CINXE.COM

Search results for: GJR-GARCH-EVT-pair copula

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: GJR-GARCH-EVT-pair copula</title> <meta name="description" content="Search results for: GJR-GARCH-EVT-pair copula"> <meta name="keywords" content="GJR-GARCH-EVT-pair copula"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="GJR-GARCH-EVT-pair copula" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="GJR-GARCH-EVT-pair copula"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 40</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: GJR-GARCH-EVT-pair copula</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Copula Markov Switching Multifractal Models for Forecasting Value-at-Risk </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giriraj%20Achari">Giriraj Achari</a>, <a href="https://publications.waset.org/abstracts/search?q=Malay%20Bhattacharyya"> Malay Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effectiveness of Copula Markov Switching Multifractal (MSM) models at forecasting Value-at-Risk of a two-stock portfolio is studied. The innovations are allowed to be drawn from distributions that can capture skewness and leptokurtosis, which are well documented empirical characteristics observed in financial returns. The candidate distributions considered for this purpose are Johnson-SU, Pearson Type-IV and α-Stable distributions. The two univariate marginal distributions are combined using the Student-t copula. The estimation of all parameters is performed by Maximum Likelihood Estimation. Finally, the models are compared in terms of accurate Value-at-Risk (VaR) forecasts using tests of unconditional coverage and independence. It is found that Copula-MSM-models with leptokurtic innovation distributions perform slightly better than Copula-MSM model with Normal innovations. Copula-MSM models, in general, produce better VaR forecasts as compared to traditional methods like Historical Simulation method, Variance-Covariance approach and Copula-Generalized Autoregressive Conditional Heteroscedasticity (Copula-GARCH) models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Copula" title="Copula">Copula</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20Switching" title=" Markov Switching"> Markov Switching</a>, <a href="https://publications.waset.org/abstracts/search?q=multifractal" title=" multifractal"> multifractal</a>, <a href="https://publications.waset.org/abstracts/search?q=value-at-risk" title=" value-at-risk"> value-at-risk</a> </p> <a href="https://publications.waset.org/abstracts/115727/copula-markov-switching-multifractal-models-for-forecasting-value-at-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Parametric Inference of Elliptical and Archimedean Family of Copulas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alam%20Ali">Alam Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20Pathak"> Ashok Kumar Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, copulas have attracted significant attention for modeling multivariate observations, and the foremost feature of copula functions is that they give us the liberty to study the univariate marginal distributions and their joint behavior separately. The copula parameter apprehends the intrinsic dependence among the marginal variables, and it can be estimated using parametric, semiparametric, or nonparametric techniques. This work aims to compare the coverage rates between an Elliptical and an Archimedean family of copulas via a fully parametric estimation technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elliptical%20copula" title="elliptical copula">elliptical copula</a>, <a href="https://publications.waset.org/abstracts/search?q=archimedean%20copula" title=" archimedean copula"> archimedean copula</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=coverage%20rate" title=" coverage rate"> coverage rate</a> </p> <a href="https://publications.waset.org/abstracts/171985/parametric-inference-of-elliptical-and-archimedean-family-of-copulas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Bivariate Time-to-Event Analysis with Copula-Based Cox Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duhania%20O.%20Mahara">Duhania O. Mahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Santi%20W.%20Purnami"> Santi W. Purnami</a>, <a href="https://publications.waset.org/abstracts/search?q=Aulia%20N.%20Fitria"> Aulia N. Fitria</a>, <a href="https://publications.waset.org/abstracts/search?q=Merissa%20N.%20Z.%20Wirontono"> Merissa N. Z. Wirontono</a>, <a href="https://publications.waset.org/abstracts/search?q=Revina%20Musfiroh"> Revina Musfiroh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shofi%20Andari"> Shofi Andari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagiran%20Sagiran"> Sagiran Sagiran</a>, <a href="https://publications.waset.org/abstracts/search?q=Estiana%20Khoirunnisa"> Estiana Khoirunnisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Wahyudi%20Widada"> Wahyudi Widada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For assessing interventions in numerous disease areas, the use of multiple time-to-event outcomes is common. An individual might experience two different events called bivariate time-to-event data, the events may be correlated because it come from the same subject and also influenced by individual characteristics. The bivariate time-to-event case can be applied by copula-based bivariate Cox survival model, using the Clayton and Frank copulas to analyze the dependence structure of each event and also the covariates effect. By applying this method to modeling the recurrent event infection of hemodialysis insertion on chronic kidney disease (CKD) patients, from the AIC and BIC values we find that the Clayton copula model was the best model with Kendall’s Tau is (τ=0,02). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bivariate%20cox" title="bivariate cox">bivariate cox</a>, <a href="https://publications.waset.org/abstracts/search?q=bivariate%20event" title=" bivariate event"> bivariate event</a>, <a href="https://publications.waset.org/abstracts/search?q=copula%20function" title=" copula function"> copula function</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20copula" title=" survival copula"> survival copula</a> </p> <a href="https://publications.waset.org/abstracts/179386/bivariate-time-to-event-analysis-with-copula-based-cox-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alam%20Ali">Alam Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20Pathak"> Ashok Kumar Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Path analysis is a statistical technique used to evaluate the strength of the direct and indirect effects of variables. One or more structural regression equations are used to estimate a series of parameters in order to find the better fit of data. Sometimes, exogenous variables do not show a significant strength of their direct and indirect effect when the assumption of classical regression (ordinary least squares (OLS)) are violated by the nature of the data. The main motive of this article is to investigate the efficacy of the copula-based regression approach over the classical regression approach and calculate the direct and indirect effects of variables when data violates the OLS assumption and variables are linked through an elliptical copula. We perform this study using a well-organized numerical scheme. Finally, a real data application is also presented to demonstrate the performance of the superiority of the copula approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=path%20analysis" title="path analysis">path analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=copula-based%20regression%20models" title=" copula-based regression models"> copula-based regression models</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20and%20indirect%20effects" title=" direct