dialog"> <div class="lb-header"> <h1 id="lb-title"><%= articleTitle %></h1> <div id="lb-authors"> <span>Inês Figueira</span> <span>Rayan Succar</span> <span>Roni Barak Ventura</span> <span>Maurizio Porfiri</span> </div> <div class="lb-close" title="close">&nbsp;</div> </div> <div class="img-container"> <div class="loader"> <i class="fa-spinner"></i> </div> <img class="main-lightbox-image" src=""/> <aside id="figures-list"> <% figureList.each(function (ix, figure) { %> <div class="change-img" data-doi="<%= figure.getAttribute('data-doi') %>"> <img class="aside-figure" src="/complexsystems/article/figure/image?size=inline&id=<%= figure.getAttribute('data-doi') %>" /> </div> <% }) %> <div class="dummy-figure"> </div> </aside> </div> <div id="lightbox-footer"> <div id="btns-container" class="lightbox-row <% if(figureList.length <= 1) { print('one-figure-only') } %>"> <div class="fig-btns-container reset-zoom-wrapper left"> <span class="fig-btn reset-zoom-btn">Reset zoom</span> </div> <div class="zoom-slider-container"> <div class="range-slider-container"> <span id="lb-zoom-min"></span> <div class="range-slider round" data-slider data-options="start: 20; end: 200; initial: 20;"> <span class="range-slider-handle" role="slider" tabindex="0"></span> <span class="range-slider-active-segment"></span> <input type="hidden"> </div> <span id="lb-zoom-max"></span> </div> </div> <% if(figureList.length > 1) { %> <div class="fig-btns-container"> <span class="fig-btn all-fig-btn"><i class="icon icon-all"></i> All Figures</span> <span class="fig-btn next-fig-btn"><i class="icon icon-next"></i> Next</span> <span class="fig-btn prev-fig-btn"><i class="icon icon-prev"></i> Previous</span> </div> <% } %> </div> <div id="image-context"> </div> </div> </div> </script> <script id="image-context-template" type="text/template"> <div class="footer-text"> <div id="figure-description-wrapper"> <div id="view-more-wrapper" style="<% descriptionExpanded? print('display:none;') : '' %>"> <span id="figure-title"><%= title %></span> <p id="figure-description"> <%= description %>&nbsp;&nbsp; </p> <span id="view-more">show more<i class="icon-arrow-right"></i></span> </div> <div id="view-less-wrapper" style="<% descriptionExpanded? print('display:inline-block;') : '' %>" > <span id="figure-title"><%= title %></span> <p id="full-figure-description"> <%= description %>&nbsp;&nbsp; <span id="view-less">show less<i class="icon-arrow-left"></i></span> </p> </div> </div> </div> <div id="show-context-container"> <a class="btn show-context" href="<%= showInContext(strippedDoi) %>">Show in Context</a> </div> <div id="download-buttons"> <h3>Download:</h3> <div class="item"> <a href="/complexsystems/article/figure/image?size=original&download=&id=<%= doi %>" title="original image"> <span class="download-btn">TIFF</span> </a> <span class="file-size"><%= fileSizes.original %></span> </div> <div class="item"> <a href="/complexsystems/article/figure/image?size=large&download=&id=<%= doi %>" title="large image"> <span class="download-btn">PNG</span> </a> <span class="file-size"><%= fileSizes.large %></span> </div> <div class="item"> <a href="/complexsystems/article/figure/powerpoint?id=<%= doi %>" title="PowerPoint slide"> <span class="download-btn">PPT</span> </a> </div> </div> </script> <div class="article-content"> <div id="figure-carousel-section"> <h2>Figures</h2> <div id="figure-carousel"> <div class="carousel-wrapper"> <div class="slider"> <div class="carousel-item lightbox-figure" data-doi="10.1371/journal.pcsy.0000029.g001"> <img src="/complexsystems/article/figure/image?size=inline&amp;id=10.1371/journal.pcsy.0000029.g001" loading="lazy" alt="Fig 1" /> </div> <div class="carousel-item lightbox-figure" data-doi="10.1371/journal.pcsy.0000029.g002"> <img src="/complexsystems/article/figure/image?size=inline&amp;id=10.1371/journal.pcsy.0000029.g002" loading="lazy" alt="Fig 2" /> </div> <div class="carousel-item lightbox-figure" data-doi="10.1371/journal.pcsy.0000029.g003"> <img src="/complexsystems/article/figure/image?size=inline&amp;id=10.1371/journal.pcsy.0000029.g003" loading="lazy" alt="Fig 3" /> </div> <div class="carousel-item lightbox-figure" data-doi="10.1371/journal.pcsy.0000029.t001"> <img src="/complexsystems/article/figure/image?size=inline&amp;id=10.1371/journal.pcsy.0000029.t001" loading="lazy" alt="Table 1" /> </div> <div class="carousel-item lightbox-figure" data-doi="10.1371/journal.pcsy.0000029.t002"> <img src="/complexsystems/article/figure/image?size=inline&amp;id=10.1371/journal.pcsy.0000029.t002" loading="lazy" alt="Table 2" /> </div> <div class="carousel-item lightbox-figure" data-doi="10.1371/journal.pcsy.0000029.g004"> <img src="/complexsystems/article/figure/image?size=inline&amp;id=10.1371/journal.pcsy.0000029.g004" loading="lazy" alt="Fig 4" /> </div> </div> </div> <div class="carousel-control"> <span class="button previous"></span> <span class="button next"></span> </div> <div class="carousel-page-buttons"> </div> </div> </div> <script src="/resource/js/vendor/jquery.touchswipe.js" type="text/javascript"></script> <script src="/resource/js/components/figure_carousel.js" type="text/javascript"></script> <script src="/resource/js/vendor/jquery.dotdotdot.js" type="text/javascript"></script> <div class="article-text" id="artText"> <div xmlns:plos="http://plos.org" class="abstract toc-section abstract-type-"><a id="abstract0" name="abstract0" data-toc="abstract0" class="link-target" title="Abstract"></a><h2>Abstract</h2><div class="abstract-content"><a id="article1.front1.article-meta1.abstract1.p1" name="article1.front1.article-meta1.abstract1.p1" class="link-target"></a><p>In the realm of urban science, scaling laws are essential for understanding the relationship between city population and urban features, such as socioeconomic outputs. Ideally, these laws would be based on complete datasets; however, researchers often face challenges related to data availability and reporting practices, resulting in datasets that include only the highest observations of the urban features (top-<em>k</em>). A key question that emerges is: Under what conditions can an analysis based solely on top-<em>k</em> observations accurately determine whether a scaling relationship is truly superlinear or sublinear? To address this question, we conduct a numerical study that explores how relying exclusively on reported values can lead to erroneous conclusions, revealing a selection bias that favors sublinear over superlinear scaling. In response, we develop a method that provides robust estimates of the minimum and maximum potential scaling exponents when only top-<em>k</em> observations are available. We apply this method to two case studies involving firearm violence, a domain notorious for its suppressed datasets, and we demonstrate how this approach offers a reliable framework for analyzing scaling relationships with censored data.</p> </div></div><div xmlns:plos="http://plos.org" class="abstract toc-section abstract-type-summary"><a id="abstract1" name="abstract1" data-toc="abstract1" class="link-target" title="Author summary"></a> <h2>Author summary</h2> <div class="abstract-content"><a id="article1.front1.article-meta1.abstract2.p1" name="article1.front1.article-meta1.abstract2.p1" class="link-target"></a><p>Over the past two decades, urban scaling has become essential for understanding the rural-urban continuum by quantifying how urban characteristics depend on a city’s population size. For example, more populous cities are expected to have more patents and wages per capita, but fewer gas stations and road surfaces. Nonetheless, access to incomplete datasets about urban features systematically skews the conclusions derived from this theory. This issue is particularly relevant for features related to health outcomes, which are regularly obtained from partially censored datasets. For instance, data on firearms in the United States remain inaccessible to the public. To address this limitation, we developed a framework that enables urban researchers to draw reliable conclusions about urban scaling, even when dealing with censored datasets. We demonstrate this framework with data on firearm homicide and the number of firearms recovered by authorities in American cities.</p> </div></div> <div xmlns:plos="http://plos.org" class="articleinfo"><p><strong>Citation: </strong>Figueira I, Succar R, Barak Ventura R, Porfiri M (2025) Urban scaling with censored data. PLOS Complex Syst 2(1): e0000029. https://doi.org/10.1371/journal.pcsy.0000029</p><p><strong>Editor: </strong>Haroldo V. Ribeiro, Universidade Estadual de Maringa, BRAZIL </p><p><strong>Received: </strong>August 20, 2024; <strong>Accepted: </strong>November 18, 2024; <strong>Published: </strong> January 3, 2025</p><p><strong>Copyright: </strong> © 2025 Figueira et al. This is an open access article distributed under the terms of the <a href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</a>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</p><p><strong>Data Availability: </strong>Codes and datasets are available on the Dynamical Systems Laboratory’s Github (Link: <a href="https://github.com/dynamicalsystemslaboratory/Urban-scaling-with-missing-data">https://github.com/dynamicalsystemslaboratory/Urban-scaling-with-missing-data</a>, Accession Number Link: <a href="https://github.com/dynamicalsystemslaboratory/Urban-scaling-with-missing-data/releases/tag/V2.0">https://github.com/dynamicalsystemslaboratory/Urban-scaling-with-missing-data/releases/tag/V2.0</a>). The only dataset not shared in this repository is the NCHS’s Restricted-Use Vital Statistics Database: readers who wish to use this dataset can request access from NCHS at <a href="https://www.cdc.gov/nchs/nvss/nvss-restricted-data.htm#anchor_1553801903">https://www.cdc.gov/nchs/nvss/nvss-restricted-data.htm#anchor_1553801903</a>.</p><p><strong>Funding: </strong>This work was supported by New York University and the U.S. National Science Foundation (CMMI-1953135 to M.P.; URL: <a href="https://www.nsf.gov/awardsearch/showAward?AWD_ID=1953135&amp;HistoricalAwards=false">https://www.nsf.gov/awardsearch/showAward?AWD_ID=1953135&amp;HistoricalAwards=false</a>). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</p><p><strong>Competing interests: </strong> The authors have declared that no competing interests exist.</p></div> <div xmlns:plos="http://plos.org" id="section1" class="section toc-section"><a id="sec001" name="sec001" data-toc="sec001" class="link-target" title="1 Introduction"></a><h2>1 Introduction</h2><a id="article1.body1.sec1.p1" name="article1.body1.sec1.p1" class="link-target"></a><p>Scaling laws are ubiquitous in nature, describing many of the phenomena and processes that surround us. A scaling law summarizes the behavior of a system through a power-law, connecting certain properties of the system with its size [<a href="#pcsy.0000029.ref001" class="ref-tip">1</a>]. Scaling laws have been instrumental in characterizing relationships across a wide range of domains, including biological and physical systems. For example, Kleiber’s law illustrates how metabolic rates of organisms scale with their body mass [<a href="#pcsy.0000029.ref002" class="ref-tip">2</a>]. Likewise, scaling laws in the field of ecology indicate that the number of species supported by an ecosystem relates to its area [<a href="#pcsy.0000029.ref003" class="ref-tip">3</a>]. In the ideal gas law, scaling describes the relationships between pressure, volume, temperature, and the number of molecules [<a href="#pcsy.0000029.ref004" class="ref-tip">4</a>].</p> <a id="article1.body1.sec1.p2" name="article1.body1.sec1.p2" class="link-target"></a><p>As urbanization rates are ever-increasing [<a href="#pcsy.0000029.ref005" class="ref-tip">5</a>], understanding scaling of urban features with city population is critical to urban science, management, and planning. Many scaling relationships between the population of a city <em>X</em> and urban feature <em>Y</em> have been documented, which have led to the development of urban scaling theory. Given <em>N</em> cities, an urban scaling law takes the form of <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e001" loading="lazy" class="inline-graphic"></span>, with <em>i</em> = 1, …, <em>N</em>, where <em>C</em> is a common baseline, <em>β</em> is the scaling exponent that illustrates how an urban feature varies with city size, <em>e</em> is the Napier’s constant, and <em>ε</em><sub><em>i</em></sub> represents the deviation of city <em>i</em> from its nominal behavior [<a href="#pcsy.0000029.ref006" class="ref-tip">6</a>]. The scaling parameters <em>C</em> and <em>β</em> are typically computed by logarithmically transforming the scaling law to ln <em>Y</em><sub><em>i</em></sub> = ln <em>C</em> + <em>β</em> ln <em>X</em><sub><em>i</em></sub> + <em>ε</em><sub><em>i</em></sub> and fitting a linear model [<a href="#pcsy.0000029.ref006" class="ref-tip">6</a>].</p> <a id="article1.body1.sec1.p3" name="article1.body1.sec1.p3" class="link-target"></a><p>Researchers have shown that urban features can scale differently with population size, reflecting systematic relationships across urban and societal metrics. Empirical studies demonstrate that socioeconomic features such as GDP, property values, patents, homicides, and violent crimes exhibit a superlinear dependence on city population (<em>β</em> &gt; 1) [<a href="#pcsy.0000029.ref005" class="ref-tip">5</a>–<a href="#pcsy.0000029.ref012" class="ref-tip">12</a>], meaning that larger (smaller) cities exhibit higher (lower) rates of these features per capita. In contrast, the space occupied by urban infrastructure such as roads, cables and built area scales sublinearly with city population (0 &lt; <em>β</em> &lt; 1) [<a href="#pcsy.0000029.ref013" class="ref-tip">13</a>, <a href="#pcsy.0000029.ref014" class="ref-tip">14</a>]. Household and individual needs like total employment, housing, and water consumption, instead, typically show a linear dependency on city population (<em>β</em> = 1) [<a href="#pcsy.0000029.ref005" class="ref-tip">5</a>, <a href="#pcsy.0000029.ref015" class="ref-tip">15</a>].</p> <a id="article1.body1.sec1.p4" name="article1.body1.sec1.p4" class="link-target"></a><p>Over the years, several studies have refined urban scaling and expanded its framework to address methodological limitations. For example, Bettencourt <em>et al</em>. distinguished cross-sectional from temporal scaling to capture temporal dynamics beyond pure scale effects [<a href="#pcsy.0000029.ref016" class="ref-tip">16</a>]. Cross-sectional scaling compares cities at a fixed point in time, whereas temporal scaling tracks changes within cities but can be unstable in cities with slow or negative growth. Finance and Cottineau addressed the issue of null observations in cities during scaling analysis [<a href="#pcsy.0000029.ref017" class="ref-tip">17</a>]. Although these values may be valid (for example, a city where no patents were filed), the standard practice was to remove them from the analysis, as the logarithm of zero is undefined [<a href="#pcsy.0000029.ref018" class="ref-tip">18</a>]. The authors explored alternative methods to ordinary least squares (OLS) for fitting urban models to avoid the exclusion of zero counts. Xiao and Gong argued that spatial dependencies exist between cities that are geographically proximate [<a href="#pcsy.0000029.ref019" class="ref-tip">19</a>]. They designed a spatial filtering method to account for such dependencies in urban scaling and found that models that do not account for spatial interactions may overestimate GDP in developed regions and underestimate it in underdeveloped ones. In spite of the great strides made in the growing field of urban scaling, the vast majority of existing analyses assume access to a complete data set when fitting a model.</p> <a id="article1.body1.sec1.p5" name="article1.body1.sec1.p5" class="link-target"></a><p>When working with city-level data, access to complete datasets becomes a common challenge. One cause of incomplete data is the obligation of government agencies to prevent the identifiability of sensitive information. For example, the Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiological Research (CDC WONDER) publishes data on the underlying causes of death among United States (U.S.) citizens. They provide the yearly counts of each cause of death at the resolution of the entire country, states, and counties. However, to protect individuals’ privacy, the agency suppresses counts of nine and lower. Hence, urban scaling research on causes of death in the U.S. are difficult to perform. Similarly, the Tiahrt Amendments [<a href="#pcsy.0000029.ref020" class="ref-tip">20</a>] impose restrictions on the reporting of data by the U.S. Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF), limiting the disclosure of trace data related to firearms used in crimes to the public. Instead of sharing complete data, the ATF is only allowed to report limited information, such as the top ten cities in each state with the highest number of gun recoveries and the total number of firearms recovered in that state. For both the CDC WONDER and ATF cases, data are censored because they fall below a certain threshold, a situation known as “left-censoring”. Such data censoring poses a serious challenge to urban scaling studies on firearm recoveries in the U.S.</p> <a id="article1.body1.sec1.p6" name="article1.body1.sec1.p6" class="link-target"></a><p>Data on cities may also be incomplete due to “missingness”, where data points are not available because they are not recorded. The reasons underlying missing data are commonly known as “missing data mechanisms”. These mechanisms, as described in [<a href="#pcsy.0000029.ref021" class="ref-tip">21</a>], fall into three categories: missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). Data MCAR occurs when there is no relationship between whether a data point is missing and any values in the dataset, either missing or observed. When the probability of a missing value is dependent on other observed variables but not the value itself, it is considered MAR. In the case of MNAR, the missingness is systematically related to unobserved data or factors not measured by the researcher. For instance, for the CDC WONDER or ATF datasets, data are missing not at random as they are not available when falling below a certain threshold.