CINXE.COM
Search results for: clavicle fracture
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: clavicle fracture</title> <meta name="description" content="Search results for: clavicle fracture"> <meta name="keywords" content="clavicle fracture"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="clavicle fracture" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="clavicle fracture"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 624</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: clavicle fracture</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">594</span> Failure Analysis of Fuel Pressure Supply from an Aircraft Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Pilar%20Valles-gonzalez">M. Pilar Valles-gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Alejandro%20Gonzalez%20Meije"> Alejandro Gonzalez Meije</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Pastor%20Muro"> Ana Pastor Muro</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Garcia-Martinez"> Maria Garcia-Martinez</a>, <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20Gonzalez%20Caballero"> Beatriz Gonzalez Caballero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed of the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material has been mechanical, by hardness test, and microstructural characterized using a stereomicroscope and an optical microscope. The results confirmed that it is within specifications. To determine the macrofractographic features, a visual examination and a stereo microscope of the tube fracture surface have been carried out. The results revealed a tube plastic macrodeformation, surface damaged, and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with a microanalysis system by X-ray dispersive energy (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, have been observed. The origin of the fracture has been placed in defects located on the outer wall of the tube, leading to a final overload fracture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20engine" title="aircraft engine">aircraft engine</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=FE-SEM" title=" FE-SEM"> FE-SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=fractography" title=" fractography"> fractography</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20tube" title=" fuel tube"> fuel tube</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/133219/failure-analysis-of-fuel-pressure-supply-from-an-aircraft-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">593</span> Insufficiency Fracture of Femoral Head in Patients Treated With Intramedullary Nailing for Proximal Femur Fracture </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jai%20Hyung%20Park">Jai Hyung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Kim"> Eugene Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Hun%20Park"> Jin Hun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Joon%20Oh"> Min Joon Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Subchondral insufficiency fracture of the femoral head (SIF) is a rare complication; however, it has been recognized to cause femoral head collapse. Subchondral insufficiency fracture (SIF) is caused by normal or physiological stress without any trauma. It has been reported in osteoporotic patients after the fixation of the proximal femur with an Intramedullary nail. Case presentation: We reported 5 cases with SIF of the femoral head after proximal femur fracture fixation with Intra-medullary nail. All patients had osteoporosis as an underlying disease. Good reduction was achieved in all 5 patients. SIF was found from about 3 months to 4 years after the initial operation, and all the fractures were solidly united at the final diagnosis. We investigated retrospectively the feature of those cases and several factors that affected the occurrence of SIF. Discussion: There are a few discussions regarding the SIF of the femoral head. These discussions may include the predisposing risk factors, how to diagnose the SIF in osteoporotic patients, and the peri-operative factors to prevent SIF. Conclusion: Subchondral insufficiency fracture of the femoral head is a considerable complication after the internal fixation of the proximal femur. There are several factors that can be modified. If they could be controlled in the peri-operative period, SIF could be prevented or handled in advance. Other options related to arthroplasty can be considered in old osteoporotic patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insufficiency%20fracture%20of%20femoral%20head" title="insufficiency fracture of femoral head">insufficiency fracture of femoral head</a>, <a href="https://publications.waset.org/abstracts/search?q=intra-medullary%20nail" title=" intra-medullary nail"> intra-medullary nail</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title=" osteoporosis"> osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=proximal%20femur%20fracture" title=" proximal femur fracture"> proximal femur fracture</a> </p> <a href="https://publications.waset.org/abstracts/117685/insufficiency-fracture-of-femoral-head-in-patients-treated-with-intramedullary-nailing-for-proximal-femur-fracture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">592</span> A Technique for Planning the Application of Buttress Plate in the Medial Tibial Plateau Using the Preoperative CT Scan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Panwalkar">P. Panwalkar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Veravalli"> K. Veravalli</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Gwynn"> R. Gwynn</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tofighi"> M. Tofighi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Clement"> R. Clement</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mofidi"> A. Mofidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When operating on tibial plateau fracture especially medial tibial plateau, it has regularly been said “where do I put my thumb to reduce the fracture”. This refers to the ideal placement of the buttress device to hold the fracture till union. The aim of this study was to see if one can identify this sweet spot using a CT scan. Methods: Forty-five tibial plateau fractures with medial plateau involvement were identified and included in the study. The preoperative CT scans were analysed and the medial plateau involvement pattern was classified based on modified radiological classification by Yukata et-al of stress fracture of medial tibial plateau. The involvement of part of plateau was compared with position of buttress plate position which was classified as medial posteromedial or both. Presence and position of the buttress was compared with ability to achieve and hold the reduction of the fracture till union. Results: Thirteen fractures were type-1 fracture, 19 fractures were type-2 fracture and 13 fractures were type-3 fracture. Sixteen fractures were buttressed correctly according to the potential deformity and twenty-six fractures were not buttressed and three fractures were partly buttressed correctly. No fracture was over butressed! When the fracture was buttressed correctly the rate of the malunion was 0%. When fracture was partly buttressed 33% were anatomically united and 66% were united in the plane of buttress. When buttress was not used, 14 were malunited, one malunited in one of the two planes of deformity and eleven anatomically healed (of which 9 were non displaced!). Buttressing resulted in statistically significant lower mal-union rate (x2=7.8, p=0.0052). Conclusion: The classification based on involvement of medial condyle can identify the placement of buttress plate in the tibial plateau. The correct placement of the buttress plate results in predictably satisfactory union. There may be a correlation between injury shape of the tibial plateau and the fracture type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knee" title="knee">knee</a>, <a href="https://publications.waset.org/abstracts/search?q=tibial%20plateau" title=" tibial plateau"> tibial plateau</a>, <a href="https://publications.waset.org/abstracts/search?q=trauma" title=" trauma"> trauma</a>, <a href="https://publications.waset.org/abstracts/search?q=CT%20scan" title=" CT scan"> CT scan</a>, <a href="https://publications.waset.org/abstracts/search?q=surgery" title=" surgery"> surgery</a> </p> <a