and indirect effects"> direct and indirect effects</a>, <a href="https://publications.waset.org/abstracts/search?q=k-fold%20cross%20validation%20technique" title=" k-fold cross validation technique"> k-fold cross validation technique</a> </p> <a href="https://publications.waset.org/abstracts/171166/copula-based-estimation-of-direct-and-indirect-effects-in-path-analysis-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> A Mixture Vine Copula Structures Model for Dependence Wind Speed among Wind Farms and Its Application in Reactive Power Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yibin%20Qiu">Yibin Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yubo%20Ouyang"> Yubo Ouyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shihan%20Li"> Shihan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Guorui%20Zhang"> Guorui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Li"> Qi Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Weirong%20Chen"> Weirong Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at exploring the impacts of high dimensional dependencies of wind speed among wind farms on probabilistic optimal power flow. To obtain the reactive power optimization faster and more accurately, a mixture vine Copula structure model combining the K-means clustering, C vine copula and D vine copula is proposed in this paper, through which a more accurate correlation model can be obtained. Moreover, a Modified Backtracking Search Algorithm (MBSA), the three-point estimate method is applied to probabilistic optimal power flow. The validity of the mixture vine copula structure model and the MBSA are respectively tested in IEEE30 node system with measured data of 3 adjacent wind farms in a certain area, and the results indicate effectiveness of these methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixture%20vine%20copula%20structure%20model" title="mixture vine copula structure model">mixture vine copula structure model</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20estimate%20method" title=" three-point estimate method"> three-point estimate method</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20probability%20integral%20transform" title=" the probability integral transform"> the probability integral transform</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20backtracking%20search%20algorithm" title=" modified backtracking search algorithm"> modified backtracking search algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power%20optimization" title=" reactive power optimization"> reactive power optimization</a> </p> <a href="https://publications.waset.org/abstracts/66356/a-mixture-vine-copula-structures-model-for-dependence-wind-speed-among-wind-farms-and-its-application-in-reactive-power-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alam%20Ali">Alam Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20Pathak"> Ashok Kumar Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Path analysis is a statistical technique used to evaluate the direct and indirect effects of variables in path models. One or more structural regression equations are used to estimate a series of parameters in path models to find the better fit of data. However, sometimes the assumptions of classical regression models, such as ordinary least squares (OLS), are violated by the nature of the data, resulting in insignificant direct and indirect effects of exogenous variables. This article aims to explore the effectiveness of a copula-based regression approach as an alternative to classical regression, specifically when variables are linked through an elliptical copula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=path%20analysis" title="path analysis">path analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=copula-based%20regression%20models" title=" copula-based regression models"> copula-based regression models</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20and%20indirect%20effects" title=" direct and indirect effects"> direct and indirect effects</a>, <a href="https://publications.waset.org/abstracts/search?q=k-fold%20cross%20validation%20technique" title=" k-fold cross validation technique"> k-fold cross validation technique</a> </p> <a href="https://publications.waset.org/abstracts/186900/copula-based-estimation-of-direct-and-indirect-effects-in-path-analysis-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Estimation of the Upper Tail Dependence Coefficient for Insurance Loss Data Using an Empirical Copula-Based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20O%27Hagan">Adrian O&#039;Hagan</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20McLoughlin"> Robert McLoughlin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considerable focus in the world of insurance risk quantification is placed on modeling loss values from lines of business (LOBs) that possess upper tail dependence. Copulas such as the Joe, Gumbel and Student-t copula may be used for this purpose. The copula structure imparts a desired level of tail dependence on the joint distribution of claims from the different LOBs. Alternatively, practitioners may possess historical or simulated data that already exhibit upper tail dependence, through the impact of catastrophe events such as hurricanes or earthquakes. In these circumstances, it is not desirable to induce additional upper tail dependence when modeling the joint distribution of the loss values from the individual LOBs. Instead, it is of interest to accurately assess the degree of tail dependence already present in the data. The empirical copula and its associated upper tail dependence coefficient are presented in this paper as robust, efficient means of achieving this goal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empirical%20copula" title="empirical copula">empirical copula</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20events" title=" extreme events"> extreme events</a>, <a href="https://publications.waset.org/abstracts/search?q=insurance%20loss%20reserving" title=" insurance loss reserving"> insurance loss reserving</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20tail%20dependence%20coefficient" title=" upper tail dependence coefficient"> upper tail dependence coefficient</a> </p> <a href="https://publications.waset.org/abstracts/2645/estimation-of-the-upper-tail-dependence-coefficient-for-insurance-loss-data-using-an-empirical-copula-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Multivariate Dependent Frequency-Severity Modeling of Insurance Claims: A Vine Copula Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Islem%20Kedidi">Islem Kedidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rihab%20Bedoui%20Bensalem"> Rihab Bedoui Bensalem</a>, <a href="https://publications.waset.org/abstracts/search?q=Faysal%20Manssouri"> Faysal Manssouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In traditional models of insurance data, the number and size of claims are assumed to be independent. Relaxing the independence assumption, this article explores the Vine copula to model dependence structure between multivariate frequency and average severity of insurance claim. To illustrate this approach, we use the Wisconsin local government property insurance fund which offers several insurance protections for motor vehicles, property and contractor’s equipment claims. Results show that the C-vine copula can better characterize the multivariate dependence structure between frequency and severity. Furthermore, we find significant dependencies especially between frequency and average severity among different coverage types. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dependency%20modeling" title="dependency modeling">dependency modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=government%20insurance" title=" government insurance"> government insurance</a>, <a href="https://publications.waset.org/abstracts/search?q=insurance%20claims" title=" insurance claims"> insurance claims</a>, <a href="https://publications.waset.org/abstracts/search?q=vine%20copula" title=" vine copula"> vine copula</a> </p> <a href="https://publications.waset.org/abstracts/101505/multivariate-dependent-frequency-severity-modeling-of-insurance-claims-a-vine-copula-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakshmi%20Prayaga">Lakshmi Prayaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Prayaga.%20Aaron%20Wade"> Chandra Prayaga. Aaron Wade</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopi%20Shankar%20Mallu"> Gopi Shankar Mallu</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsha%20Satya%20Pola"> Harsha Satya Pola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthetic%20data%20generation" title="synthetic data generation">synthetic data generation</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20adversarial%20networks" title=" generative adversarial networks"> generative adversarial networks</a>, <a href="https://publications.waset.org/abstracts/search?q=conditional%20tabular%20GAN" title=" conditional tabular GAN"> conditional tabular GAN</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20copula" title=" Gaussian copula"> Gaussian copula</a> </p> <a href="https://publications.waset.org/abstracts/183000/generative-ai-a-comparison-of-conditional-tabular-generative-adversarial-networks-and-conditional-tabular-generative-adversarial-networks-with-gaussian-copula-in-generating-synthetic-data-with-synthetic-data-vault" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Nonparametric Copula Approximations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serge%20Provost">Serge Provost</a>, <a href="https://publications.waset.org/abstracts/search?q=Yishan%20Zang"> Yishan Zang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copulas are currently utilized in finance, reliability theory, machine learning, signal processing, geodesy, hydrology and biostatistics, among several other fields of scientific investigation. It follows from Sklar's theorem that the joint distribution function of a multidimensional random vector can be expressed in terms of its associated copula and marginals. Since marginal distributions can easily be determined by making use of a variety of techniques, we address the problem of securing the distribution of the copula. This will be done by using several approaches. For example, we will obtain bivariate least-squares approximations of the empirical copulas, modify the kernel density estimation technique and propose a criterion for selecting appropriate bandwidths, differentiate linearized empirical copulas, secure Bernstein polynomial approximations of suitable degrees, and apply a corollary to Sklar's result. Illustrative examples involving actual observations will be presented. The proposed methodologies will as well be applied to a sample generated from a known copula distribution in order to validate their effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copulas" title="copulas">copulas</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernstein%20polynomial%20approximation" title=" Bernstein polynomial approximation"> Bernstein polynomial approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=least-squares%20polynomial%20approximation" title=" least-squares polynomial approximation"> least-squares polynomial approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=kernel%20density%20estimation" title=" kernel density estimation"> kernel density estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20approximation" title=" density approximation"> density approximation</a> </p> <a href="https://publications.waset.org/abstracts/170324/nonparametric-copula-approximations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Forecasting of COVID-19 Cases, Hospitalization Admissions, and Death Cases Based on Wastewater Sars-COV-2 Surveillance Using Copula Time Series Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hueiwang%20Anna%20Jeng">Hueiwang Anna Jeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Norou%20Diawara"> Norou Diawara</a>, <a href="https://publications.waset.org/abstracts/search?q=Nancy%20Welch"> Nancy Welch</a>, <a href="https://publications.waset.org/abstracts/search?q=Cynthia%20Jackson"> Cynthia Jackson</a>, <a href="https://publications.waset.org/abstracts/search?q=Rekha%20Singh"> Rekha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyle%20Curtis"> Kyle Curtis</a>, <a href="https://publications.waset.org/abstracts/search?q=Raul%20Gonzalez"> Raul Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Jurgens"> David Jurgens</a>, <a href="https://publications.waset.org/abstracts/search?q=Sasanka%20Adikari"> Sasanka Adikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modeling effort is needed to predict the COVID-19 trends for developing management strategies and adaptation measures. The objective of this study was to assess whether SARS-CoV-2 viral load in wastewater could serve as a predictor for forecasting COVID-19 cases, hospitalization cases, and death cases using copula-based time series modeling. SARS-CoV-2 RNA load in raw wastewater in Chesapeake VA was measured using the RT-qPCR method. Gaussian copula time series marginal regression model, incorporating an autoregressive moving average model and the copula function, served as a forecasting model. COVID-19 cases were correlated with wastewater viral load, hospitalization cases, and death cases. The forecasted trend of COVID-19 cases closely paralleled one of the reported cases, with over 90% of the forecasted COVID-19 cases falling within the 99% confidence interval of the reported cases. Wastewater SARS-CoV-2 viral load could serve as a predictor for COVID-19 cases and hospitalization cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a>, <a href="https://publications.waset.org/abstracts/search?q=copula%20function" title=" copula function"> copula function</a> </p> <a href="https://publications.waset.org/abstracts/175685/forecasting-of-covid-19-cases-hospitalization-admissions-and-death-cases-based-on-wastewater-sars-cov-2-surveillance-using-copula-time-series-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Vine Copula Structure among Yield, Price and Weather Variables for Rating Crop Insurance Premium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiemiao%20Chen">Jiemiao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuoxun%20Xu"> Shuoxun Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of our research is to apply the Vine copula measuring dependency between price, temperature, and precipitation indices to calculate a fair crop insurance premium. This research is focused on Worth, Iowa, United States, over the period from 2000 to 2020, where the farmers are dependent on precipitation and average temperature during the growth period of corn. Our proposed insurance considers both the natural risk and the price risk in agricultural production. We first estimate the distributions of crops using parametric methods based on Goodness of Fit tests, and then Vine Copula is applied to model dependence between yield price, crop yield, and weather indices. Once the vine structure and its parameters are determined based on AIC/BIC criteria and forecasting price and yield are obtained from the ARIMA model, we calculate this crop insurance premium using the simulation data generated from the vine copula by the Monte Carlo Simulation method. It is shown that, compared with traditional crop insurance, our proposed insurance is more fair and thus less costly for the farmers and government. