CINXE.COM
Search results for: mealworm
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mealworm</title> <meta name="description" content="Search results for: mealworm"> <meta name="keywords" content="mealworm"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mealworm" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mealworm"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mealworm</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Cultivation And Production of Insects, Especially Mealworms (Mealworms) and Investigating Its Potential as Food for Animals and Even Humans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzieh%20Eshaghi%20Koupaei">Marzieh Eshaghi Koupaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By cultivating mealworm, we reduce greenhouse gases and avoid the use of transgenic products such as soybeans, and we provide food resources rich in protein, amino acids, minerals, etc. for humans and animals, and it has created employment and entrepreneurship. We serve the environment by producing oil from mealworm in the cosmetic industry, using its waste as organic fertilizer and its powder in bodybuilding, and by breaking down plastic by mealworm. The production and breeding of mealworm requires very little infrastructure and does not require much trouble, and requires very little food, and reproduces easily and quickly, and a mealworm production workshop is noiseless, odorless, and pollution-free And the costs are very low. It is possible to use third grade fruits and unsalable fruits of farmers to feed the mealworms, which is completely economical and cost-effective. Mealworms can break down plastic in their intestines and turn it into carbon dioxide. . This process was done in only 16 days, which is a very short time compared to several centuries for plastic to decompose. By producing mealworm, we have helped to preserve the environment and provided the source of protein needed by humans and animals. This industrial insect has the ability and value of commercialization and creates employment and helps the economy of the society. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breeding" title="breeding">breeding</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20of%20insects" title=" production of insects"> production of insects</a>, <a href="https://publications.waset.org/abstracts/search?q=mealworms" title=" mealworms"> mealworms</a>, <a href="https://publications.waset.org/abstracts/search?q=research" title=" research"> research</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20feed" title=" animal feed"> animal feed</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20feed" title=" human feed"> human feed</a> </p> <a href="https://publications.waset.org/abstracts/176635/cultivation-and-production-of-insects-especially-mealworms-mealworms-and-investigating-its-potential-as-food-for-animals-and-even-humans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Nutritive Advantage of Mealworm (Tenebrio molitor) in the Diet of White Shrimp (Litopenaeus vannamei)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tae-ho%20Chung">Tae-ho Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Park"> Chul Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Gi-wook%20Shin"> Gi-wook Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Joo-min%20Kim"> Joo-min Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-hyun%20Kim"> Seong-hyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Namjung%20Kim"> Namjung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mealworm (Tenebrio molitor) was evaluated to investigate the effect of partial or total replacement of fish meal in diets for white shrimp, Litopenaeus vannamei. Experimental groups of shrimp with average initial body weight (2.43 ± 0.54 g) were fed each with 4 isonitrogeneous (38% crude protein) diets formulated to include 0, 25, 50 and 100% (diets 1 to 4, respectively) of fish meal substituted with mealworm. After eight weeks of feeding trials, shrimp fed with diet 3 and 4 revealed the highest values for live weight gain(8.01 ± 2.51 and 7.93 ± 1.12), specific growth rates (2.70 ± 1.12 and 2.59 ± 0.51) as well as better feed conversion ratio (2.69 ± 0.09 and 2.72 ± 0.19) compared to the control group with statistically significant manner (p<0.05). Survival range was 98% in all the treatments. An increase in weight gain and other growth associated parameters was observed with higher replacement. These results clearly indicate that 50% and 100% of fish meal protein in shrimp diet can be replaced by mealworm not only without any adverse effect but also the effect of promoting growth performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mealworm" title="mealworm">mealworm</a>, <a href="https://publications.waset.org/abstracts/search?q=Litopenaeus%20vannamei" title=" Litopenaeus vannamei"> Litopenaeus vannamei</a>, <a href="https://publications.waset.org/abstracts/search?q=Tenebrio%20molitor" title=" Tenebrio molitor"> Tenebrio molitor</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20shrimp" title=" white shrimp"> white shrimp</a> </p> <a href="https://publications.waset.org/abstracts/26041/nutritive-advantage-of-mealworm-tenebrio-molitor-in-the-diet-of-white-shrimp-litopenaeus-vannamei" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Nutritive Potential of Mealworm (Tenebrio molitor) in the Diet of Olive Flounder (Paralichthys