href="https://publications.waset.org/abstracts/146858/a-technique-for-planning-the-application-of-buttress-plate-in-the-medial-tibial-plateau-using-the-preoperative-ct-scan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">591</span> Fracture Toughness Properties and FTIR Analysis of Corn Fiber Green Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hashim">Ahmed Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Aseel%20Abdullah"> Aseel Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the fracture toughness of new green composite based on bio-PMMA resin reinforced with randomly short corn natural fiber of constant weight fraction by 10% wt was investigated. The corn fiber surface was modified by mercerization treatment with two different concentrations of sodium hydroxide (3, and 5% NaOH) for 1.5 and 3 hours respectively. The effect of mercerization treatment on the fracture behavior of the green composites was analyzed by FTIR spectra. NaOH concentration of 3% for 1.5 hrs. That was used for corn fiber green composite should the highest improvement in terms of plane strain fracture toughness KIC which increased by 62 % compared to untreated fiber composite material. On the other hand, increased both concentrations of alkali solution to 5% NaOH and time of soaking to 3 hrs. reduced the values of KIC lower than the value of the unfilled material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20composites" title="green composites">green composites</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20natural%20fiber" title=" corn natural fiber"> corn natural fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-PMMA" title=" bio-PMMA"> bio-PMMA</a> </p> <a href="https://publications.waset.org/abstracts/59539/fracture-toughness-properties-and-ftir-analysis-of-corn-fiber-green-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">590</span> Nonlinear Flow Behavior and Validity of the Cubic Law in a Rough Fracture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kunwar%20Mrityunjai%20Sharma">Kunwar Mrityunjai Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Trilok%20Nath%20Singh"> Trilok Nath Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Navier-Stokes equation is used to study nonlinear fluid flow in rough 2D fractures. The major goal is to investigate the influence of inertial flow owing to fracture wall roughness on nonlinear flow behavior. Roughness profiles are developed using Barton's Joint Roughness Coefficient (JRC) and used as fracture walls to assess wall roughness. Four JRC profiles (5, 11, 15, and 19) are employed in the study, where a higher number indicates higher roughness. A parametric study has been performed using varying pressure gradients, and the corresponding Forchheimer number is calculated to observe the nonlinear behavior. The results indicate that the fracture roughness has a significant effect on the onset of nonlinearity. Additionally, the validity of the cubic law is evaluated and observed that it overestimates the flow in rough fractures and should be used with utmost care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20flow" title="fracture flow">fracture flow</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20flow" title=" nonlinear flow"> nonlinear flow</a>, <a href="https://publications.waset.org/abstracts/search?q=cubic%20law" title=" cubic law"> cubic law</a>, <a href="https://publications.waset.org/abstracts/search?q=Navier-stokes%20equation" title=" Navier-stokes equation"> Navier-stokes equation</a> </p> <a href="https://publications.waset.org/abstracts/149916/nonlinear-flow-behavior-and-validity-of-the-cubic-law-in-a-rough-fracture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">589</span> Crack Initiation Assessment during Fracture of Heat Treated Duplex Stainless Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faraj%20Ahmed%20E.%20Alhegagi">Faraj Ahmed E. Alhegagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anagia%20M.%20Khamkam%20Mohamed"> Anagia M. Khamkam Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Bassam%20F.%20Alhajaji"> Bassam F. Alhajaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Duplex stainless steels (DSS) are widely employed in industry for apparatus working with sea water in petroleum, refineries and in chemical plants. Fracture of DSS takes place by cleavage of the ferrite phase and the austenite phase ductile tear off. Pop-in is an important feature takes place during fracture of DSS. The procedure of Pop-ins assessment plays an important role in fracture toughness studies. In present work, Zeron100 DSS specimens were heat treated at different temperatures, cooled and pulled to failure to assess the pop-ins criterion in crack initiation prediction. The outcome results were compared to the British Standard (BS 7448) and the ASTEM standard (E1290) for Crack-Tip Opening Displacement (CTOD) fracture toughness measurement. Pop-in took place during specimens loading specially for those specimens heat treated at higher temperatures. The standard BS7448 was followed to check specimen validity for fractured toughness assessment by direct determination of KIC. In most cases, specimens were invalid for KIC measurement. The two procedures were equivalent only when single pop-ins were assessed. A considerable contrast in fracture toughness value between was observed where multiple pop-ins were assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title="fracture toughness">fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steels" title=" stainless steels"> stainless steels</a>, <a href="https://publications.waset.org/abstracts/search?q=pop%20ins" title=" pop ins"> pop ins</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20assessment" title=" crack assessment"> crack assessment</a> </p> <a href="https://publications.waset.org/abstracts/83031/crack-initiation-assessment-during-fracture-of-heat-treated-duplex-stainless-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">588</span> Comparative Study of Impact Strength and Fracture Morphological of Nano-CaCO3 and Nanoclay Reinforced HDPE Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harun%20Sepet">Harun Sepet</a>, <a href="https://publications.waset.org/abstracts/search?q=Necmettin%20Tarakcioglu"> Necmettin Tarakcioglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigated the impact strength and fracture mechanism of nano-CaCO3 and nanoclay reinforced HDPE nanocomposites by using Charpy impact test. The nano-CaCO3 and nanoclay reinforced HDPE granules were prepared by the melt blending method using a compounder system, which consists of industrial banbury mixer, single screw extruder and granule cutting in industrial-scale. The nano-CaCO3 and nanoclay reinforced HDPE granules were molded using an injection-molding machine as plates, and then impact samples were cut by using punching die from the nanocomposite plates. As a result of impact experiments, nano-CaCO3 and nanoclay reinforced HDPE nanocomposites were determined to have lower impact energy level than neat HDPE. Also, the impact strength of HDPE further decreased by addition nanoclay compared to nano-CaCO3. The occurred fracture areas with the impact were detected by SEM examination. It is understood that fracture surface morphology changes when nano-CaCO3 and nanoclay ratio increases. The fracture surface changes were examined to determine the fracture mechanism of nano-CaCO3 and nanoclay reinforced HDPE nanocomposites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charpy" title="charpy">charpy</a>, <a href="https://publications.waset.org/abstracts/search?q=HDPE" title=" HDPE"> HDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20scale%20nano-CaCO3" title=" industrial scale nano-CaCO3"> industrial scale nano-CaCO3</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoclay" title=" nanoclay"> nanoclay</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/37073/comparative-study-of-impact-strength-and-fracture-morphological-of-nano-caco3-and-nanoclay-reinforced-hdpe-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">587</span> The Effect of Heating-Liquid Nitrogen Cooling on Fracture Toughness of Anisotropic