</p> <a id="article1.body1.sec1.p7" name="article1.body1.sec1.p7" class="link-target"></a><p>Various methods have been devised to address the issue of incomplete data. Recent methodological research [<a href="#pcsy.0000029.ref022" class="ref-tip">22</a>, <a href="#pcsy.0000029.ref023" class="ref-tip">23</a>] has focused on maximum likelihood estimation (MLE) [<a href="#pcsy.0000029.ref024" class="ref-tip">24</a>, <a href="#pcsy.0000029.ref025" class="ref-tip">25</a>], Bayesian estimation [<a href="#pcsy.0000029.ref026" class="ref-tip">26</a>, <a href="#pcsy.0000029.ref027" class="ref-tip">27</a>], and multiple imputation [<a href="#pcsy.0000029.ref028" class="ref-tip">28</a>, <a href="#pcsy.0000029.ref029" class="ref-tip">29</a>]. However, most advanced statistical imputation methods mainly aim at imputing MCAR and MAR and are not suitable for MNAR [<a href="#pcsy.0000029.ref030" class="ref-tip">30</a>]. Some statistical methods have also been developed for regression analyses when data are MNAR, such as the Tobit model and its variations [<a href="#pcsy.0000029.ref031" class="ref-tip">31</a>], Powell quantile estimators [<a href="#pcsy.0000029.ref032" class="ref-tip">32</a>], or othe nonparametric estimators [<a href="#pcsy.0000029.ref033" class="ref-tip">33</a>]. While effective, these methods are quite general and fail to utilize key information provided by the reporting entity that may be accessible to researchers (for example, the sum of the censored data). Moreover, in the context of urban scaling, the primary focus of a model is whether scaling is superlinear or sublinear, making the precise value of a scaling exponent less critical than its bounds.</p> <a id="article1.body1.sec1.p8" name="article1.body1.sec1.p8" class="link-target"></a><p>In this paper, we aim to address censored data in the context of urban scaling. We focus on data related to firearms and mortality, only available for the highest (“top-<em>k</em>”) observations due to privacy reasons. We propose a rigorous, yet simple, method tailored for urban scaling analysis that estimates scaling behavior. Along with the top-<em>k</em> observations, the method incorporates the total counts of the feature across the dataset in the form of a constraint, taking advantage of the aggregated observations reported in existing datasets. By solving an optimization problem, we bound the regression slope by providing its minimum and the maximum possible values. This approach not only simplifies the estimation process compared to existing methods, but also provides robust bounds necessary for determining whether an urban feature scales superlinearly or sublinearly. Our method offers a powerful tool for urban researchers, ensuring reliable assessment of scaling behaviors even when working with incomplete data.</p> <a id="article1.body1.sec1.p9" name="article1.body1.sec1.p9" class="link-target"></a><p>In the following, we first conduct numerical simulations using both complete and incomplete synthetic datasets to explore how the use of incomplete data could bias the estimation of scaling laws. We then present an algorithm that iteratively distributes missing values to unknown cities. We apply the developed framework to two case studies. In the first, we inspect suppressed data on firearm homicides from CDC WONDER and complete data from National Center for Health Statistics’ (NCHS) Restricted-Use Vital Statistics Data. We compare the estimates of the scaling exponent when using the incomplete and complete data and validate our <em>β</em>-bounding method. In the second case study, we apply the bounding method on the partially reported data to conclude whether firearms recovered by the ATF follow a superlinear or sublinear scaling. Our results demonstrate the value of this bounding process in the study of urban scaling laws when datasets suffer from censored observations.</p> </div> <div xmlns:plos="http://plos.org" id="section2" class="section toc-section"><a id="sec002" name="sec002" data-toc="sec002" class="link-target" title="2 Results"></a><h2>2 Results</h2> <div id="section1" class="section toc-section"><a id="sec003" name="sec003" class="link-target" title="2.1 Assessing bias in urban scaling due to censored data"></a> <h3>2.1 Assessing bias in urban scaling due to censored data</h3> <a id="article1.body1.sec2.sec1.p1" name="article1.body1.sec2.sec1.p1" class="link-target"></a><p>As a first step to understand how incomplete data can bias the estimation of scaling laws and the inference of superlinearity and sublinearity, we conduct a numerical study using both complete and incomplete synthetic datasets. We simulate the typical case of health-related outcomes where data are only available for a subset of <em>k</em> cities with the highest values of the urban feature reported (top-<em>k</em>), and no other information is given regarding other cities except for the total value of the outcome variable in larger spatial units (as reported by CDC WONDER and ATF).</p> <a id="article1.body1.sec2.sec1.p2" name="article1.body1.sec2.sec1.p2" class="link-target"></a><p>We aim to quantify the deviation of the estimated regression slope <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e002" loading="lazy" class="inline-graphic"></span> (where a hat refers to an estimated value and superscript “k” denotes the known partial data) from the true value <em>β</em> due to censored data. To this end, we compute the error of the estimation (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e003" loading="lazy" class="inline-graphic"></span>) over a range of changes to key factors that could impact the estimation of <em>β</em>, including the true scaling law exponent (<em>β</em>), proportion of known data (top-<em>k</em>%), standard deviation of the error (<em>σ</em>), and complete dataset size (<em>N</em>). In addition, we consider two distributions for the population data: normal and log-normal. We generate random synthetic observations while systematically varying these parameters in a factorial design (see <a href="#sec010">Methods</a> for details).</p> <a id="article1.body1.sec2.sec1.p3" name="article1.body1.sec2.sec1.p3" class="link-target"></a><p>First, by using censored data, we find that the error of the estimation of <em>β</em> can be relatively high, and that it is similar for different values of <em>β</em> (<a href="#pcsy-0000029-g001">Fig 1A</a>). Interestingly, we find that the error of the estimation is asymmetric and biased toward sublinear scaling, such that one is more likely to infer a sublinear scaling relationship although a truly superlinear one exists. This asymmetry is engendered by the selection of the top-<em>k</em> cities based on their urban feature (<a href="#pcsy-0000029-g001">Fig 1B</a>). Specifically, the top-<em>k</em> cities are more likely to have a positive residual with respect to the linear fit on the complete dataset, so that considering only them leads to underestimation of the scaling exponent. In agreement with our expectations, we find that regardless of the population distribution (normal or log-normal) or the value of <em>β</em>, the magnitude of the error tends to increase as the percent of known data becomes smaller (<a href="#pcsy-0000029-g002">Fig 2A and 2B</a>), and as the standard deviation of the noise increases (<a href="#pcsy-0000029-g002">Fig 2C and 2D</a>). The error does not change with the size of the complete dataset (<a href="#pcsy-0000029-g002">Fig 2E and 2F</a>), although we notice that for larger datasets, the variance of the estimator decreases. Such a decrease does not guarantee the consistency of <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e004" loading="lazy" class="inline-graphic"></span> (see Section A of <a href="#pcsy.0000029.s001">S1 Appendix</a>).</p> <a class="link-target" id="pcsy-0000029-g001" name="pcsy-0000029-g001"></a><div class="figure" data-doi="10.1371/journal.pcsy.0000029.g001"><div class="img-box"><a title="Click for larger image" href="article/figure/image?size=medium&amp;id=10.1371/journal.pcsy.0000029.g001" data-doi="10.1371/journal.pcsy.0000029" data-uri="10.1371/journal.pcsy.0000029.g001"><img src="article/figure/image?size=inline&amp;id=10.1371/journal.pcsy.0000029.g001" alt="thumbnail" class="thumbnail" loading="lazy"></a><div class="expand"></div></div><div class="figure-inline-download"> Download: <ul><li><a href="article/figure/powerpoint?id=10.1371/journal.pcsy.0000029.g001"><div class="definition-label">PPT</div><div class="definition-description">PowerPoint slide</div></a></li><li><a href="article/figure/image?download&amp;size=large&amp;id=10.1371/journal.pcsy.0000029.g001"><div class="definition-label">PNG</div><div class="definition-description">larger image</div></a></li><li><a href="article/figure/image?download&amp;size=original&amp;id=10.1371/journal.pcsy.0000029.g001"><div class="definition-label">TIFF</div><div class="definition-description">original image</div></a></li></ul></div><div class="figcaption"><span>Fig 1. </span> Bias in estimating the urban scaling exponent with censored data.</div><p class="caption_target"><a id="article1.body1.sec2.sec1.fig1.caption1.p1" name="article1.body1.sec2.sec1.fig1.caption1.p1" class="link-target"></a><p>(A) Assessment of the estimate of the scaling exponent (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e005" loading="lazy" class="inline-graphic"></span>) from data generated using a true scaling law (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e006" loading="lazy" class="inline-graphic"></span> for <em>i</em> = 1, ⋯, <em>N</em>) with <em>X</em> following either a normal distribution (blue) or log-normal (orange), as a function of the true scaling exponent. The proportion of known data points is selected based on the <em>k</em>-highest percent value of the response variables <em>Y</em>. The violin plots represent the distribution of the error, while the boxes inside represent the first (Q1) and third (Q3) quartiles, and their whiskers extend to 1.5 times the interquartile range from Q1 and Q3. Each violin plot contains 500 data points. For each violin plot, we also report the true positive rate (TPR) for the inference of sublinear (<em>β</em> &lt; 1) and superlinear (<em>β</em> &gt; 1) scaling. (B) Illustration of the reason for bias towards sublinear scaling discovered in (A). Using a censored dataset that only uses the top values of a selected urban feature (red-filled circles) incorrectly discounts observations in the complete dataset (open circles) that have negative residual with respect to the true fit (black dashed line), thereby leading to biased model estimation (red solid line).</p> </p><p class="caption_object"><a href="https://doi.org/10.1371/journal.pcsy.0000029.g001"> https://doi.org/10.1371/journal.pcsy.0000029.g001</a></p></div><a class="link-target" id="pcsy-0000029-g002" name="pcsy-0000029-g002"></a><div class="figure" data-doi="10.1371/journal.pcsy.0000029.g002"><div class="img-box"><a title="Click for larger image" href="article/figure/image?size=medium&amp;id=10.1371/journal.pcsy.0000029.g002" data-doi="10.1371/journal.pcsy.0000029" data-uri="10.1371/journal.pcsy.0000029.g002"><img src="article/figure/image?size=inline&amp;id=10.1371/journal.pcsy.0000029.g002" alt="thumbnail" class="thumbnail" loading="lazy"></a><div class="expand"></div></div><div class="figure-inline-download"> Download: <ul><li><a href="article/figure/powerpoint?id=10.1371/journal.pcsy.0000029.g002"><div class="definition-label">PPT</div><div class="definition-description">PowerPoint slide</div></a></li><li><a href="article/figure/image?download&amp;size=large&amp;id=10.1371/journal.pcsy.0000029.g002"><div class="definition-label">PNG</div><div class="definition-description">larger image</div></a></li><li><a href="article/figure/image?download&amp;size=original&amp;id=10.1371/journal.pcsy.0000029.g002"><div class="definition-label">TIFF</div><div class="definition-description">original image</div></a></li></ul></div><div class="figcaption"><span>Fig 2. </span> Factors influencing bias in estimating the urban scaling exponent with censored data.</div><p class="caption_target"><a id="article1.body1.sec2.sec1.fig2.caption1.p1" name="article1.body1.sec2.sec1.fig2.caption1.p1" class="link-target"></a><p>Assessment of the estimate of the scaling exponent (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e007" loading="lazy" class="inline-graphic"></span>) from data generated using a true scaling law (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e008" loading="lazy" class="inline-graphic"></span> for <em>i</em> = 1, ⋯, <em>N</em>, and <em>β</em> = 5/6 or <em>β</em> = 7/6) with <em>X</em> following either a normal distribution (blue) or log-normal (orange), as a function of (A-B) proportion of known data, (C-D) standard deviation of the true error, and (E-F) complete dataset size. The proportion of known data points is selected based on the <em>k</em>-highest percent value of the response variables <em>Y</em>. The violin plots represent the distribution of the error, while the boxes inside represent the first (Q1) and third (Q3) quartiles, and their whiskers extend to 1.5 times the interquartile range from Q1 and Q3. Each violin plot contains 500 data points. For each violin plot, we also report the true positive rate (TPR) for the inference of sublinear (<em>β</em> = 5/6) and superlinear (<em>β</em> = 7/6) scaling.</p> </p><p class="caption_object"><a href="https://doi.org/10.1371/journal.pcsy.0000029.g002"> https://doi.org/10.1371/journal.pcsy.0000029.g002</a></p></div><a id="article1.body1.sec2.sec1.p4" name="article1.body1.sec2.sec1.p4" class="link-target"></a><p>In all of the simulations, we consider whether regressing with incomplete data causes urban scaling classification errors by looking at the true positive rate (TPR) for true superlinear and sublinear scaling relationships (Figs <a href="#pcsy-0000029-g001">1</a> and <a href="#pcsy-0000029-g002">2</a>). The TPR measures the proportion of sublinear (superlinear) cases correctly identified by a model as such, allowing us to evaluate the performance of hypothesis testing regarding sublinear or superlinear dependence on population. For instance, in the case of true superlinear scaling relations, the TPR represents the proportion of correctly identified superlinear relations when only a certain proportion of the data is known (<em>β</em> &gt; 1 and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e009" loading="lazy" class="inline-graphic"></span>; see <a href="#sec010">Methods</a>). Due to the asymmetry in the errors (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e010" loading="lazy" class="inline-graphic"></span> is underestimated), we find that the TPR for superlinear scaling is less than that for sublinear scaling, potentially being as low as zero.</p> <a id="article1.body1.sec2.sec1.p5" name="article1.body1.sec2.sec1.p5" class="link-target"></a><p>In Section B of <a href="#pcsy.0000029.s001">S1 Appendix</a>, we present results in <a href="#pcsy-0000029-g002">Fig 2</a> for <em>β</em> = 2/3 and 4/3 where similar trends are observed. We also show the relationship between the error in the estimation of the scaling exponent when using censored data and the coefficient of determination of the censored data estimation (<em>R</em><sup>k</sup>)<sup>2</sup>, where we see that the higher (<em>R</em><sup>k</sup>)<sup>2</sup>, the lower the bias.</p> </div> <div id="section2" class="section toc-section"><a id="sec004" name="sec004" class="link-target" title="2.2 Greedy algorithm to bound the scaling exponent"></a> <h3>2.2 Greedy algorithm to bound the scaling exponent</h3> <a id="article1.body1.sec2.sec2.p1" name="article1.body1.sec2.sec2.p1" class="link-target"></a><p>We devise a general bounding framework that uses a greedy optimization to estimate the minimum and maximum possible scaling exponents, <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e011" loading="lazy" class="inline-graphic"></span>. By computing these bounds, we aim to reach a more reliable conclusion about a scaling behavior, while effectively addressing the biases encountered when using OLS on the censored data. Within a system of <em>N</em> cities, we address the case in which the researcher has only access to urban measurements in a subsystem of <em>k</em> &lt; <em>N</em> cities, and to the total count of the urban feature <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e012" loading="lazy" class="inline-graphic"></span> across all <em>N</em> cities. In order to find the upper bound of the scaling exponent (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e013" loading="lazy" class="inline-graphic"></span>), we solve the constrained optimization problem <a name="pcsy.0000029.e014" id="pcsy.0000029.e014" class="link-target"></a><span class="equation"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e014" loading="lazy" class="inline-graphic"><span class="note">(1)</span></span> where the column vector <strong>X</strong> = [<em>X</em><sub>1</sub>, ⋯, <em>X</em><sub><em>N</em></sub>]<sup><em>T</em></sup> contains the population sizes of all <em>N</em> cities, <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e015" loading="lazy" class="inline-graphic"></span> comprises the <em>k</em> known values of the urban feature, <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e016" loading="lazy" class="inline-graphic"></span> consists of the <em>N</em> − <em>k</em> unknown values for which we are optimizing “uk”. Similar to city population data, we also consider the urban features to be positive integer numbers. We denote vectors and matrices in bold and use <em>T</em> for matrix transpose. The function <em>f</em><sub><em>β</em></sub>(<strong>X</strong>, <strong>Y</strong><sup>k</sup>, <strong>Y</strong><sup>uk</sup>) represents the OLS estimator of the scaling exponent (for further details, see <a href="#sec010">Methods</a>).</p> <a id="article1.body1.sec2.sec2.p2" name="article1.body1.sec2.sec2.p2" class="link-target"></a><p>In this greedy approach, we pose that the sum of <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e017" loading="lazy" class="inline-graphic"></span> and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e018" loading="lazy" class="inline-graphic"></span> over <em>i</em> is equal to the total of the urban feature <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e019" loading="lazy" class="inline-graphic"></span>. In addition, we constrain <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e020" loading="lazy" class="inline-graphic"></span> between <em>Y</em><sub>min,i</sub> and <em>Y</em><sub>max,i</sub>, the values of which will depend on the reporting and censoring process. The lower bound of the scaling exponent (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e021" loading="lazy" class="inline-graphic"></span>) can be written equivalently to <a href="#pcsy.0000029.e091">Eq (7)</a> (see <a href="#sec010">Methods</a>), with “min” instead. Once obtained, the upper and lower bounds can be used to verify the validity of inferences based on partial datasets. In fact, <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e022" loading="lazy" class="inline-graphic"></span> will offer backing to the inference of sublinear scaling and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e023" loading="lazy" class="inline-graphic"></span> to the inference of superlinear scaling. Some insight into the optimal <strong>Y</strong><sup>uk</sup> can be garnered by linearizing the objective function and solving the optimization problem analytically (see Section C of <a href="#pcsy.0000029.s001">S1 Appendix</a>). Such an analysis suggests that bigger cities should be assigned values close to <em>Y</em><sub>max,i</sub> and smaller cities values close to <em>Y</em><sub>min,i</sub>, thereby maximizing the contrast between them.