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vine%20copula" title="vine copula">vine copula</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20index" title=" weather index"> weather index</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20insurance%20premium" title=" crop insurance premium"> crop insurance premium</a>, <a href="https://publications.waset.org/abstracts/search?q=insurance%20risk%20management" title=" insurance risk management"> insurance risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/141303/vine-copula-structure-among-yield-price-and-weather-variables-for-rating-crop-insurance-premium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Regression for Doubly Inflated Multivariate Poisson Distributions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishapathik%20Das">Ishapathik Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumen%20Sen"> Sumen Sen</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Rao%20Chaganty"> N. Rao Chaganty</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Sengupta"> Pooja Sengupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dependent multivariate count data occur in several research studies. These data can be modeled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells, and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present a real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copula" title="copula">copula</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20copula" title=" Gaussian copula"> Gaussian copula</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20distributions" title=" multivariate distributions"> multivariate distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=inflated%20distributios" title=" inflated distributios"> inflated distributios</a> </p> <a href="https://publications.waset.org/abstracts/105114/regression-for-doubly-inflated-multivariate-poisson-distributions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Risk Spillover Between Stock Indices and Real Estate Mixed Copula Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hina%20Munir%20Abbasi">Hina Munir Abbasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current paper examines the relationship and diversification ability of Islamic stock indices /conventional stocks indices and Real Estate Investment Trust (REITs).To represent conditional dependency between stocks and REITs in a more realistic way, new modeling technique, time-varying copula with switching dependence is used. It represents reliance structure more accurately and realistically than a single copula regime as dependence may alter between positive and negative correlation regimes with time. The fluctuating behavior of markets has significant impact on economic variables; especially the downward trend during crisis. Overall addition of Real Estate Investment Trust in stocks portfolio reduces risks and provide better diversification benefit. Results varied depending upon the circumstances of the country. REITs provides better diversification benefits for Islamic Stocks, when both markets are bearish and can provide hedging benefit for conventional stocks portfolio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20stocks" title="conventional stocks">conventional stocks</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20estate%20investment%20trust" title=" real estate investment trust"> real estate investment trust</a>, <a href="https://publications.waset.org/abstracts/search?q=copula" title=" copula"> copula</a>, <a href="https://publications.waset.org/abstracts/search?q=diversification" title=" diversification"> diversification</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20spillover" title=" risk spillover"> risk spillover</a>, <a href="https://publications.waset.org/abstracts/search?q=safe%20heaven" title=" safe heaven"> safe heaven</a> </p> <a href="https://publications.waset.org/abstracts/164977/risk-spillover-between-stock-indices-and-real-estate-mixed-copula-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Dynamic Correlations and Portfolio Optimization between Islamic and Conventional Equity Indexes: A Vine Copula-Based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imen%20Dhaou">Imen Dhaou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines conditional Value at Risk by applying the GJR-EVT-Copula model, and finds the optimal portfolio for eight Dow Jones Islamic-conventional pairs. Our methodology consists of modeling the data by a bivariate GJR-GARCH model in which we extract the filtered residuals and then apply the Peak over threshold model (POT) to fit the residual tails in order to model marginal distributions. After that, we use pair-copula to find the optimal portfolio risk dependence structure. Finally, with Monte Carlo simulations, we estimate the Value at Risk (VaR) and the conditional Value at Risk (CVaR). The empirical results show the VaR and CVaR values for an equally weighted portfolio of Dow Jones Islamic-conventional pairs. In sum, we found that the optimal investment focuses on Islamic-conventional US Market index pairs because of high investment proportion; however, all other index pairs have low investment proportion. These results deliver some real repercussions for portfolio managers and policymakers concerning to optimal asset allocations, portfolio risk management and the diversification advantages of these markets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CVaR" title="CVaR">CVaR</a>, <a href="https://publications.waset.org/abstracts/search?q=Dow%20Jones%20Islamic%20index" title=" Dow Jones Islamic index"> Dow Jones Islamic index</a>, <a href="https://publications.waset.org/abstracts/search?q=GJR-GARCH-EVT-pair%20copula" title=" GJR-GARCH-EVT-pair copula"> GJR-GARCH-EVT-pair copula</a>, <a href="https://publications.waset.org/abstracts/search?q=portfolio%20optimization" title=" portfolio optimization"> portfolio optimization</a> </p> <a href="https://publications.waset.org/abstracts/81937/dynamic-correlations-and-portfolio-optimization-between-islamic-and-conventional-equity-indexes-a-vine-copula-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Producing Outdoor Design Conditions based on the Dependency between Meteorological Elements: Copula Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhichao%20Jiao">Zhichao Jiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Craig%20Farnham"> Craig Farnham</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihui%20Yuan"> Jihui Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuo%20Emura"> Kazuo Emura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is common to use the outdoor design weather data to select the air-conditioning capacity in the building design stage. The outdoor design weather data are usually comprised of multiple meteorological elements for a 24-hour period separately, but the dependency between the elements is not well considered, which may cause an overestimation of selecting air-conditioning capacity. Considering the dependency between the air temperature and global solar radiation, we used the copula approach to model the joint distributions of those two weather elements and suggest a new method of selecting more credible outdoor design conditions based on the specific simultaneous occurrence probability of air temperature and global solar radiation. In this paper, the 10-year period hourly weather data from 2001 to 2010 in Osaka, Japan, was used to analyze the dependency structure and joint distribution, the result shows that the Joe-Frank copula fit for almost all hourly data. According to calculating the simultaneous occurrence probability and the common exceeding probability of air temperature and global solar radiation, the results have shown that the maximum difference in design air temperature and global solar radiation of the day is about 2 degrees Celsius and 30W/m2, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation" title="energy conservation">energy conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20weather%20database" title=" design weather database"> design weather database</a>, <a href="https://publications.waset.org/abstracts/search?q=HVAC" title=" HVAC"> HVAC</a>, <a href="https://publications.waset.org/abstracts/search?q=copula%20approach" title=" copula approach"> copula approach</a> </p> <a href="https://publications.waset.org/abstracts/145040/producing-outdoor-design-conditions-based-on-the-dependency-between-meteorological-elements-copula-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Assessment Using Copulas of Simultaneous Damage to Multiple Buildings Due to Tsunamis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yo%20Fukutani">Yo Fukutani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuji%20Moriguchi"> Shuji Moriguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Takuma%20Kotani"> Takuma Kotani</a>, <a href="https://publications.waset.org/abstracts/search?q=Terada%20Kenjiro"> Terada Kenjiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> If risk management of the assets owned by companies, risk assessment of real estate portfolio, and risk identification of the entire region are to be implemented, it is necessary to consider simultaneous damage to multiple buildings. In this research, the Sagami Trough earthquake tsunami that could have a significant effect on the Japanese capital region is focused on, and a method is proposed for simultaneous damage assessment using copulas that can take into consideration the correlation of tsunami depths and building damage between two sites. First, the tsunami inundation depths at two sites were simulated by using a nonlinear long-wave equation. The tsunamis were simulated by varying the slip amount (five cases) and the depths (five cases) for each of 10 sources of the Sagami Trough. For each source, the frequency distributions of the tsunami inundation depth were evaluated by using the response surface method. Then, Monte-Carlo simulation was conducted, and frequency distributions of tsunami inundation depth were evaluated at the target sites for all sources of the Sagami Trough. These are marginal distributions. Kendall’s tau for the tsunami inundation simulation at two sites was 0.83. Based on this value, the Gaussian copula, t-copula, Clayton copula, and Gumbel copula (n = 10,000) were generated. Then, the simultaneous distributions of the damage rate were evaluated using the marginal distributions and the copulas. For the correlation of the tsunami inundation depth at the two sites, the expected value hardly changed compared with the case of no correlation, but the damage rate of the ninety-ninth percentile value was approximately 2%, and the maximum value was approximately 6% when using the Gumbel copula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copulas" title="copulas">copulas</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte-Carlo%20simulation" title=" Monte-Carlo simulation"> Monte-Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20risk%20assessment" title=" probabilistic risk assessment"> probabilistic risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunamis" title=" tsunamis"> tsunamis</a> </p> <a href="https://publications.waset.org/abstracts/103724/assessment-using-copulas-of-simultaneous-damage-to-multiple-buildings-due-to-tsunamis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Contagion and Stock Interdependence in the BRIC+M Block</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20Bucio%20Pacheco">Christian Bucio Pacheco</a>, <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Magnolia%20Sosa%20Castro"> Miriam Magnolia Sosa Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20Alejandra%20Cabello%20Rosales"> María Alejandra Cabello Rosales</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to analyze the contagion effect among the stock markets of the BRIC+M block (Brazil, Russia, India, China plus Mexico). The contagion effect is proved through increasing on dependence parameters during crisis periods. The dependence parameters are estimated through copula approach in a period of time from July 1997 to December 2015. During this period there are instability and calm episodes, allowing to analyze changes in the relations of dependence. Empirical results show strong evidence of time-varying dependence among the BRIC+M markets and an increasing dependence relation during global financial crisis period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BRIC%2BM%20Block" title="BRIC+M Block">BRIC+M Block</a>, <a href="https://publications.waset.org/abstracts/search?q=Contagion%20effect" title=" Contagion effect"> Contagion effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Copula" title=" Copula"> Copula</a>, <a href="https://publications.waset.org/abstracts/search?q=dependence" title=" dependence"> dependence</a> </p> <a href="https://publications.waset.org/abstracts/58461/contagion-and-stock-interdependence-in-the-bricm-block" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Prayaga">Chandra Prayaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Wade"> Aaron Wade</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakshmi%20Prayaga"> Lakshmi Prayaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopi%20Shankar%20Mallu"> Gopi Shankar Mallu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20success" title=" student success"> student success</a>, <a href="https://publications.waset.org/abstracts/search?q=physics%20course" title=" physics course"> physics course</a>, <a href="https://publications.waset.org/abstracts/search?q=grades" title=" grades"> grades</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20data" title=" synthetic data"> synthetic data</a>, <a href="https://publications.waset.org/abstracts/search?q=CTGAN" title=" CTGAN"> CTGAN</a>, <a href="https://publications.waset.org/abstracts/search?q=gaussian%20copula%20CTGAN" title=" gaussian copula CTGAN"> gaussian copula CTGAN</a> </p> <a href="https://publications.waset.org/abstracts/183001/machine-learning-analysis-of-student-success-in-introductory-calculus-based-physics-i-course" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> A Fourier Method for Risk Quantification and Allocation of Credit Portfolios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoyu%20Shen">Xiaoyu Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Fang"> Fang Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chujun%20Qiu"> Chujun Qiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herewith we present a Fourier method for credit risk quantification and allocation in the factor-copula model framework. The key insight is that, compared to directly computing the cumulative distribution function of the portfolio loss via Monte Carlo simulation, it is, in fact, more efficient to calculate the transformation of the distribution function in the Fourier domain instead and inverting back to the real domain can be done in just one step and semi-analytically, thanks to the popular COS method (with some adjustments). We also show that the Euler risk allocation problem can be solved in the same way since it can be transformed into the problem of evaluating a conditional cumulative distribution function. Once the conditional or unconditional cumulative distribution function is known, one can easily calculate various risk metrics. The proposed method not only fills the niche in literature, to the best of our knowledge, of accurate numerical methods for risk allocation but may also serve as a much faster alternative to the Monte Carlo simulation method for risk quantification in general. It can cope with various factor-copula model choices, which we demonstrate via examples of a two-factor Gaussian copula and a two-factor Gaussian-t hybrid copula. The fast error convergence is proved mathematically and then verified by numerical experiments, in