Rock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kavandi">A. Kavandi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Goshtasbi"> K. Goshtasbi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Hadei"> M. R. Hadei</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Nejati"> H. Nejati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In geothermal energy production, the method of liquid nitrogen (LN₂) fracturing in hot, dry rock is one of the most effective methods to increase the permeability of the reservoir. The geothermal reservoirs mainly consist of hard rocks such as granites and metamorphic rocks like gneiss with high temperatures. Gneiss, as a metamorphic rock, experiences a high level of inherent anisotropy. This type of anisotropy is considered as the nature of rocks, which affects the mechanical behavior of rocks. The aim of this study is to investigate the effects of heating-liquid nitrogen (LN₂) cooling treatment and rock anisotropy on the fracture toughness of gneiss. For this aim, a series of semi-circular bend (SCB) tests were carried out on specimens of gneiss with different anisotropy plane angles (0°, 30°, 60°, and 90°). In this study, gneiss specimens were exposed to heating–cooling treatment through gradual heating to 100°C followed by LN₂ cooling. Results indicate that the fracture toughness of treated samples is lower than that of untreated samples, and with increasing the anisotropy plane angle, the fracture toughness increases. The scanning electron microscope (SEM) technique is also implemented to evaluate the fracture process zone (FPZ) ahead of the crack tip. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heating-cooling" title="heating-cooling">heating-cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20rock" title=" anisotropic rock"> anisotropic rock</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20nitrogen" title=" liquid nitrogen"> liquid nitrogen</a> </p> <a href="https://publications.waset.org/abstracts/172930/the-effect-of-heating-liquid-nitrogen-cooling-on-fracture-toughness-of-anisotropic-rock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">586</span> The Role of Secondary Filler on the Fracture Toughness of HDPE/Clay Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Kamarudzaman">R. Kamarudzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kalam"> A. Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Mohd%20Fadzil"> N. A. Mohd Fadzil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil Palm Fruit Bunch Fiber (OPEFB) was used as secondary filler in HDPE/clay nanocomposites. The composites were prepared by melt compounding which contains High Density Polyethylene (HDPE), OPEFB fibers, Maleic Anhydride Graft Polyethylene (MAPE) and four different clay loading (3, 5, 7 and 10 PE nanoclay pellets per hundred of HDPE pellets). Four OPEFB sizes (180 µm, 250 µm, 300 µm and 355 µm) were added in the composites to investigate their effects on fracture toughness. Fracture toughness of the composites were determined according to ASTM D5045 and Single Edge Notch Bending (SENB) been employed during the test. The effects of alkali treatment were also investigated in this study. The results indicate that the fracture toughness slightly increased as clay loading increased. The highest value of fracture toughness was 0.47 and 1.06 MPa.m1/2 at 5 phr for both types of clay loading. The presence of filler as reinforcement with the matrix indicates the enhancement of composites compared to those without the filler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20empty%20fruit%20bunch" title="oil palm empty fruit bunch">oil palm empty fruit bunch</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite" title=" polymer nanocomposite"> polymer nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20strength" title=" impact strength"> impact strength</a> </p> <a href="https://publications.waset.org/abstracts/9134/the-role-of-secondary-filler-on-the-fracture-toughness-of-hdpeclay-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">585</span> Numerical and Experimental Investigation of Mixed-Mode Fracture of Cement Paste and Interface Under Three-Point Bending Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Al%20Dandachli">S. Al Dandachli</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Perales"> F. Perales</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Monerie"> Y. Monerie</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Jamin"> F. Jamin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20El%20Youssoufi"> M. S. El Youssoufi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Pelissou"> C. Pelissou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this research is to study the fracture process and mechanical behavior of concrete under I–II mixed-mode stress, which is essential for ensuring the safety of concrete structures. For this purpose, two-dimensional simulations of three-point bending tests under variable load and geometry on notched cement paste samples of composite samples (cement paste/siliceous aggregate) are modeled by employing Cohesive Zone Models (CZMs). As a result of experimental validation of these tests, the CZM model demonstrates its capacity to predict fracture propagation at the local scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20paste" title="cement paste">cement paste</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title=" cohesive zone model"> cohesive zone model</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20flexural%20test%20bending" title=" three-point flexural test bending"> three-point flexural test bending</a> </p> <a href="https://publications.waset.org/abstracts/152427/numerical-and-experimental-investigation-of-mixed-mode-fracture-of-cement-paste-and-interface-under-three-point-bending-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">584</span> Maxillofacial Trauma: A Case of Diacapitular Condylar Fracture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Prasad%20Regmi">Krishna Prasad Regmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Bo%20Tu"> Jun-Bo Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Qun%20Hou"> Cheng-Qun Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Feng%20Li"> Li-Feng Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maxillofacial trauma in a pediatric group of patients is particularly challenging, as these patients have significant differences from adults as far as the facial skeleton is concerned. Mandibular condylar fractures are common presentations to hospitals across the globe and remain the most important cause of temporomandibular joint (TMJ) ankylosis. The etiology and epidemiology of pediatric trauma involving the diacapitular condylar fractures (DFs) have been reported in a large series of patients. Nevertheless, little is known about treatment protocols for DFs in children. Accordingly, the treatment modalities for the management of pediatric fractures also differ. We suggest following the PDA and intracapsular ABC classification of condylar fracture to increase the overall postoperative satisfaction level that bypasses the change of subjective feelings of patients’ from preoperative to the postoperative condition. At the same time, use of 3-D technology and surgical navigation may also increase treatment accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maxillofacial%20trauma" title="maxillofacial trauma">maxillofacial trauma</a>, <a href="https://publications.waset.org/abstracts/search?q=diacapitular%20fracture" title=" diacapitular fracture"> diacapitular fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=condylar%20fracture" title=" condylar fracture"> condylar fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=PDA%20classification" title=" PDA classification"> PDA classification</a> </p> <a href="https://publications.waset.org/abstracts/72367/maxillofacial-trauma-a-case-of-diacapitular-condylar-fracture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">583</span> Prediction of Crack Propagation in Bonded Joints Using Fracture Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Hedayati">Reza Hedayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Jahanbakhshi"> Meysam Jahanbakhshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, Fracture Mechanics is used to predict crack propagation in the adhesive jointing aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate. Therefore 2*3=6 cases are considered and their results are compared. The debonding