</p> </div> <div id="section3" class="section toc-section"><a id="sec005" name="sec005" class="link-target" title="2.3 Case studies of urban scaling with censored data"></a> <h3>2.3 Case studies of urban scaling with censored data</h3> <a id="article1.body1.sec2.sec3.p1" name="article1.body1.sec2.sec3.p1" class="link-target"></a><p>To demonstrate the value of the our bounding scheme in urban research, we apply it to two real datasets with partial observations: firearm homicides from the CDC and firearms recovered by the ATF. In the CDC case study, we obtained access to the uncensored dataset from the National Center for Health Statistics (NCHS) [<a href="#pcsy.0000029.ref034" class="ref-tip">34</a>] allowing us to validate the scaling conclusions. Such privilege is not granted with the ATF study case. Applying our framework to these datasets, we not only gain a deeper understanding of firearm-related violence and crimes in the U.S., but also demonstrate how this optimization process can be generalized to other censored datasets for estimating scaling laws.</p> <div id="section1" class="section toc-section"><a id="sec006" name="sec006" class="link-target" title="2.3.1 Firearm homicides"></a><h4>2.3.1 Firearm homicides.</h4><a id="article1.body1.sec2.sec3.sec1.p1" name="article1.body1.sec2.sec3.sec1.p1" class="link-target"></a><p>Similar to Bettencourt <em>et al</em>. [<a href="#pcsy.0000029.ref016" class="ref-tip">16</a>], we perform cross-sectional scaling of firearm homicides with population for U.S. cities, over the five-year period between 2016 and 2020 (<a href="#pcsy-0000029-g003">Fig 3</a>). The results are presented for cities, encompassing both Metropolitan Statistical Areas (MSAs) and Micropolitan Statistical Areas (MicroSAs). While urban scaling relations are highly sensitive to the spatial boundaries defining a city [<a href="#pcsy.0000029.ref035" class="ref-tip">35</a>], there is no standardized definition for a city in the U.S. Consequently, both MSAs and MicroSAs are commonly used as functional cities in analyses [<a href="#pcsy.0000029.ref036" class="ref-tip">36</a>].</p> <a class="link-target" id="pcsy-0000029-g003" name="pcsy-0000029-g003"></a><div class="figure" data-doi="10.1371/journal.pcsy.0000029.g003"><div class="img-box"><a title="Click for larger image" href="article/figure/image?size=medium&amp;id=10.1371/journal.pcsy.0000029.g003" data-doi="10.1371/journal.pcsy.0000029" data-uri="10.1371/journal.pcsy.0000029.g003"><img src="article/figure/image?size=inline&amp;id=10.1371/journal.pcsy.0000029.g003" alt="thumbnail" class="thumbnail" loading="lazy"></a><div class="expand"></div></div><div class="figure-inline-download"> Download: <ul><li><a href="article/figure/powerpoint?id=10.1371/journal.pcsy.0000029.g003"><div class="definition-label">PPT</div><div class="definition-description">PowerPoint slide</div></a></li><li><a href="article/figure/image?download&amp;size=large&amp;id=10.1371/journal.pcsy.0000029.g003"><div class="definition-label">PNG</div><div class="definition-description">larger image</div></a></li><li><a href="article/figure/image?download&amp;size=original&amp;id=10.1371/journal.pcsy.0000029.g003"><div class="definition-label">TIFF</div><div class="definition-description">original image</div></a></li></ul></div><div class="figcaption"><span>Fig 3. </span> Urban scaling exponent of firearm homicides in the U.S. MSAs and MicroSAs (2016–2020).</div><p class="caption_target"><a id="article1.body1.sec2.sec3.sec1.fig1.caption1.p1" name="article1.body1.sec2.sec3.sec1.fig1.caption1.p1" class="link-target"></a><p>Yellow dots and orange diamonds represent the minimum (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e024" loading="lazy" class="inline-graphic"></span>) and maximum (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e025" loading="lazy" class="inline-graphic"></span>) scaling exponent, respectively, obtained by implementing the optimization strategy on the reported data (CDC suppresses firearm homicides in cities where there are fewer than ten incidents). These serve as bounds for the actual <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e026" loading="lazy" class="inline-graphic"></span> (dark purple open circles) and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e027" loading="lazy" class="inline-graphic"></span> (light purple squares) obtained using only the reported data; horizontal lines (whiskers) denote the limit of the 95% confidence interval. The horizontal dashed line represents the limit above which the scaling relation is superlinear.</p> </p><p class="caption_object"><a href="https://doi.org/10.1371/journal.pcsy.0000029.g003"> https://doi.org/10.1371/journal.pcsy.0000029.g003</a></p></div><a id="article1.body1.sec2.sec3.sec1.p2" name="article1.body1.sec2.sec3.sec1.p2" class="link-target"></a><p>Urban scaling for firearm homicides in the U.S. exhibits a power-law relation with city population for both the censored and complete datasets. Using a censored dataset leads to the inference of a sublinear relationship across all years, with the true exponent being consistently underestimated <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e028" loading="lazy" class="inline-graphic"></span> (<a href="#pcsy-0000029-g003">Fig 3</a>). With the complete dataset, <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e029" loading="lazy" class="inline-graphic"></span> reflects a strictly sublinear relationship for all years, except in the year 2020. In this year, when the reported MSAs and MicroSAs account for about three quarters of the total firearm homicides, <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e030" loading="lazy" class="inline-graphic"></span>, with a 95% confidence interval of [0.921;1.013] (<a href="#pcsy-0000029-t001">Table 1</a>). Given the confidence interval, we cannot reject the hypothesis that <em>β</em> = 1. We also note that the coefficient of determination of the complete model (<em>R</em><sup>2</sup>) is larger than that of the partial data ((<em>R</em><sup>k</sup>)<sup>2</sup>), indicating that using OLS regression on the complete dataset could yield better-fitted results (<a href="#pcsy-0000029-t001">Table 1</a>).</p> <a class="link-target" id="pcsy-0000029-t001" name="pcsy-0000029-t001"></a><div class="figure" data-doi="10.1371/journal.pcsy.0000029.t001"><div class="img-box"><a title="Click for larger image" href="article/figure/image?size=medium&amp;id=10.1371/journal.pcsy.0000029.t001" data-doi="10.1371/journal.pcsy.0000029" data-uri="10.1371/journal.pcsy.0000029.t001"><img src="article/figure/image?size=inline&amp;id=10.1371/journal.pcsy.0000029.t001" alt="thumbnail" class="thumbnail" loading="lazy"></a><div class="expand"></div></div><div class="figure-inline-download"> Download: <ul><li><a href="article/figure/powerpoint?id=10.1371/journal.pcsy.0000029.t001"><div class="definition-label">PPT</div><div class="definition-description">PowerPoint slide</div></a></li><li><a href="article/figure/image?download&amp;size=large&amp;id=10.1371/journal.pcsy.0000029.t001"><div class="definition-label">PNG</div><div class="definition-description">larger image</div></a></li><li><a href="article/figure/image?download&amp;size=original&amp;id=10.1371/journal.pcsy.0000029.t001"><div class="definition-label">TIFF</div><div class="definition-description">original image</div></a></li></ul></div><div class="figcaption"><span>Table 1. </span> Results on urban scaling exponent for firearm homicides in the U.S. MSAs and MicroSAs from 2016 to 2020, using suppressed and complete data.</div><p class="caption_target"></p><p class="caption_object"><a href="https://doi.org/10.1371/journal.pcsy.0000029.t001"> https://doi.org/10.1371/journal.pcsy.0000029.t001</a></p></div><a id="article1.body1.sec2.sec3.sec1.p3" name="article1.body1.sec2.sec3.sec1.p3" class="link-target"></a><p>We apply our bounding scheme assuming each suppressed county had between one and nine counts of homicide. Our results indicate that <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e040" loading="lazy" class="inline-graphic"></span> and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e041" loading="lazy" class="inline-graphic"></span> across all years so that when working with partial data, one should be prudent in interpreting their results (<a href="#pcsy-0000029-g003">Fig 3</a> and <a href="#pcsy-0000029-t001">Table 1</a>). In particular, the fact that the upper bound is always greater than 1 indicates that one should not exclude the possibility that their inference based on partial data is incorrect. This is the case for the year 2020, when partial data would yield <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e042" loading="lazy" class="inline-graphic"></span> with confidence [0.492;0.697] and real data are instead supportive of a linear scaling <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e043" loading="lazy" class="inline-graphic"></span>, with a 95% confidence interval of [0.921;1.013].</p> </div> <div id="section2" class="section toc-section"><a id="sec007" name="sec007" class="link-target" title="2.3.2 Recovered firearms"></a><h4>2.3.2 Recovered firearms.</h4><a id="article1.body1.sec2.sec3.sec2.p1" name="article1.body1.sec2.sec3.sec2.p1" class="link-target"></a><p>In the second case study, we investigate the scaling of firearms recovered across the U.S. in 2022 with city population. These yearly data are made available by the ATF, where the top-<em>k</em> cities per state with the most firearms recovered are reported, along with the total number of firearms recovered in the entire state. Using only the reported values, it is difficult to conclude whether firearms recoveries scale sublinearly or superlinearly with population across the U.S states. The small sample size (10 cities for each state except Vermont and Washington) does not allow for precise estimation, resulting in wide confidence intervals (<a href="#pcsy-0000029-t002">Table 2</a>).</p> <a class="link-target" id="pcsy-0000029-t002" name="pcsy-0000029-t002"></a><div class="figure" data-doi="10.1371/journal.pcsy.0000029.t002"><div class="img-box"><a title="Click for larger image" href="article/figure/image?size=medium&amp;id=10.1371/journal.pcsy.0000029.t002" data-doi="10.1371/journal.pcsy.0000029" data-uri="10.1371/journal.pcsy.0000029.t002"><img src="article/figure/image?size=inline&amp;id=10.1371/journal.pcsy.0000029.t002" alt="thumbnail" class="thumbnail" loading="lazy"></a><div class="expand"></div></div><div class="figure-inline-download"> Download: <ul><li><a href="article/figure/powerpoint?id=10.1371/journal.pcsy.0000029.t002"><div class="definition-label">PPT</div><div class="definition-description">PowerPoint slide</div></a></li><li><a href="article/figure/image?download&amp;size=large&amp;id=10.1371/journal.pcsy.0000029.t002"><div class="definition-label">PNG</div><div class="definition-description">larger image</div></a></li><li><a href="article/figure/image?download&amp;size=original&amp;id=10.1371/journal.pcsy.0000029.t002"><div class="definition-label">TIFF</div><div class="definition-description">original image</div></a></li></ul></div><div class="figcaption"><span>Table 2. </span> Estimates of the scaling exponent (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e044" loading="lazy" class="inline-graphic"></span>) for recovered firearms in each state of the U.S. (except of Hawaii) and the District of Columbia (D.C.), for the year 2022 based on ATF reported data, along with the corresponding bounds from the optimization.</div><p class="caption_target"></p><p class="caption_object"><a href="https://doi.org/10.1371/journal.pcsy.0000029.t002"> https://doi.org/10.1371/journal.pcsy.0000029.t002</a></p></div><a id="article1.body1.sec2.sec3.sec2.p2" name="article1.body1.sec2.sec3.sec2.p2" class="link-target"></a><p>To address this issue and bound the exponent <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e054" loading="lazy" class="inline-graphic"></span>, we apply the developed optimization algorithm with the assumption that each city has at least one firearm recovered. For 11 of the 49 states (all states except of Hawaii, see <a href="#sec010">Methods</a>), it is not possible to apply the optimization scheme since the number of cities other than the reported top-<em>k</em> exceeds the number of recovered firearms outside of the top-<em>k</em> cities, violating the underlying assumption. Out of the remaining 38 states, only three (Arizona, California, and Rhode Island) have <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e055" loading="lazy" class="inline-graphic"></span>. Therefore, we cannot reject the hypothesis of superlinearity or linearity for these states. For the remaining states, <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e056" loading="lazy" class="inline-graphic"></span>, indicating a sublinear behavior of firearm recoveries with respect to city population.</p> <a id="article1.body1.sec2.sec3.sec2.p3" name="article1.body1.sec2.sec3.sec2.p3" class="link-target"></a><p> <a href="#pcsy-0000029-g004">Fig 4</a> shows the bounds for the scaling relation when considering the combined 38 states and the District of Columbia (D.C.), where <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e057" loading="lazy" class="inline-graphic"></span> and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e058" loading="lazy" class="inline-graphic"></span>, reflecting the trend of sublinearity in the country. For this case study, we numerically explore the global optimality of the solution through exhaustive perturbations (see Section D of <a href="#pcsy.0000029.s001">S1 Appendix</a>).</p> <a class="link-target" id="pcsy-0000029-g004" name="pcsy-0000029-g004"></a><div class="figure" data-doi="10.1371/journal.pcsy.0000029.g004"><div class="img-box"><a title="Click for larger image" href="article/figure/image?size=medium&amp;id=10.1371/journal.pcsy.0000029.g004" data-doi="10.1371/journal.pcsy.0000029" data-uri="10.1371/journal.pcsy.0000029.g004"><img src="article/figure/image?size=inline&amp;id=10.1371/journal.pcsy.0000029.g004" alt="thumbnail" class="thumbnail" loading="lazy"></a><div class="expand"></div></div><div class="figure-inline-download"> Download: <ul><li><a href="article/figure/powerpoint?id=10.1371/journal.pcsy.0000029.g004"><div class="definition-label">PPT</div><div class="definition-description">PowerPoint slide</div></a></li><li><a href="article/figure/image?download&amp;size=large&amp;id=10.1371/journal.pcsy.0000029.g004"><div class="definition-label">PNG</div><div class="definition-description">larger image</div></a></li><li><a href="article/figure/image?download&amp;size=original&amp;id=10.1371/journal.pcsy.0000029.g004"><div class="definition-label">TIFF</div><div class="definition-description">original image</div></a></li></ul></div><div class="figcaption"><span>Fig 4. </span> Urban scaling results for recovered firearms in the U.S. in 2022 after optimization.</div><p class="caption_target"><a id="article1.body1.sec2.sec3.sec2.fig1.caption1.p1" name="article1.body1.sec2.sec3.sec2.fig1.caption1.p1" class="link-target"></a><p>The dots identify the optimal number of recovered firearms as a function of the population in 28,970 Census Incorporated Places and Minor Civil Divisions. The number of unknown recovered firearms in each of the 38 states and D.C. was optimally distributed among the different states to compute the minimum (A) and the maximum (B) scaling exponent <em>β</em>. All places were assumed to have at least one recovered firearm. Of the 49 states, it was not possible to compute <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e059" loading="lazy" class="inline-graphic"></span> and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e060" loading="lazy" class="inline-graphic"></span> for 11. This issue arises because, in these 11 states, the number of cities not in top-<em>k</em> exceeds the number of recovered firearms there, indicating some of them had zero firearms recovered. The bounding procedure used to compute <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e061" loading="lazy" class="inline-graphic"></span> and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e062" loading="lazy" class="inline-graphic"></span> operates under the assumption that every city within a state has at least one firearm recovered. When this assumption is violated, these bounds cannot be computed.</p> </p><p class="caption_object"><a href="https://doi.org/10.1371/journal.pcsy.0000029.g004"> https://doi.org/10.1371/journal.pcsy.0000029.g004</a></p></div></div> </div> <div id="section4" class="section toc-section"><a id="sec008" name="sec008" class="link-target" title="2.4 Sensitivity analysis"></a> <h3>2.4 Sensitivity analysis</h3> <a id="article1.body1.sec2.sec4.p1" name="article1.body1.sec2.sec4.p1" class="link-target"></a><p>The proposed bounds may be prone to error due to noise in the data. In order to assess the robustness of these bounds, we conduct Monte Carlo simulations to estimate 95% confidence intervals in the ATF dataset. We perform two variations of the simulations. The first (Method 1) assumes the sum of simulated values are within 5% difference with respect to the real data, and the second (Method 2) that the top-<em>k</em>% of the synthetic data matches the real. Each of these methods preserves different characteristics of the data (see <a href="#sec010">Methods</a> for details) and allows us to estimate the 95% confidence intervals of <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e063" loading="lazy" class="inline-graphic"></span> and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e064" loading="lazy" class="inline-graphic"></span>. We observe narrow confidence intervals for both simulations, indicating robustness of the bounding scheme (<a href="#pcsy-0000029-t002">Table 2</a>). For all states where <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e065" loading="lazy" class="inline-graphic"></span>, the confidence intervals are below 1, reinforcing our claim of sublinear scaling (<a href="#pcsy-0000029-t002">Table 2</a>). For Rhode Island, despite <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e066" loading="lazy" class="inline-graphic"></span>, the confidence interval using different methods are below 1, indicating potential ambiguity in the scaling interpretation for this state.</p> </div> </div> <div xmlns:plos="http://plos.org" id="section3" class="section toc-section"><a id="sec009" name="sec009" data-toc="sec009" class="link-target" title="3 Discussion"></a><h2>3 Discussion</h2><a id="article1.body1.sec3.p1" name="article1.body1.sec3.p1" class="link-target"></a><p>Urban scaling is a fundamental tool used in urban science, yielding interesting power laws that capture the relationship between urban features and city population. Ideally, urban scaling needs a complete dataset to derive accurate scaling exponents; however, legal and ethical considerations often lead to censoring of data, thereby presenting significant challenges to the estimation of urban scaling relationships. Censored data differently affect cities as a function of their count of an urban feature, whereby small cities are more prone to be characterized by smaller value of some urban features, potentially below the minimum that agencies can share with the public.