olivaceus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joo-min%20Kim">Joo-min Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gi-wook%20Shin"> Gi-wook Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-ho%20Chung"> Tae-ho Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Park"> Chul Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-hyun%20Kim"> Seong-hyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Namjung%20Kim"> Namjung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mealworm (Tenebrio molitor) was evaluated to investigate the effect of partial or total replacement of fish meal in diets for olive flounder, Paralichthys olivaceus. Experimental groups of fish with average initial body weight (287.5 ± 7.24 g) were fed each with 4 isonitrogeneous (52% crude protein) diets formulated to include 0, 7, 17 and 27% (diets 1 to 4, respectively) of fish meal substituted with mealworm. After six weeks of feeding trials, fish fed with diet 3 revealed the highest values for live weight gain(42.10), specific growth rates (0.445 ± 0.089) as well as better feed conversion ratio (12.08) compared to the other group with statistically significant manner (p<0.05). Hepatosomatic index was showed no significant difference in diet 3 compared to the control group. An increase in weight gain and other growth associated parameters was observed in diet 3. These results clearly indicate that 17% of fish meal protein in bastard halibut diet can be replaced by mealworm not only without any adverse effect but also the effect of promoting growth performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mealworm" title="mealworm">mealworm</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20flounder" title=" olive flounder"> olive flounder</a>, <a href="https://publications.waset.org/abstracts/search?q=Paralichthys%20olivaceus" title=" Paralichthys olivaceus"> Paralichthys olivaceus</a>, <a href="https://publications.waset.org/abstracts/search?q=Tenebrio%20molitor" title=" Tenebrio molitor"> Tenebrio molitor</a> </p> <a href="https://publications.waset.org/abstracts/26082/nutritive-potential-of-mealworm-tenebrio-molitor-in-the-diet-of-olive-flounder-paralichthys-olivaceus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Impact of Different Rearing Diets on the Performance of Adult Mealworms Tenebrio molitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Provost">Caroline Provost</a>, <a href="https://publications.waset.org/abstracts/search?q=Francois%20Dumont"> Francois Dumont</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production of insects for human and animal consumption is an increasingly important activity in Canada. Protein production is more efficient and less harmful to the environment using insect rearing compared to the impact of traditional livestock, poultry and fish farms. Insects are rich in essential amino acids, essential fatty acids and trace elements. Thus, insect-based products could be used as a food supplement for livestock and domestic animals and may even find their way into the diets of high performing athletes or fine dining. Nevertheless, several parameters remain to be determined to ensure efficient and profitable production that meet the potential of these sectors. This project proposes to improve the production processes, rearing diets and processing methods for three species with valuable gastronomic and nutritional potential: the common mealworms (Tenebrio molitor), the small mealworm (Alphitobius diaperinus), and the giant mealworm (Zophobas morio). The general objective of the project is to acquire specific knowledge for mass rearing of insects dedicated to animal and human consumption in order to respond to current market opportunities and meet a growing demand for these products. Mass rearing of the three species of mealworm was produced to provide the individuals needed for the experiments. Mealworms eat flour from different cereals (e.g. wheat, barley, buckwheat). These cereals vary in their composition (protein, carbohydrates, fiber, vitamins, antioxidant, etc.), but also in their purchase cost. Seven different diets were compared to optimize the yield of the rearing. Diets were composed of cereal flour (e.g. wheat, barley) and were either mixed or left alone. Female fecundity, larvae mortality and growing curves were observed. Some flour diets have positive effects on female fecundity and larvae performance while each mealworm was found to have specific diet requirements. Trade-offs between mealworm performance and costs need to be considered. Experiments on the effect of flour composition on several parameters related to performance and nutritional and gastronomic value led to the identification of a more appropriate diet for each mealworm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mass%20rearing" title="mass rearing">mass rearing</a>, <a href="https://publications.waset.org/abstracts/search?q=mealworm" title=" mealworm"> mealworm</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20consumption" title=" human consumption"> human consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=diet" title=" diet"> diet</a> </p> <a href="https://publications.waset.org/abstracts/96112/impact-of-different-rearing-diets-on-the-performance-of-adult-mealworms-tenebrio-molitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Dose Determination of Tenebrio molitor (Mealworm) Extract as an Anti-Diabetic Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Al%20Rizqi%20Dharma%20Fauzi">Muhammad Al Rizqi Dharma Fauzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dwi%20Yulian%20Fahruddin%20Shah"> Dwi Yulian