initiation load, complete debonding load, crack face profile and load-displacement diagram have been compared for the six cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture" title="fracture">fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive%20joint" title=" adhesive joint"> adhesive joint</a>, <a href="https://publications.waset.org/abstracts/search?q=debonding" title=" debonding"> debonding</a>, <a href="https://publications.waset.org/abstracts/search?q=APDL" title=" APDL"> APDL</a>, <a href="https://publications.waset.org/abstracts/search?q=LEFM" title=" LEFM"> LEFM</a> </p> <a href="https://publications.waset.org/abstracts/23770/prediction-of-crack-propagation-in-bonded-joints-using-fracture-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">582</span> A Study on Effect of Dynamic Loading Speed on the Fracture Toughness of Equivalent Stress Gradient (ESG) Specimen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moon%20Byung%20Woo">Moon Byung Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Chang-Sung"> Seok Chang-Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Koo%20Jae-Mean"> Koo Jae-Mean</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Sang-Young"> Kim Sang-Young</a>, <a href="https://publications.waset.org/abstracts/search?q=Choi%20Jae%20Gu"> Choi Jae Gu</a>, <a href="https://publications.waset.org/abstracts/search?q=Huh%20Nam-Su"> Huh Nam-Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the occurrence of the earthquake has increased sharply and many of the casualties have occurred worldwide, due to the influence of earthquakes. Especially, the Fukushima nuclear power plant accident which was caused by the earthquake in 2011 has significantly increased the fear of people and the demand for the safety of the nuclear power plant. Thus, in order to prevent the earthquake accident at nuclear power plant, it is important to evaluate the fracture toughness considering the seismic loading rate. To obtain fracture toughness for the safety evaluation of nuclear power plant, it is desirable to perform experiments with a real scale pipe which is expensive and hard to perform. Therefore, many researchers have proposed various test specimens to replicate the fracture toughness of a real scale pipe. Since such specimens have several problems, the equivalent stress gradient (ESG) specimen has been recently suggested. In this study, in order to consider the effects of the dynamic loading speed on fracture toughness, the experiment was conducted by applying five different kinds of test speeds using an ESG specimen. In addition, after we performed the fracture toughness test under dynamic loading with different speeds using an ESG specimen and a standard specimen, we compared them with the test results under static loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20loading%20speed" title="dynamic loading speed">dynamic loading speed</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=load-ratio-method" title=" load-ratio-method"> load-ratio-method</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20stress%20gradient%20%28ESG%29%20specimen" title=" equivalent stress gradient (ESG) specimen"> equivalent stress gradient (ESG) specimen</a> </p> <a href="https://publications.waset.org/abstracts/52072/a-study-on-effect-of-dynamic-loading-speed-on-the-fracture-toughness-of-equivalent-stress-gradient-esg-specimen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">581</span> Numerical Prediction of Effects of Location of Across-the-Width Laminations on Tensile Properties of Rectangular Wires </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazeem%20K.%20Adewole">Kazeem K. Adewole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the finite element analysis numerical investigation of the effects of the location of across-the-width lamination on the tensile properties of rectangular wires for civil engineering applications. FE analysis revealed that the presence of the mid-thickness across-the-width lamination changes the cup and cone fracture shape exhibited by the lamination-free wire to a V-shaped fracture shape with an opening at the bottom/pointed end of the V-shape at the location of the mid-thickness across-the-width lamination. FE analysis also revealed that the presence of the mid-width across-the-thickness lamination changes the cup and cone fracture shape of the lamination-free wire without an opening to a cup and cone fracture shape with an opening at the location of the mid-width across-the-thickness lamination. The FE fracture behaviour prediction approach presented in this work serves as a tool for failure analysis of wires with lamination at different orientations which cannot be conducted experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=across-the-width%20lamination" title="across-the-width lamination">across-the-width lamination</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20properties" title=" tensile properties"> tensile properties</a>, <a href="https://publications.waset.org/abstracts/search?q=lamination%20location" title=" lamination location"> lamination location</a>, <a href="https://publications.waset.org/abstracts/search?q=wire" title=" wire "> wire </a> </p> <a href="https://publications.waset.org/abstracts/22128/numerical-prediction-of-effects-of-location-of-across-the-width-laminations-on-tensile-properties-of-rectangular-wires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">580</span> Mode II Fracture Toughness of Hybrid Fiber Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20S%20Abou%20El-Mal">H. S. S Abou El-Mal</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Sherbini"> A. S. Sherbini</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20E.%20M.%20Sallam"> H. E. M. Sallam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mode II fracture toughness (KIIc) of fiber reinforced concrete has been widely investigated under various patterns of testing geometries. The effect of fiber type, concrete matrix properties, and testing mechanisms were extensively studied. The area of hybrid fiber addition shows a lake of reported research data. In this paper an experimental investigation of hybrid fiber embedded in high strength concrete matrix is reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns, (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction (Vf) of 1.5%. The concrete matrix properties were kept the same for all hybrid fiber reinforced concrete patterns. In an attempt to estimate a fairly accepted value of fracture toughness KIIc, four testing geometries and loading types are employed in this investigation. Four point shear, Brazilian notched disc, double notched cube, and double edge notched specimens are investigated in a trial to avoid the limitations and sensitivity of each test regarding geometry, size effect, constraint condition, and the crack length to specimen width ratio a/w. The addition of all hybridization patterns of fiber reduced the compressive strength and increased mode II fracture toughness in pure mode II tests. Mode II fracture toughness of concrete KIIc decreased with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness KIIc is found to be sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness (KIIc). Four point shear (4PS) test set up reflects the most reliable values of mode II fracture toughness KIIc of concrete. Mode II fracture toughness KIIc of concrete couldn’t be assumed as a real material property. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete" title="fiber reinforced concrete">fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=Hybrid%20fiber" title=" Hybrid fiber"> Hybrid fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=Mode%20II%20fracture%20toughness" title=" Mode II fracture toughness"> Mode II fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20geometry" title=" testing geometry"> testing geometry</a> </p> <a href="https://publications.waset.org/abstracts/29837/mode-ii-fracture-toughness-of-hybrid-fiber-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">579</span> Experimental and Numerical Analysis on Enhancing Mechanical Properties of CFRP Adhesive Joints Using Hybrid Nanofillers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiong%20Rao">Qiong Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiongqi%20Peng"> Xiongqi Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs) were dispersed into epoxy adhesive to investigate their synergy effects on the shear properties, mode I and mode II fracture toughness of unidirectional composite bonded joints. Testing results showed that the incorporation of MWCNTs and GNPs significantly improved the shear strength, the mode I and mode II fracture toughness by 36.6%, 45% and 286%, respectively. In addition, the fracture surfaces of the bonding area as well as the toughening mechanism of nanofillers were analyzed. Finally, a nonlinear cohesive/friction coupled model for delamination analysis of adhesive layer under shear and normal compression loadings was proposed and implemented in ABAQUS/Explicit via user subroutine VUMAT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofillers" title="nanofillers">nanofillers</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive%20joints" title=" adhesive joints"> adhesive joints</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title=" cohesive zone model"> cohesive zone model</a> </p> <a href="https://publications.waset.org/abstracts/147772/experimental-and-numerical-analysis-on-enhancing-mechanical-properties-of-cfrp-adhesive-joints-using-hybrid-nanofillers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">578</span> Effect of Hydroxyl Functionalization on the Mechanical and Fracture Behaviour of Monolayer Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akarsh%20Verma">Akarsh Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Parashar"> Avinash Parashar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this article is to study the effects of hydroxyl functional group on the mechanical strength and fracture toughness of graphene. This functional group forms the backbone of intrinsic atomic structure of graphene oxide (GO). Molecular dynamics-based simulations were performed in conjunction with reactive force field (ReaxFF) parameters to capture the mode-I fracture toughness of hydroxyl functionalised graphene. Moreover, these simulations helped in concluding that spatial distribution and concentration of hydroxyl functional group significantly affects the fracture morphology of graphene nanosheet. In contrast to literature investigations, atomistic simulations predicted a transition in the failure morphology of hydroxyl functionalised graphene from brittle to ductile as a function of its spatial distribution on graphene sheet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ReaxFF" title=" ReaxFF"> ReaxFF</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a> </p> <a href="https://publications.waset.org/abstracts/84672/effect-of-hydroxyl-functionalization-on-the-mechanical-and-fracture-behaviour-of-monolayer-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">577</span> Practical Method for Failure Prediction of Mg Alloy Sheets during Warm Forming Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang-Woo%20Kim">Sang-Woo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Seon%20Lee"> Young-Seon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An important concern in metal forming, even at elevated temperatures, is whether a desired deformation can be accomplished without any failure of the material. A detailed understanding of the critical condition for crack initiation provides not only the workability limit of a material but also a guide-line for process design. This paper describes the utilization of ductile fracture criteria in conjunction with the finite element method (FEM) for predicting the onset of fracture in warm metal working processes of magnesium alloy sheets. Critical damage values for various ductile fracture criteria were determined from uniaxial tensile tests and were expressed as the function of strain rate and temperature. In order to find the best criterion for failure prediction, Erichsen cupping tests under isothermal conditions and FE simulations combined with ductile fracture criteria were carried out. Based on the plastic deformation histories obtained from the FE analyses of the Erichsen cupping tests and the critical damage value curves, the initiation time and location of fracture were predicted under a bi-axial tensile condition. The results were compared with experimental results and the best criterion was recommended. In addition, the proposed methodology was used to predict the onset of fracture in non-isothermal deep drawing processes using an irregular shaped blank, and the results were verified experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium" title="magnesium">magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=AZ31%20alloy" title=" AZ31 alloy"> AZ31 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20fracture" title=" ductile fracture"> ductile fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20forming" title=" sheet forming"> sheet forming</a>, <a href="https://publications.waset.org/abstracts/search?q=Erichsen%20cupping%20test" title=" Erichsen cupping test"> Erichsen cupping test</a> </p> <a href="https://publications.waset.org/abstracts/9024/practical-method-for-failure-prediction-of-mg-alloy-sheets-during-warm-forming-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">576</span> Bone Fracture Detection with X-Ray Images Using Mobilenet V3 Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashlesha%20Khanapure">Ashlesha Khanapure</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsh%20Kashyap"> Harsh Kashyap</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Anand"> Abhinav Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjana%20Habib"> Sanjana Habib</a>, <a href="https://publications.waset.org/abstracts/search?q=Anupama%20Bidargaddi"> Anupama Bidargaddi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technologies that are developing quickly are being developed daily in a variety of disciplines, particularly the medical field. For the purpose of detecting bone fractures in X-ray pictures of different body segments, our work compares the ResNet-50 and MobileNetV3 architectures. It evaluates accuracy and computing efficiency with X-rays of the elbow, hand, and shoulder from the MURA dataset. Through training and validation, the models are evaluated on normal and fractured images. While ResNet-50 showcases superior accuracy in fracture identification, MobileNetV3 showcases superior speed and resource optimization. Despite ResNet-50’s accuracy, MobileNetV3’s swifter inference makes it a viable choice for real-time clinical applications, emphasizing the importance of balancing computational efficiency and accuracy in medical imaging. We created a graphical user interface (GUI) for MobileNet V3 model bone fracture detection. This research underscores MobileNetV3’s potential to streamline bone fracture diagnoses, potentially revolutionizing orthopedic medical procedures and enhancing patient care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNN" title="CNN">CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=MobileNet%20V3" title=" MobileNet V3"> MobileNet V3</a>, <a href="https://publications.waset.org/abstracts/search?q=ResNet-50" title=" ResNet-50"> ResNet-50</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=MURA" title=" MURA"> MURA</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray" title=" X-ray"> X-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20detection" title=" fracture detection"> fracture detection</a> </p> <a href="https://publications.waset.org/abstracts/182019/bone-fracture-detection-with-x-ray-images-using-mobilenet-v3-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">575</span> Study of Hydraulic and Tectonic Fracturation within Zemlet El Beidha Area (North Chott Range)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Abaab">Nabil Abaab</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhaou%20Akrout"> Dhaou Akrout</a>, <a href="https://publications.waset.org/abstracts/search?q=Riadh%20Ahmadi"> Riadh Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mabrouk%20Montacer"> Mabrouk Montacer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of fluid pressure and its evolution have a critical importance as they lead to understanding the tectonic history of the region. Therefore, the present work focuses on a microtectonic study of tectonic and hydraulic fracture at the anticline structure of Zemlet El Beidha (North Chott