</p> <a id="article1.body1.sec3.p2" name="article1.body1.sec3.p2" class="link-target"></a><p>In numerical simulations, we explore multiple factors that could impact the estimation of the scaling exponent. Our results indicate that two of these factors critically affect the estimation of scaling exponents: the proportion of known data and the variance of the noise. While their role in the estimation of scaling is intuitive as both these factors determine the quality of a dataset, we also find that scaling exponents are consistently underestimated. Therefore, one is more likely to correctly infer a sublinear relationship and fail to infer a superlinear one. Arguably, performing OLS fitting using a top-<em>k</em> dataset leads to systematic underestimation of the scaling exponent. For sufficiently dispersed datasets (ones with high noise), the cities experiencing the largest values of the urban feature under investigation may not be the most populous ones. Thus, a linear model with only the top-<em>k</em> cities could omit cities with large populations but values of the urban feature lower than the top-<em>k</em>. These cities have a negative residual with respect to the fit on the complete dataset; discarding them will lead to underestimating the scaling exponent. In real datasets, such a discrepancy may also result from data segmentation, where different population segments have been found to exhibit different scaling behaviors [<a href="#pcsy.0000029.ref037" class="ref-tip">37</a>–<a href="#pcsy.0000029.ref039" class="ref-tip">39</a>]. To address the biases that result from censored data, we devise a bounding method that determines the minimum and maximum possible scaling exponents, and apply it to two case studies.</p> <a id="article1.body1.sec3.p3" name="article1.body1.sec3.p3" class="link-target"></a><p>The first case study focuses on the scaling of firearm homicides over the five-year period between 2016 and 2020, where we compare the performance of a left-censored dataset against that of a complete one. For the complete dataset, we find a sublinear relationship for all years except for 2020, when the COVID-19 pandemic started and an increase in firearm purchases and violence has been documented [<a href="#pcsy.0000029.ref040" class="ref-tip">40</a>, <a href="#pcsy.0000029.ref041" class="ref-tip">41</a>]. In 2020, the data are, in fact, indicative of a linear scaling. Using the left-censored dataset, we are not able to recover such a change in time, whereby we consistently register sublinear scaling of firearm homicides for all the years. Our bounding scheme successfully casts a doubt on the validity of the sublinear trend. In fact, our lower bound is below one and our upper bound is above one, so that prudence is needed when drawing conclusion on the scaling exponent with partial data. Interestingly, aggregating the data over multiple years to mitigate zero counts may not resolve the issue of data missingness in the scaling. First, aggregation could skew the inference towards superlinear scaling, by systematically under counting firearm homicides in small cities without affecting the counting in large cities. Second, the aggregation does not capture time trends in the scaling, such as the one observed herein due to the COVID-19 pandemic (see Section E of <a href="#pcsy.0000029.s001">S1 Appendix</a>). Both these factors are likely the reasons for which several studies support firearm homicides to be more frequent in urban rather than rural settings [<a href="#pcsy.0000029.ref012" class="ref-tip">12</a>, <a href="#pcsy.0000029.ref042" class="ref-tip">42</a>–<a href="#pcsy.0000029.ref045" class="ref-tip">45</a>].</p> <a id="article1.body1.sec3.p4" name="article1.body1.sec3.p4" class="link-target"></a><p>In the second case study, we investigate the scaling of recovered firearms in the year 2022. In the absence of a complete dataset, the fit of an OLS model produces extremely wide confidence intervals, ranging from negative to values greater than one in some cases. Thus, conclusive interpretations of scaling behavior become virtually impossible. However, implementing our proposed bounding scheme allows to shed light on scaling of firearm recoveries. Our results support the sublinear scaling of firearm recoveries in the U.S., hinting that firearms might be more prevalent in rural areas. This notion aligns with the sublinear behavior of firearm ownership and federal firearm-selling licenses reported by Succar and Porfiri [<a href="#pcsy.0000029.ref012" class="ref-tip">12</a>]. Similarly, a recent Pew Research Center survey has shown that 46% of people who reside in rural areas reported themselves as firearm owners, compared to 19% of people who live in urban areas [<a href="#pcsy.0000029.ref046" class="ref-tip">46</a>]. The observed sublinear scaling in firearm recoveries could also be attributed to varying strategies for tracking and recovering firearms across different jurisdictions. The Tiahrt Amendment prohibits federal agencies from creating searchable firearm databases, making the ATF’s firearm recovery efforts extremely inefficient [<a href="#pcsy.0000029.ref047" class="ref-tip">47</a>]. Under these circumstances, records of completed firearm sales have become invaluable for regional law enforcement, especially when maintained and retained permanently in a central database. For instance, handgun sales records in California are stored in a state Department of Justice database, enabling law enforcement agencies to swiftly trace the ownership of handguns recovered in crimes [<a href="#pcsy.0000029.ref048" class="ref-tip">48</a>]. California is also one of the three states where we observe a potential superlinear relationship between city population and the number of firearms recovered by the ATF (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e067" loading="lazy" class="inline-graphic"></span>). Additionally, it is tenable that recovering firearms in smaller cities is easier than in larger ones due to familiarity among locals [<a href="#pcsy.0000029.ref049" class="ref-tip">49</a>, <a href="#pcsy.0000029.ref050" class="ref-tip">50</a>], their investment in creating a safe environment through community policing [<a href="#pcsy.0000029.ref051" class="ref-tip">51</a>, <a href="#pcsy.0000029.ref052" class="ref-tip">52</a>], and higher trust and cooperation between citizens and authorities [<a href="#pcsy.0000029.ref051" class="ref-tip">51</a>].</p> <a id="article1.body1.sec3.p5" name="article1.body1.sec3.p5" class="link-target"></a><p>While both study cases demonstrate its value in firearm research, our bounding method could also be implemented in domains other than urban science. For example, recent work suggests that metabolic rates of eusocial systems scale sublinearly with the mass of a colony [<a href="#pcsy.0000029.ref053" class="ref-tip">53</a>, <a href="#pcsy.0000029.ref054" class="ref-tip">54</a>]. Yet, practical limitations have hindered validation of this proposition across a wide range of colony sizes, as measurements of metabolic rates for small colonies are difficult to capture by typical respirometry apparatuses. Similarly, performing experiments on large colonies is challenged by housing requirements in the laboratory. As such, data in these metabolic studies are left- and right-censored. Our approach could help overcome those data limitations by bounding the scaling exponents of partial datasets and inferring the metabolism laws of colonies. Another possible application is in the field of environmental studies, where concentration of pollutants or chemicals is often left-censored because analytical instruments have detection limits below which pollutants cannot be accurately measured [<a href="#pcsy.0000029.ref055" class="ref-tip">55</a>]. Instead of reporting an exact concentration, values below the detection limit are commonly recorded as “less than” the limit or the percent detected [<a href="#pcsy.0000029.ref056" class="ref-tip">56</a>, <a href="#pcsy.0000029.ref057" class="ref-tip">57</a>]. By applying our approach to these left-censored datasets, environmental scientists could bound the scaling exponents that describe the relationship between chemical concentrations and various environmental factors.</p> <a id="article1.body1.sec3.p6" name="article1.body1.sec3.p6" class="link-target"></a><p>Our study has five significant limitations. First, in the numerical simulations we consider the residuals to be normally distributed. This assumption may not always be appropriate [<a href="#pcsy.0000029.ref058" class="ref-tip">58</a>], hindering the generalization of our conclusions to scenarios where the errors do not follow a normal distribution. The second limitation concerns the acquisition of data on city populations in the firearm recoveries case study. The ATF does not have a consistent definition of a city. While most of the cities included in the top-<em>k</em> list correspond to census incorporated places and minor civil divisions, some do not. This is the case for 22 areas, such as Eagle River in Alaska (a community within the Municipality of Anchorage). In our analysis we consider only census incorporated places and minor civil divisions [<a href="#pcsy.0000029.ref059" class="ref-tip">59</a>], thereby excluding these 22 other areas. This inconsistency in defining cities complicates the analysis, making it challenging to accurately define all possible cities not mentioned in the top-<em>k</em> list. The third limitation relates to our bounding method’s assumption that there is at least one observation in each city. For the ATF case study, we were unable to bound the scaling exponent for 11 states because the number of cities not included in the top-<em>k</em> list exceeds the number of firearms recovered in those areas. This limitation could be addressed in a future study by combining the proposed problem with the work of Finance and Cottineau [<a href="#pcsy.0000029.ref017" class="ref-tip">17</a>] that employ estimation techniques to handle datasets with zero counts so that our bounding method accounts for the possibility of zero observations. Fourth, our approach assumes that cities are independent of each other in line with classical urban scaling theory. As a result, we apply standard OLS for the estimation. We envision integrating our approach with the one proposed by Xiao and Gong [<a href="#pcsy.0000029.ref019" class="ref-tip">19</a>] to account for spatial interactions between cities, by generalizing the objective function of our optimization. Finally, the proposed optimization framework based on a greedy algorithm was developed for scaling with specific cases, which may limit the generalization of the algorithm to other problems. These problems may include datasets with large variances or a high number of outliers, different types of constraints, or scaling that requires estimators other than OLS.</p> <a id="article1.body1.sec3.p7" name="article1.body1.sec3.p7" class="link-target"></a><p>In conclusion, our work identifies a potential flaw in the current use of partial data to draw conclusions about scaling relationships in urban data. We offer compelling evidence that censored data may lead to inaccurate predictions of scaling exponents, where superlinear relationships could be erroneously identified as sublinear ones. We put forward a simple methodology to bound the scaling exponent from censored observations, based on the solution of a constrained optimization problem that assumes absence of zeros in the dataset and leverages information on the sum of all counts. We propose that future reporting of urban scaling relationships in technical papers (especially sublinear ones) include explicit information about the number of inaccessible data points along with an estimation of the expected effect of such a data missingness. The latter can be pursued through the implementation of a bounding scheme like the one proposed in this work (when possible) or stress tests on the scaling exponent through Monte Carlo simulations.</p> </div> <div xmlns:plos="http://plos.org" id="section4" class="section toc-section"><a id="sec010" name="sec010" data-toc="sec010" class="link-target" title="4 Methods"></a><h2>4 Methods</h2> <div id="section1" class="section toc-section"><a id="sec011" name="sec011" class="link-target" title="4.1 Urban scaling law"></a> <h3>4.1 Urban scaling law</h3> <a id="article1.body1.sec4.sec1.p1" name="article1.body1.sec4.sec1.p1" class="link-target"></a><p>Given <em>N</em> cities, an urban scaling law is a relationship between some urban feature of interest and the city population of the form <a name="pcsy.0000029.e068" id="pcsy.0000029.e068" class="link-target"></a><span class="equation"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e068" loading="lazy" class="inline-graphic"><span class="note">(2)</span></span> where <em>i</em> = 1, …, <em>N</em>, <em>Y</em><sub><em>i</em></sub> and <em>X</em><sub><em>i</em></sub> are the urban feature and population size for city <em>i</em>, <em>C</em> is a common baseline, and <em>ε</em><sub><em>i</em></sub> is the deviation of city <em>i</em> from its nominal behavior. This scaling law can be written in linear form [<a href="#pcsy.0000029.ref015" class="ref-tip">15</a>], <a name="pcsy.0000029.e069" id="pcsy.0000029.e069" class="link-target"></a><span class="equation"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e069" loading="lazy" class="inline-graphic"><span class="note">(3)</span></span> where we introduce log-transformed variables <em>y</em><sub><em>i</em></sub> = ln <em>Y</em><sub><em>i</em></sub>, <em>x</em><sub><em>i</em></sub> = ln <em>X</em><sub><em>i</em></sub>, and <em>α</em> = ln <em>C</em>. Since urban scaling relations are linear on the log-log scale, we can estimate the parameters of the scaling relationship by using OLS, which minimizes the sum of squared errors [<a href="#pcsy.0000029.ref006" class="ref-tip">6</a>]. Such a minimization yields <a name="pcsy.0000029.e070" id="pcsy.0000029.e070" class="link-target"></a><span class="equation"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e070" loading="lazy" class="inline-graphic"><span class="note">(4)</span></span> <a name="pcsy.0000029.e071" id="pcsy.0000029.e071" class="link-target"></a><span class="equation"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e071" loading="lazy" class="inline-graphic"><span class="note">(5)</span></span> where <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e072" loading="lazy" class="inline-graphic"></span> and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e073" loading="lazy" class="inline-graphic"></span> are the estimated values of <em>α</em> and <em>β</em>, and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e074" loading="lazy" class="inline-graphic"></span> and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e075" loading="lazy" class="inline-graphic"></span> are the averages of the log-transformed population size and urban feature, respectively. One of the limitations of OLS regression is that it requires complete data for all variables included in the model to ensure unbiased estimation. If there are missing data points, OLS may result in biased and unreliable regression coefficients [<a href="#pcsy.0000029.ref021" class="ref-tip">21</a>].</p> </div> <div id="section2" class="section toc-section"><a id="sec012" name="sec012" class="link-target" title="4.2 Assessing bias in urban scaling due to censored data"></a> <h3>4.2 Assessing bias in urban scaling due to censored data</h3> <a id="article1.body1.sec4.sec2.p1" name="article1.body1.sec4.sec2.p1" class="link-target"></a><p>The synthetic data are simulated according to a true scaling law, <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e076" loading="lazy" class="inline-graphic"></span>, with zero intercept (ln <em>C</em> = 0). This true scaling law serves as a baseline for comparing estimated scaling laws when using <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e077" loading="lazy" class="inline-graphic"></span>, allowing us to quantify the bias more accurately. The synthetic data are generated to account for different scenarios of scaling that could be produced by a real dataset. Specifically, we identify the population distribution, the true slope (<em>β</em>), standard deviation of the error (<em>σ</em>), size of the dataset (<em>N</em>), and the proportion of known data points (top-<em>k</em>%) out of the dataset as parameters that could meaningfully alter the estimation of the scaling exponent.</p> <a id="article1.body1.sec4.sec2.p2" name="article1.body1.sec4.sec2.p2" class="link-target"></a><p>To assess whether the marginal distribution of <em>X</em> affects the estimated <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e078" loading="lazy" class="inline-graphic"></span>, two population distributions are considered, normal (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e079" loading="lazy" class="inline-graphic"></span>) and log-normal (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e080" loading="lazy" class="inline-graphic"></span>), and sampled using <em>numpy</em> (version 1.26.4; [<a href="#pcsy.0000029.ref060" class="ref-tip">60</a>]). For each population distribution, we employ a factorial design varying the other four parameters: <em>β</em> ∈ {2/3, 5/6, 7/6, 4/3}, <em>σ</em> ∈ {0.01, 0.05, 0.1}, <em>N</em> ∈ {100, 500, 3000}, and top−<em>k</em>% ∈ {25%, 50%, 75%}. The values of <em>β</em> were selected based on the literature on urban scaling laws, which have helped identify typical scaling exponents as a function of the city organization and type of urban feature [<a href="#pcsy.0000029.ref013" class="ref-tip">13</a>, <a href="#pcsy.0000029.ref061" class="ref-tip">61</a>]. In total, the factorial design for each distribution contains 108 combinations (216 in total).</p> <a id="article1.body1.sec4.sec2.p3" name="article1.body1.sec4.sec2.p3" class="link-target"></a><p>For each possible combination in the factorial design, linear regression is performed on the subset of the known top−<em>k</em>% data points to obtain a value of <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e081" loading="lazy" class="inline-graphic"></span>. We simulate the experiment on the entire design 500 times, totaling 108,000 observations. To further assess how the bias resulting from using censored data affects the estimation of scaling relationships, we also look at the TPR of real superlinear and sublinear scaling relations. Specifically, for sublinear scaling cases (<em>β</em> &lt; 1), we consider estimates as true only when the upper bound of <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e082" loading="lazy" class="inline-graphic"></span>. Similarly, for superlinear cases (<em>β</em> &gt; 1), we consider estimates as true only when the lower bound of <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e083" loading="lazy" class="inline-graphic"></span>. TPR is then computed as the fraction of correct estimates out of all 500 estimates.