Fahruddin Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20Pratama"> Andre Pratama</a>, <a href="https://publications.waset.org/abstracts/search?q=Ari%20Hasna%20Widyapuspa"> Ari Hasna Widyapuspa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganden%20Supriyanto"> Ganden Supriyanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes mellitus is still known as one of diseases which give a big amount of death in the world. From 2012 to 2014, diabetes is estimated to have resulted in 1.5 to 4.9 million deaths each year. In this paper, we present our research in the analysis and dose determination of Tenebrio molitor (Mealworm) extract as an anti-diabetic agent which is believed by Indonesian people as a traditional treatment to prevent and treat diabetes. We found that Tenebrio molitor extract has a potential as an anti-diabetic agent by in vitro test to Mus musculus which were divided into six group of treatment. Our dose determination analysis gave a conclusion that at 2,5 g/mL of concentration of the extract would give the optimal result in healing a wound given to Mus musculus which were induced by aloxane monohydrate. These results show that Tenebrio molitor extract is potential to be used as an Anti-Diabetic agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Tenebrio%20molitor" title=" Tenebrio molitor"> Tenebrio molitor</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20medicine" title=" traditional medicine"> traditional medicine</a> </p> <a href="https://publications.waset.org/abstracts/41077/dose-determination-of-tenebrio-molitor-mealworm-extract-as-an-anti-diabetic-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Plastic Degradation Activity of Bacillus Sp. Isolated from the Gut of Plastic-Fed Yellow Mealworm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najat%20El-Kurdi">Najat El-Kurdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Hammad"> Sherif Hammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ghazi"> Mohamed Ghazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20El-Shatoury"> Sahar El-Shatoury</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Zakaria"> Khaled Zakaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing number of plastic production and its importance to humanity in daily life made it a headache to the planet earth. The persistence of plastic wastes in the environment formed a serious problem. They are prominent with their capability to resist microbial degradation for decades. Thus, it was crucial to find ways to eliminate the plastics without depending on conventional recycling methods, which causes the formation of more hazardous compounds and doubles the problem. In this paper, mealworms were fed with a mixture of plastic wastes such as plastic bags, Styrofoam, PE foam, and plastic tarpaulins film as the sole food source for a month. Frass was collected at the end of the test and examined using FTIR analysis. Also, the gut bacteria were isolated and identified using 16S rRNA. The results show the mineralization of plastic in the frass of plastic-fed worms when compared to control. The 16S rRNA and the BLAST analysis showed that the obtained isolate belongs to the genus Bacillus Sp especially Bacillus subtilis. Phylogenetic analysis showed their relatedness to the other Bacillus species in the NCBI database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mealworm" title="mealworm">mealworm</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic-degrading%20bacteria" title=" plastic-degrading bacteria"> plastic-degrading bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiome" title=" gut microbiome"> gut microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20sp" title=" Bacillus sp"> Bacillus sp</a> </p> <a href="https://publications.waset.org/abstracts/146184/plastic-degradation-activity-of-bacillus-sp-isolated-from-the-gut-of-plastic-fed-yellow-mealworm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Characterization of a Lipolytic Enzyme of Pseudomonas nitroreducens Isolated from Mealworm's Gut</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-En%20Kuan">Jung-En Kuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Whei-Fen%20Wu"> Whei-Fen Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a symbiotic bacteria from yellow mealworm's (Tenebrio molitor) mid-gut was isolated with characteristics of growth on minimal-tributyrin medium. After a PCR-amplification of its 16s rDNA, the resultant nucleotide sequences were then analyzed by schemes of the phylogeny trees. Accordingly, it was designated as Pseudomonas nitroreducens D-01. Next, by searching the lipolytic enzymes in its protein data bank, one of those potential lipolytic α/β hydrolases was identified, again using PCR-amplification and nucleotide-sequencing methods. To construct an expression of this lipolytic gene in plasmids, the target-gene primers were then designed, carrying the C-terminal his-tag sequences. Using the vector pET21a, a recombinant lipolytic hydrolase D gene with his-tag nucleotides was successfully cloned into it, of which the lipolytic D gene is under a control of the T7 promoter. After transformation of the resultant plasmids into Eescherichia coli BL21 (DE3), an IPTG inducer was used for the induction of the recombinant proteins. The protein products were then purified by metal-ion affinity column, and the purified proteins were found capable of forming a clear zone on tributyrin agar plate. Shortly, its enzyme activities were determined by degradation of p-nitrophenyl ester(s), and the substantial