range). The study and the analysis of several stations of tectonic and hydraulic fracture allow revealing the witnesses of a paléosurpression in the deposits of Lower Cretaceous (Bouhedma Formation). In fact, we noticed that the overpressure is directly involved in the creation of various types of fractures as evidenced by the different measures and the stereographic projections. Thus, the orientations of fibers of mineralization that fills the Beefs type fracture have the same direction as the main constraint. Furthermore, we discussed the different overpressure build-up mechanisms. The results showed that tectonics is likely, responsible for this anomaly. This is confirmed by the description of the fibers and the projection of the different measurements of Beefs. The mineralization transformation from gypsum to anhydrite is heavily involved in this stress regime especially in the presence of all necessary conditions of dehydration of gypsum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zemlet%20El%20Beidha" title="Zemlet El Beidha">Zemlet El Beidha</a>, <a href="https://publications.waset.org/abstracts/search?q=overpressure" title=" overpressure"> overpressure</a>, <a href="https://publications.waset.org/abstracts/search?q=tectonic%20fracture" title=" tectonic fracture"> tectonic fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20fracture" title=" hydraulic fracture"> hydraulic fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=gypsum%20beefs" title=" gypsum beefs"> gypsum beefs</a> </p> <a href="https://publications.waset.org/abstracts/46713/study-of-hydraulic-and-tectonic-fracturation-within-zemlet-el-beidha-area-north-chott-range" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">574</span> Material Fracture Dynamic of Vertical Axis Wind Turbine Blade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Lecheb">Samir Lecheb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Chellil"> Ahmed Chellil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Mechakra"> Hamza Mechakra</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Safi"> Brahim Safi</a>, <a href="https://publications.waset.org/abstracts/search?q=Houcine%20Kebir"> Houcine Kebir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we studied fracture and dynamic behavior of vertical axis wind turbine blade, the VAWT is a historical machine, it has many properties, structure, advantage, component to be able to produce the electricity. We modeled the blade design then imported to Abaqus software for analysis the modes shapes, frequencies, stress, strain, displacement and stress intensity factor SIF, after comparison we chose the idol material. Finally, the CTS test of glass epoxy reinforced polymer plates to obtain the material fracture toughness Kc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade" title="blade">blade</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a>, <a href="https://publications.waset.org/abstracts/search?q=SIF" title=" SIF"> SIF</a> </p> <a href="https://publications.waset.org/abstracts/86134/material-fracture-dynamic-of-vertical-axis-wind-turbine-blade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">573</span> About the Interface Bonding Safety of Adhesively Bonded Concrete Joints Under Cracking: A Fracture Energetic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brandtner-Hafner%20Martin">Brandtner-Hafner Martin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesives are increasingly being used in the construction sector. On the one hand, this concerns dowel reinforcements using chemical anchors. On the other hand, the sealing and repair of cracks in structural concrete components are still on the rise. In the field of bonding, the interface between the joined materials is the most critical area. Therefore, it is of immense importance to characterize and investigate this section sufficiently by fracture analysis. Since standardized mechanical test methods are not sufficiently capable of doing this, recourse is made to an innovative concept based on fracture energy. Therefore, a series of experimental tests were performed using the so-called GF-principle to study the interface bonding safety of adhesively bonded concrete joints. Several different structural adhesive systems based on epoxy, CA/A hybrid, PUR, MS polymer, dispersion, and acrylate were selected for bonding concrete substrates. The results show that stable crack propagation and prevention of uncontrolled failure in bonded concrete joints depend very much on the adhesive system used, and only fracture analytical evaluation methods can provide empirical information on this. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interface%20bonding%20safety" title="interface bonding safety">interface bonding safety</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesively%20bonded%20concrete%20joints" title=" adhesively bonded concrete joints"> adhesively bonded concrete joints</a>, <a href="https://publications.waset.org/abstracts/search?q=GF-principle" title=" GF-principle"> GF-principle</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20analysis" title=" fracture analysis"> fracture analysis</a> </p> <a href="https://publications.waset.org/abstracts/137943/about-the-interface-bonding-safety-of-adhesively-bonded-concrete-joints-under-cracking-a-fracture-energetic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">572</span> Estimating Age in Deceased Persons from the North Indian Population Using Ossification of the Sternoclavicular Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balaji%20Devanathan">Balaji Devanathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokul%20G."> Gokul G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Raveena%20Divya"> Raveena Divya</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Yadav"> Abhishek Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhir%20K.%20Gupta"> Sudhir K. Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Age estimation is a common problem in administrative settings, medico legal cases, and among athletes competing in different sports. Age estimation is a problem in medico legal problems that arise in hospitals when there has been a criminal abortion, when consenting to surgery or a general physical examination, when there has been infanticide, impotence, sterility, etc. Medical imaging progress has benefited forensic anthropology in various ways, most notably in the area of determining bone age. An efficient method for researching the epiphyseal union and other differences in the body's bones and joints is multi-slice computed tomography. There isn't a significant database on Indians available. So to obtain an Indian based database author has performed this original study. Methodologies: The appearance and fusion of ossification centre of sternoclavicular joint is evaluated, and grades were assigned accordingly. Using MSCT scans, we examined the relationship between the age of the deceased and alterations in the sternoclavicular joint during the appearance and union in 500 instances, 327 men and 173 females, in the age range of 0 to 25 years. Results: According to our research in both the male and female groups, the ossification centre for the medial end of the clavicle first appeared between the ages of 18.5 and 17.1 respectively. The age range of the partial union was 20.4 and 20.2 years old. The earliest age of complete fusion was 23 years for males and 22 years for females. For fusion of their sternebrae into one, age range is 11–24 years for females and 17–24 years. The fusion of the third and fourth sternebrae was completed by 11 years. The fusions of the first and second and second and third sternebrae occur by the age of 17 years. Furthermore, correlation and reliability were carried out which yielded significant results. Conclusion: With numerous exceptions, the projected values are consistent with a large number of the previously developed age charts. These variations may be caused by the ethnic or regional heterogeneity in the ossification pattern among the population under study. The pattern of bone maturation did not significantly differ between the sexes, according to the study. The study's age range was 0 to 25 years, and for obvious reasons, the majority of the occurrences occurred in the last five years, or between 20 and 25 years of age. This resulted