</p> </div> <div id="section3" class="section toc-section"><a id="sec013" name="sec013" class="link-target" title="4.3 Greedy algorithm to bound the scaling exponent"></a> <h3>4.3 Greedy algorithm to bound the scaling exponent</h3> <a id="article1.body1.sec4.sec3.p1" name="article1.body1.sec4.sec3.p1" class="link-target"></a><p>The bounding method consists of optimizing over <strong>Y</strong><sup>uk</sup> to estimate the scaling exponent using the OLS estimator derived from <a href="#pcsy.0000029.e070">Eq (4)</a>, denoted as <a name="pcsy.0000029.e084" id="pcsy.0000029.e084" class="link-target"></a><span class="equation"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e084" loading="lazy" class="inline-graphic"><span class="note">(6)</span></span></p> <a id="article1.body1.sec4.sec3.p2" name="article1.body1.sec4.sec3.p2" class="link-target"></a><p>To find the maximum or minimum regression slopes, we construct the unknown observations <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e085" loading="lazy" class="inline-graphic"></span>. As an initial step, we assign <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e086" loading="lazy" class="inline-graphic"></span>, where <em>Y</em><sub>min,<em>i</em></sub> ≥ 1 in accordance with the assumption that all cities must have non-zero values for their feature, which may be violated in reality. To find the <strong>Y</strong><sup>uk</sup> entries that result in <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e087" loading="lazy" class="inline-graphic"></span> (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e088" loading="lazy" class="inline-graphic"></span>), we iteratively increase the value of each entry by one, without surpassing <em>Y</em><sub>max,<em>i</em></sub>, and seek the largest increase (decrease) of <em>f</em><sub><em>β</em></sub>. In other words, for each iteration over the entries of <strong>Y</strong><sup>uk</sup>, we compare the values of <em>f</em><sub><em>β</em></sub> for all updated entries and identify the entry that results in the largest (or smallest) value of <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e089" loading="lazy" class="inline-graphic"></span>. If two or more entries produce the same result for <em>f</em><sub><em>β</em></sub>, the algorithm will select the first entry that appears in the order of iteration. We end the process when the sum of known and unknown values matches <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e090" loading="lazy" class="inline-graphic"></span>. This greedy scheme is detailed in Algorithms 1 and 2. To gain a better intuition about the procedure, we describe it using the following equation: <a name="pcsy.0000029.e091" id="pcsy.0000029.e091" class="link-target"></a><span class="equation"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e091" loading="lazy" class="inline-graphic"><span class="note">(7)</span></span> for <em>t</em> = 1, ⋯, <em>t</em><sub><em>f</em></sub>, where <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e092" loading="lazy" class="inline-graphic"></span>, <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e093" loading="lazy" class="inline-graphic"></span>, and <em>ξ</em> is the set of all standard basis vectors of length <em>N</em> − <em>k</em>, that is, {[1, 0, …, 0]<sup>T</sup>, …, [0, 0, …, 1]<sup>T</sup>}. The maximum regression slope is found during the last iteration, <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e094" loading="lazy" class="inline-graphic"></span>. The optimization in <a href="#pcsy.0000029.e091">Eq (7)</a> is executed through exhaustive search, that is, searching over the entire set <em>ξ</em>.</p> <a id="article1.body1.sec4.sec3.p3" name="article1.body1.sec4.sec3.p3" class="link-target"></a><p><strong>Algorithm 1</strong> Greedy algorithm to find <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e095" loading="lazy" class="inline-graphic"></span></p> <a id="article1.body1.sec4.sec3.p4" name="article1.body1.sec4.sec3.p4" class="link-target"></a><p><strong>Input:</strong> <span class="inline-formula"> <img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e096" loading="lazy" class="inline-graphic"> </span> </p> <a id="article1.body1.sec4.sec3.p5" name="article1.body1.sec4.sec3.p5" class="link-target"></a><p><strong>Output:</strong> <span class="inline-formula"> <img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e097" loading="lazy" class="inline-graphic"> </span> </p> <a id="article1.body1.sec4.sec3.p6" name="article1.body1.sec4.sec3.p6" class="link-target"></a><p><strong>Initialization:</strong> <span class="inline-formula"> <img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e098" loading="lazy" class="inline-graphic"> </span> </p> <a id="article1.body1.sec4.sec3.p7" name="article1.body1.sec4.sec3.p7" class="link-target"></a><p> <strong>for</strong> <em>iteration</em> from 1 to <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e099" loading="lazy" class="inline-graphic"></span> <strong>do</strong></p> <a id="article1.body1.sec4.sec3.p8" name="article1.body1.sec4.sec3.p8" class="link-target"></a><p>  <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e100" loading="lazy" class="inline-graphic"></span></p> <a id="article1.body1.sec4.sec3.p9" name="article1.body1.sec4.sec3.p9" class="link-target"></a><p>  <em>i</em><sub>max</sub> ← 0</p> <a id="article1.body1.sec4.sec3.p10" name="article1.body1.sec4.sec3.p10" class="link-target"></a><p>  <strong>for</strong> <em>i</em> from <em>k</em> + 1 to <em>N</em> <strong>do</strong></p> <a id="article1.body1.sec4.sec3.p11" name="article1.body1.sec4.sec3.p11" class="link-target"></a><p>   <strong>Y</strong><sup>aux</sup> ← <strong>Y</strong><sup>uk</sup></p> <a id="article1.body1.sec4.sec3.p12" name="article1.body1.sec4.sec3.p12" class="link-target"></a><p>   <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e101" loading="lazy" class="inline-graphic"></span></p> <a id="article1.body1.sec4.sec3.p13" name="article1.body1.sec4.sec3.p13" class="link-target"></a><p>   <strong>Ensure:</strong> <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e102" loading="lazy" class="inline-graphic"></span></p> <a id="article1.body1.sec4.sec3.p14" name="article1.body1.sec4.sec3.p14" class="link-target"></a><p>   <strong>if</strong> <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e103" loading="lazy" class="inline-graphic"></span> <strong>then</strong></p> <a id="article1.body1.sec4.sec3.p15" name="article1.body1.sec4.sec3.p15" class="link-target"></a><p>    <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e104" loading="lazy" class="inline-graphic"></span></p> <a id="article1.body1.sec4.sec3.p16" name="article1.body1.sec4.sec3.p16" class="link-target"></a><p>   <strong>end if</strong></p> <a id="article1.body1.sec4.sec3.p17" name="article1.body1.sec4.sec3.p17" class="link-target"></a><p>  <strong>end for</strong></p> <a id="article1.body1.sec4.sec3.p18" name="article1.body1.sec4.sec3.p18" class="link-target"></a><p> <span class="inline-formula"> <img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e105" loading="lazy" class="inline-graphic"> </span> </p> <a id="article1.body1.sec4.sec3.p19" name="article1.body1.sec4.sec3.p19" class="link-target"></a><p><strong>end for</strong></p> <a id="article1.body1.sec4.sec3.p20" name="article1.body1.sec4.sec3.p20" class="link-target"></a><p><strong>return</strong> <span class="inline-formula"> <img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e106" loading="lazy" class="inline-graphic"> </span> </p> <a id="article1.body1.sec4.sec3.p21" name="article1.body1.sec4.sec3.p21" class="link-target"></a><p><strong>Algorithm 2</strong> Greedy algorithm to find <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e107" loading="lazy" class="inline-graphic"></span></p> <a id="article1.body1.sec4.sec3.p22" name="article1.body1.sec4.sec3.p22" class="link-target"></a><p><strong>Input:</strong> <span class="inline-formula"> <img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e108" loading="lazy" class="inline-graphic"> </span> </p> <a id="article1.body1.sec4.sec3.p23" name="article1.body1.sec4.sec3.p23" class="link-target"></a><p><strong>Output:</strong> <span class="inline-formula"> <img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e109" loading="lazy" class="inline-graphic"> </span> </p> <a id="article1.body1.sec4.sec3.p24" name="article1.body1.sec4.sec3.p24" class="link-target"></a><p><strong>Initialization:</strong> <span class="inline-formula"> <img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e110" loading="lazy" class="inline-graphic"> </span> </p> <a id="article1.body1.sec4.sec3.p25" name="article1.body1.sec4.sec3.p25" class="link-target"></a><p><strong>for</strong> <em>iteration</em> from 1 to <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e111" loading="lazy" class="inline-graphic"></span> <strong>do</strong></p> <a id="article1.body1.sec4.sec3.p26" name="article1.body1.sec4.sec3.p26" class="link-target"></a><p> <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e112" loading="lazy" class="inline-graphic"></span></p> <a id="article1.body1.sec4.sec3.p27" name="article1.body1.sec4.sec3.p27" class="link-target"></a><p> <em>i</em><sub>min</sub> ← 0</p> <a id="article1.body1.sec4.sec3.p28" name="article1.body1.sec4.sec3.p28" class="link-target"></a><p> <strong>for</strong> <em>i</em> from <em>k</em> + 1 to <em>N</em> <strong>do</strong></p> <a id="article1.body1.sec4.sec3.p29" name="article1.body1.sec4.sec3.p29" class="link-target"></a><p>  <strong>Y</strong><sup>aux</sup> ← <strong>Y</strong><sup>uk</sup></p> <a id="article1.body1.sec4.sec3.p30" name="article1.body1.sec4.sec3.p30" class="link-target"></a><p>  <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e113" loading="lazy" class="inline-graphic"></span></p> <a id="article1.body1.sec4.sec3.p31" name="article1.body1.sec4.sec3.p31" class="link-target"></a><p>  <strong>Ensure:</strong> <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e114" loading="lazy" class="inline-graphic"></span></p> <a id="article1.body1.sec4.sec3.p32" name="article1.body1.sec4.sec3.p32" class="link-target"></a><p> <strong>if</strong> <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e115" loading="lazy" class="inline-graphic"></span> <strong>then</strong></p> <a id="article1.body1.sec4.sec3.p33" name="article1.body1.sec4.sec3.p33" class="link-target"></a><p>   <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e116" loading="lazy" class="inline-graphic"></span></p> <a id="article1.body1.sec4.sec3.p34" name="article1.body1.sec4.sec3.p34" class="link-target"></a><p>  <strong>end if</strong></p> <a id="article1.body1.sec4.sec3.p35" name="article1.body1.sec4.sec3.p35" class="link-target"></a><p> <strong>end for</strong></p> <a id="article1.body1.sec4.sec3.p36" name="article1.body1.sec4.sec3.p36" class="link-target"></a><p> <span class="inline-formula"> <img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e117" loading="lazy" class="inline-graphic"> </span> </p> <a id="article1.body1.sec4.sec3.p37" name="article1.body1.sec4.sec3.p37" class="link-target"></a><p><strong>end for</strong></p> <a id="article1.body1.sec4.sec3.p38" name="article1.body1.sec4.sec3.p38" class="link-target"></a><p><strong>return</strong> <span class="inline-formula"> <img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e118" loading="lazy" class="inline-graphic"> </span> </p> </div> <div id="section4" class="section toc-section"><a id="sec014" name="sec014" class="link-target" title="4.4 Case studies of urban scaling with censored data"></a> <h3>4.4 Case studies of urban scaling with censored data</h3> <div id="section1" class="section toc-section"><a id="sec015" name="sec015" class="link-target" title="4.4.1 Firearm homicides"></a><h4>4.4.1 Firearm homicides.</h4><a id="article1.body1.sec4.sec4.sec1.p1" name="article1.body1.sec4.sec4.sec1.p1" class="link-target"></a><p>Firearm homicide data are obtained from the CDC WONDER database and NCHS’s Restricted-Use Vital Statistics Database. For both data sets, we query for incidents of firearm homicides using the following ICD-10 Codes: X93 (Assault by handgun discharge), X94 (Assault by rifle, shotgun, and larger firearm discharge), and X95 (Assault by other and unspecified firearm discharge). We filter the data for years between 2016 and 2020, and group the results by year and county. Population counts in each county are returned with the query.</p> <a id="article1.body1.sec4.sec4.sec1.p2" name="article1.body1.sec4.sec4.sec1.p2" class="link-target"></a><p>We conduct scaling analyses for each year, at the level of MSA and MicroSA. We begin with an OLS regression on logarithmically transformed variables to compute <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e119" loading="lazy" class="inline-graphic"></span> from the left-censored dataset and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e120" loading="lazy" class="inline-graphic"></span> from the complete dataset. The bounds <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e121" loading="lazy" class="inline-graphic"></span> and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e122" loading="lazy" class="inline-graphic"></span> for <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e123" loading="lazy" class="inline-graphic"></span> are estimated using the greedy optimization algorithm described earlier for the censored data. Cities with null values are removed from the analysis.</p> <a id="article1.body1.sec4.sec4.sec1.p3" name="article1.body1.sec4.sec4.sec1.p3" class="link-target"></a><p>For the MSA and MicroSA level analysis, we first convert county level data to MSAs and MicroSAs. We rely on the U.S. Bureau of Labor Statistics’ Quarterly Census of Employment and Wages County-MSA-CSA Crosswalk [<a href="#pcsy.0000029.ref062" class="ref-tip">62</a>] to aggregate counts of firearm homicides in counties to MSAs and MicroSAs, based on county codes. The total number of homicides (<span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e124" loading="lazy" class="inline-graphic"></span>) in all the MSAs and MircroSAs is also reported. After grouping the counties into their respective MSA or MicroSA, we take the ones that do not have any suppressed counties and construct the vector <strong>Y</strong><sup>k</sup>. Each element of <strong>Y</strong><sup>uk</sup> consists of an MSA/MicroSA that has at least one suppressed county. Let <em>h</em><sub><em>i</em></sub> represent the total homicides reported in MSA/MicroSA <em>i</em>, and <em>sc</em><sub><em>i</em></sub> represent the number of suppressed counties. Within each MSA/MicroSA <em>i</em>, the entries of <strong>Y</strong><sup>uk</sup> are constrained by <em>Y</em><sub>min,<em>i</em></sub> = <em>h</em><sub><em>i</em></sub> + <em>sc</em><sub><em>i</em></sub> and <em>Y</em><sub>max,<em>i</em></sub> = <em>h</em><sub><em>i</em></sub> + 9<em>sc</em><sub><em>i</em></sub>, since the CDC suppresses values between one and nine for each county, while reporting the counties with zero homicides. For example, if MSA/MicroSA <em>i</em> has three suppressed counties and 14 homicides reported in total, we constrain the entries of <em>i</em> in the range 17 to 41, corresponding to one or nine homicides in each of the suppressed counties.</p> </div> <div id="section2" class="section toc-section"><a id="sec016" name="sec016" class="link-target" title="4.4.2 Recovered firearms"></a><h4>4.4.2 Recovered firearms.</h4><a id="article1.body1.sec4.sec4.sec2.p1" name="article1.body1.sec4.sec4.sec2.p1" class="link-target"></a><p>For the analyses of the total number of firearms recovered, we manually collect data from the “U.S. Firearms Trace Data by State” provided by the ATF [<a href="#pcsy.0000029.ref063" class="ref-tip">63</a>]. The dataset includes the total number of firearms recovered and traced by state in 2022, along with the top-<em>k</em> cities in terms of recoveries within each state (<em>k</em>=10 for all states, except for Vermont and Washington where <em>k</em>=15 and 11, respectively). Due to limited data on population size in its cities, Hawaii is excluded from this analysis. The population data are collected from the Census “Incorporated Places and Minor Civil Divisions Datasets” [<a href="#pcsy.0000029.ref059" class="ref-tip">59</a>]. Although there is no standardized definition for a city in the U.S. [<a href="#pcsy.0000029.ref036" class="ref-tip">36</a>], the cities included in this dataset encompass various administrative divisions such as incorporated places, minor civil divisions, and census-designated places, among others, leading to an inconsistent definition of what constitutes a city.</p> <a id="article1.body1.sec4.sec4.sec2.p2" name="article1.body1.sec4.sec4.sec2.p2" class="link-target"></a><p>The scaling estimates <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e125" loading="lazy" class="inline-graphic"></span> for each state are calculated using OLS regression on logarithmically transformed data. The bounds <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e126" loading="lazy" class="inline-graphic"></span> and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e127" loading="lazy" class="inline-graphic"></span> could not be computed for 11 states because they have more cities than recovered firearms, indicating that in some places no firearm is recovered. This situation is not accounted for in the algorithms because we assume that the number of firearms recovered in each of the unknown cities is between one and the smallest of the top-<em>k</em>, that is, <em>Y</em><sub>min,<em>i</em></sub> = 1 and <em>Y</em><sub>max,<em>i</em></sub> = min(<strong>Y</strong><sup>k</sup>).</p> <a id="article1.body1.sec4.sec4.sec2.p3" name="article1.body1.sec4.sec4.sec2.p3" class="link-target"></a><p>To extend the scaling analyses to the entire U.S., we must account for the fact that each state has a different total number of recoveries. We re-define <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e128" loading="lazy" class="inline-graphic"></span> in <a href="#pcsy.0000029.e091">Eq (7)</a> as <a name="pcsy.0000029.e129" id="pcsy.0000029.e129" class="link-target"></a><span class="equation"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e129" loading="lazy" class="inline-graphic"><span class="note">(8)</span></span></p> <a id="article1.body1.sec4.sec4.sec2.p4" name="article1.body1.sec4.sec4.sec2.p4" class="link-target"></a><p>Here, the observations are organized into <em>G</em> states such that there are <em>k</em><sub><em>j</em></sub> reported cities out of the total of <em>N</em><sub><em>j</em></sub> cities in state <em>j</em>. We apply the optimization algorithm with vectors <strong>Y</strong><sup>k</sup> and <strong>Y</strong><sup>uk</sup> being constructed by stacking each state’s <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e130" loading="lazy" class="inline-graphic"></span> and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e131" loading="lazy" class="inline-graphic"></span>, respectively, where <em>j</em> = 1, …, 38 is the index of each state. We constrain the elements of <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e132" loading="lazy" class="inline-graphic"></span> so that <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e133" loading="lazy" class="inline-graphic"></span>, where we account for the different states having different constraints depending on the top cities reported.