which Value-at-Risk, Expected Shortfall, and conditional Expected Shortfall are taken as examples of commonly used risk metrics. The calculation speed and accuracy are tested to be significantly superior to the MC simulation for real-sized portfolios. The computational complexity is, by design, primarily driven by the number of factors instead of the number of obligors, as in the case of Monte Carlo simulation. The limitation of this method lies in the "curse of dimension" that is intrinsic to multi-dimensional numerical integration, which, however, can be relaxed with the help of dimension reduction techniques and/or parallel computing, as we will demonstrate in a separate paper. The potential application of this method has a wide range: from credit derivatives pricing to economic capital calculation of the banking book, default risk charge and incremental risk charge computation of the trading book, and even to other risk types than credit risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=credit%20portfolio" title="credit portfolio">credit portfolio</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20allocation" title=" risk allocation"> risk allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20copula%20model" title=" factor copula model"> factor copula model</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20COS%20method" title=" the COS method"> the COS method</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20method" title=" Fourier method"> Fourier method</a> </p> <a href="https://publications.waset.org/abstracts/153235/a-fourier-method-for-risk-quantification-and-allocation-of-credit-portfolios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andres%20F.%20Ramirez">Andres F. Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20F.%20Valencia"> Carlos F. Valencia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copula%20autoregressive" title="copula autoregressive">copula autoregressive</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20irradiance%20forecasting" title=" solar irradiance forecasting"> solar irradiance forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy%20forecasting" title=" solar energy forecasting"> solar energy forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20generation" title=" time series generation"> time series generation</a> </p> <a href="https://publications.waset.org/abstracts/115914/copula-autoregressive-methodology-for-simulation-of-solar-irradiance-and-air-temperature-time-series-for-solar-energy-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Performance Assessment of Three Unit Redundant System with Environmental and Human Failure Using Copula Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Singh">V. V. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have studied the reliability measures of a system, which consists of two subsystems i.e. subsystem-1 and subsystem-2 in series configuration under different types of failure. The subsystem-1 has three identical units in parallel configuration and operating under 2-out-of-3: G policy and connected to subsystem-2 in series configuration. Each subsystem has different types of failure and repair rates. An important cause for failure of system is unsuitability of the environmental conditions, like overheating, weather conditions, heavy rainfall, storm etc. The environmental failure is taken into account in the proposed repairable system. Supplementary variable technique is used to study of system and some traditional measures such as; availability, reliability, MTTF and profit function are obtained for different values of parameters. In the proposed model, some particular cases of failure rates are explicitly studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20failure" title="environmental failure">environmental failure</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20failure" title=" human failure"> human failure</a>, <a href="https://publications.waset.org/abstracts/search?q=availability" title=" availability"> availability</a>, <a href="https://publications.waset.org/abstracts/search?q=MTTF" title=" MTTF"> MTTF</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=profit%20analysis" title=" profit analysis"> profit analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumbel-Hougaard%20family%20copula" title=" Gumbel-Hougaard family copula"> Gumbel-Hougaard family copula</a> </p> <a href="https://publications.waset.org/abstracts/46343/performance-assessment-of-three-unit-redundant-system-with-environmental-and-human-failure-using-copula-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Scheduling Method for Electric Heater in HEMS considering User’s Comfort </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong-Sung%20Kim">Yong-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Je-Seok%20Shin"> Je-Seok Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Jun%20Jo"> Ho-Jun Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-O%20Kim"> Jin-O Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Home Energy Management System (HEMS) which makes the residential consumers contribute to the demand response is attracting attention in recent years. An aim of HEMS is to minimize their electricity cost by controlling the use of their appliances according to electricity price. The use of appliances in HEMS may be affected by some conditions such as external temperature and electricity price. Therefore, the user’s usage pattern of appliances should be modeled according to the external conditions, and the resultant usage pattern is related to the user’s comfortability on use of each appliances. This paper proposes a methodology to model the usage pattern based on the historical data with the copula function. Through copula function, the usage range of each appliance can be obtained and is able to satisfy the appropriate user’s comfort according to the external conditions for next day. Within the usage range, an optimal scheduling for appliances would be conducted so as to minimize an electricity cost with considering user’s comfort. Among the home appliance, electric heater (EH) is a representative appliance which is affected by the external temperature. In this paper, an optimal scheduling algorithm for an electric heater (EH) is addressed based on the method of branch and bound. As a result, scenarios for the EH usage are obtained according to user’s comfort levels and then the residential consumer would select the best scenario. The case study shows the effects of the proposed algorithm compared with the traditional operation of the EH, and it also represents impacts of the comfort level on the scheduling result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20scheduling" title="load scheduling">load scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=usage%20pattern" title=" usage pattern"> usage pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=user%E2%80%99s%20comfort" title=" user’s comfort"> user’s comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=copula%20function" title=" copula function"> copula function</a>, <a href="https://publications.waset.org/abstracts/search?q=branch%20and%20bound" title=" branch and bound"> branch and bound</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20heater" title=" electric heater "> electric heater </a> </p> <a href="https://publications.waset.org/abstracts/39132/scheduling-method-for-electric-heater-in-hems-considering-users-comfort" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Reliability Analysis of Computer Centre at Yobe State University Nigeria under Different Repair Policies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Vir%20Singh">Vijay Vir Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we focus on the reliability and performance analysis of Computer Centre (CC) at Yobe State University, Damaturu, Nigeria. The