in a comparatively smaller study population for the 12–18 age group, where age estimate is crucial because of current legal requirements. It will require specialized PMCT research in this age range to produce population standard charts for age estimate. The medial end of the clavicle is one of several ossification foci that are being thoroughly investigated since they are challenging to assess with a traditional X-ray examination. Combining the two has been shown to be a valid result when it comes to raising the age beyond eighteen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age%20estimation" title="age estimation">age estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=sternoclavicular%20joint" title=" sternoclavicular joint"> sternoclavicular joint</a>, <a href="https://publications.waset.org/abstracts/search?q=medial%20clavicle" title=" medial clavicle"> medial clavicle</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a> </p> <a href="https://publications.waset.org/abstracts/185839/estimating-age-in-deceased-persons-from-the-north-indian-population-using-ossification-of-the-sternoclavicular-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">571</span> Structural Safety of Biocomposites under Cracking: A Fracture Analytical Approach using the Gғ-Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brandtner-Hafner%20Martin">Brandtner-Hafner Martin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biocomposites have established themselves as a sustainable material class in the industry. Their advantages include lower density, lower price, and easier recycling compared to conventional materials. Now there are a variety of ways to measure their technical performance. One possibility is mechanical tests, which are widely used and standardized. However, these provide only very limited insights into damage capacity, which is particularly problematic under cracking conditions. To overcome such shortcomings, experimental tests were performed applying the fracture energetically GF-concept to study the structural safety of the interface under crack opening (mode-I loading). Two different types of biocomposites based on extruded henequen-fibers (NFRP) and wood-particles (WPC) in an HDPE matrix were evaluated. The results show that the fracture energy values obtained are higher than those given in the literature. This suggests that alternatives to previous linear elastic testing methods are needed to perform authentic safety evaluations of green plastics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposites" title="biocomposites">biocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20safety" title=" structural safety"> structural safety</a>, <a href="https://publications.waset.org/abstracts/search?q=G%D2%93-concept" title=" Gғ-concept"> Gғ-concept</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20analysis" title=" fracture analysis"> fracture analysis</a> </p> <a href="https://publications.waset.org/abstracts/137908/structural-safety-of-biocomposites-under-cracking-a-fracture-analytical-approach-using-the-gg-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">570</span> Keying Effect During Fracture of Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farej%20Ahmed%20Emhmmed">Farej Ahmed Emhmmed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fracture of duplex stainless steels (DSS) was investigated in air and in 3.5 wt % NaCl solution. Tow sets of fatigued specimens were heat treated at 475ºC for different times and pulled to failure either in air or after kept in 3.5% NaCl with polarization of -900 mV/ SCE. Fracture took place in general by ferrite cleavage and austenite ductile fracture in transgranular mode. Specimens measured stiffness (Ms) was affected by the aging time, with higher values measured for specimens aged for longer times. Microstructural features played a role in "blocking" the crack propagation process leading to lower the CTOD values specially for specimens aged for short times. Unbroken ligaments/ austenite were observed at the crack wake. These features may exerted a bridging stress, blocking effect, at the crack tip giving resistance to the crack propagation process i.e the crack mouth opening was reduced. Higher stress intensity factor Kıc values were observed with increased amounts of crack growth suggesting longer zone of unbroken ligaments in the crack wake. The bridging zone was typically several mm in length. Attempt to model the bridge stress was suggested to understand the role of ligaments/unbroken austenite in increasing the fracture toughness factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stainless%20steels" title="stainless steels">stainless steels</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title=" fracture toughness"> fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20keying%20effect" title=" crack keying effect"> crack keying effect</a>, <a href="https://publications.waset.org/abstracts/search?q=ligaments" title=" ligaments"> ligaments</a> </p> <a href="https://publications.waset.org/abstracts/17862/keying-effect-during-fracture-of-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">569</span> Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Woei-Shyan%20Lee">Woei-Shyan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao-Chien%20Kao"> Hao-Chien Kao </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and strain rate sensitivity all increase with increasing strain rate or decreasing temperature. It is shown that the impact response of the Haynes 188 specimens is adequately described by the Zerilli-Armstrong fcc model. The fracture analysis results indicate that the Haynes 188 specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Haynes 188 specimens are characterised by dimple- and / or cleavage-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haynes%20188%20alloy" title="Haynes 188 alloy">Haynes 188 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20rate%20and%20temperature%20effect" title=" strain rate and temperature effect"> strain rate and temperature effect</a>, <a href="https://publications.waset.org/abstracts/search?q=adiabatic%20shearing" title=" adiabatic shearing"> adiabatic shearing</a> </p> <a href="https://publications.waset.org/abstracts/6840/impact-deformation-and-fracture-behaviour-of-cobalt-based-haynes-188-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">568</span> Probabilistic Fracture Evaluation of Reactor Pressure Vessel Subjected to Pressurized Thermal Shock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianguo%20Chen">Jianguo Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Fenggang%20Zang"> Fenggang Zang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Yang"> Yu Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liangang%20Zheng"> Liangang Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reactor Pressure Vessel (RPV) is an important security barrier in nuclear power plant. Crack like defects may be produced on RPV during the whole operation lifetime due to the harsh operation condition and irradiation embrittlement. During the severe loss of coolant accident, thermal shock happened as the injection of emergency cooling water into RPV, which results in re-pressurization of the vessel and very high tension stress on the vessel wall, this event called Pressurized Thermal Shock (PTS). Crack on the vessel wall may propagate even penetrate the vessel, so the safety of the RPV would undergo great challenge. Many assumptions in structure integrity evaluation make the result of deterministic fracture mechanics very conservative, which affect the operation lifetime of the plant. Actually, many parameters in the evaluation process, such as fracture toughness and nil-ductility transition temperature, have statistical distribution characteristics. So it is necessary to assess the structural integrity of RPV subjected to PTS event by means of Probabilistic Fracture Mechanics (PFM). Structure integrity evaluation methods of RPV subjected to PTS event are summarized firstly, then evaluation method based on probabilistic fracture mechanics are presented by considering the probabilistic characteristics of material and structure parameters. A comprehensive analysis example is carried out at last. The results show that the probability of crack penetrates through wall increases