</p> </div> </div> <div id="section5" class="section toc-section"><a id="sec017" name="sec017" class="link-target" title="4.5 Sensitivity analysis"></a> <h3>4.5 Sensitivity analysis</h3> <a id="article1.body1.sec4.sec5.p1" name="article1.body1.sec4.sec5.p1" class="link-target"></a><p>To investigate the effects of small perturbations on the optimal bounds, we compute the 95% confidence intervals for the ATF case study for each state separately. We rely on Monte Carlo simulation to estimate the variance and the confidence intervals. Specifically, for each simulation, we generate a set data points that resembles the known real data reported by the ATF by sampling <em>k</em> synthetic urban features from the power-law distribution <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e134" loading="lazy" class="inline-graphic"></span>, with <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e135" loading="lazy" class="inline-graphic"></span>. Here, <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e136" loading="lazy" class="inline-graphic"></span>, <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e137" loading="lazy" class="inline-graphic"></span>, and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e138" loading="lazy" class="inline-graphic"></span> are the parameters estimated from the real known data. Each time we sample the vector <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e139" loading="lazy" class="inline-graphic"></span>, we optimize accordingly to obtain a distribution for <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e140" loading="lazy" class="inline-graphic"></span> and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e141" loading="lazy" class="inline-graphic"></span>. We estimate the variance of <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e142" loading="lazy" class="inline-graphic"></span> and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e143" loading="lazy" class="inline-graphic"></span> from 1, 000 realizations of the Monte Carlo simulations using the <em>var(⋅)</em> function in R. Assuming the distributions of <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e144" loading="lazy" class="inline-graphic"></span> and <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e145" loading="lazy" class="inline-graphic"></span> to be Gaussian, we compute the confidence intervals using the standard normal approximation, which calls for scaling the standard error by 1.96 [<a href="#pcsy.0000029.ref064" class="ref-tip">64</a>].</p> <a id="article1.body1.sec4.sec5.p2" name="article1.body1.sec4.sec5.p2" class="link-target"></a><p>We note that sampling <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e146" loading="lazy" class="inline-graphic"></span> according to the estimated power law may not preserve the sum of the unknown values. We propose two methods to address this issue. In Method One, we disregard samples with more than a 5% difference with respect to the sum of the known data, specifically <a name="pcsy.0000029.e147" id="pcsy.0000029.e147" class="link-target"></a><span class="equation"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e147" loading="lazy" class="inline-graphic"><span class="note">(9)</span></span></p> <a id="article1.body1.sec4.sec5.p3" name="article1.body1.sec4.sec5.p3" class="link-target"></a><p>Hence, while optimizing, we assume that the sum of the entries of <span class="inline-formula"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e148" loading="lazy" class="inline-graphic"></span> equals the difference between the reported total and the sum of our generated indicators, <a name="pcsy.0000029.e149" id="pcsy.0000029.e149" class="link-target"></a><span class="equation"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e149" loading="lazy" class="inline-graphic"><span class="note">(10)</span></span></p> <a id="article1.body1.sec4.sec5.p4" name="article1.body1.sec4.sec5.p4" class="link-target"></a><p>In Method Two, we posit that <a name="pcsy.0000029.e150" id="pcsy.0000029.e150" class="link-target"></a><span class="equation"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e150" loading="lazy" class="inline-graphic"><span class="note">(11)</span></span> retaining all samples and ensuring that the top-<em>k</em>% of the generated known data matches the real one, <a name="pcsy.0000029.e151" id="pcsy.0000029.e151" class="link-target"></a><span class="equation"><img src="article/file?type=thumbnail&amp;id=10.1371/journal.pcsy.0000029.e151" loading="lazy" class="inline-graphic"><span class="note">(12)</span></span></p> </div> </div> <div xmlns:plos="http://plos.org" id="section5" class="section toc-section"><a id="sec018" name="sec018" data-toc="sec018" class="link-target" title="Supporting information"></a><h2>Supporting information</h2><div class="figshare_widget" doi="10.1371/journal.pcsy.0000029"></div><div class="supplementary-material"><a name="pcsy.0000029.s001" id="pcsy.0000029.s001" class="link-target"></a><h3 class="siTitle title-small"><a href="article/file?type=supplementary&amp;id=10.1371/journal.pcsy.0000029.s001">S1 Appendix. </a>This appendix consists of five sections that provide additional details supporting the claims made in the main manuscript.</h3><a id="article1.body1.sec5.supplementary-material1.caption1.p1" name="article1.body1.sec5.supplementary-material1.caption1.p1" class="link-target"></a><p class="preSiDOI">Section A: Assessing consistency in urban scaling. Section B: Assessing bias in urban scaling with alternative 12 values of <em>β</em> and <em>N</em>. Section C: Optimization problem. Section D: Validity of the greedy algorithm solution. Section E: Urban scaling of firearm homicides with complete data.</p> <p class="siDoi"><a href="https://doi.org/10.1371/journal.pcsy.0000029.s001">https://doi.org/10.1371/journal.pcsy.0000029.s001</a></p><a id="article1.body1.sec5.supplementary-material1.caption1.p2" name="article1.body1.sec5.supplementary-material1.caption1.p2" class="link-target"></a><p class="postSiDOI">(PDF)</p> </div></div> <div xmlns:plos="http://plos.org" class="section toc-section"><a id="ack" name="ack" data-toc="ack" title="Acknowledgments" class="link-target"></a><h2>Acknowledgments</h2> <a id="article1.back1.ack1.p1" name="article1.back1.ack1.p1" class="link-target"></a><p>The authors would like to thank Christopher Buglino for useful discussion on the methodology and for porting the optimization algorithm from R to Rcpp.</p> </div><div xmlns:plos="http://plos.org" class="toc-section"><a id="references" name="references" class="link-target" data-toc="references" title="References"></a><h2>References</h2><ol class="references"><li id="ref1"><span class="order">1. </span><a name="pcsy.0000029.ref001" id="pcsy.0000029.ref001" class="link-target"></a> Barenblatt GI. Scaling. 1st ed. Cambridge: Cambridge University Press; 2003. <ul class="find-nolinks"></ul></li><li id="ref2"><span class="order">2. </span><a name="pcsy.0000029.ref002" id="pcsy.0000029.ref002" class="link-target"></a> West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276(5309):122–126. pmid:9082983 <ul class="reflinks" data-doi="10.1126/science.276.5309.122"><li><a href="https://doi.org/10.1126/science.276.5309.122" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/9082983" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=A+general+model+for+the+origin+of+allometric+scaling+laws+in+biology+West+1997" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref3"><span class="order">3. </span><a name="pcsy.0000029.ref003" id="pcsy.0000029.ref003" class="link-target"></a> García Martín H, Goldenfeld N. On the origin and robustness of power-law species–area relationships in ecology. Proc Natl Acad Sci USA. 2006;103(27):10310–10315. pmid:16801556 <ul class="reflinks" data-doi="10.1073/pnas.0510605103"><li><a href="https://doi.org/10.1073/pnas.0510605103" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/16801556" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=On+the+origin+and+robustness+of+power-law+species%E2%80%93area+relationships+in+ecology+Garc%C3%ADa+Mart%C3%ADn+2006" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref4"><span class="order">4. </span><a name="pcsy.0000029.ref004" id="pcsy.0000029.ref004" class="link-target"></a> Sengers JMHL, Greer WL, Sengers JV. Scaled equation of state parameters for gases in the critical region. J Phys Chem. 1976;5(1):1–52. <ul class="reflinks"><li><a href="#" data-author="Sengers" data-cit="%0ASengersJMHL%2C%20GreerWL%2C%20SengersJV.%20Scaled%20equation%20of%20state%20parameters%20for%20gases%20in%20the%20critical%20region.%20J%20Phys%20Chem.%201976%3B5%281%29%3A1%E2%80%9352." data-title="Scaled%20equation%20of%20state%20parameters%20for%20gases%20in%20the%20critical%20region" target="_new" title="Go to article in CrossRef"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Scaled+equation+of+state+parameters+for+gases+in+the+critical+region+Sengers+1976" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref5"><span class="order">5. </span><a name="pcsy.0000029.ref005" id="pcsy.0000029.ref005" class="link-target"></a> Bettencourt LM, Lobo J, Helbing D, Kühnert C, West GB. Growth, innovation, scaling, and the pace of life in cities. Proc Natl Acad Sci USA. 2007;104(17):7301–7306. pmid:17438298 <ul class="reflinks" data-doi="10.1073/pnas.0610172104"><li><a href="https://doi.org/10.1073/pnas.0610172104" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/17438298" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Growth%2C+innovation%2C+scaling%2C+and+the+pace+of+life+in+cities+Bettencourt+2007" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref6"><span class="order">6. </span><a name="pcsy.0000029.ref006" id="pcsy.0000029.ref006" class="link-target"></a> Bettencourt LM. Introduction to urban science: evidence and theory of cities as complex systems. 1st ed. Cambridge: MIT Press; 2021. <ul class="find-nolinks"></ul></li><li id="ref7"><span class="order">7. </span><a name="pcsy.0000029.ref007" id="pcsy.0000029.ref007" class="link-target"></a> Oliveira M. More crime in cities? On the scaling laws of crime and the inadequacy of per capita rankings–a cross-country study. Crime Sci. 2021;10(1):27. <ul class="reflinks" data-doi="10.1186/s40163-021-00155-8"><li><a href="https://doi.org/10.1186/s40163-021-00155-8" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=More+crime+in+cities%3F+On+the+scaling+laws+of+crime+and+the+inadequacy+of+per+capita+rankings%E2%80%93a+cross-country+study+Oliveira+2021" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref8"><span class="order">8. </span><a name="pcsy.0000029.ref008" id="pcsy.0000029.ref008" class="link-target"></a> Lobo J, Bettencourt LM, Strumsky D, West GB. Urban scaling and the production function for cities. PLOS One. 2013;8(3):e58407. pmid:23544042 <ul class="reflinks" data-doi="10.1371/journal.pone.0058407"><li><a href="https://doi.org/10.1371/journal.pone.0058407" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/23544042" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Urban+scaling+and+the+production+function+for+cities+Lobo+2013" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref9"><span class="order">9. </span><a name="pcsy.0000029.ref009" id="pcsy.0000029.ref009" class="link-target"></a> Alves LG, Ribeiro HV, Lenzi EK, Mendes RS. Distance to the scaling law: a useful approach for unveiling relationships between crime and urban metrics. PLOS One. 2013;8(8):e69580. pmid:23940525 <ul class="reflinks" data-doi="10.1371/journal.pone.0069580"><li><a href="https://doi.org/10.1371/journal.pone.0069580" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/23940525" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Distance+to+the+scaling+law%3A+a+useful+approach+for+unveiling+relationships+between+crime+and+urban+metrics+Alves+2013" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref10"><span class="order">10. </span><a name="pcsy.0000029.ref010" id="pcsy.0000029.ref010" class="link-target"></a> Meirelles J, Neto CR, Ferreira FF, Ribeiro FL, Binder CR. Evolution of urban scaling: Evidence from Brazil. PLOS One. 2018;13(10):e0204574. pmid:30286102 <ul class="reflinks" data-doi="10.1371/journal.pone.0204574"><li><a href="https://doi.org/10.1371/journal.pone.0204574" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/30286102" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Evolution+of+urban+scaling%3A+Evidence+from+Brazil+Meirelles+2018" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref11"><span class="order">11. </span><a name="pcsy.0000029.ref011" id="pcsy.0000029.ref011" class="link-target"></a> Bilal U, de Castro CP, Alfaro T, Barrientos-Gutierrez T, Barreto ML, Leveau CM, et al. Scaling of mortality in 742 metropolitan areas of the Americas. Sci Adv. 2021;7(50):eabl6325. pmid:34878846 <ul class="reflinks" data-doi="10.1126/sciadv.abl6325"><li><a href="https://doi.org/10.1126/sciadv.abl6325" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/34878846" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Scaling+of+mortality+in+742+metropolitan+areas+of+the+Americas+Bilal+2021" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref12"><span class="order">12. </span><a name="pcsy.0000029.ref012" id="pcsy.0000029.ref012" class="link-target"></a> Succar R, Porfiri M. Urban scaling of firearm violence, ownership and accessibility in the United States. Nat Cities. 2024;1(3):216–224. <ul class="reflinks" data-doi="10.1038/s44284-024-00034-8"><li><a href="https://doi.org/10.1038/s44284-024-00034-8" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Urban+scaling+of+firearm+violence%2C+ownership+and+accessibility+in+the+United+States+Succar+2024" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref13"><span class="order">13. </span><a name="pcsy.0000029.ref013" id="pcsy.0000029.ref013" class="link-target"></a> Bettencourt LM. The origins of scaling in cities. Science. 2013;340(6139):1438–1441. pmid:23788793 <ul class="reflinks" data-doi="10.1126/science.1235823"><li><a href="https://doi.org/10.1126/science.1235823" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/23788793" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=The+origins+of+scaling+in+cities+Bettencourt+2013" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref14"><span class="order">14. </span><a name="pcsy.0000029.ref014" id="pcsy.0000029.ref014" class="link-target"></a> Angel S, Parent J, Civco DL, Blei A, Potere D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog Plann. 2011;75(2):53–107. <ul class="reflinks" data-doi="10.1016/j.progress.2011.04.001"><li><a href="https://doi.org/10.1016/j.progress.2011.04.001" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=The+dimensions+of+global+urban+expansion%3A+Estimates+and+projections+for+all+countries%2C+2000%E2%80%932050+Angel+2011" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref15"><span class="order">15. </span><a name="pcsy.0000029.ref015" id="pcsy.0000029.ref015" class="link-target"></a> Bettencourt LM, Lobo J. Urban scaling in Europe. J R Soc Interface. 2016;13(116):20160005. pmid:26984190 <ul class="reflinks" data-doi="10.1098/rsif.2016.0005"><li><a href="https://doi.org/10.1098/rsif.2016.0005" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/26984190" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Urban+scaling+in+Europe+Bettencourt+2016" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref16"><span class="order">16. </span><a name="pcsy.0000029.ref016" id="pcsy.0000029.ref016" class="link-target"></a> Bettencourt LM, Yang VC, Lobo J, Kempes CP, Rybski D, Hamilton MJ. The interpretation of urban scaling analysis in time. J R Soc Interface. 2020;17(163):20190846. pmid:32019469 <ul class="reflinks" data-doi="10.1098/rsif.2019.0846"><li><a href="https://doi.org/10.1098/rsif.2019.0846" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/32019469" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=The+interpretation+of+urban+scaling+analysis+in+time+Bettencourt+2020" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref17"><span class="order">17. </span><a name="pcsy.0000029.ref017" id="pcsy.0000029.ref017" class="link-target"></a> Finance O, Cottineau C. Are the absent always wrong? Dealing with zero values in urban scaling. Environ Plan B Urban Anal City Sci. 2019;46(9):1663–1677. <ul class="reflinks" data-doi="10.1177/2399808318785634"><li><a href="https://doi.org/10.1177/2399808318785634" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Are+the+absent+always+wrong%3F+Dealing+with+zero+values+in+urban+scaling+Finance+2019" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref18"><span class="order">18. </span><a name="pcsy.0000029.ref018" id="pcsy.0000029.ref018" class="link-target"></a> Leitao JC, Miotto JM, Gerlach M, Altmann EG. Is this scaling nonlinear? R Soc Open Sci. 2016;3(7):150649. pmid:27493764 <ul class="reflinks" data-doi="10.1098/rsos.150649"><li><a href="https://doi.org/10.1098/rsos.150649" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/27493764" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Is+this+scaling+nonlinear%3F+Leitao+2016" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref19"><span class="order">19. </span><a name="pcsy.0000029.ref019" id="pcsy.0000029.ref019" class="link-target"></a> Xiao Y, Gong P. Removing spatial autocorrelation in urban scaling analysis. Cities. 2022;124:103600. <ul class="reflinks" data-doi="10.1016/j.cities.2022.103600"><li><a href="https://doi.org/10.1016/j.cities.2022.103600" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Removing+spatial+autocorrelation+in+urban+scaling+analysis+Xiao+2022" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref20"><span class="order">20. </span><a name="pcsy.0000029.ref020" id="pcsy.0000029.ref020" class="link-target"></a>114 Congress. 114 HR 1449 IH: Tiahrt Restrictions Repeal Act; 2015 [cited 2024 Aug 3]. Available from: <a href="https://www.congress.gov/bill/114th-congress/house-bill/1449">https://www.congress.gov/bill/114th-congress/house-bill/1449</a>. <ul class="find-nolinks"></ul></li><li id="ref21"><span class="order">21. </span><a name="pcsy.0000029.ref021" id="pcsy.0000029.ref021" class="link-target"></a> Little RJ, Rubin DB. Statistical analysis with missing data. vol. 793. 3rd ed. Hoboken, New Jersey: John Wiley &amp; Sons; 2019. <ul class="find-nolinks"></ul></li><li id="ref22"><span class="order">22. </span><a name="pcsy.0000029.ref022" id="pcsy.0000029.ref022" class="link-target"></a> Enders CK. Missing data: An update on the state of the art. Psychol Methods. 