yellow end-product, p-nitrophenol, was measured at O.D.405 nm. Specifically, this lipolytic enzyme efficiently targets p-nitrophenyl butyrate. As well, it shows the most reactive activities at 40°C, pH 8 in potassium phosphate buffer. In thermal stability assays, the activities of this enzyme dramatically drop when the temperature is above 50°C. In metal ion assays, MgCl₂ and NH₄Cl induce the enzyme activities while MnSO₄, NiSO₄, CaCl₂, ZnSO₄, CoCl₂, CuSO₄, FeSO₄, and FeCl₃ reduce its activities. Besides, NaCl has no effects on its enzyme activities. Most organic solvents decrease the activities of this enzyme, such as hexane, methanol, ethanol, acetone, isopropanol, chloroform, and ethyl acetate. However, its enzyme activities increase when DMSO exists. All the surfactants like Triton X-100, Tween 80, Tween 20, and Brij35 decrease its lipolytic activities. Using Lineweaver-Burk double reciprocal methods, the function of the enzyme kinetics were determined such as Km = 0.488 (mM), Vmax = 0.0644 (mM/min), and kcat = 3.01x10³ (s⁻¹), as well the total efficiency of kcat/Km is 6.17 x10³ (mM⁻¹/s⁻¹). Afterwards, based on the phylogenetic analyses, this lipolytic protein is classified to type IV lipase by its homologous conserved region in this lipase family. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzyme" title="enzyme">enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=esterase" title=" esterase"> esterase</a>, <a href="https://publications.waset.org/abstracts/search?q=lipotic%20hydrolase" title=" lipotic hydrolase"> lipotic hydrolase</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20IV" title=" type IV"> type IV</a> </p> <a href="https://publications.waset.org/abstracts/127816/characterization-of-a-lipolytic-enzyme-of-pseudomonas-nitroreducens-isolated-from-mealworms-gut" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Correlations and Impacts Of Optimal Rearing Parameters on Nutritional Value Of Mealworm (Tenebrio Molitor)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabienne%20Vozy">Fabienne Vozy</a>, <a href="https://publications.waset.org/abstracts/search?q=Anick%20Lepage"> Anick Lepage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insects are displaying high nutritional value, low greenhouse gas emissions, low land use requirements and high food conversion efficiency. They can contribute to the food chain and be one of many solutions to protein shortages. Currently, in North America, nutritional entomology is under-developed and the needs to better understand its benefits remain to convince large-scale producers and consumers (both for human and agricultural needs). As such, large-scale production of mealworms offers a promising alternative to replacing traditional sources of protein and fatty acids. To proceed orderly, it is required to collect more data on the nutritional values of insects such as, a) Evaluate the diets of insects to improve their dietary value; b) Test the breeding conditions to optimize yields; c) Evaluate the use of by-products and organic residues as sources of food. Among the featured technical parameters, relative humidity (RH) percentage and temperature, optimal substrates and hydration sources are critical elements, thus establishing potential benchmarks for to optimize conversion rates of protein and fatty acids. This research is to establish the combination of the most influential rearing parameters with local food residues, to correlate the findings with the nutritional value of the larvae harvested. 125 same-monthly old adults/replica are randomly selected in the mealworm breeding pool then placed to oviposit in growth chambers preset at 26°C and 65% RH. Adults are removed after 7 days. Larvae are harvested upon the apparition of the first nymphosis signs and batches, are analyzed for their nutritional values using wet chemistry analysis. The first samples analyses include total weight of both fresh and dried larvae, residual humidity, crude proteins (CP%), and crude fats (CF%). Further analyses are scheduled to include soluble proteins and fatty acids. Although they are consistent with previous published data, the preliminary results show no significant differences between treatments for any type of analysis. Nutritional properties of each substrate combination have yet allowed to discriminate the most effective residue recipe. Technical issues such as the particles’ size of the various substrate combinations and larvae screen compatibility are to be investigated since it induced a variable percentage of lost larvae upon harvesting. To address those methodological issues are key to develop a standardized efficient procedure. The aim is to provide producers with easily reproducible conditions, without incurring additional excessive expenditure on their part in terms of equipment and workforce. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entomophagy" title="entomophagy">entomophagy</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20value" title=" nutritional value"> nutritional value</a>, <a href="https://publications.waset.org/abstracts/search?q=rearing%20parameters%20optimization" title=" rearing parameters optimization"> rearing parameters optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Tenebrio%20molitor" title=" Tenebrio molitor"> Tenebrio molitor</a> </p> <a href="https://publications.waset.org/abstracts/136092/correlations-and-impacts-of-optimal-rearing-parameters-on-nutritional-value-of-mealworm-tenebrio-molitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>