CC consists of three servers: one database mail server, one redundant and one for sharing with the client computers in the CC (called as local server). Observing the different possibilities of functioning of the CC, analysis has been done to evaluate the various reliability characteristics of the system. The system can completely fail due to failure of router, redundant server before repairing the mail server, and switch failure. The system can also partially fail when local server fails. The system can also fail completely due to a cooling failure, electricity failure or some natural calamity like earthquake, fire etc. All the failure rates are assumed to be constant while repair follows two types of distributions: general and Gumbel-Hougaard family copula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=availability%20Gumbel-Hougaard%20family%20copula" title=" availability Gumbel-Hougaard family copula"> availability Gumbel-Hougaard family copula</a>, <a href="https://publications.waset.org/abstracts/search?q=MTTF" title=" MTTF"> MTTF</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20data%20centre" title=" internet data centre "> internet data centre </a> </p> <a href="https://publications.waset.org/abstracts/32380/reliability-analysis-of-computer-centre-at-yobe-state-university-nigeria-under-different-repair-policies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Stochastic Analysis of Linux Operating System through Copula Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Vir%20Singh">Vijay Vir Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is focused studying the Linux operating system connected in a LAN (local area network). The STAR topology (to be called subsystem-1) and BUS topology (to be called subsystem-2) are taken into account, which are placed at two different locations and connected to a server through a hub. In the both topologies BUS topology and STAR topology, we have assumed n clients. The system has two types of failures i.e. partial failure and complete failure. Further, the partial failure has been categorized as minor and major partial failure. It is assumed that the minor partial failure degrades the sub-systems and the major partial failure make the subsystem break down mode. The system may completely fail due to failure of server hacking and blocking etc. The system is studied using supplementary variable technique and Laplace transform by using different types of failure and two types of repair. The various measures of reliability for example, availability of system, reliability of system, MTTF, profit function for different parametric values have been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=star%20topology" title="star topology">star topology</a>, <a href="https://publications.waset.org/abstracts/search?q=bus%20topology" title=" bus topology"> bus topology</a>, <a href="https://publications.waset.org/abstracts/search?q=blocking" title=" blocking"> blocking</a>, <a href="https://publications.waset.org/abstracts/search?q=hacking" title=" hacking"> hacking</a>, <a href="https://publications.waset.org/abstracts/search?q=Linux%20operating%20system" title=" Linux operating system"> Linux operating system</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumbel-Hougaard%20family%20copula" title=" Gumbel-Hougaard family copula"> Gumbel-Hougaard family copula</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20variable" title=" supplementary variable"> supplementary variable</a> </p> <a href="https://publications.waset.org/abstracts/48060/stochastic-analysis-of-linux-operating-system-through-copula-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Application of the Concept of Comonotonicity in Option Pricing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Chateauneuf">A. Chateauneuf</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mostoufi"> M. Mostoufi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Vyncke"> D. Vyncke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monte Carlo (MC) simulation is a technique that provides approximate solutions to a broad range of mathematical problems. A drawback of the method is its high computational cost, especially in a high-dimensional setting, such as estimating the Tail Value-at-Risk for large portfolios or pricing basket options and Asian options. For these types of problems, one can construct an upper bound in the convex order by replacing the copula by the comonotonic copula. This comonotonic upper bound can be computed very quickly, but it gives only a rough approximation. In this paper we introduce the Comonotonic Monte Carlo (CoMC) simulation, by using the comonotonic approximation as a control variate. The CoMC is of broad applicability and numerical results show a remarkable speed improvement. We illustrate the method for estimating Tail Value-at-Risk and pricing basket options and Asian options when the logreturns follow a Black-Scholes model or a variance gamma model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20variate%20Monte%20Carlo" title="control variate Monte Carlo">control variate Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=comonotonicity" title=" comonotonicity"> comonotonicity</a>, <a href="https://publications.waset.org/abstracts/search?q=option%20pricing" title=" option pricing"> option pricing</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20computing" title=" scientific computing"> scientific computing</a> </p> <a href="https://publications.waset.org/abstracts/33995/application-of-the-concept-of-comonotonicity-in-option-pricing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Modelling Operational Risk Using Extreme Value Theory and Skew t-Copulas via Bayesian Inference </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Betty%20Johanna%20Garzon%20Rozo">Betty Johanna Garzon Rozo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Crook"> Jonathan Crook</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Moreira"> Fernando Moreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Operational risk losses are heavy tailed and are likely to be asymmetric and extremely dependent among business lines/event types. We propose a new methodology to assess, in a multivariate way, the asymmetry and extreme dependence between severity distributions, and to calculate the capital for Operational Risk. This methodology simultaneously uses (i) several parametric distributions and an alternative mix distribution (the Lognormal for the body of losses and the Generalized Pareto Distribution for the tail) via extreme value theory using SAS®, (ii) the multivariate skew t-copula applied for the first time for operational losses and (iii) Bayesian theory to estimate new n-dimensional skew t-copula models via Markov chain Monte Carlo (MCMC) simulation. This paper analyses a newly operational loss data set, SAS Global Operational Risk Data [SAS OpRisk], to model operational risk at international financial institutions. All the severity models are constructed in SAS® 9.2. We implement the procedure PROC SEVERITY and PROC NLMIXED. This paper focuses in describing this implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operational%20risk" title="operational risk">operational risk</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20distribution%20approach" title=" loss distribution approach"> loss distribution approach</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20value%20theory" title=" extreme value theory"> extreme value theory</a>, <a href="https://publications.waset.org/abstracts/search?q=copulas" title=" copulas"> copulas</a> </p> <a href="https://publications.waset.org/abstracts/19385/modelling-operational-risk-using-extreme-value-theory-and-skew-t-copulas-via-bayesian-inference" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">603</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Performance Analysis of LINUX Operating System Connected in LAN Using Gumbel-Hougaard Family Copula Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Singh">V. V. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we have focused on the study of a Linux operating system connected in a LAN (local area network). We have considered two different topologies STAR topology (subsystem-1) and BUS topology (subsystem-2) which are placed at two different places and connected to a server through a hub. In both topologies BUS topology and STAR topology, we have assumed 'n' clients. The system has two types of failure partial failure and complete failure. Further the partial failure has been categorized as minor partial failure and major partial failure. It is assumed that minor partial failure degrades the subsystem and the major partial failure brings the subsystem to break down mode. The system can completely failed due to failure of server hacking and blocking etc. The system is studied by supplementary variable technique and Laplace transform by taking different types of failure and two types of repairs. The various measures of reliability like availability of system, MTTF, profit function for different parametric values has been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=star%20topology" title="star topology">star topology</a>, <a href="https://publications.waset.org/abstracts/search?q=bus%20topology" title=" bus topology"> bus topology</a>, <a href="https://publications.waset.org/abstracts/search?q=hacking" title=" hacking"> hacking</a>, <a href="https://publications.waset.org/abstracts/search?q=blocking" title=" blocking"> blocking</a>, <a href="https://publications.waset.org/abstracts/search?q=linux%20operating%20system" title=" linux operating system"> linux operating system</a>, <a href="https://publications.waset.org/abstracts/search?q=Gumbel-Hougaard%20family%20copula" title=" Gumbel-Hougaard family copula"> Gumbel-Hougaard family copula</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20variable" title=" supplementary variable "> supplementary variable </a> </p> <a href="https://publications.waset.org/abstracts/33606/performance-analysis-of-linux-operating-system-connected-in-lan-using-gumbel-hougaard-family-copula-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Reliability Analysis of Computer Centre at Yobe State University Using LRU Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Singh">V. V. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Ibrahim%20Gwanda"> Yusuf Ibrahim Gwanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Prasad"> Rajesh Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we focus on the reliability and performance analysis of Computer Centre (CC) at Yobe State University, Damaturu, Nigeria. The CC consists of three servers: one database mail server, one redundant and one for sharing with the client computers in the CC (called as a local server). Observing the different possibilities of the functioning of the CC, the analysis has been done to evaluate the various popular measures of reliability such as availability, reliability, mean time to failure (MTTF), profit analysis due to the operation of the system. The system can ultimately fail due to the failure of router, redundant server before repairing the mail server and switch failure. The system can also partially fail when a local server fails. The failed devices have restored according to Least Recently Used (LRU) techniques. The system can also fail entirely due to a cooling failure of the server, electricity failure or some natural calamity like earthquake, fire tsunami, etc. All the failure rates are assumed to be constant and follow exponential time distribution, while the repair follows two types of distributions: i.e. general and Gumbel-Hougaard family copula distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=availability%20Gumbel-Hougaard%20family%20copula" title=" availability Gumbel-Hougaard family copula"> availability Gumbel-Hougaard family copula</a>, <a href="https://publications.waset.org/abstracts/search?q=MTTF" title=" MTTF"> MTTF</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20data%20centre" title=" internet data centre"> internet data centre</a> </p> <a href="https://publications.waset.org/abstracts/17889/reliability-analysis-of-computer-centre-at-yobe-state-university-using-lru-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Modelling Volatility Spillovers and Cross Hedging among Major Agricultural Commodity Futures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roengchai%20Tansuchat">Roengchai Tansuchat</a>, <a href="https://publications.waset.org/abstracts/search?q=Woraphon%20Yamaka"> Woraphon Yamaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Paravee%20Maneejuk"> Paravee Maneejuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the past recent, the global financial crisis, economic instability, and large fluctuation in agricultural commodity price have led to increased concerns about the volatility transmission among them. The problem is further exacerbated by commodities volatility caused by other commodity price fluctuations, hence the decision on hedging strategy has become both costly and useless. Thus, this paper is conducted to analysis the volatility spillover effect among major agriculture including corn, soybeans, wheat and rice, to help the commodity suppliers hedge their portfolios, and manage the risk and co-volatility of them. We provide a switching regime approach to analyzing the issue of volatility spillovers in different economic conditions, namely upturn and downturn economic. In particular, we investigate relationships and volatility transmissions between these commodities in different economic conditions. We purposed a Copula-based multivariate Markov Switching GARCH model with two regimes that depend on an economic conditions and perform simulation study to check the accuracy of our proposed model. In this study, the correlation term in the cross-hedge ratio is obtained from six copula families – two elliptical copulas (Gaussian and Student-t) and four Archimedean copulas (Clayton, Gumbel, Frank, and Joe). We use one-step maximum likelihood estimation techniques to estimate our models and compare the performance of these copula using Akaike information criterion (AIC) and Bayesian information criteria (BIC). In the application study of agriculture commodities, the weekly data used are conducted from 4 January 2005 to 1 September 2016, covering 612 observations. The empirical results indicate that the volatility spillover effects among cereal futures are different, as response of different economic condition. In addition, the results of hedge effectiveness will also suggest the optimal cross hedge strategies in different economic condition especially upturn and downturn economic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20commodity%20futures" title="agricultural commodity futures">agricultural commodity futures</a>, <a href="https://publications.waset.org/abstracts/search?q=cereal" title=" cereal"> cereal</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-hedge" title=" cross-hedge"> cross-hedge</a>, <a href="https://publications.waset.org/abstracts/search?q=spillover%20effect" title=" spillover effect"> spillover effect</a>, <a href="https://publications.waset.org/abstracts/search?q=switching%20regime%20approach" title=" switching regime approach"> switching regime approach</a> </p> <a href="https://publications.waset.org/abstracts/58830/modelling-volatility-spillovers-and-cross-hedging-among-major-agricultural-commodity-futures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=GJR-GARCH-EVT-pair%20copula&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=GJR-GARCH-EVT-pair%20copula&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10