2023. pmid:36931827 <ul class="reflinks" data-doi="10.1037/met0000563"><li><a href="https://doi.org/10.1037/met0000563" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/36931827" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Missing+data%3A+An+update+on+the+state+of+the+art+Enders+2023" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref23"><span class="order">23. </span><a name="pcsy.0000029.ref023" id="pcsy.0000029.ref023" class="link-target"></a> Enders CK. Applied missing data analysis. 2nd ed. New York: Guilford Publications; 2022. <ul class="find-nolinks"></ul></li><li id="ref24"><span class="order">24. </span><a name="pcsy.0000029.ref024" id="pcsy.0000029.ref024" class="link-target"></a> Savalei V, Falk CF. Robust two-stage approach outperforms robust full information maximum likelihood with incomplete nonnormal data. Struct Equ Modeling. 2014;21(2):280–302. <ul class="reflinks" data-doi="10.1080/10705511.2014.882692"><li><a href="https://doi.org/10.1080/10705511.2014.882692" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Robust+two-stage+approach+outperforms+robust+full+information+maximum+likelihood+with+incomplete+nonnormal+data+Savalei+2014" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref25"><span class="order">25. </span><a name="pcsy.0000029.ref025" id="pcsy.0000029.ref025" class="link-target"></a> Lüdtke O, Robitzsch A, West SG. Analysis of interactions and nonlinear effects with missing data: A factored regression modeling approach using maximum likelihood estimation. Multivar Behav Res. 2020;55(3):361–381. <ul class="reflinks" data-doi="10.1080/00273171.2019.1640104"><li><a href="https://doi.org/10.1080/00273171.2019.1640104" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Analysis+of+interactions+and+nonlinear+effects+with+missing+data%3A+A+factored+regression+modeling+approach+using+maximum+likelihood+estimation+L%C3%BCdtke+2020" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref26"><span class="order">26. </span><a name="pcsy.0000029.ref026" id="pcsy.0000029.ref026" class="link-target"></a> Du H, Enders C, Keller BT, Bradbury TN, Karney BR. A Bayesian latent variable selection model for nonignorable missingness. Multivar Behav Res. 2022;57(2-3):478–512. pmid:33529056 <ul class="reflinks" data-doi="10.1080/00273171.2021.1874259"><li><a href="https://doi.org/10.1080/00273171.2021.1874259" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/33529056" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=A+Bayesian+latent+variable+selection+model+for+nonignorable+missingness+Du+2022" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref27"><span class="order">27. </span><a name="pcsy.0000029.ref027" id="pcsy.0000029.ref027" class="link-target"></a> Levy R, Mislevy RJ. Bayesian psychometric modeling. New York: Chapman and Hall/CRC; 2017. <ul class="find-nolinks"></ul></li><li id="ref28"><span class="order">28. </span><a name="pcsy.0000029.ref028" id="pcsy.0000029.ref028" class="link-target"></a> Grund S, Lüdtke O, Robitzsch A. Multiple imputation of missing covariate values in multilevel models with random slopes: A cautionary note. Behav Res Methods. 2016;48:640–649. pmid:25939979 <ul class="reflinks" data-doi="10.3758/s13428-015-0590-3"><li><a href="https://doi.org/10.3758/s13428-015-0590-3" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/25939979" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Multiple+imputation+of+missing+covariate+values+in+multilevel+models+with+random+slopes%3A+A+cautionary+note+Grund+2016" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref29"><span class="order">29. </span><a name="pcsy.0000029.ref029" id="pcsy.0000029.ref029" class="link-target"></a> Chan KW, Meng XL. Multiple improvements of multiple imputation likelihood ratio tests. Stat Sin. 2022;32(3):1489–1514. <ul class="reflinks"><li><a href="#" data-author="Chan" data-cit="%0AChanKW%2C%20MengXL.%20Multiple%20improvements%20of%20multiple%20imputation%20likelihood%20ratio%20tests.%20Stat%20Sin.%202022%3B32%283%29%3A1489%E2%80%931514." data-title="Multiple%20improvements%20of%20multiple%20imputation%20likelihood%20ratio%20tests" target="_new" title="Go to article in CrossRef"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Multiple+improvements+of+multiple+imputation+likelihood+ratio+tests+Chan+2022" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref30"><span class="order">30. </span><a name="pcsy.0000029.ref030" id="pcsy.0000029.ref030" class="link-target"></a> Baraldi AN, Enders CK. An introduction to modern missing data analyses. J Sch Psychol. 2010;48(1):5–37. pmid:20006986 <ul class="reflinks" data-doi="10.1016/j.jsp.2009.10.001"><li><a href="https://doi.org/10.1016/j.jsp.2009.10.001" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/20006986" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=An+introduction+to+modern+missing+data+analyses+Baraldi+2010" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref31"><span class="order">31. </span><a name="pcsy.0000029.ref031" id="pcsy.0000029.ref031" class="link-target"></a> Amemiya T. Advanced econometrics. Cambridge: Harvard university press; 1985. <ul class="find-nolinks"></ul></li><li id="ref32"><span class="order">32. </span><a name="pcsy.0000029.ref032" id="pcsy.0000029.ref032" class="link-target"></a> Powell JL. Censored regression quantiles. J Econom. 1986;32(1):143–155. <ul class="reflinks" data-doi="10.1016/0304-4076(86)90016-3"><li><a href="https://doi.org/10.1016/0304-4076(86)90016-3" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Censored+regression+quantiles+Powell+1986" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref33"><span class="order">33. </span><a name="pcsy.0000029.ref033" id="pcsy.0000029.ref033" class="link-target"></a>Lewbel A, Linton OB. Nonparametric censored regression; 1998. Available from: <a href="https://elischolar.library.yale.edu/cowles-discussion-paper-series/1434/">https://elischolar.library.yale.edu/cowles-discussion-paper-series/1434/</a>. <ul class="find-nolinks"></ul></li><li id="ref34"><span class="order">34. </span><a name="pcsy.0000029.ref034" id="pcsy.0000029.ref034" class="link-target"></a>Centers for Disease Control and Prevention. 1999-2020: Underlying Cause of Death by Bridged-Race Categories; 2013 [cited 2024 Aug 15]. Available from: <a href="https://wonder.cdc.gov/Deaths-by-Underlying-Cause.html">https://wonder.cdc.gov/Deaths-by-Underlying-Cause.html</a>. <ul class="find-nolinks"></ul></li><li id="ref35"><span class="order">35. </span><a name="pcsy.0000029.ref035" id="pcsy.0000029.ref035" class="link-target"></a> Molinero C, Thurner S. How the geometry of cities determines urban scaling laws. J R Soc Interface. 2021;18(176):20200705. pmid:33726542 <ul class="reflinks" data-doi="10.1098/rsif.2020.0705"><li><a href="https://doi.org/10.1098/rsif.2020.0705" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/33726542" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=How+the+geometry+of+cities+determines+urban+scaling+laws+Molinero+2021" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref36"><span class="order">36. </span><a name="pcsy.0000029.ref036" id="pcsy.0000029.ref036" class="link-target"></a> Bettencourt L, West G. A unified theory of urban living. Nature. 2010;467(7318):912–913. pmid:20962823 <ul class="reflinks" data-doi="10.1038/467912a"><li><a href="https://doi.org/10.1038/467912a" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/20962823" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=A+unified+theory+of+urban+living+Bettencourt+2010" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref37"><span class="order">37. </span><a name="pcsy.0000029.ref037" id="pcsy.0000029.ref037" class="link-target"></a> Hanley QS, Lewis D, Ribeiro HV. Rural to urban population density scaling of crime and property transactions in English and Welsh parliamentary constituencies. PLOS One. 2016;11(2):e0149546. pmid:26886219 <ul class="reflinks" data-doi="10.1371/journal.pone.0149546"><li><a href="https://doi.org/10.1371/journal.pone.0149546" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/26886219" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Rural+to+urban+population+density+scaling+of+crime+and+property+transactions+in+English+and+Welsh+parliamentary+constituencies+Hanley+2016" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref38"><span class="order">38. </span><a name="pcsy.0000029.ref038" id="pcsy.0000029.ref038" class="link-target"></a> Ribeiro HV, Hanley QS, Lewis D. Unveiling relationships between crime and property in England and Wales via density scale-adjusted metrics and network tools. PLOS One. 2018;13(2):e0192931. pmid:29470499 <ul class="reflinks" data-doi="10.1371/journal.pone.0192931"><li><a href="https://doi.org/10.1371/journal.pone.0192931" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/29470499" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Unveiling+relationships+between+crime+and+property+in+England+and+Wales+via+density+scale-adjusted+metrics+and+network+tools+Ribeiro+2018" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref39"><span class="order">39. </span><a name="pcsy.0000029.ref039" id="pcsy.0000029.ref039" class="link-target"></a> Sutton J, Shahtahmassebi G, Ribeiro HV, Hanley QS. Rural–urban scaling of age, mortality, crime and property reveals a loss of expected self-similar behaviour. Sci Rep. 2020;10(1):16863. pmid:33033349 <ul class="reflinks" data-doi="10.1038/s41598-020-74015-x"><li><a href="https://doi.org/10.1038/s41598-020-74015-x" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/33033349" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Rural%E2%80%93urban+scaling+of+age%2C+mortality%2C+crime+and+property+reveals+a+loss+of+expected+self-similar+behaviour+Sutton+2020" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref40"><span class="order">40. </span><a name="pcsy.0000029.ref040" id="pcsy.0000029.ref040" class="link-target"></a> Schleimer JP, McCort CD, Shev AB, Pear VA, Tomsich E, De Biasi A, et al. Firearm purchasing and firearm violence during the coronavirus pandemic in the United States: a cross-sectional study. Inj Epidemiol. 2021;8:1–10. pmid:34225798 <ul class="reflinks" data-doi="10.1186/s40621-021-00339-5"><li><a href="https://doi.org/10.1186/s40621-021-00339-5" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/34225798" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Firearm+purchasing+and+firearm+violence+during+the+coronavirus+pandemic+in+the+United+States%3A+a+cross-sectional+study+Schleimer+2021" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref41"><span class="order">41. </span><a name="pcsy.0000029.ref041" id="pcsy.0000029.ref041" class="link-target"></a> Sun S, Cao W, Ge Y, Siegel M, Wellenius GA. Analysis of firearm violence during the COVID-19 pandemic in the US. JAMA Netw Open. 2022;5(4):e229393–e229393. pmid:35482307 <ul class="reflinks" data-doi="10.1001/jamanetworkopen.2022.9393"><li><a href="https://doi.org/10.1001/jamanetworkopen.2022.9393" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/35482307" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Analysis+of+firearm+violence+during+the+COVID-19+pandemic+in+the+US+Sun+2022" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref42"><span class="order">42. </span><a name="pcsy.0000029.ref042" id="pcsy.0000029.ref042" class="link-target"></a> Branas CC, Nance ML, Elliott MR, Richmond TS, Schwab CW. Urban–rural shifts in intentional firearm death: different causes, same results. Am J Public Health. 2004;94(10):1750–1755. pmid:15451745 <ul class="reflinks" data-doi="10.2105/ajph.94.10.1750"><li><a href="https://doi.org/10.2105/ajph.94.10.1750" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/15451745" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Urban%E2%80%93rural+shifts+in+intentional+firearm+death%3A+different+causes%2C+same+results+Branas+2004" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref43"><span class="order">43. </span><a name="pcsy.0000029.ref043" id="pcsy.0000029.ref043" class="link-target"></a> Crifasi CK, Merrill-Francis M, McCourt A, Vernick JS, Wintemute GJ, Webster DW. Association between firearm laws and homicide in urban counties. J Urban Health. 2018;95:383–390. pmid:29785569 <ul class="reflinks" data-doi="10.1007/s11524-018-0273-3"><li><a href="https://doi.org/10.1007/s11524-018-0273-3" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/29785569" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Association+between+firearm+laws+and+homicide+in+urban+counties+Crifasi+2018" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref44"><span class="order">44. </span><a name="pcsy.0000029.ref044" id="pcsy.0000029.ref044" class="link-target"></a> Siegel M, Solomon B, Knopov A, Rothman EF, Cronin SW, Xuan Z, et al. The impact of state firearm laws on homicide rates in suburban and rural areas compared to large cities in the United States, 1991-2016. J Rural Health. 2020;36(2):255–265. pmid:31361355 <ul class="reflinks" data-doi="10.1111/jrh.12387"><li><a href="https://doi.org/10.1111/jrh.12387" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/31361355" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=The+impact+of+state+firearm+laws+on+homicide+rates+in+suburban+and+rural+areas+compared+to+large+cities+in+the+United+States%2C+1991-2016+Siegel+2020" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref45"><span class="order">45. </span><a name="pcsy.0000029.ref045" id="pcsy.0000029.ref045" class="link-target"></a> Reeping PM, Mak A, Branas CC, Gobaud AN, Nance ML. Firearm death rates in rural vs urban US counties. JAMA Surg. 2023;158(7):771–772. pmid:37099312 <ul class="reflinks" data-doi="10.1001/jamasurg.2023.0265"><li><a href="https://doi.org/10.1001/jamasurg.2023.0265" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/37099312" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Firearm+death+rates+in+rural+vs+urban+US+counties+Reeping+2023" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref46"><span class="order">46. </span><a name="pcsy.0000029.ref046" id="pcsy.0000029.ref046" class="link-target"></a>Parker K, Horowitz JM, Igielnik R, Oliphant JB, Brown A. America’s complex relationship with guns. Pew Research Center’s Social and Demographic Trends Project. Pew Research Center.; 2017 Jun 22 [cited 2024 Aug 16]. Available from: <a href="https://www.pewresearch.org/social-trends/2017/06/22/the-demographics-of-gun-ownership">https://www.pewresearch.org/social-trends/2017/06/22/the-demographics-of-gun-ownership</a>. <ul class="find-nolinks"></ul></li><li id="ref47"><span class="order">47. </span><a name="pcsy.0000029.ref047" id="pcsy.0000029.ref047" class="link-target"></a>Horwitz S, Grimaldi JV. ATF’s oversight limited in face of gun lobby. Washington Post.; 2010 Oct 26 [cited 2024 Aug 2]. Available from: <a href="https://www.washingtonpost.com/wp-dyn/content/article/2010/10/25/AR2010102505823.html?sub = AR">https://www.washingtonpost.com/wp-dyn/content/article/2010/10/25/AR2010102505823.html?sub = AR</a>. <ul class="find-nolinks"></ul></li><li id="ref48"><span class="order">48. </span><a name="pcsy.0000029.ref048" id="pcsy.0000029.ref048" class="link-target"></a>Giffords Law Center to Prevent Gun Violence. Maintaining Records of Gun Sales in California; 2023 [cited 2024 Aug 7]. Available from: <a href="https://giffords.org/lawcenter/state-laws/maintaining-records-of-gun-sales-in-california/">https://giffords.org/lawcenter/state-laws/maintaining-records-of-gun-sales-in-california/</a>. <ul class="find-nolinks"></ul></li><li id="ref49"><span class="order">49. </span><a name="pcsy.0000029.ref049" id="pcsy.0000029.ref049" class="link-target"></a> Hummon DM. In: Altman I, Low SM, editors. Community attachment. Boston, MA: Springer US; 1992. p. 253–278. <ul class="find-nolinks"></ul></li><li id="ref50"><span class="order">50. </span><a name="pcsy.0000029.ref050" id="pcsy.0000029.ref050" class="link-target"></a> Belanche D, Casaló LV, Rubio MA. Local place identity: A comparison between residents of rural and urban communities. J Rural Stud. 2021;82:242–252. <ul class="reflinks" data-doi="10.1016/j.jrurstud.2021.01.003"><li><a href="https://doi.org/10.1016/j.jrurstud.2021.01.003" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=Local+place+identity%3A+A+comparison+between+residents+of+rural+and+urban+communities+Belanche+2021" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref51"><span class="order">51. </span><a name="pcsy.0000029.ref051" id="pcsy.0000029.ref051" class="link-target"></a> Sozer MA, Merlo AV. The impact of community policing on crime rates: Does the effect of community policing differ in large and small law enforcement agencies? Police Pract Res. 2013;14(6):506–521. <ul class="reflinks"><li><a href="#" data-author="Sozer" data-cit="%0ASozerMA%2C%20MerloAV.%20The%20impact%20of%20community%20policing%20on%20crime%20rates%3A%20Does%20the%20effect%20of%20community%20policing%20differ%20in%20large%20and%20small%20law%20enforcement%20agencies%3F%20Police%20Pract%20Res.%202013%3B14%286%29%3A506%E2%80%93521." data-title="The%20impact%20of%20community%20policing%20on%20crime%20rates%3A%20Does%20the%20effect%20of%20community%20policing%20differ%20in%20large%20and%20small%20law%20enforcement%20agencies%3F" target="_new" title="Go to article in CrossRef"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=The+impact+of+community+policing+on+crime+rates%3A+Does+the+effect+of+community+policing+differ+in+large+and+small+law+enforcement+agencies%3F+Sozer+2013" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref52"><span class="order">52. </span><a name="pcsy.0000029.ref052" id="pcsy.0000029.ref052" class="link-target"></a>Everytown Research &amp; Policy. Community-Led Public Safety Strategies; 2022 [cited 2024 Aug 14]. Available from: <a href="http://www-cs-faculty.stanford.edu/~uno/abcde.html">http://www-cs-faculty.stanford.edu/~uno/abcde.html</a>. <ul class="find-nolinks"></ul></li><li id="ref53"><span class="order">53. </span><a name="pcsy.0000029.ref053" id="pcsy.0000029.ref053" class="link-target"></a> Waters JS, Holbrook CT, Fewell JH, Harrison JF. Allometric scaling of metabolism, growth, and activity in whole colonies of the seed-harvester ant Pogonomyrmex californicus. Am Nat. 2010;176(4):501–510. pmid:20735259 <ul class="reflinks" data-doi="10.1086/656266"><li><a href="https://doi.org/10.1086/656266" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/20735259" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Allometric+scaling+of+metabolism%2C+growth%2C+and+activity+in+whole+colonies+of+the+seed-harvester+ant+Pogonomyrmex+californicus+Waters+2010" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref54"><span class="order">54. </span><a name="pcsy.0000029.ref054" id="pcsy.0000029.ref054" class="link-target"></a> Porfiri M, De Lellis P, Aung E, Meneses S, Abaid N, Waters JS, et al. Reverse social contagion as a mechanism for regulating mass behaviors in highly integrated social systems. PNAS Nexus. 