gradually with the growth of fast neutron irradiation flux. The results give advice for reactor life extension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20toughness" title="fracture toughness">fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=integrity%20evaluation" title=" integrity evaluation"> integrity evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=pressurized%20thermal%20shock" title=" pressurized thermal shock"> pressurized thermal shock</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20fracture%20mechanics" title=" probabilistic fracture mechanics"> probabilistic fracture mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor%20pressure%20vessel" title=" reactor pressure vessel"> reactor pressure vessel</a> </p> <a href="https://publications.waset.org/abstracts/53569/probabilistic-fracture-evaluation-of-reactor-pressure-vessel-subjected-to-pressurized-thermal-shock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">567</span> Internal Corrosion Rupture of a 6-in Gas Line Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fadwa%20Jewilli">Fadwa Jewilli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A sudden leak of a 6-inch gas line pipe after being in service for one year was observed. The pipe had been designed to transport dry gas. The failure had taken place in 6 o’clock position at the stage discharge of the flow process. Laboratory investigations were conducted to find out the cause of the pipe rupture. Visual and metallographic observations confirmed that the pipe split was due to a crack initiated in circumferential and then turned into longitudinal direction. Sever wall thickness reduction was noticed on the internal pipe surface. Scanning electron microscopy observations at the fracture surface revealed features of ductile fracture mode. Corrosion product analysis showed the traces of iron carbonate and iron sulphate. The laboratory analysis resulted in the conclusion that the pipe failed due to the effect of wet fluid (condensate) caused severe wall thickness dissolution resulted in pipe could not stand the continuation at in-service working condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20line%20pipe" title="gas line pipe">gas line pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20prediction%20ductile%20fracture" title=" corrosion prediction ductile fracture"> corrosion prediction ductile fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=ductile%20fracture" title=" ductile fracture"> ductile fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20analysis" title=" failure analysis"> failure analysis</a> </p> <a href="https://publications.waset.org/abstracts/170312/internal-corrosion-rupture-of-a-6-in-gas-line-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">566</span> Telling the Truth to Patients Before Hip Fracture Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rawan%20Masarwa">Rawan Masarwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Merav%20Ben%20Natan"> Merav Ben Natan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaron%20Berkovich"> Yaron Berkovich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Hip fracture repair surgery carries a certain mortality risk, yet evidence suggests that orthopedic surgeons often refrain from discussing this issue with patients prior to surgery. Aim: This study aims to examine whether orthopedic surgeons address the issue of one-year post-surgery mortality before hip fracture repair surgery and to explore the factors influencing this decision. Method: The study uses a cross-sectional design, administering validated digital questionnaires to 150 orthopedic surgeons. Results: A minority of orthopedic surgeons reported consistently informing patients about the risk of mortality in the year following hip fracture surgery. The primary reasons for not discussing this risk were a desire to avoid frightening patients, time constraints, and concerns about undermining patient hope. Surgeons reported a medium-high level of perceived self-efficacy, with higher self-efficacy linked to a reduced likelihood of discussing one-year mortality risk. In contrast, older age and holding a specialist status in orthopedic surgery were associated with a higher likelihood of discussing this risk with patients. Conclusions: The findings suggest a need for interventions to address communication barriers and ensure consistent provision of essential information to patients undergoing hip fracture surgery. Additionally, they emphasize the importance of considering individual factors such as self-efficacy, age, and expertise in developing strategies to enhance patient-provider communication in orthopedic care settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orthopedic%20surgeons" title="orthopedic surgeons">orthopedic surgeons</a>, <a href="https://publications.waset.org/abstracts/search?q=hip%20fracture%20surgery" title=" hip fracture surgery"> hip fracture surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality%20risk%20communication" title=" mortality risk communication"> mortality risk communication</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20information" title=" patient information"> patient information</a> </p> <a href="https://publications.waset.org/abstracts/189251/telling-the-truth-to-patients-before-hip-fracture-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">565</span> Optimization of Multi-Zone Unconventional (Shale) Gas Reservoir Using Hydraulic Fracturing Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20C.%20Amadi">F. C. Amadi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20Enyi"> G. C. Enyi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20G.%20Nasr"> G. G. Nasr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydraulic fracturing is one of the most important stimulation techniques available to the petroleum engineer to extract hydrocarbons in tight gas sandstones. It allows more oil and gas production in tight reservoirs as compared to conventional means. The main aim of the study is to optimize the hydraulic fracturing as technique and for this purpose three multi-zones layer formation is considered and fractured contemporaneously. The three zones are named as Zone1 (upper zone), Zone2 (middle zone) and Zone3 (lower zone) respectively and they all occur in shale rock. Simulation was performed with Mfrac integrated software which gives a variety of 3D fracture options. This simulation process yielded an average fracture efficiency of 93.8%for the three respective zones and an increase of the average permeability of the rock system. An average fracture length of 909 ft with net height (propped height) of 210 ft (average) was achieved. Optimum fracturing results was also achieved with maximum fracture width of 0.379 inches at an injection rate of 13.01 bpm with 17995 Mscf of gas production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20fracturing" title="hydraulic fracturing">hydraulic fracturing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=shale" title=" shale"> shale</a>, <a href="https://publications.waset.org/abstracts/search?q=tight%20reservoir" title=" tight reservoir"> tight reservoir</a> </p> <a href="https://publications.waset.org/abstracts/35122/optimization-of-multi-zone-unconventional-shale-gas-reservoir-using-hydraulic-fracturing-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clavicle%20fracture&page=1" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clavicle%20fracture&page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clavicle%20fracture&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clavicle%20fracture&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clavicle%20fracture&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clavicle%20fracture&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clavicle%20fracture&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clavicle%20fracture&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clavicle%20fracture&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clavicle%20fracture&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clavicle%20fracture&page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clavicle%20fracture&page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=clavicle%20fracture&page=3" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>