2024;3(7). pmid:38962249 <ul class="reflinks" data-doi="10.1093/pnasnexus/pgae246"><li><a href="https://doi.org/10.1093/pnasnexus/pgae246" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/38962249" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Reverse+social+contagion+as+a+mechanism+for+regulating+mass+behaviors+in+highly+integrated+social+systems+Porfiri+2024" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref55"><span class="order">55. </span><a name="pcsy.0000029.ref055" id="pcsy.0000029.ref055" class="link-target"></a> Hernandez-Vargas G, Sosa-Hernández JE, Saldarriaga-Hernandez S, Villalba-Rodríguez AM, Parra-Saldivar R, Iqbal HM. Electrochemical biosensors: a solution to pollution detection with reference to environmental contaminants. Biosensors. 2018;8(2):29. pmid:29587374 <ul class="reflinks" data-doi="10.3390/bios8020029"><li><a href="https://doi.org/10.3390/bios8020029" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/29587374" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Electrochemical+biosensors%3A+a+solution+to+pollution+detection+with+reference+to+environmental+contaminants+Hernandez-Vargas+2018" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref56"><span class="order">56. </span><a name="pcsy.0000029.ref056" id="pcsy.0000029.ref056" class="link-target"></a> Shen G, Preston W, Ebersviller SM, Williams C, Faircloth JW, Jetter JJ, et al. Polycyclic aromatic hydrocarbons in fine particulate matter emitted from burning kerosene, liquid petroleum gas, and wood fuels in household cookstoves. Energy Fuels. 2017;31(3):3081–3090. pmid:30245546 <ul class="reflinks" data-doi="10.1021/acs.energyfuels.6b02641"><li><a href="https://doi.org/10.1021/acs.energyfuels.6b02641" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/30245546" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Polycyclic+aromatic+hydrocarbons+in+fine+particulate+matter+emitted+from+burning+kerosene%2C+liquid+petroleum+gas%2C+and+wood+fuels+in+household+cookstoves+Shen+2017" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref57"><span class="order">57. </span><a name="pcsy.0000029.ref057" id="pcsy.0000029.ref057" class="link-target"></a> Yu Y, Katsoyiannis A, Bohlin-Nizzetto P, Brorstrom-Lunden E, Ma J, Zhao Y, et al. Polycyclic aromatic hydrocarbons not declining in Arctic air despite global emission reduction. Environ Sci Technol. 2019;53(5):2375–2382. pmid:30746937 <ul class="reflinks" data-doi="10.1021/acs.est.8b05353"><li><a href="https://doi.org/10.1021/acs.est.8b05353" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/30746937" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Polycyclic+aromatic+hydrocarbons+not+declining+in+Arctic+air+despite+global+emission+reduction+Yu+2019" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref58"><span class="order">58. </span><a name="pcsy.0000029.ref058" id="pcsy.0000029.ref058" class="link-target"></a> Sutton J, Shahtahmassebi G, Hanley QS, Ribeiro HV. A heteroscedastic Bayesian generalized logistic regression model with application to scaling problems. Chaos Solit Fractals. 2024;182:114787. <ul class="reflinks" data-doi="10.1016/j.chaos.2024.114787"><li><a href="https://doi.org/10.1016/j.chaos.2024.114787" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://scholar.google.com/scholar?q=A+heteroscedastic+Bayesian+generalized+logistic+regression+model+with+application+to+scaling+problems+Sutton+2024" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref59"><span class="order">59. </span><a name="pcsy.0000029.ref059" id="pcsy.0000029.ref059" class="link-target"></a>United Stated Census Bureau. Incorporated Places and Minor Civil Divisions Datasets: Subcounty Resident Population Estimates: April 1, 2020 to July 1, 2023 (SUB-EST2023); 2024 [cited 2024 May 11]. Database: City and Town Population Totals: 2020-2023 [Internet]. Available from: <a href="https://www.census.gov/data/tables/time-series/demo/popest/2020s-total-cities-and-towns.html">https://www.census.gov/data/tables/time-series/demo/popest/2020s-total-cities-and-towns.html</a>. <ul class="find-nolinks"></ul></li><li id="ref60"><span class="order">60. </span><a name="pcsy.0000029.ref060" id="pcsy.0000029.ref060" class="link-target"></a> Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array programming with NumPy. Nature. 2020;585(7825):357–362. pmid:32939066 <ul class="reflinks" data-doi="10.1038/s41586-020-2649-2"><li><a href="https://doi.org/10.1038/s41586-020-2649-2" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/32939066" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=Array+programming+with+NumPy+Harris+2020" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref61"><span class="order">61. </span><a name="pcsy.0000029.ref061" id="pcsy.0000029.ref061" class="link-target"></a> Ortman SG, Cabaniss AH, Sturm JO, Bettencourt LM. The pre-history of urban scaling. PLOS One. 2014;9(2):e87902. pmid:24533062 <ul class="reflinks" data-doi="10.1371/journal.pone.0087902"><li><a href="https://doi.org/10.1371/journal.pone.0087902" data-author="doi-provided" data-cit="doi-provided" data-title="doi-provided" target="_new" title="Go to article"> View Article </a></li><li><a href="http://www.ncbi.nlm.nih.gov/pubmed/24533062" target="_new" title="Go to article in PubMed"> PubMed/NCBI </a></li><li><a href="http://scholar.google.com/scholar?q=The+pre-history+of+urban+scaling+Ortman+2014" target="_new" title="Go to article in Google Scholar"> Google Scholar </a></li></ul></li><li id="ref62"><span class="order">62. </span><a name="pcsy.0000029.ref062" id="pcsy.0000029.ref062" class="link-target"></a>United States Bureau of Labor Statiscs. COUNTY-MSA-CSA CROSSWALKS, 1990-2012 &amp; 2013-2023; 2024 [cited 2024 July 7]. Database: City and Town Population Totals: 2020-2023 [Internet]. Available from: <a href="https://www.bls.gov/cew/classifications/areas/county-msa-csa-crosswalk.htm">https://www.bls.gov/cew/classifications/areas/county-msa-csa-crosswalk.htm</a>. <ul class="find-nolinks"></ul></li><li id="ref63"><span class="order">63. </span><a name="pcsy.0000029.ref063" id="pcsy.0000029.ref063" class="link-target"></a>Bureau of Alcohol, Tobacco, Firearms and Explosives. U.S. Firearms Trace Data by State; 2022 [cited 2024 May 11]. Database: Data &amp; Statistics [Internet]. Available from: <a href="https://www.atf.gov/resource-center/data-statistics">https://www.atf.gov/resource-center/data-statistics</a>. <ul class="find-nolinks"></ul></li><li id="ref64"><span class="order">64. </span><a name="pcsy.0000029.ref064" id="pcsy.0000029.ref064" class="link-target"></a> Devore JL, Berk KN, Carlton MA, et al. Modern mathematical statistics with applications. vol. 285. 3rd ed. Cham, Switzerland: Springer; 2012. <ul class="find-nolinks"></ul></li></ol></div> <div class="ref-tooltip"> <div class="ref_tooltip-content"> </div> </div> </div> </div> </div> </section> <aside class="article-aside"> <!--[if IE 9]> <style> .dload-xml {margin-top: 38px} </style> <![endif]--> <div class="dload-menu"> <div class="dload-pdf"> <a href="/complexsystems/article/file?id=10.1371/journal.pcsy.0000029&type=printable" id="downloadPdf" target="_blank">Download PDF</a> </div> <div data-js-tooltip-hover="trigger" class="dload-hover">&nbsp; <ul class="dload-xml" data-js-tooltip-hover="target"> <li><a href="/complexsystems/article/citation?id=10.1371/journal.pcsy.0000029" id="downloadCitation">Citation</a></li> <li><a href="/complexsystems/article/file?id=10.1371/journal.pcsy.0000029&type=manuscript" id="downloadXml">XML</a> </li> </ul> </div> </div> <div class="aside-container"> <div class="print-article" id="printArticle" data-js-tooltip-hover="trigger"> <a href="#" onclick="window.print(); return false;" class="preventDefault" id="printBrowser">Print</a> </div> <div class="share-article" id="shareArticle" data-js-tooltip-hover="trigger"> Share <ul data-js-tooltip-hover="target" class="share-options" id="share-options"> <li><a href="https://www.reddit.com/submit?url=https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcsy.0000029" id="shareReddit" target="_blank" title="Submit to Reddit"><img src="/resource/img/icon.reddit.16.png" width="16" height="16" alt="Reddit">Reddit</a></li> <li><a href="https://www.facebook.com/share.php?u=https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcsy.0000029&t=Urban scaling with censored data" id="shareFacebook" target="_blank" title="Share on Facebook"><img src="/resource/img/icon.fb.16.png" width="16" height="16" alt="Facebook">Facebook</a></li> <li><a href="https://www.linkedin.com/shareArticle?url=https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcsy.0000029&title=Urban scaling with censored data&summary=Checkout this article I found at PLOS" id="shareLinkedIn" target="_blank" title="Add to LinkedIn"><img src="/resource/img/icon.linkedin.16.png" width="16" height="16" alt="LinkedIn">LinkedIn</a></li> <li><a href="https://www.mendeley.com/import/?url=https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcsy.0000029" id="shareMendeley" target="_blank" title="Add to Mendeley"><img src="/resource/img/icon.mendeley.16.png" width="16" height="16" alt="Mendeley">Mendeley</a></li> <li><a href="https://twitter.com/intent/tweet?url=https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcsy.0000029&text=%23PLOSComplexSys%3A%20Urban scaling with censored data" target="_blank" title="share on Twitter" id="twitter-share-link"><img src="/resource/img/icon.twtr.16.png" width="16" height="16" alt="Twitter">Twitter</a></li> <li><a href="mailto:?subject=Urban scaling with censored data&body=I%20thought%20you%20would%20find%20this%20article%20interesting.%20From%20PLOS Complex Systems:%20https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcsy.0000029" id="shareEmail" rel="noreferrer" aria-label="Email"><img src="/resource/img/icon.email.16.png" width="16" height="16" alt="Email">Email</a></li> <script src="/resource/js/components/tweet140.js" type="text/javascript"></script> </ul> </div> </div>   <!-- Crossmark 2.0 widget --> <script src="https://crossmark-cdn.crossref.org/widget/v2.0/widget.js"></script> <a aria-label="Check for updates via CrossMark" data-target="crossmark"> <img alt="Check for updates via CrossMark" width="150" src="https://crossmark-cdn.crossref.org/widget/v2.0/logos/CROSSMARK_BW_horizontal.svg"> </a> <!-- End Crossmark 2.0 widget --> <div class="aside-container collections-aside-container"><!-- React Magic --></div> <div class="skyscraper-container"> <div class="title">Advertisement</div> <!-- DoubleClick Ad Zone --> <div class='advertisement' id='div-gpt-ad-1458247671871-1' style='width:160px; height:600px;'> <script type='text/javascript'> googletag.cmd.push(function() { googletag.display('div-gpt-ad-1458247671871-1'); }); </script> </div> </div> <div class="subject-areas-container"> <h3>Subject Areas <div id="subjInfo">?</div> <div id="subjInfoText"> <p>For more information about PLOS Subject Areas, click <a href="https://github.com/PLOS/plos-thesaurus/blob/master/README.md" target="_blank" title="Link opens in new window">here</a>.</p> <span class="inline-intro">We want your feedback.</span> Do these Subject Areas make sense for this article? Click the target next to the incorrect Subject Area and let us know. Thanks for your help! </div> </h3> <ul id="subjectList"> <li> <a class="taxo-term" title="Search for articles about Firearms" href="/complexsystems/search?filterSubjects=Firearms&filterJournals=PLOSComplexSystems&q=">Firearms</a> <span class="taxo-flag">&nbsp;</span> <div class="taxo-tooltip" data-categoryname="Firearms"><p class="taxo-explain">Is the Subject Area <strong>"Firearms"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> <li> <a class="taxo-term" title="Search for articles about Homicide" href="/complexsystems/search?filterSubjects=Homicide&filterJournals=PLOSComplexSystems&q=">Homicide</a> <span class="taxo-flag">&nbsp;</span> <div class="taxo-tooltip" data-categoryname="Homicide"><p class="taxo-explain">Is the Subject Area <strong>"Homicide"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> <li> <a class="taxo-term" title="Search for articles about Urban geography" href="/complexsystems/search?filterSubjects=Urban+geography&filterJournals=PLOSComplexSystems&q=">Urban geography</a> <span class="taxo-flag">&nbsp;</span> <div class="taxo-tooltip" data-categoryname="Urban geography"><p class="taxo-explain">Is the Subject Area <strong>"Urban geography"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> <li> <a class="taxo-term" title="Search for articles about Optimization" href="/complexsystems/search?filterSubjects=Optimization&filterJournals=PLOSComplexSystems&q=">Optimization</a> <span class="taxo-flag">&nbsp;</span> <div class="taxo-tooltip" data-categoryname="Optimization"><p class="taxo-explain">Is the Subject Area <strong>"Optimization"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> <li> <a class="taxo-term" title="Search for articles about Monte Carlo method" href="/complexsystems/search?filterSubjects=Monte+Carlo+method&filterJournals=PLOSComplexSystems&q=">Monte Carlo method</a> <span class="taxo-flag">&nbsp;</span> <div class="taxo-tooltip" data-categoryname="Monte Carlo method"><p class="taxo-explain">Is the Subject Area <strong>"Monte Carlo method"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> <li> <a class="taxo-term" title="Search for articles about Census" href="/complexsystems/search?filterSubjects=Census&filterJournals=PLOSComplexSystems&q=">Census</a> <span class="taxo-flag">&nbsp;</span> <div class="taxo-tooltip" data-categoryname="Census"><p class="taxo-explain">Is the Subject Area <strong>"Census"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> <li> <a class="taxo-term" title="Search for articles about Normal distribution" href="/complexsystems/search?filterSubjects=Normal+distribution&filterJournals=PLOSComplexSystems&q=">Normal distribution</a> <span class="taxo-flag">&nbsp;</span> <div class="taxo-tooltip" data-categoryname="Normal distribution"><p class="taxo-explain">Is the Subject Area <strong>"Normal distribution"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> <li> <a class="taxo-term" title="Search for articles about Factorial design" href="/complexsystems/search?filterSubjects=Factorial+design&filterJournals=PLOSComplexSystems&q=">Factorial design</a> <span class="taxo-flag">&nbsp;</span> <div class="taxo-tooltip" data-categoryname="Factorial design"><p class="taxo-explain">Is the Subject Area <strong>"Factorial design"</strong> applicable to this article? <button id="noFlag" data-action="remove">Yes</button> <button id="flagIt" value="flagno" data-action="add">No</button></p> <p class="taxo-confirm">Thanks for your feedback.</p> </div> </li> </ul> </div> <div id="subjectErrors"></div> </aside> </div> </main> <footer id="pageftr"> <div class="row"> <div class="block x-small"> <ul class="nav nav-secondary"> <li class="ftr-header"><a href="https://plos.org/our-journals/">Publications</a></li> <li><a href="/plosbiology/" id="ftr-bio">PLOS Biology</a></li> <li><a href="/climate/" id="ftr-climate">PLOS Climate</a></li> <li><a href="/complexsystems/" id="ftr-complex-systems">PLOS Complex Systems</a></li> <li><a href="/ploscompbiol/" id="ftr-compbio">PLOS Computational Biology</a></li> <li><a href="/digitalhealth/" id="ftr-digitalhealth">PLOS Digital Health</a></li> <li><a href="/plosgenetics/" id="ftr-gen">PLOS Genetics</a></li> <li><a href="/globalpublichealth/" id="ftr-globalpublichealth">PLOS Global Public Health</a></li> </ul> </div> <div class="block x-small"> <ul class="nav nav-secondary"> <li class="ftr-header">&nbsp;</li> <li><a href="/plosmedicine/" id="ftr-med">PLOS Medicine</a></li> <li><a href="/mentalhealth/" id="ftr-mental-health">PLOS Mental Health</a></li> <li><a href="/plosntds/" id="ftr-ntds">PLOS Neglected Tropical Diseases</a></li> <li><a href="/plosone/" id="ftr-one">PLOS One</a></li> <li><a href="/plospathogens/" id="ftr-path">PLOS Pathogens</a></li> <li><a href="/sustainabilitytransformation/" id="ftr-sustainabilitytransformation">PLOS Sustainability and Transformation</a></li> <li><a href="/water/" id="ftr-water">PLOS Water</a></li> </ul> </div> <div class="block xx-small"> <ul class="nav nav-tertiary"> <li> <a href="https://plos.org" id="ftr-home">Home</a> </li> <li> <a href="https://blogs.plos.org" id="ftr-blog">Blogs</a> </li> <li> <a href="https://collections.plos.org/" id="ftr-collections">Collections</a> </li> <li> <a href="mailto:webmaster@plos.org" id="ftr-feedback">Give feedback</a> </li> <li> <a href="/complexsystems/lockss-manifest" id="ftr-lockss">LOCKSS</a> </li> </ul> </div> <div class="block xx-small"> <ul class="nav nav-primary"> <li><a href="https://plos.org/privacy-policy" id="ftr-privacy">Privacy Policy</a></li> <li><a href="https://plos.org/terms-of-use" id="ftr-terms">Terms of Use</a></li> <li><a href="https://plos.org/advertise/" id="ftr-advertise">Advertise</a></li> <li><a href="https://plos.org/media-inquiries" id="ftr-media">Media Inquiries</a></li> <li><a href="https://plos.org/contact" id="ftr-contact">Contact</a></li> </ul> </div> </div> <div class="row"> <p> <img src="/resource/img/logo-plos-footer.png" alt="PLOS" class="logo-footer"/> <span class="footer-non-profit-statement">PLOS is a nonprofit 501(c)(3) corporation, #C2354500, based in California, US</span> </p> <div class="block"> </div> </div> <script src="/resource/js/global.js" type="text/javascript"></script> </footer> <script type="text/javascript"> var ArticleData = { doi: '10.1371/journal.pcsy.0000029', title: '<article-title xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">Urban scaling with censored data<\/article-title>', date: 'Jan 03, 2025' }; </script> <script src="/resource/js/components/show_onscroll.js" type="text/javascript"></script> <script src="/resource/js/components/pagination.js" type="text/javascript"></script> <script src="/resource/js/vendor/spin.js" type="text/javascript"></script> <script src="/resource/js/pages/article.js" type="text/javascript"></script> <script src="/resource/js/pages/article_references.js" type="text/javascript"></script> <script src="/resource/js/pages/article_sidebar.js" type="text/javascript"></script> <script src="/resource/js/vendor/foundation/foundation.dropdown.js" type="text/javascript"></script> <script src="/resource/js/components/table_open.js" type="text/javascript"></script> <script src="/resource/js/components/figshare.js" type="text/javascript"></script> <script src="/resource/js/vendor/jquery.panzoom.min.js" type="text/javascript"></script> <script src="/resource/js/vendor/jquery.mousewheel.js" type="text/javascript"></script> <script src="/resource/js/components/lightbox.js" type="text/javascript"></script> <script src="/resource/js/pages/article_body.js" type="text/javascript"></script> <!-- This file should be loaded before the renderJs, to avoid conflicts with the FigShare, that implements the MathJax also. --> <!-- mathjax configuration options --> <!-- more can be found at http://docs.mathjax.org/en/latest/ --> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { scale: 100, availableFonts: ["STIX","TeX"], preferredFont: "STIX", webFont: "STIX-Web", linebreaks: { automatic: false } }, jax: ["input/MathML", "output/HTML-CSS"] }); </script> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=MML_HTMLorMML"></script> <div class="reveal-modal-bg"></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10